next up previous contents
Next: Index Up: Book Previous: 11.6 Job-Shop Scheduling   Contents

Bibliography

Agre, 1988
Agre, P. E. (1988).
The Dynamic Structure of Everyday Life.
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.
AI-TR 1085, MIT Artificial Intelligence Laboratory.

Agre and Chapman, 1990
Agre, P. E. and Chapman, D. (1990).
What are plans for?
Robotics and Autonomous Systems, 6:17-34.

Albus, 1971
Albus, J. S. (1971).
A theory of cerebellar function.
Mathematical Biosciences, 10:25-61.

Albus, 1981
Albus, J. S. (1981).
Brain, Behavior, and Robotics.
Byte Books.

Anderson, 1986
Anderson, C. W. (1986).
Learning and Problem Solving with Multilayer Connectionist Systems.
PhD thesis, University of Massachusetts, Amherst, MA.

Anderson, 1987
Anderson, C. W. (1987).
Strategy learning with multilayer connectionist representations.
Technical Report TR87-509.3, GTE Laboratories, Incorporated, Waltham, MA.
(This is a corrected version of the report published in Proceedings of the Fourth International Workshop on Machine Learning,103-114, 1987, San Mateo, CA: Morgan Kaufmann.).

Anderson et al., 1977
Anderson, J. A., Silversten, J. W., Ritz, S. A., and Jones, R. S. (1977).
Distinctive features, categorical perception, and probability learning: Some applications of a neural model.
Psychological Review, 84:413-451.

Andreae, 1963
Andreae, J. H. (1963).
STELLA: A scheme for a learning machine.
In Proceedings of the 2nd IFAC Congress, Basle, pages 497-502, London. Butterworths.

Andreae, 1969a
Andreae, J. H. (1969a).
A learning machine with monologue.
International Journal of Man-Machine Studies, 1:1-20.

Andreae, 1969b
Andreae, J. H. (1969b).
Learning machines--a unified view.
In Meetham, A. R. and Hudson, R. A., editors, Encyclopedia of Information, Linguistics, and Control, pages 261-270. Pergamon, Oxford.

Andreae, 1977
Andreae, J. H. (1977).
Thinking with the Teachable Machine.
Academic Press, London.

Baird, 1995
Baird, L. C. (1995).
Residual algorithms: Reinforcement learning with function approximation.
In Prieditis, A. and Russell, S., editors, Proceedings of the Twelfth International Conference on Machine Learning, pages 30-37, San Francisco, CA. Morgan Kaufmann.

Bao et al., 1994
Bao, G., Cassandras, C. G., Djaferis, T. E., Gandhi, A. D., and Looze, D. P. (1994).
Elevator dispatchers for down peak traffic.
Technical report, ECE Department, University of Massachusetts.

Barnard, 1993
Barnard, E. (1993).
Temporal-difference methods and Markov models.
IEEE Transactions on Systems, Man, and Cybernetics, 23:357-365.

Barto, 1985
Barto, A. G. (1985).
Learning by statistical cooperation of self-interested neuron-like computing elements.
Human Neurobiology, 4:229-256.

Barto, 1986
Barto, A. G. (1986).
Game-theoretic cooperativity in networks of self-interested units.
In Denker, J. S., editor, Neural Networks for Computing, pages 41-46. American Institute of Physics, New York.

Barto, 1990
Barto, A. G. (1990).
Connectionist learning for control: An overview.
In Miller, T., Sutton, R. S., and Werbos, P. J., editors, Neural Networks for Control, pages 5-58. MIT Press, Cambridge, MA.

Barto, 1991
Barto, A. G. (1991).
Some learning tasks from a control perspective.
In Nadel, L. and Stein, D. L., editors, 1990 Lectures in Complex Systems, pages 195-223. Addison-Wesley Publishing Company, The Advanced Book Program, Redwood City, CA.

Barto, 1992
Barto, A. G. (1992).
Reinforcement learning and adaptive critic methods.
In White, D. A. and Sofge, D. A., editors, Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches, pages 469-491. Van Nostrand Reinhold, New York.

Barto, 1995a
Barto, A. G. (1995a).
Adaptive critics and the basal ganglia.
In Houk, J. C., Davis, J. L., and Beiser, D. G., editors, Models of Information Processing in the Basal Ganglia, pages 215-232. MIT Press, Cambridge, MA.

Barto, 1995b
Barto, A. G. (1995b).
Reinforcement learning.
In Arbib, M. A., editor, Handbook of Brain Theory and Neural Networks, pages 804-809. The MIT Press, Cambridge, MA.

Barto and Anandan, 1985
Barto, A. G. and Anandan, P. (1985).
Pattern recognizing stochastic learning automata.
IEEE Transactions on Systems, Man, and Cybernetics, 15:360-375.

Barto and Anderson, 1985
Barto, A. G. and Anderson, C. W. (1985).
Structural learning in connectionist systems.
In Program of the Seventh Annual Conference of the Cognitive Science Society, pages 43-54, Irvine, CA.

Barto et al., 1982
Barto, A. G., Anderson, C. W., and Sutton, R. S. (1982).
Synthesis of nonlinear control surfaces by a layered associative search network.
Biological Cybernetics, 43:175-185.

Barto et al., 1991
Barto, A. G., Bradtke, S. J., and Singh, S. P. (1991).
Real-time learning and control using asynchronous dynamic programming.
Technical Report 91-57, Department of Computer and Information Science, University of Massachusetts, Amherst, MA.

Barto et al., 1995
Barto, A. G., Bradtke, S. J., and Singh, S. P. (1995).
Learning to act using real-time dynamic programming.
Artificial Intelligence, 72:81-138.

Barto and Duff, 1994
Barto, A. G. and Duff, M. (1994).
Monte carlo matrix inversion and reinforcement learning.
In Cohen, J. D., Tesauro, G., and Alspector, J., editors, Advances in Neural Information Processing Systems: Proceedings of the 1993 Conference, pages 687-694, San Francisco, CA. Morgan Kaufmann.

Barto and Jordan, 1987
Barto, A. G. and Jordan, M. I. (1987).
Gradient following without back-propagation in layered networks.
In Caudill, M. and Butler, C., editors, Proceedings of the IEEE First Annual Conference on Neural Networks, pages II629-II636, San Diego, CA.

Barto and Sutton, 1981a
Barto, A. G. and Sutton, R. S. (1981a).
Goal seeking components for adaptive intelligence: An initial assessment.
Technical Report AFWAL-TR-81-1070, Air Force Wright Aeronautical Laboratories/Avionics Laboratory, Wright-Patterson AFB, OH.

Barto and Sutton, 1981b
Barto, A. G. and Sutton, R. S. (1981b).
Landmark learning: An illustration of associative search.
Biological Cybernetics, 42:1-8.

Barto and Sutton, 1982
Barto, A. G. and Sutton, R. S. (1982).
Simulation of anticipatory responses in classical conditioning by a neuron-like adaptive element.
Behavioural Brain Research, 4:221-235.

Barto et al., 1983
Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983).
Neuronlike elements that can solve difficult learning control problems.
IEEE Transactions on Systems, Man, and Cybernetics, 13:835-846.
Reprinted in J. A. Anderson and E. Rosenfeld, Neurocomputing: Foundations of Research, MIT Press, Cambridge, MA, 1988.

Barto et al., 1981
Barto, A. G., Sutton, R. S., and Brouwer, P. S. (1981).
Associative search network: A reinforcement learning associative memory.
IEEE Transactions on Systems, Man, and Cybernetics, 40:201-211.

Bellman and Dreyfus, 1959
Bellman, R. and Dreyfus, S. E. (1959).
Functional approximations and dynamic programming.
Math Tables and Other Aides to Computation, 13:247-251.

Bellman et al., 1973
Bellman, R., Kalaba, R., and Kotkin, B. (1973).
Polynomial approximation--A new computational technique in dynamic programming: Allocation processes.
Mathematical Computation, 17:155-161.

Bellman, 1956
Bellman, R. E. (1956).
A problem in the sequential design of experiments.
Sankhya, 16:221-229.

