
Chapter 9

On-policy Prediction with
Approximation

In this chapter, we begin our study of function approximation in reinforcement learn-
ing by considering its use in estimating the state-value function from on-policy data,
that is, in approximating v⇡ from experience generated using a known policy ⇡. The
novelty in this chapter is that the approximate value function is represented not as a
table but as a parameterized functional form with parameter vector ✓ 2 Rn. We will
write v̂(s,✓) ⇡ v⇡(s) for the approximated value of state s given parameter vector ✓.
For example, v̂ might be a linear function in features of the state, with ✓ the vector of
feature weights. More generally, v̂ might be the function computed by a multi-layer
artificial neural network, with ✓ the vector of connection weights in all the layers. By
adjusting the weights, any of a wide range of di↵erent functions can be implemented
by the network. Or v̂ might be the function computed by a decision tree, where ✓
is all the parameters defining the split points and leaf values of the tree. Typically,
the number of parameters (the number of components of ✓) is much less than the
number of states (n⌧ |S|), and changing one parameter changes the estimated value
of many states. Consequently, when a single state is updated, the change generalizes
from that state to a↵ect the values of many other states. Such generalization makes
the learning potentially more powerful but also potentially more di�cult to manage
and understand.

9.1 Value-function Approximation

All of the prediction methods covered in this book have been described as backups,
that is, as updates to an estimated value function that shift its value at particular
states toward a “backed-up value” for that state. Let us refer to an individual backup
by the notation s 7! g, where s is the state backed up and g is the backed-up value,
or target, that s’s estimated value is shifted toward. For example, the Monte Carlo
backup for value prediction is St 7! Gt, the TD(0) backup is St 7! Rt+1+�v̂(St+1,✓t),

and the n-step TD backup is St 7! G(n)
t . In the DP policy-evaluation backup,
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186 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

s 7! E⇡[Rt+1 + �v̂(St+1,✓t) | St =s], an arbitrary state s is backed up, whereas in
the other cases the state encountered in actual experience, St, is backed up.

It is natural to interpret each backup as specifying an example of the desired
input–output behavior of the value function. In a sense, the backup s 7! g means
that the estimated value for state s should be more like the number g. Up to now,
the actual update implementing the backup has been trivial: the table entry for s’s
estimated value has simply been shifted a fraction of the way toward g, and the
estimated values of all other states were left unchanged. Now we permit arbitrarily
complex and sophisticated methods to implement the backup, and updating at s
generalizes so that the estimated values of many other states are changed as well.
Machine learning methods that learn to mimic input–output examples in this way
are called supervised learning methods, and when the outputs are numbers, like g,
the process is often called function approximation. Function approximation methods
expect to receive examples of the desired input–output behavior of the function they
are trying to approximate. We use these methods for value prediction simply by
passing to them the s 7! g of each backup as a training example. We then interpret
the approximate function they produce as an estimated value function.

Viewing each backup as a conventional training example in this way enables us to
use any of a wide range of existing function approximation methods for value pre-
diction. In principle, we can use any method for supervised learning from examples,
including artificial neural networks, decision trees, and various kinds of multivariate
regression. However, not all function approximation methods are equally well suited
for use in reinforcement learning. The most sophisticated neural network and statis-
tical methods all assume a static training set over which multiple passes are made.
In reinforcement learning, however, it is important that learning be able to occur on-
line, while interacting with the environment or with a model of the environment. To
do this requires methods that are able to learn e�ciently from incrementally acquired
data. In addition, reinforcement learning generally requires function approximation
methods able to handle nonstationary target functions (target functions that change
over time). For example, in GPI control methods we often seek to learn q⇡ while ⇡
changes. Even if the policy remains the same, the target values of training exam-
ples are nonstationary if they are generated by bootstrapping methods (DP and TD
learning). Methods that cannot easily handle such nonstationarity are less suitable
for reinforcement learning.