Bellman, 1957a
Bellman, R. E. (1957a).
Dynamic Programming.
Princeton University Press, Princeton, NJ.

Bellman, 1957b
Bellman, R. E. (1957b).
A Markov decision process.
Journal of Mathematical Mech., 6:679-684.

Berry and Fristedt, 1985
Berry, D. A. and Fristedt, B. (1985).
Bandit Problems.
Chapman and Hall, London.

Bertsekas, 1982
Bertsekas, D. P. (1982).
Distributed dynamic programming.
IEEE Transactions on Automatic Control, 27:610-616.

Bertsekas, 1983
Bertsekas, D. P. (1983).
Distributed asynchronous computation of fixed points.
Mathematical Programming, 27:107-120.

Bertsekas, 1987
Bertsekas, D. P. (1987).
Dynamic Programming: Deterministic and Stochastic Models.
Prentice-Hall, Englewood Cliffs, NJ.

Bertsekas, 1995
Bertsekas, D. P. (1995).
Dynamic Programming and Optimal Control.
Athena, Belmont, MA.

Bertsekas and Tsitsiklis, 1989
Bertsekas, D. P. and Tsitsiklis, J. N. (1989).
Parallel and Distributed Computation: Numerical Methods.
Prentice-Hall, Englewood Cliffs, NJ.

Bertsekas and Tsitsiklis, 1996
Bertsekas, D. P. and Tsitsiklis, J. N. (1996).
Neural Dynamic Programming.
Athena Scientific, Belmont, MA.

Biermann et al., 1982
Biermann, A. W., Fairfield, J. R. C., and Beres, T. R. (1982).
Signature table systems and learning.
IEEE Transactions on Systems, Man, and Cybernetics, SMC-12:635-648.

Bishop, 1995
Bishop, C. M. (1995).
Neural Networks for Pattern Recognition.
Clarendon, Oxford.

Booker, 1982
Booker, L. B. (1982).
Intelligent Behavior as an Adaptation to the Task Environment.
PhD thesis, University of Michigan, Ann Arbor, MI.

Boone, 1997
Boone, G. (1997).
Minimum-time control of the acrobot.
In 1997 International Conference on Robotics and Automation, Albuquerque, NM.

Boutilier et al., 1995
Boutilier, C., Dearden, R., and Goldszmidt, M. (1995).
Exploiting structure in policy construction.
In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence.

Boyan and Moore, 1995
Boyan, J. A. and Moore, A. W. (1995).
Generalization in reinforcement learning: Safely approximating the value functions.
In G. Tesauro, D. Touretzky, T. L., editor, Advances in Neural Information Processing Systems: Proceedings of the 1994 Conference, pages 369-376, San Mateo, CA. Morgan Kaufmann.

Boyan et al., 1995
Boyan, J. A., Moore, A. W., and Sutton, R. S., editors (1995).
Proceedings of the Workshop on Value Function Approximation. Machine Learning Conference 1995, Pittsburgh, PA. School of Computer Science, Carnegie Mellon University.
Technical Report CMU-CS-95-206.

Bradtke, 1993
Bradtke, S. J. (1993).
Reinforcement learning applied to linear quadratic regulation.
In S. J. Hanson, J. D. Cowan, C. L. G., editor, Advances in Neural Information Processing Systems: Proceedings of the 1992 Conference, pages 295-302, San Mateo, CA. Morgan Kaufmann.

Bradtke, 1994
Bradtke, S. J. (1994).
Incremental Dynamic Programming for On-Line Adaptive Optimal Control.
PhD thesis, University of Massachusetts, Amherst.
Appeared as CMPSCI Technical Report 94-62.

Bradtke and Barto, 1996
Bradtke, S. J. and Barto, A. G. (1996).
Linear least-squares algorithms for temporal difference learning.
Machine Learning, 22:33-57.

Bradtke and Duff, 1995
Bradtke, S. J. and Duff, M. O. (1995).
Reinforcement learning methods for continuous-time Markov decision problems.
In G. Tesauro, D. Touretzky, T. L., editor, Advances in Neural Information Processing Systems: Proceedings of the 1994 Conference, pages 393-400, San Mateo, CA. Morgan Kaufmann.

Bridle, 1990
Bridle, J. S. (1990).
Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimates of parameters.
In Touretzky, D. S., editor, Advances in Neural Information Processing Systems 2, pages 211-217, San Mateo, CA. Morgan Kaufmann.

Broomhead and Lowe, 1988
Broomhead, D. S. and Lowe, D. (1988).
Multivariable functional interpolation and adaptive networks.
Complex Systems, 2:321-355.

Bryson, 1996
Bryson, Jr., A. E. (1996).
Optimal control--1950 to 1985.
IEEE Control Systems, 13(3):26-33.

Bush and Mosteller, 1955
Bush, R. R. and Mosteller, F. (1955).
Stochastic Models for Learning.
Wiley, New York.

Byrne et al., 1990
Byrne, J. H., Gingrich, K. J., and Baxter, D. A. (1990).
Computational capabilities of single neurons: Relationship to simple forms of associative and nonassociative learning in aplysia.
In Hawkins, R. D. and Bower, G. H., editors, Computational Models of Learning, pages 31-63. Academic Press, New York.

Campbell, 1959
Campbell, D. T. (1959).
Blind variation and selective survival as a general strategy in knowledge-processes.
In Yovits, M. C. and Cameron, S., editors, Self-Organizing Systems, pages 205-231. Pergamon.

Carlström and Nordström, 1997
Carlström, J. and Nordström, E. (1997).
Control of self-similar ATM call traffic by reinforcement learning.
In Proceedings of the International Workshop on Applications of Neural Networks to Telecommunications 3, Hillsdale NJ. Lawrence Erlbaum.

Chapman and Kaelbling, 1991
Chapman, D. and Kaelbling, L. P. (1991).
Input generalization in delayed reinforcement learning: An algorithm and performance comparisons.
In Proceedings of the 1991 International Joint Conference on Artificial Intelligence.

Chow and Tsitsiklis, 1991
Chow, C.-S. and Tsitsiklis, J. N. (1991).
An optimal one-way multigrid algorithm for discrete-time stochastic control.
IEEE Transactions on Automatic Control, 36:898-914.

Chrisman, 1992
Chrisman, L. (1992).
Reinforcement learning with perceptual aliasing: The perceptual distinctions approach.
In Proceedings of the Tenth National Conference on Artificial Intelligence, pages 183-188, Menlo Park, CA. AAAI Press/MIT Press.

Christensen and Korf, 1986
Christensen, J. and Korf, R. E. (1986).
A unified theory of heuristic evaluation functions and its application to learning.
In Proceedings of the Fifth National Conference on Artificial Intelligence AAAI-86, pages 148-152, San Mateo, CA. Morgan Kaufmann.

Cichosz, 1995
Cichosz, P. (1995).
Truncating temporal differences: On the efficient implementation of TD($\lambda $) for reinforcement learning.
Journal of Artificial Intelligence Research, 2:287-318.

Clark and Farley, 1955
Clark, W. A. and Farley, B. G. (1955).
Generalization of pattern recognition in a self-organizing system.
In Proceedings of the 1955 Western Joint Computer Conference, pages 86-91.

Clouse, 1997
Clouse, J. (1997).
On Integrating Apprentice Learning and Reinforcement Learning TITLE2.
PhD thesis, University of Massachusetts, Amherst.
Appeared as CMPSCI Technical Report 96-026.

Clouse and Utgoff, 1992
Clouse, J. and Utgoff, P. (1992).
A teaching method for reinforcement learning systems.
In Proceedings of the Ninth International Machine Learning Conference, pages 92-101.

Colombetti and Dorigo, 1994
Colombetti, M. and Dorigo, M. (1994).
Training agent to perform sequential behavior.
Adaptive Behavior, 2(3):247-275.

Connell, 1989
Connell, J. (1989).
A colony architecture for an artificial creature.
Technical Report AI-TR-1151, MIT Artificial Intelligence Laboratory, Cambridge, MA.