9.2 The Prediction Objective (MSVE)

Up to now we have not specified an explicit objective for prediction. In the tabular
case a continuous measure of prediction quality was not necessary because the learned
value function could come to equal the true value function exactly. Moreover, the
learned values at each state were decoupled—an update at one state a↵ected no
other. But with genuine approximation, an update at one state a↵ects many others,
and it is not possible to get all states exactly correct. By assumption we have far
more states than parameters, so making one state’s estimate more accurate invariably
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means making others’ less accurate. We are obligated then to say which states we
care most about. We must specify a weighting or distribution d(s) � 0 representing
how much we care about the error in each state s. By the error in a state s we mean
the square of the di↵erence between the approximate value v̂(s,✓) and the true value
v⇡(s). Weighting this over the state space by the distribution d, we obtain a natural
objective function, the Mean Square Value Error, or MSVE:

MSVE(✓)
.
=

X

s2S

d(s)
h
v⇡(s)� v̂(s,✓)

i2
. (9.1)

The square root of this measure, the RMSVE, gives a rough measure of how much the
approximate values di↵er from the true values and is often used in plots. Typically
one chooses d(s) to be the fraction of time spent in s under the target policy ⇡. This
is called the on-policy distribution; we focus entirely on this case in this chapter. In
continuing tasks, the on-policy distribution is the stationary distribution under ⇡.

The on-policy distribution in episodic tasks

In an episodic task, the on-policy distribution is a little di↵erent in that it
depends on how the initial states of episodes are chosen. Let h(s) denote the
probability that an episode begins in each state s, and let ⌘(s) denote the
number of time steps spent, on average, in state s in a single episode. Time is
spent in a state s if episodes start in it, or if transitions are made into it from
a state s̄ in which time is spent:

⌘(s) = h(s) +
X

s̄

⌘(s̄)
X

a

⇡(a|s̄)p(s|s̄, a). (9.2)

This can be solved in vector-matrix form for the expected visitation times
⌘(s), from which the on-policy distribution is obtained by normalizing so that
it sums to one:

d(s) =
⌘(s)P
s0 ⌘(s0)

. (9.3)

The two cases, continuing and episodic, behave similarly, but with approximation
they must be treated separately in formal analyses, as we will see repeatedly in this
part of the book. This completes the specification of the learning objective.

It is not completely clear that the MSVE is the right performance objective for
reinforcement learning. Remember that our ultimate purpose, the reason we are
learning a value function, is to use it in finding a better policy. The best value func-
tion for this purpose is not necessarily the best for minimizing MSVE. Nevertheless,
it is not yet clear what a more useful alternative goal for value prediction might be.
For now, we will focus on MSVE.

An ideal goal in terms of MSVE would be to find a global optimum, a parameter
vector ✓⇤ for which MSVE(✓⇤)  MSVE(✓) for all possible ✓. Reaching this goal is
sometimes possible for simple function approximators such as linear ones, but is rarely
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possible for complex function approximators such as artificial neural networks and
decision trees. Short of this, complex function approximators may seek to converge
instead to a local optimum, a parameter vector ✓⇤ for which MSVE(✓⇤)  MSVE(✓)
for all ✓ in some neighborhood of ✓⇤. Although this guarantee is only slightly reas-
suring, it is typically the best that can be said for nonlinear function approximators,
and often it is enough. Still, for many cases of interest in reinforcement learning,
convergence to an optimum, or even to within a bounded distance from an optimum
cannot be assured. Some methods may in fact diverge, with their MSVE approaching
infinity in the limit.

In the last two sections we have outlined a framework for combining a wide range
of reinforcement learning methods for value prediction with a wide range of function
approximation methods, using the backups of the former to generate training ex-
amples for the latter. We have also described a MSVE performance measure which
these methods may aspire to minimize. The range of possible methods is far too large
to cover all, and anyway too little is known about most of them to make a reliable
evaluation or recommendation. Of necessity, we consider only a few possibilities.
In the rest of this chapter we focus on function approximation methods based on
gradient principles, and on linear gradient-descent methods in particular. We focus
on these methods in part because we consider them to be particularly promising and
because they reveal key theoretical issues, but also because they are simple and our
space is limited.

9.3 Stochastic-gradient and Semi-gradient Methods

We now develop in detail one class of learning methods for function approximation in
value prediction, those based on stochastic gradient descent (SGD). SGD methods
are among the most widely used of all function approximation methods and are
particularly well suited to online reinforcement learning.

In gradient-descent methods, the parameter vector is a column vector with a fixed
number of real valued components, ✓

.
= (✓1, ✓2, . . . , ✓n)>,1 and the approximate value

function v̂(s,✓) is a smooth di↵erentiable function of ✓ for all s 2 S. We will be
updating ✓ at each of a series of discrete time steps, t = 0, 1, 2, 3, . . ., so we will
need a notation ✓t for the parameter vector at each step. For now, let us assume
that, on each step, we observe a new example St 7! v⇡(St) consisting of a (possibly
randomly selected) state St and its true value under the policy. These states might
be successive states from an interaction with the environment, but for now we do
not assume so. Even though we are given the exact, correct values, v⇡(St) for each
St, there is still a di�cult problem because our function approximator has limited
resources and thus limited resolution. In particular, there is generally no ✓ that
gets all the states, or even all the examples, exactly correct. In addition, we must
generalize to all the other states that have not appeared in examples.

1The > denotes transpose, needed here to turn the horizontal row vector in the text into a vertical
column vector; in this book all vectors are column vectors unless transposed.
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We assume that states appear in examples with the same distribution, d, over
which we are trying to minimize the MSVE as given by (9.1). A good strategy in
this case is to try to minimize error on the observed examples. Stochastic gradient-
descent (SGD) methods do this by adjusting the parameter vector after each example
by a small amount in the direction that would most reduce the error on that example:

✓t+1
.
= ✓t �

1

2
↵r

h
v⇡(St)� v̂(St,✓t)

i2
(9.4)

= ✓t + ↵
h
v⇡(St)� v̂(St,✓t)

i
rv̂(St,✓t), (9.5)

where ↵ is a positive step-size hyperparameter, and rf(✓), for any scalar expression
f(✓), denotes the vector of partial derivatives with respect to the components of the
parameter vector:

rf(✓)
.
=

✓
@f(✓)

@✓1
,
@f(✓)

@✓2
, . . . ,

@f(✓)

@✓n

◆>
. (9.6)

This derivative vector is the gradient of f with respect to ✓. SGD methods are
“gradient descent” methods because the overall step in ✓t is proportional to the
negative gradient of the example’s squared error (9.4). This is the direction in which
the error falls most rapidly. Gradient descent methods are called “stochastic” when
the update is done, as here, on only a single example, which might have been selected
stochastically. Over many examples, making small steps, the overall e↵ect is to
minimize an average performance measure such as the MSVE.

It may not be immediately apparent why SGD takes only a small step in the
direction of the gradient. Could we not move all the way in this direction and
completely eliminate the error on the example? In many cases this could be done,
but usually it is not desirable. Remember that we do not seek or expect to find
a value function that has zero error for all states, but only an approximation that
balances the errors in di↵erent states. If we completely corrected each example in
one step, then we would not find such a balance. In fact, the convergence results
for SGD methods assume that ↵ decreases over time. If it decreases in such a way
as to satisfy the standard stochastic approximation conditions (2.7), then the SGD
method (9.5) is guaranteed to converge to a local optimum.

We turn now to the case in which the target output, here denoted Ut 2 R, of
the tth training example, St 7! Ut, is not the true value, v⇡(St), but some, possibly
random, approximation to it. For example, Ut might be a noise-corrupted version
of v⇡(St), or it might be one of the bootstrapping targets using v̂ mentioned in the
previous section. In these cases we cannot perform the exact update (9.5) because
v⇡(St) is unknown, but we can approximate it by substituting Ut in place of v⇡(St).
This yields the following general SGD method for state-value prediction:

✓t+1
.
= ✓t + ↵

h
Ut � v̂(St,✓t)

i
rv̂(St,✓t). (9.7)

If Ut is an unbiased estimate, that is, if E[Ut] = v⇡(St), for each t, then ✓t is guar-
anteed to converge to a local optimum under the usual stochastic approximation
conditions (2.7) for decreasing ↵.
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Gradient Monte Carlo for approximating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S⇥ Rn ! R

Initialize value-function parameter ✓ as appropriate (e.g., ✓ = 0)
Repeat forever:

Generate an episode S0, A0, R1, S1, A1, . . . , RT , ST using ⇡
For t = 0, 1, . . . , T � 1:

✓  ✓ + ↵
⇥
Gt � v̂(St,✓)

⇤
rv̂(St,✓)

For example, suppose the states in the examples are the states generated by in-
teraction (or simulated interaction) with the environment using policy ⇡. Because
the true value of a state is the expected value of the return following it, the Monte
Carlo target Ut

.
= Gt is by definition an unbiased estimate of v⇡(St). With this

choice, the general SGD method (9.7) converges to a locally optimal approximation
to v⇡(St). Thus, the gradient-descent version of Monte Carlo state-value prediction
is guaranteed to find a locally optimal solution. Pseudocode for a complete algorithm
is shown in the box.