Craik, 1943
Craik, K. J. W. (1943).
The Nature of Explanation.
Cambridge University Press, Cambridge.

Crites, 1996
Crites, R. H. (1996).
Large-Scale Dynamic Optimization Using Teams of Reinforcement Learning Agents.
PhD thesis, University of Massachusetts, Amherst, MA.

Crites and Barto, 1996
Crites, R. H. and Barto, A. G. (1996).
Improving elevator performance using reinforcement learning.
In D. S. Touretzky, M. C. Mozer, M. E. H., editor, Advances in Neural Information Processing Systems: Proceedings of the 1995 Conference, pages 1017-1023, Cambridge, MA. MIT Press.

Curtiss, 1954
Curtiss, J. H. (1954).
A theoretical comparison of the efficiencies of two classical methods and a monte carlo method for computing one component of the solution of a set of linear algebraic equations.
In Meyer, H. A., editor, Symposium on Monte Carlo Methods, pages 191-233. Wiley, New York.

Cziko, 1995
Cziko, G. (1995).
Without Miracles. Universal Selection Theory and the Second Darvinian Revolution.
The MIT Press.

Daniel, 1976
Daniel, J. W. (1976).
Splines and efficiency in dynamic programming.
Journal of Mathematical Analysis and Applications, 54:402-407.

Dayan, 1991
Dayan, P. (1991).
Reinforcement comparison.
In Touretzky, D. S., Elman, J. L., Sejnowski, T. J., and Hinton, G. E., editors, Connectionist Models: Proceedings of the 1990 Summer School, pages 45-51. Morgan Kaufmann, San Mateo, CA.

Dayan, 1992
Dayan, P. (1992).
The convergence of TD($\lambda $) for general $\lambda $.
Machine Learning, 8:341-362.

Dayan and Hinton, 1993
Dayan, P. and Hinton, G. E. (1993).
Feudal reinforcement learning.
In Hanson, S. J., Cohen, J. D., and Giles, C. L., editors, Advances in Neural Information Processing Systems: Proceedings of the 1992 Conference, pages 271-278, San Mateo, CA. Morgan Kaufmann.

Dayan and Sejnowski, 1994
Dayan, P. and Sejnowski, T. (1994).
TD($\lambda $) converges with probability 1.
Machine Learning, 14:295-301.

Dean and Lin, 1995
Dean, T. and Lin, S.-H. (1995).
Decomposition techniques for planning in stochastic domains.
In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence.

DeJong and Spong, 1994
DeJong, G. and Spong, M. W. (1994).
Swinging up the acrobot: An example of intelligent control.
In Proceedings of the American Control Conference, pages 2158-2162.

Denardo, 1967
Denardo, E. V. (1967).
Contraction mappings in the theory underlying dynamic programming.
SIAM Review, 9:165-177.

Dennett, 1978
Dennett, D. C. (1978).
Brainstorms, chapter Why the Law-of-Effect Will Not Go Away, pages 71-89.
Bradford/MIT Press, Cambridge, MA.

Dietterich and Flann, 1995
Dietterich, T. G. and Flann, N. S. (1995).
Explanation-based learning and reinforcement learning: A unified view.
In Prieditis, A. and Russell, S., editors, Proceedings of the Twelfth International Conference on Machine Learning, pages 176-184, San Francisco, CA. Morgan Kaufmann.

Doya, 1996
Doya, K. (1996).
Temporal difference learing in continuous time and space.
In Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E., editors, Advances in Neural Information Processing Systems: Proceedings of the 1995 Conference, pages 1073-1079, Cambridge, MA. MIT Press.

Doyle and Snell, 1984
Doyle, P. G. and Snell, J. L. (1984).
Random Walks and Electric Networks.
The Mathematical Association of America.
Carus Mathematical Monograph 22.

Dreyfus and Law, 1977
Dreyfus, S. E. and Law, A. M. (1977).
The Art and Theory of Dynamic Programming.
Academic Press, New York.

Duda and Hart, 1973
Duda, R. O. and Hart, P. E. (1973).
Pattern Classification and Scene Analysis.
Wiley, New York.

Duff, 1995
Duff, M. O. (1995).
Q-learning for bandit problems.
In Prieditis, A. and Russell, S., editors, Proceedings of the Twelfth International Conference on Machine Learning, pages 209-217, San Francisco, CA. Morgan Kaufmann.

Estes, 1950
Estes, W. K. (1950).
Toward a statistical theory of learning.
Psychololgical Review, 57:94-107.

Farley and Clark, 1954
Farley, B. G. and Clark, W. A. (1954).
Simulation of self-organizing systems by digital computer.
IRE Transactions on Information Theory, 4:76-84.

Feldbaum, 1960
Feldbaum, A. A. (1960).
Optimal Control Theory.
Academic Press, New York.

Friston et al., 1994
Friston, K. J., Tononi, G., Reeke, G. N., Sporns, O., and Edelman, G. M. (1994).
Value-dependent selection in the brain: Simulation in a synthetic neural model.
Neuroscience, 59:229-243.

Fu, 1970
Fu, K. S. (1970).
Learning control systems--Review and outlook.
IEEE Transactions on Automatic Control, pages 210-221.

Galanter and Gerstenhaber, 1956
Galanter, E. and Gerstenhaber, M. (1956).
On thought: The extrinsic theory.
Psychological Review, 63:218-227.

Gällmo and Asplund, 1995
Gällmo, O. and Asplund, H. (1995).
Reinforcement learning by construction of hypothetical targets.
In Alspector, J., Goodman, R., and Brown, T. X., editors, Proceedings of the International Workshop on Applications of Neural Networks to Telecommunications 2, pages 300-307. Stockholm, Sweden.

Gardner, 1973
Gardner, M. (1973).
Mathematical games.
Scientific American, 228:108.

Gelperin et al., 1985
Gelperin, A., Hopfield, J. J., and Tank, D. W. (1985).
The logic of limax learning.
In Selverston, A., editor, Model Neural Networks and Behavior. Plenum Press, New York.

Gittins and Jones, 1974
Gittins, J. C. and Jones, D. M. (1974).
A dynamic allocation index for the sequential design of experiments.
Progress in Statistics, pages 241-266.

Goldberg, 1989
Goldberg, D. E. (1989).
Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading, MA.

Goldstein, 1957
Goldstein, H. (1957).
Classical Mechanics.
Addison-Wesley, Reading, MA.

Goodwin and Sin, 1984
Goodwin, G. C. and Sin, K. S. (1984).
Adaptive Filtering Prediction and Control.
Prentice-Hall, Englewood Cliffs, N.J.

Gordon, 1995
Gordon, G. J. (1995).
Stable function approximation in dynamic programming.
In Prieditis, A. and Russell, S., editors, Proceedings of the Twelfth International Conference on Machine Learning, pages 261-268, San Francisco, CA. Morgan Kaufmann.
An expanded version was published as Technical Report CMU-CS-95-103, Carnegie Mellon University, Pittsburgh, PA, 1995.

Gordon, 1996
Gordon, G. J. (1996).
Stable fitted reinforcement learning.
In D. S. Touretzky, M. C. Mozer, M. E. H., editor, Advances in Neural Information Processing Systems: Proceedings of the 1995 Conference, pages 1052-1058, Cambridge, MA. MIT Press.

Griffith, 1966
Griffith, A. K. (1966).
A new machine learning technique applied to the game of checkers.
Technical Report Project MAC Artificial Intelligence Memo 94, Massachusetts Institute of Technology.

Griffith, 1974
Griffith, A. K. (1974).
A comparison and evaluation of three machine learning procedures as applied to the game of checkers.
Artificial Intelligence, 5:137-148.

Gullapalli, 1990
Gullapalli, V. (1990).
A stochastic reinforcement algorithm for learning real-valued functions.
Neural Networks, 3:671-692.

Gurvits et al., 1994
Gurvits, L., Lin, L.-J., and Hanson, S. J. (1994).
Incremental learning of evaluation functions for absorbing Markov chains: New methods and theorems.
Preprint.