One does not obtain the same guarantees if a bootstrapping estimate of v⇡(St)

is used as the target Ut in (9.7). Bootstrapping targets such as n-step returns G(n)
t

or the DP target
P

a,s0,r ⇡(a|St)p(s0, r|St, a)[r + �v̂(s0,✓t)] all depend on the current
value of the parameter ✓t, which implies that they will be biased and that they will
not produce a true gradient-descent method. One way to look at this is that the key
step from (9.4) to (9.5) relies on the target being independent of ✓t. This step would
not be valid if a bootstrapping estimate was used in place of v⇡(St). Bootstrapping
methods are not in fact instances of true gradient descent (Barnard, 1993). They
take into account the e↵ect of changing the parameter ✓t on the estimate, but ignore
its e↵ect on the target. They include only a part of the gradient and, accordingly,
we call them semi-gradient methods.

Although semi-gradient (bootstrapping) methods do not converge as robustly as
gradient methods, they do converge reliably in important cases such as the linear
case discussed in the next section. Moreover, they o↵er important advantages which
makes them often clearly preferred. One reason for this is that they are typically
significantly faster to learn, as we have seen in Chapters 6 and 7. Another is that they
enable learning to be continual and online, without waiting for the end of an episode.
This enables them to be used on continuing problems and provides computational
advantages. A prototypical semi-gradient method is semi-gradient TD(0), which uses
Ut

.
= Rt+1 + �v̂(St+1,✓) as its target. Complete pseudocode for this method is given

in the box at the top of the next page.
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Semi-gradient TD(0) for estimating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S+ ⇥ Rn ! R such that v̂(terminal,·) = 0

Initialize value-function parameter ✓ arbitrarily (e.g., ✓ = 0)
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A ⇠ ⇡(·|S)
Take action A, observe R, S0

✓  ✓ + ↵
⇥
R + �v̂(S0,✓)� v̂(S,✓)

⇤
rv̂(S,✓)

S  S0

until S0 is terminal

Example 9.1: State Aggregation on the 1000-state Random Walk State
aggregation is a simple form of generalizing function approximation in which states
are grouped together, with one estimated value (one component of the parameter
vector ✓) for each group. The value of a state is estimated as its group’s component,
and when the state is updated, that component alone is updated. State aggregation
is a special case of SGD (9.7) in which the gradient, rv̂(St,✓t), is 1 for St’s group’s
component and 0 for the other components.

Consider a 1000-state version of the random walk task (Examples 6.2 and 7.1).
The states are numbered from 1 to 1000, left to right, and all episodes begin near the
center, in state 500. State transitions are from the current state to one of the 100
states to its left, or to one of the 100 states to its right, all with equal probability.
If the current state is near an edge, with fewer that 100 neighbors on one side, a
transition occurs to the terminal state with probability equal to that which would
have been given to the missing neighbor states (thus, state 1 has a 0.5 chance of
terminating, and state 2 has a .495 chance of terminating). As usual, termination
on the left produces a reward of �1, and termination on the right produces a reward
of +1. All other transitions have a reward of zero. We use this task as a running
example throughout this section.

Figure 9.1 shows the true value function v⇡ for this task. It is nearly a straight
line, but tilted slightly toward the horizontal and curving further in this direction for
the last 100 states at each end. Also shown is the final approximate value function
learned by the gradient Monte-Carlo algorithm with state aggregation after 100,000
episodes with a step size of ↵ = 2⇥ 10�5. For the state aggregation, the 1000 states
were partitioned into 10 groups of 100 states each (i.e., states 1–100 were one group,
states 101-200 were another, and so on). The staircase e↵ect shown in the figure is
typical of state aggregation; within each group, the approximate value is constant,
and it changes abruptly from one group to the next. These approximate values are
close to the global minimum of the MSVE (9.1).
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Figure 9.1: Function approximation by state aggregation on the 1000-state random walk
task, using the gradient Monte Carlo algorithm (page 190).

Some of the details of the approximate values are best appreciated by reference
to the state distribution d for this task, shown in the lower portion of the figure
with a right-side scale. Recall that d is a weighting rather than a distribution in
episodic tasks like this. Numerically it corresponds to the number of times each
state is visited, on average, in a single episode. State 500, in the center, is the first
state of every episode, but it is rarely visited again. On average, it is visited about
1.14 times per episode. The states reachable in one step from the start state are
the second most visited, about 0.14 times per episode each. From there d falls o↵
almost linearly, reaching about 0.012 at the extreme states 1 and 1000. The start
state falls within the 401-500 group just to the left of the center. This state is given
much more weight in the approximation that the other states in the group. Since
the correct value for it is almost zero (because it is almost at the center), its group’s
value should be slightly higher that the unweighted average of the true values within
the group, and indeed it appears to be so. The e↵ect is small, however, presumably
because the other states in the group are so many. A larger e↵ect to a similar result
is most evident in the leftmost groups, whose values are clearly shifted higher than
the unweighted average of the true values of states within the group, and in the
rightmost groups, whose values are clearly shifted lower. This is due to the states in
these areas having the greatest asymmetry in their weightings by d. For example, in
the leftmost group, state 99 is weighted more than 3 times more strongly than state
0. Thus the estimate for the group is biased toward the true value of state 99, which
is higher than the true value of state 0.

9.4 Linear Methods

One of the most important special cases of function approximation is that in which
the approximate function, v̂(·,✓), is a linear function of the parameter vector, ✓.
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Corresponding to every state s, there is a real-valued vector of features �(s)
.
=

(�1(s), �2(s), . . . , �n(s))>, with the same number of components as ✓. The features
may be constructed from the states in many di↵erent ways; we cover a few possibilities
in the next sections. However the features are constructed, the approximate state-
value function is given by

v̂(s,✓)
.
= ✓>�(s)

.
=

nX

i=1

✓i�i(s). (9.8)

In this case the approximate value function is said to be linear in the parameters,
or simply linear. The individual functions �i : S ! R are called basis functions
because they form a linear basis for the set of approximate functions of this form.
Constructing n-dimensional feature vectors to represent states is the same as selecting
a set of n basis functions.

It is natural to use SGD updates with linear function approximation. The gradient
of the approximate value function with respect to ✓ in this case is

rv̂(s,✓) = �(s).

Thus, the general SGD update (9.7) reduces to a particularly simple form in the
linear case.

Because it is so simple, the linear SGD case is one of the most favorable for
mathematical analysis. Almost all useful convergence results for learning systems of
all kinds are for linear (or simpler) function approximation methods.

In particular, in the linear case there is only one optimum (or, in degenerate cases,
one set of equally good optima), and thus any method that is guaranteed to converge
to or near a local optimum is automatically guaranteed to converge to or near the
global optimum. For example, the gradient Monte Carlo algorithm presented in the
previous section converges to the global optimum of the MSVE under linear function
approximation if ↵ is reduced over time according to the usual conditions.

The semi-gradient TD(0) algorithm presented in the previous section also con-
verges under linear function approximation, but this does not follow from general
results on SGD; a separate theorem is necessary. The parameter converged to is also
not the global optimum, but rather to a point near the local optimum. It is useful to
consider this important case in more detail, specifically for the continuing case. The
update at each time t is

✓t+1
.
= ✓t + ↵

⇣
Rt+1 + �✓>

t �t+1 � ✓>
t �t

⌘
�t (9.9)

= ✓t + ↵
⇣
Rt+1�t � �t

�
�t � ��t+1

�>
✓t

⌘
,

where here we have used the notational shorthand �t = �(St). Once the system has
reached steady state, for any given ✓t, the expected next parameter vector can be
written

E[✓t+1|✓t] = ✓t + ↵(b�A✓t), (9.10)
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where

b
.
= E[Rt+1�t] 2 Rn and A

.
= E

h
�t

�
�t � ��t+1

�>
i
2 Rn ⇥ Rn (9.11)

From (9.10) it is clear that, if the system converges, it must converge to the parameter
✓TD at which

b�A✓TD = 0

) b = A✓TD

) ✓TD
.
= A�1b. (9.12)

This quantity is called the TD fixpoint. In fact linear semi-gradient TD(0) converges
to this point. Some of the theory proving its convergence, and the existence of the
inverse above, is given in the box.