Hampson, 1983
Hampson, S. E. (1983).
A Neural Model of Adaptive Behavior.
PhD thesis, University of California, Irvine, CA.

Hampson, 1989
Hampson, S. E. (1989).
Connectionist Problem Solving: Computational Aspects of Biological Learning.
Birkhauser, Boston.

Hawkins and Kandel, 1984
Hawkins, R. D. and Kandel, E. R. (1984).
Is there a cell-biological alphabet for simple forms of learning?
Psychological Review, 91:375-391.

Hersh and Griego, 1969
Hersh, R. and Griego, R. J. (1969).
Brownian motion and potential theory.
Scientific American, pages 66-74.

Hilgard and Bower, 1975
Hilgard, E. R. and Bower, G. H. (1975).
Theories of Learning.
Prentice-Hall, Englewood Cliffs, NJ.

Hinton, 1984
Hinton, G. E. (1984).
Distributed representations.
Technical Report CMU-CS-84-157, Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA.

Hochreiter and Schmidhuber, 1997
Hochreiter, S. and Schmidhuber, J. (1997).
Long short-term memory.
Neural Computation.

Holland, 1975
Holland, J. H. (1975).
Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor.

Holland, 1976
Holland, J. H. (1976).
Adaptation.
In Rosen, R. and Snell, F. M., editors, Progress in Theoretical Biology, volume 4, pages 263-293. Academic Press, NY.

Holland, 1986
Holland, J. H. (1986).
Escaping brittleness: The possibility of general-purpose learning algorithms applied to rule-based systems.
In Michalski, R. S., Carbonell, J. G., and Mitchell, T. M., editors, Machine Learning: An Artificial Intelligence Approach, Volume II, pages 593-623. Morgan Kaufmann, San Mateo, CA.

Houk et al., 1995
Houk, J. C., Adams, J. L., and Barto, A. G. (1995).
A model of how the basal ganglia generates and uses neural signals that predict reinforcement.
In Houk, J. C., Davis, J. L., and Beiser, D. G., editors, Models of Information Processing in the Basal Ganglia, pages 249-270. MIT Press, Cambridge, MA.

Howard, 1960
Howard, R. (1960).
Dynamic Programming and Markov Processes.
MIT Press, Cambridge, MA.

Hull, 1943
Hull, C. L. (1943).
Principles of Behavior.
D. Appleton-Century, NY.

Hull, 1952
Hull, C. L. (1952).
A Behavior System.
Wiley, NY.

Jaakkola et al., 1994
Jaakkola, T., Jordan, M. I., and Singh, S. P. (1994).
On the convergence of stochastic iterative dynamic programming algorithms.
Neural Computation, 6.

Jaakkola et al., 1995
Jaakkola, T., Singh, S. P., and Jordan, M. I. (1995).
Reinforcement learning algorithm for partially observable Markov decision problems.
In G. Tesauro, D. Touretzky, T. L., editor, Advances in Neural Information Processing Systems: Proceedings of the 1994 Conference, pages 345-352, San Mateo, CA. Morgan Kaufmann.

Kaelbling, 1996
Kaelbling (1996).
A special issue of machine learning on reinforcement learning.
22.

Kaelbling, 1993a
Kaelbling, L. (1993a).
Hierarchical learning in stochastic domains: Preliminary results.
In Proceedings of the Tenth International Conference on Machine Learning, pages 167-173. Morgan Kaufmann.

Kaelbling, 1993b
Kaelbling, L. P. (1993b).
Learning in Embedded Systems.
MIT Press, Cambridge MA.

Kaelbling et al., 1996
Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996).
Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4.

Kakutani, 1945
Kakutani, S. (1945).
Markov processes and the dirichlet problem.
Proc. Jap. Acad., 21:227-233.

Kalos and Whitlock, 1986
Kalos, M. H. and Whitlock, P. A. (1986).
Monte Carlo Methods.
Wiley, NY.

Kanerva, 1988
Kanerva, P. (1988).
Sparse Distributed Memory.
MIT Press, Cambridge, MA.

Kanerva, 1993
Kanerva, P. (1993).
Sparse distributed memory and related models.
In Hassoun, M. H., editor, Associative Neural Memories: Theory and Implementation, pages 50-76. Oxford University Press, NY.

Kashyap et al., 1970
Kashyap, R. L., Blaydon, C. C., and Fu, K. S. (1970).
Stochastic approximation.
In Mendel, J. M. and Fu, K. S., editors, Adaptive, Learning, and Pattern Recognition Systems: Theory and Applications. Academic Press, New York.

Keerthi and Ravindran, 1997
Keerthi, S. S. and Ravindran, B. (1997).
Reinforcement learning.
In Fiesler, E. and Beale, R., editors, Handbook of Neural Computation. Oxford University Press, USA.

Kimble, 1961
Kimble, G. A. (1961).
Hilgard and Marquis' Contitioning and Learning.
Appleton-Century-Crofts, Inc., New York.

Kimble, 1967
Kimble, G. A. (1967).
Foundations of Conditioning and Learning.
Appleton-Century-Crofts.

Kirkpatrick et al., 1983
Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983).
Optimization by simulated annealing.
Science, 220:671-680.

Klopf, 1972
Klopf, A. H. (1972).
Brain function and adaptive systems--A heterostatic theory.
Technical Report AFCRL-72-0164, Air Force Cambridge Research Laboratories, Bedford, MA.
A summary appears in Proceedings of the International Conference on Systems, Man, and Cybernetics, 1974, IEEE Systems, Man, and Cybernetics Society, Dallas, TX.

Klopf, 1975
Klopf, A. H. (1975).
A comparison of natural and artificial intelligence.
SIGART Newsletter, 53:11-13.

Klopf, 1982
Klopf, A. H. (1982).
The Hedonistic Neuron: A Theory of Memory, Learning, and Intelligence.
Hemisphere, Washington, D.C.

Klopf, 1988
Klopf, A. H. (1988).
A neuronal model of classical conditioning.
Psychobiology, 16:85-125.

Kohonen, 1977
Kohonen, T. (1977).
Associative Memory: A System Theoretic Approach.
Springer-Varlag, Berlin.

Korf, 1988
Korf, R. E. (1988).
Optimal path finding algorithms.
In Kanal, L. N. and Kumar, V., editors, Search in Artificial Intelligence, pages 223-267. Springer Verlag, Berlin.

Kraft and Campagna, 1990
Kraft, L. G. and Campagna, D. P. (1990).
A summary comparison of CMAC neural network and traditional adaptive control systems.
In Miller, T., Sutton, R. S., and Werbos, P. J., editors, Neural Networks for Control, pages 143-169. MIT Press, Cambridge, MA.

Kraft et al., 1992
Kraft, L. G., Miller, W. T., and Dietz, D. (1992).
Development and application of CMAC neural network-based control.
In White, D. A. and Sofge, D. A., editors, Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches, pages 215-232. Van Nostrand Reinhold, New York.

Kuman and Varaiya, 1986
Kuman, P. R. and Varaiya, P. (1986).
Stochastic Systems: Estimation, Identification, and Adaptive Control.
Prentice-Hall, Englewood Cliffs, NJ.

Kumar, 1985
Kumar, P. R. (1985).
A survey of some results in stochastic adaptive control.
SIAM Journal of Control and Optimization, 23:329-380.

Kumar and Kanal, 1988
Kumar, V. and Kanal, L. N. (1988).
The CDP: A unifying formulation for heuristic search, dynamic programming, and branch-and-bound.
In Kanal, L. N. and Kumar, V., editors, Search in Artificial Intelligence, pages 1-37. Springer-Verlag.

Kushner and Dupuis, 1992
Kushner, H. J. and Dupuis, P. (1992).
Numerical Methods for Stochastic Control Problems in Continuous Time.
Springer-Verlag, New York.

Lai, 1987
Lai, T. L. (1987).
Adaptive treatment allocation and the multi-armed bandit problem.
The Annals of Statistics, 15(3):1091-1114.