Proof of Convergence of Linear TD(0)

What properties assure convergence of the linear TD(0) algorithm (9.9)? Some
insight can be gained by rewriting (9.10) as

E[✓t+1|✓t] = (I� ↵A)✓t + ↵b. (9.13)

Note that the matrix A multiplies the parameter ✓t and not b; only A is
important to convergence. To develop intuition, consider the special case in
which A is a diagonal matrix. If any of the diagonal elements are negative,
then the corresponding diagonal element of I � ↵A will be greater than one,
and the corresponding component of ✓t will be amplified, which will lead to
divergence if continued. On the other hand, if the diagonal elements of A
are all positive, then ↵ can be chosen smaller than one over the largest of
them, such that I� ↵A is diagonal with all diagonal elements between 0 and
1. In this case the first term of the update tends to shrink ✓t, and stability
is assured. In general case, ✓t will be reduced toward zero whenever A is
positive definite, meaning y>Ay > 0 for real vector y. Positive definiteness
also ensures that the inverse A�1 exists.

For linear TD(0), in the continuing case with � < 1, the A matrix (9.11)
can be written

A =
X

s

d(s)
X

a

⇡(a|s)
X

r,s0

p(r, s0|s, a)�(s)
�
�(s)� ��(s0)

�>

=
X

s

d(s)
X

s0

p(s0|s)�(s)
�
�(s)� ��(s0)

�>

=
X

s

d(s)�(s)

✓
�(s)� �

X

s0

p(s0|s)�(s0)

◆>

= �>D(I� �P)�,
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where d(s) is the stationary distribution under ⇡, p(s0|s) is the probability
of transition from s to s0 under policy ⇡, P is the |S| ⇥ |S| matrix of these
probabilities, D is the |S|⇥ |S| diagonal matrix with the d(s) on its diagonal,
and � is the |S| ⇥ n matrix with �(s) as its rows. From here it is clear that
the inner matrix D(I� �P) is key to determining the positive definiteness of
A.

For a key matrix of this type, positive definiteness is assured if all of its
columns sum to a nonnegative number. This was shown by Sutton (1988, p. 27)
based on two previously established theorems. One theorem says that any
matrix M is positive definite if and only if the symmetric matrix S = M+M>

is positive definite (Sutton 1988, appendix). The second theorem says that
any symmetric real matrix S is positive definite if all of its diagonal entries
are positive and greater than the sum of the corresponding o↵-diagonal entries
(Varga 1962, p. 23). For our key matrix, D(I� �P), the diagonal entries are
positive and the o↵-diagonal entries are negative, so all we have to show is
that each row sum plus the corresponding column sum is positive. The row
sums are all positive because P is a stochastic matrix and � < 1. Thus it only
remains to show that the column sums are nonnegative. Note that the row
vector of the column sums of any matrix M can be written as 1>M, where 1 is
the column vector with all components equal to 1. Let d denote the |S|-vector
of the d(s). The column sums of our key matrix, then, are:

1>D(I� �P) = d>(I� �P)

= d> � �d>P

= d> � �d> (because d is the stationary distribution)

= (1� �)d,

all components of which are positive. Thus, the key matrix and its A matrix
are positive definite, and on-policy TD(0) is stable. (Additional conditions
and a schedule for reducing ↵ over time are needed to prove convergence with
probability one.)

At the TD fixpoint, it has also been proven (in the continuing case) that the MSVE
is within a bounded expansion of the lowest possible error:

MSVE(✓TD)  1

1� �
min
✓

MSVE(✓). (9.14)

That is, the asymptotic error of the TD method is no more than 1
1�� times the small-

est possible error, that attained in the limit by the Monte Carlo method. Because
� is often near one, this expansion factor can be quite large, so there is substantial
potential loss in asymptotic performance with the TD method. On the other hand,
recall that the TD methods are often of vastly reduced variance compared to Monte
Carlo methods, and thus faster, as we saw in Chapters 6 and 7. Which method will
be best depends on the nature of the approximation and problem, and on how long
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learning contiunues.

A bound analogous to (9.14) applies to other on-policy bootstrapping methods
as well. For example, linear semi-gradient DP (Eq. 9.7 with Ut

.
=

P
a ⇡(a|St)

P
s0,r

p(s0, r|St, a)[r+�v̂(s0,✓t)]) with backups according the on-policy distribution will also
converge to the TD fixpoint. One-step semi-gradient action-value methods, such as
semi-gradient Sarsa(0) covered in the next chapter converge to analogous fixpoint
and an analogous bound. For episodic tasks, there is a slightly di↵erent but related
bound (see Bertsekas and Tsitsiklis, 1996). There are also a few technical conditions
on the rewards, features, and decrease in the step-size parameter, which we have
omitted here. The full details can be found in the original paper (Tsitsiklis and Van
Roy, 1997).