Lang et al., 1990
Lang, K. J., Waibel, A. H., and Hinton, G. E. (1990).
A time-delay neural network architecture for isolated word recognition.
Neural Networks, 3:33-43.

Lin and Kim, 1991
Lin, C.-S. and Kim, H. (1991).
Cmac-based adaptive critic self-learning control.
IEEE Transactions on Neural Networks, 2:530-533.

Lin, 1992
Lin, L.-J. (1992).
Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine Learning, 8:293-321.

Lin and Mitchell, 1992
Lin, L.-J. and Mitchell, T. (1992).
Reinforcement learning with hidden states.
In Proceedings of the Second International Conference on Simulation of Adaptive Behavior: From Animals to Animats, pages 271-280. MIT Press.

Littman, 1994
Littman, M. L. (1994).
Markov games as a framework for multi-agent reinforcement learning.
In Proceedings of the Eleventh International Conference on Machine Learning, pages 157-163, San Francisco, CA. Morgan Kaufmann.

Littman et al., 1995a
Littman, M. L., Cassandra, A. R., and Kaelbling, L. P. (1995a).
Learning policies for partially observable environments: Scaling up.
In Prieditis, A. and Russell, S., editors, Proceedings of the Twelfth International Conference on Machine Learning, pages 362-370, San Francisco, CA. Morgan Kaufmann.

Littman et al., 1995b
Littman, M. L., Dean, T. L., and Kaelbling, L. P. (1995b).
On the complexity of solving Markov decision processes.
In Proceedings of the Eleventh International Conference on Uncertainty in Artificial Intelligence.

Ljung and Söderstrom, 1983
Ljung, L. and Söderstrom, T. (1983).
Theory and Practice of Recursive Identification.
MIT Press, Cambridge, MA.

Lovejoy, 1991
Lovejoy, W. S. (1991).
A survey of algorithmic methods for partially observed Markov decision processes.
Annals of Operations Research, 28:47-66.

Luce, 1959
Luce, D. (1959).
Individual Choice Behavior.
Wiley, NY.

M. Zweben, 1994
M. Zweben, B. Daun, M. D. (1994).
Scheduling and rescheduling with iterative repair.
In Zweben, M. and Fox, M. S., editors, Intelligent Scheduling, pages 241-255. Morgan Kaufmann, San Francisco, CA.

Maclin and Shavlik, 1994
Maclin, R. and Shavlik, J. W. (1994).
Incorporating advice into agents that learn from reinforcements.
In Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94).

Mahadevan, 1996
Mahadevan, S. (1996).
Average reward reinforcement learning: Foundations, algorithms, and empirical results.
Machine Learning, 22:159-196.

Markey, 1994
Markey, K. L. (1994).
Efficient learning of multiple degree-of-freedom control problems with quasi-independent q-agents.
In Mozer, M. C., Smolensky, P., Touretzky, D. S., Elman, J. L., and Weigend, A. S., editors, Proceedings of the 1009 Connectionist Models Summer School, Hillsdale, NJ. Erlbaum.

Mazur, 1994
Mazur, J. E. (1994).
Learning and Behavior, Third Edition.
Prentice-Hall, Englewood Cliffs, NJ.

McCallum, 1992
McCallum, A. K. (1992).
Reinforcement learning with perceptual aliasing: The perceptual distinctions approach.
In Proceedings of the Tenth National Conference on Artificial Intelligence, pages 183-188, Menlo Park, CA. AAAI Press/MIT Press.

McCallum, 1993
McCallum, A. K. (1993).
Overcoming incomplete perception with utile distinction memory.
In Proceedings of the Tenth International Conference on Machine Learning, pages 190-196. Morgan Kaufmann.

McCallum, 1995
McCallum, A. K. (1995).
Reinforcement Learning with Selective Perception and Hidden State.
PhD thesis, University of Rochester, Rochester.

Mendel, 1966
Mendel, J. M. (1966).
Applications of artificial intelligence techniques to a spacecraft control problem.
Technical Report NASA CR-755, National Aeronautics and Space Administration.

Mendel and McLaren, 1970
Mendel, J. M. and McLaren, R. W. (1970).
Reinforcement learning control and pattern recognition systems.
In Mendel, J. M. and Fu, K. S., editors, Adaptive, Learning and Pattern Recognition Systems: Theory and Applications, pages 287-318. Academic Press, New York.

Michie, 1961
Michie, D. (1961).
Trial and error.
In Barnett, S. A. and McLaren, A., editors, Science Survey, Part 2, pages 129-145, Harmondsworth. Penguin.

Michie, 1963
Michie, D. (1963).
Experiments on the mechanisation of game learning. 1. characterization of the model and its parameters.
Computer Journal, 1:232-263.

Michie, 1974
Michie, D. (1974).
On Machine Intelligence.
Edinburgh University Press.

Michie and Chambers, 1968
Michie, D. and Chambers, R. A. (1968).
BOXES: An experiment in adaptive control.
In Dale, E. and Michie, D., editors, Machine Intelligence 2, pages 137-152. Oliver and Boyd.

Miller and Williams, 1992
Miller, S. and Williams, R. J. (1992).
Learning to control a bioreactor using a neural net dyna-q system.
In Proceedings of the Seventh Yale Workshop on Adaptive and Learning Systems, pages 167-172, Center for Systems Science, Dunham Laboratory, Yale University.

Miller et al., 1994
Miller, W. T., Scalera, S. M., and Kim, A. (1994).
Neural network control of dynamic balance for a biped walking robot.
In Proceedings of the Eighth Yale Workshop on Adaptive and Learning Systems, pages 156-161, Dunham Laboratory, Yale University. Center for Systems Science.

Minsky, 1954
Minsky, M. L. (1954).
Theory of Neural-Analog Reinforcement Systems and its Application to the Brain-Model Problem.
PhD thesis, Princeton University.

Minsky, 1961
Minsky, M. L. (1961).
Steps toward artificial intelligence.
Proceedings of the Institute of Radio Engineers, 49:8-30.
Reprinted in E. A. Feigenbaum and J. Feldman, editors, Computers and Thought. McGraw-Hill, New York, 406-450, 1963.

Minsky, 1967
Minsky, M. L. (1967).
Computation: Finite and Infinite Machines.
Prentice Hall, Englewood Cliffs, NJ.

Montague et al., 1996
Montague, P. R., Dayan, P., and Sejnowski, T. J. (1996).
A framework for mesencephalic dopamine systems based on predictive hebbian learning.
Journal of Neuroscience, 16:1936-1947.

Moore, 1990
Moore, A. W. (1990).
Efficient Memory-Based Learning for Robot Control.
PhD thesis, University of Cambridge, Cambridge, UK.

Moore, 1994
Moore, A. W. (1994).
The parti-game algorithm for variable resolution reinforcement learning in multidimensional spaces.
In Cohen, J. D., Tesauro, G., and Alspector, J., editors, Advances in Neural Information Processing Systems: Proceedings of the 1993 Conference, pages 711-718, San Francisco, CA. Morgan Kaufmann.

Moore and Atkeson, 1993
Moore, A. W. and Atkeson, C. G. (1993).
Prioritized sweeping: Reinforcement learning with less data and less real time.
Machine Learning, 13:103-130.

Moore et al., 1986
Moore, J. W., Desmond, J. E., Berthier, N. E., Blazis, E. J., Sutton, R. S., and Barto, A. G. (1986).
Simulation of the classically conditioned nictitating membrane response by a neuron-like adaptive element: I. Response topography, neuronal firing, and interstimulus intervals.
Behavioural Brain Research, 21:143-154.

Narendra and Thathachar, 1989
Narendra, K. and Thathachar, M. A. L. (1989).
Learning Automata: An Introduction.
Prentice Hall, Englewood Cliffs, NJ.

Narendra and Thathachar, 1974
Narendra, K. S. and Thathachar, M. A. L. (1974).
Learning automata--A survey.
IEEE Transactions on Systems, Man, and Cybernetics, 4:323-334.

Nie and Haykin, 1996
Nie, J. and Haykin, S. (1996).
A dynamic channel assignment policy through q-learning.
CRL Report 334, Hamilton, Ontario, Canada L8S 4K1.

Page, 1977
Page, C. V. (1977).
Heuristics for signature table analysis as a pattern recognition technique.
IEEE Transactions on Systems, Man, and Cybernetics, SMC-7:77-86.

Parr and Russell, 1995
Parr, R. and Russell, S. (1995).
Approximating optimal policies for partially observable stochastic domains.
In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence.

Pavlov, 1927
Pavlov, P. I. (1927).
Conditioned Reflexes.
Oxford, London.

Pearl, 1984
Pearl, J. (1984).
Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley.

Peng, 1993
Peng, J. (1993).
Efficient Dynamic Programming-Based Learning for Control.
PhD thesis, Northeastern University, Boston, MA.

Peng and Williams, 1993
Peng, J. and Williams, R. J. (1993).
Efficient learning and planning within the Dyna framework.
Adaptive Behavior, 1(4).

Peng and Williams, 1994
Peng, J. and Williams, R. J. (1994).
Incremental multi-step q-learning.
In Cohen, W. W. and Hirsh, H., editors, Proceedings of the Eleventh International Conference on Machine Learning, pages 226-232.

Peng and Williams, 1996
Peng, J. and Williams, R. J. (1996).
Incremental multi-step q-learning.
Machine Learning, 22(1/2/3).

Phansalkar and Thathachar, 1995
Phansalkar, V. V. and Thathachar, M. A. L. (1995).
Local and global optimization algorithms for generalized learning automata.
Neural Computation, 7:950-973.

Poggio and Girosi, 1989
Poggio, T. and Girosi, F. (1989).
A theory of networks for approximation and learning.
A.I. Memo 1140, Artificial Intelligence Laboratory, Massachusetts Institute of Technology.

Poggio and Girosi, 1990
Poggio, T. and Girosi, F. (1990).
Regularization algorithms for learning that are equivalent to multilayer networks.
Science, 247:978-982.

Powell, 1987
Powell, M. J. D. (1987).
Radial basis functions for multivariate interpolation: A review.
In Mason, J. C. and Cox, M. G., editors, Algorithms for Approximation. Clarendon Press, Oxford.

Puterman, 1994
Puterman, M. L. (1994).
Markov Decision Problems.
Wiley, NY.

Puterman and Shin, 1978
Puterman, M. L. and Shin, M. C. (1978).
Modified policy iteration algorithms for discounted Markov decision problems.
Management Science, 24:1127-1137.

Reetz, 1977
Reetz, D. (1977).
Approximate solutions of a discounted Markovian decision process.
Bonner Mathematische Schriften, vol 98: Dynamische Optimierung, pages 77-92.

Ring, 1994
Ring, M. B. (1994).
Continual Learning in Reinforcement Environments.
PhD thesis, University of Texas at Austin, Austin, Texas 78712.

Rivest and Schapire, 1987
Rivest, R. L. and Schapire, R. E. (1987).
Diversity-based inference of finite automata.
In Proceedings of the Twenty-Eighth Annual Symposium on Foundations of Computer Science, pages 78-87.

Robbins, 1952
Robbins, H. (1952).
Some aspects of the sequential design of experiments.
Bulletin of the American Mathematical Society, 58:527-535.

Robertie, 1992
Robertie, B. (1992).
Carbon versus silicon: Matching wits with TD-gammon.
Inside Backgammon, 2(2):14-22.

Rosenblatt, 1961
Rosenblatt, F. (1961).
Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms.
Spartan Books, 6411 Chillum Place N.W., Washington, D.C.

Ross, 1983
Ross, S. (1983).
Introduction to Stochastic Dynamic Programming.
Academic Press, New York.

Rubinstein, 1981
Rubinstein, R. Y. (1981).
Simulation and the Monte Carlo Method.
Wiley, NY.

Rumelhart et al., 1986
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).
Learning internal representations by error propagation.
In Rumelhart, D. E. and McClelland, J. L., editors, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol.1: Foundations. Bradford Books/MIT Press, Cambridge, MA.

Rummery, 1995
Rummery, G. A. (1995).
Problem Solving with Reinforcement Learning.
PhD thesis, Cambridge University.

Rummery and Niranjan, 1994
Rummery, G. A. and Niranjan, M. (1994).
On-line q-learning using connectionist systems.
Technical Report CUED/F-INFENG/TR 166, Cambridge University Engineering Department.

Russell and Norvig, 1995
Russell, S. and Norvig, P. (1995).
Artificial Intelligence: A Modern Approach.
Prentice Hall, Englewood Cliffs, NJ.

Rust, 1996
Rust, J. (1996).
Numerical dynamic programming in economics.
In Amman, H., Kendrick, D., and Rust, J., editors, Handbook of Computational Economics, pages 614-722. Elsevier, Amsterdam.

S. J. Bradtke, 1994
S. J. Bradtke, B. E. Ydstie, A. G. B. (1994).
Adaptive linear quadratic control using policy iteration.
In Proceedings of the American Control Conference.

Samuel, 1959
Samuel, A. L. (1959).
Some studies in machine learning using the game of checkers.
IBM Journal on Research and Development, pages 210-229.
Reprinted in E. A. Feigenbaum and J. Feldman, editors, Computers and Thought, McGraw-Hill, New York, 1963.

Samuel, 1967
Samuel, A. L. (1967).
Some studies in machine learning using the game of checkers. II--Recent progress.
IBM Journal on Research and Development, pages 601-617.

Schultz and Melsa, 1967
Schultz, D. G. and Melsa, J. L. (1967).
State Functions and Linear Control Systems.
McGraw-Hill, New York.

Schultz et al., 1997
Schultz, W., Dayan, P., and Montague, P. R. (1997).
A neural substrate of prediction and reward.
Science, 275:1593-1598.

Schwartz, 1993
Schwartz, A. (1993).
A reinforcement learning method for maximizing undiscounted rewards.
In Proceedings of the Tenth International Conference on Machine Learning, pages 298-305. Morgan Kaufmann.

Schweitzer and Seidmann, 1985
Schweitzer, P. J. and Seidmann, A. (1985).
Generalized polynomial approximations in Markovian decision processes.
Journal of Mathematical Analysis and Applications, 110:568-582.

Selfridge et al., 1985
Selfridge, O. J., Sutton, R. S., and Barto, A. G. (1985).
Training and tracking in robotics.
In Joshi, A., editor, Proceedings of the Ninth International Joint Conference of Artificial Intelligence, pages 670-672, San Mateo, CA. Morgan Kaufmann.

Shannon, 1950
Shannon, C. E. (1950).
Programming a computer for playing chess.
Philosophical Magazine, 41:256-275.

Shewchuk and Dean, 1990
Shewchuk, J. and Dean, T. (1990).
Towards learning time-varying functions with high input dimensionality.
In Proceedings of the Fifth IEEE International Symposium on Intelligent Control, pages 383-388. IEEE.

Singh, 1992a
Singh, S. P. (1992a).
Reinforcement learning with a hierarchy of abstract models.
In Proceedings of the Tenth National Conference on Artificial Intelligence, pages 202-207, Menlo Park, CA. AAAI Press/MIT Press.

Singh, 1992b
Singh, S. P. (1992b).
Scaling reinforcement learning algorithms by learning variable temporal resolution models.
In Proceedings of the Ninth International Machine Learning Conference, pages 406-415, San Mateo, CA. Morgan Kaufmann.

Singh, 1993
Singh, S. P. (1993).
Learning to Solve Markovian Decision Processes.
PhD thesis, University of Massachusetts, Amherst.
Appeared as CMPSCI Technical Report 93-77.

Singh and Bertsekas, 1997
Singh, S. P. and Bertsekas, D. (1997).
Reinforcement learning for dynamic channel allocation in cellular telephone systems.
In Advances in Neural Information Processing Systems: Proceedings of the 1996 Conference, Cambridge, MA. MIT Press.

Singh et al., 1994
Singh, S. P., Jaakkola, T., and Jordan, M. I. (1994).
Learning without state-estimation in partially observable Markovian decision problems.
In Cohen, W. W. and Hirsch, H., editors, Proceedings of the Eleventh International Conference on Machine Learning, pages 284-292, San Francisco, CA. Morgan Kaufmann.

Singh et al., 1995
Singh, S. P., Jaakkola, T., and Jordan, M. I. (1995).
Reinforcement learing with soft state aggregation.
In G. Tesauro, D. Touretzky, T. L., editor, Advances in Neural Information Processing Systems: Proceedings of the 1994 Conference, pages 359-368, Cambridge, MA. MIT Press.

Singh and Sutton, 1996
Singh, S. P. and Sutton, R. S. (1996).
Reinforcement learning with replacing eligibility traces.
Machine Learning, 22:123-158.

Sivarajan et al., 1990
Sivarajan, K. N., McEliece, R. J., and Ketchum, J. W. (1990).
Dynamic channel assignment in cellular radio.
In Proceedings of the 40th Vehicular Technology Conference, pages 631-637.

Skinner, 1938
Skinner, B. F. (1938).
The Behavior of Organisms.
Appleton-Century, NY.

Sofge and White, 1992
Sofge, D. A. and White, D. A. (1992).
Applied learning: Optimal control for manufacturing.
In White, D. A. and Sofge, D. A., editors, Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches, pages 259-281. Van Nostrand Reinhold, New York.

Spong, 1994
Spong, M. W. (1994).
Swing up control of the acrobot.
In Proceedings of the 1994 IEEE Conference on Robotics and Automation, San Diego, CA.

Staddon, 1983
Staddon, J. E. R. (1983).
Adaptive Behavior and Learning.
Cambridge University Press, Cambridge.

Sutton, 1978a
Sutton, R. S. (1978a).
Learning theory support for a single channel theory of the brain.

Sutton, 1978b
Sutton, R. S. (1978b).
Single channel theory: A neuronal theory of learning.
Brain Theory Newsletter, 4:72-75.

Sutton, 1978c
Sutton, R. S. (1978c).
A unified theory of expectation in classical and instrumental conditioning.

Sutton, 1984
Sutton, R. S. (1984).
Temporal Credit Assignment in Reinforcement Learning.
PhD thesis, University of Massachusetts, Amherst, MA.

Sutton, 1988
Sutton, R. S. (1988).
Learning to predict by the method of temporal differences.
Machine Learning, 3:9-44.

Sutton, 1990
Sutton, R. S. (1990).
Integrated architectures for learning, planning, and reacting based on approximating dynamic programming.
In Proceedings of the Seventh International Conference on Machine Learning, pages 216-224, San Mateo, CA. Morgan Kaufmann.

Sutton, 1991a
Sutton, R. S. (1991a).
Dyna, an integrated architecture for learning, planning, and reacting.
SIGART Bulletin, 2:160-163.
Also appeared in Working Notes of the 1991 AAAI Spring Symposium, pages 151-155.

Sutton, 1991b
Sutton, R. S. (1991b).
Planning by incremental dynamic programming.
In Birnbaum, L. A. and Collins, G. C., editors, Proceedings of the Eighth International Workshop on Machine Learning, pages 353-357, San Mateo, CA. Morgan Kaufmann.

Sutton, 1992
Sutton, R. S., editor (1992).
A Special Issue of Machine Learning on Reinforcement Learning, volume 8. Machine Learning.
Also published as Reinforcement Learnng, Kluwer Academic Press, Boston, MA 1992.

Sutton, 1995
Sutton, R. S. (1995).
TD models: Modeling the world at a mixture of time scales.
In Prieditis, A. and Russell, S., editors, Proceedings of the Twelfth International Conference on Machine Learning, pages 531-539, San Francisco, CA. Morgan Kaufmann.

Sutton, 1996
Sutton, R. S. (1996).
Generalization in reinforcement learning: Successful examples using sparse coarse coding.
In Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E., editors, Advances in Neural Information Processing Systems: Proceedings of the 1995 Conference, pages 1038-1044, Cambridge, MA. MIT Press.

Sutton and Barto, 1981a
Sutton, R. S. and Barto, A. G. (1981a).
An adaptive network that constructs and uses an internal model of its world.
Cognition and Brain Theory, 3:217-246.

Sutton and Barto, 1981b
Sutton, R. S. and Barto, A. G. (1981b).
Toward a modern theory of adaptive networks: Expectation and prediction.
Psychological Review, 88:135-170.

Sutton and Barto, 1987
Sutton, R. S. and Barto, A. G. (1987).
A temporal-difference model of classical conditioning.
In Proceedings of the Ninth Annual Conference of the Cognitive Science Society, Hillsdale, NJ. Erlbaum.

Sutton and Barto, 1990
Sutton, R. S. and Barto, A. G. (1990).
Time-derivative models of pavlovian reinforcement.
In Gabriel, M. and Moore, J., editors, Learning and Computational Neuroscience: Foundations of Adaptive Networks, pages 497-537. MIT Press, Cambridge, MA.

Sutton and Pinette, 1985
Sutton, R. S. and Pinette, B. (1985).
The learning of world models by connectionist networks.
In Proceedings of the Seventh Annual Conference of the Cognitive Science Society, Irvine, CA.

Sutton and Singh, 1994
Sutton, R. S. and Singh, S. (1994).
On bias and step size in temporal-difference learning.
In Proceedings of the Eighth Yale Workshop on Adaptive and Learning Systems, pages 91-96, New Haven, CT. Yale University.

Tadepally and Ok, 1994
Tadepally, P. and Ok, D. (1994).
H-learning: A reinforcement learning method to optimize undiscounted average reward.
Technical Report 94-30-01, Oregon State University.

Tan, 1991
Tan, M. (1991).
Learning a cost-sensitive internal representation for reinforcement learning.
In Birnbaum, L. A. and Collins, G. C., editors, Proceedings of the Eighth International Workshop on Machine Learning, pages 358-362, San Mateo, CA. Morgan Kaufmann.

Tan, 1993
Tan, M. (1993).
Multi-agent reinforcement learning: Independent vs. cooperative agents.
In Proceedings of the Tenth International Conference on Machine Learning, pages 330-337. Morgan Kaufmann.

Tesauro, 1986
Tesauro, G. J. (1986).
Simple neural models of classical conditioning.
Biological Cybernetics, 55:187-200.

Tesauro, 1992
Tesauro, G. J. (1992).
Practical issues in temporal difference learning.
Machine Learning, 8:257-277.

Tesauro, 1994
Tesauro, G. J. (1994).
TD-gammon, a self-teaching backgammon program, achieves master-level play.
Neural Computation, 6(2):215-219.

Tesauro, 1995
Tesauro, G. J. (1995).
Temporal difference learning and TD-Gammon.
Communications of the ACM, 38:58-68.

Tesauro and Galperin, 1997
Tesauro, G. J. and Galperin, G. R. (1997).
On-line policy improvement using monte-carlo search.
In Advances in Neural Information Processing Systems: Proceedings of the 1996 Conference, Cambridge, MA. MIT Press.

Tham, 1994
Tham, C. K. (1994).
Modular On-Line Function Approximation for Scaling up Reinforcement Learning.
PhD thesis, Cambridge University.

Thathachar and Sastry, 1995
Thathachar, M. A. L. and Sastry, P. S. (1995).
A new approach to the design of reinforcement schemes for learning automata.
IEEE Transactions on Systems, Man, and Cybernetics, 15:168-175.

Thompson, 1933
Thompson, W. R. (1933).
On the likelihood that one unknown probability exceeds another in view of the evidence of two samples.
Biometrika, 25:285-294.

Thompson, 1934
Thompson, W. R. (1934).
On the theory of apportionment.
American Journal of Mathematics, 57:450-457.

Thorndike, 1911
Thorndike, E. L. (1911).
Animal Intelligence.
Hafner, Darien, Conn.

Thorp, 1966
Thorp, E. O. (1966).
Beat the Dealer: A Winning Strategy for the Game of Twenty-One.
Random House, New York.

Tolman, 1932
Tolman, E. C. (1932).
Purposive Behavior in Animals and Men.
Century, New York.

Tsetlin, 1973
Tsetlin, M. L. (1973).
Automaton Theory and Modeling of Biological Systems.
Academic Press, New York.

Tsitsiklis, 1994
Tsitsiklis, J. N. (1994).
Asynchronous stochastic approximation and q-learning.
Machine Learning, 16:185-202.

Tsitsiklis and Van Roy, 1996
Tsitsiklis, J. N. and Van Roy, B. (1996).
Feature-based methods for large scale dynamic programming.
Machine Learning, 22:59-94.

Tsitsiklis and Van Roy, 1997
Tsitsiklis, J. N. and Van Roy, B. (1997).
An analysis of temporal-difference learning with function approximation.
IEEE Transactions on Automatic Control.

Ungar, 1990
Ungar, L. H. (1990).
A bioreactor benchmark for adaptive network-based process control.
In Miller, W. T., Sutton, R. S., and Werbos, P. J., editors, Neural Networks for Control, pages 387-402. MIT Press, Cambridge, MA.

Waltz and Fu, 1965
Waltz, M. D. and Fu, K. S. (1965).
A heuristic approach to reinforcment learning control systems.
IEEE Transactions on Automatic Control, 10:390-398.

Watkins, 1989
Watkins, C. J. C. H. (1989).
Learning from Delayed Rewards.
PhD thesis, Cambridge University, Cambridge, England.

Watkins and Dayan, 1992
Watkins, C. J. C. H. and Dayan, P. (1992).
Q-learning.
Machine Learning, 8:279-292.

Werbos, 1992
Werbos, P. (1992).
Approximate dynamic programming for real-time control and neural modeling.
In White, D. A. and Sofge, D. A., editors, Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches, pages 493-525. Van Nostrand Reinhold, New York.

Werbos, 1977
Werbos, P. J. (1977).
Advanced forecasting methods for global crisis warning and models of intelligence.
General Systems Yearbook, 22:25-38.

Werbos, 1982
Werbos, P. J. (1982).
Applications of advances in nonlinear sensitivity analysis.
In Drenick, R. F. and Kosin, F., editors, System Modeling an Optimization. Springer-Verlag.
Proceedings of the Tenth IFIP Conference, New York, 1981.

Werbos, 1987
Werbos, P. J. (1987).
Building and understanding adaptive systems: A statistical/numerical approach to factory automation and brain research.
IEEE Transactions on Systems, Man, and Cybernetics, pages 7-20.

Werbos, 1988
Werbos, P. J. (1988).
Generalization of back propagation with applications to a recurrent gas market model.
Neural Networks, 1:339-356.

Werbos, 1989
Werbos, P. J. (1989).
Neural networks for control and system identification.
In Proceedings of the 28th Conference on Decision and Control, pages 260-265, Tampa, Florida.

Werbos, 1990
Werbos, P. J. (1990).
Consistency of HDP applied to simple reinforcement learning problem.
Neural Networks, 3:179-189.

White, 1969
White, D. J. (1969).
Dynamic Programming.
Holden-Day, San Francisco.

White, 1985
White, D. J. (1985).
Real applications of Markov decision processes.
Interfaces, 15:73-83.

White, 1988
White, D. J. (1988).
Further real applications of Markov decision processes.
Interfaces, 18:55-61.

White, 1993
White, D. J. (1993).
A survey of applications of Markov decision processes.
Journal of the Operational Research Society, 44:1073-1096.

Whitehead and Ballard, 1991
Whitehead, S. D. and Ballard, D. H. (1991).
Learning to perceive and act by trial and error.
Machine Learning, 7(1):45-83.

Whitt, 1978
Whitt, W. (1978).
Approximations of dynamic programs I.
Mathematics of Operations Research, 3:231-243.

Whittle, 1982
Whittle, P. (1982).
Optimization over Time, volume 1.
Wiley, NY.

Whittle, 1983
Whittle, P. (1983).
Optimization over Time, volume 2.
Wiley, NY.

Widrow et al., 1973
Widrow, B., Gupta, N. K., and Maitra, S. (1973).
Punish/reward: Learning with a critic in adaptive threshold systems.
IEEE Transactions on Systems, Man, and Cybernetics, 5:455-465.

Widrow and Hoff, 1960
Widrow, B. and Hoff, M. E. (1960).
Adaptive switching circuits.
In 1960 WESCON Convention Record Part IV, pages 96-104.
Reprinted in J. A. Anderson and E. Rosenfeld, Neurocomputing: Foundations of Research, MIT Press, Cambridge, MA, 1988.

Widrow and Smith, 1964
Widrow, B. and Smith, F. W. (1964).
Pattern-recognizing control systems.
In Computer and Information Sciences (COINS) Proceedings, Washington, D.C. Spartan.

Widrow and Stearns, 1985
Widrow, B. and Stearns, S. D. (1985).
Adaptive Signal Processing.
Prentice-Hall, Inc., Englewood Cliffs, N.J.

Williams, 1986
Williams, R. J. (1986).
Reinforcement learning in connectionist networks: A mathematical analysis.
Technical Report ICS 8605, Institute for Cognitive Science, University of California at San Diego, La Jolla, CA.

Williams, 1987
Williams, R. J. (1987).
Reinforcement-learning connectionist systems.
Technical Report NU-CCS-87-3, College of Computer Science, Northeastern University, Boston, MA.

Williams, 1988
Williams, R. J. (1988).
On the use of backpropagation in associative reinforcement learning.
In Proceedings of the IEEE International Conference on Neural Networks, pages 263-270, San Diego, CA.

Williams, 1992
Williams, R. J. (1992).
Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine Learning, 8:229-256.

Williams and Baird, 1990
Williams, R. J. and Baird, L. C. (1990).
A mathematical analysis of actor-critic architectures for learning optimal controls through incremental dynamic programming.
In Proceedings of the Sixth Yale Workshop on Adaptive and Learning Systems, pages 96-101, New Haven, CT.

Wilson, 1994
Wilson, S. W. (1994).
ZCS: A zeroth order classifier system.
Evolutionary Compuation, 2:1-18.

Witten, 1976
Witten, I. H. (1976).
The apparent conflict between estimation and control--A survey of the two-armed problem.
Journal of the Franklin Institute, 301:161-189.

Witten, 1977
Witten, I. H. (1977).
An adaptive optimal controller for discrete-time Markov environments.
Information and Control, 34:286-295.

Witten and Corbin, 1973
Witten, I. H. and Corbin, M. J. (1973).
Human operators and automatic adaptive controllers: A comparative study on a particular control task.
International Journal of Man-Machine Studies, 5:75-104.

Yee et al., 1990
Yee, R. C., Saxena, S., Utgoff, P. E., and Barto, A. G. (1990).
Explaining temporal differences to create useful concepts for evaluating states.
In Proceedings of the Eighth National Conference on Artificial Intelligence, pages 882-888, Cambridge, MA.

Young, 1984
Young, P. (1984).
Recursive Estimation and Time-Series Analysis.
Springer-Verlag.

Zhang and Yum, 1989
Zhang, M. and Yum, T. P. (1989).
Comparisons of channel-assignment strategies in cellular mobile telephone systems.
IEEE Transactions on Vehicular Technology, 38.

Zhang, 1996
Zhang, W. (1996).
Reinforcement Learning for Job-shop Scheduling.
PhD thesis, Oregon State University.
Tech Report CS-96-30-1.

Zhang and Dietterich, 1995
Zhang, W. and Dietterich, T. G. (1995).
A reinforcement learning approach to job-shop scheduling.
In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, pages 1114-1120.

Zhang and Dietterich, 1996
Zhang, W. and Dietterich, T. G. (1996).
High-performance job-shop scheduling with a time-delay TD$(\lambda)$ network.
In D. S. Touretzky, M. C. Mozer, M. E. H., editor, Advances in Neural Information Processing Systems: Proceedings of the 1995 Conference, pages 1024-1030, Cambridge, MA. MIT Press.



Subsections

Mark Lee 2005-01-04