Critical to the these convergence results is that states are backed up according to
the on-policy distribution. For other backup distributions, bootstrapping methods
using function approximation may actually diverge to infinity. Examples of this and
a discussion of possible solution methods are given in Chapter 11.

Example 9.2: Bootstrapping on the 1000-state Random Walk State aggre-
gation is a special case of linear function approximation, so let’s return to the 1000-
state random walk to illustrate some of the observations made in this chapter. The
left panel of Figure 9.2 shows the final value function learned by the semi-gradient
TD(0) algorithm (page 191) using the same state aggregation as in Example 9.1.
We see that the near-asymptotic TD approximation is indeed farther from the true
values than the Monte Carlo approximation shown in Figure 9.1.

Nevertheless, TD methods retain large potential advantages in learning rate, and
generalize MC methods, as we investigated fully with the multi-step TD methods
of Chapter 7. The right panel of Figure 9.2 shows results with an n-step semi-
gradient TD method using state aggregation and the 1000-state random walk that are
strikingly similar to those we obtained earlier with tabular methods and the 19-state

↵
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RMS error
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and first 10 
episodes

n=1
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Figure 9.2: Bootstrapping with state aggregation on the 1000-state random walk task.
Left: Asymptotic values of semi-gradient TD are worse than the asymptotic MC values
in Figure 9.1. Right: Performance of n-step methods with state-aggregation are strikingly
similar to those with tabular representations (cf. Figure 7.2).
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n-step semi-gradient TD for estimating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S+ ⇥ Rn ! R such that v̂(terminal,·) = 0
Hyperparameters: step size ↵ 2 (0, 1], a positive integer n

Initialize value-function parameter ✓ arbitrarily (e.g., ✓ = 0)
Repeat (for each episode):

Initialize and store S0 6= terminal
For t = 0, 1, 2, . . . :
| Take an action according to ⇡(·|St)
| Observe and store the next reward as Rt+1 and the next state as St+1

| ⌧  t� n + 1 (⌧ is a time whose state’s estimate might be updated)
| If ⌧ � 0:

| G 
P⌧+n

i=⌧+1 �i�⌧�1Ri + �nv̂(S⌧+n,✓) (G(n)
⌧ )

| ✓  ✓ + ↵ [G� v̂(S⌧ ,✓)]rv̂(S⌧ ,✓)
Until St+1 is terminal, then: T  t + 1
For ⌧ = T � n + 1, . . . , T � 1

G 
PT

i=⌧+1 �i�⌧�1Ri (G⌧ )
✓  ✓ + ↵ [G� v̂(S⌧ ,✓)]rv̂(S⌧ ,✓)

random walk. To obtain such quantitatively similar results we switched the state
aggregation to 20 groups of 50 states each. The 20 groups are then quantitatively
close to the 19 states of the tabular problem. In particular, the state transitions
of at-most 100 states to the right or left, or 50 states on average, were quantitively
analogous to the single-state state transitions of the tabular system. To complete
the match, we use here the same performance measure—an unweighted average of all
the states over the first 10 episodes—rather than a MSVE objective as is otherwise
more appropriate when using function approximation.

The semi-gradient n-step TD algorithm we used in this example is the natural
extension of the tabular algorithm presented in Chapter 7 (on page 148) to semi-
gradient function approximation, as given in the box above.

9.5 Feature Construction for Linear Methods

Linear methods are interesting because of their convergence guarantees, but also
because in practice they can be very e�cient in terms of both data and computation.
Whether or not this is so depends critically on how the states are represented in
terms of the features, which we investigate in this large section. Choosing features
appropriate to the task is an important way of adding prior domain knowledge to
reinforcement learning systems. Intuitively, the features should correspond to the
natural features of the task, those along which generalization is most appropriate.
If we are valuing geometric objects, for example, we might want to have features
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for each possible shape, color, size, or function. If we are valuing states of a mobile
robot, then we might want to have features for locations, degrees of remaining battery
power, recent sonar readings, and so on.

In general, we also need features for combinations of these natural qualities. This is
because the linear form prohibits the representation of interactions between features,
such as the presence of feature i being good only in the absence of feature j. For
example, in the pole-balancing task (Example 3.4), a high angular velocity may be
either good or bad depending on the angular position. If the angle is high, then
high angular velocity means an imminent danger of falling—a bad state—whereas if
the angle is low, then high angular velocity means the pole is righting itself—a good
state. In cases with such interactions one needs to introduce features for conjunctions
of feature values when using linear function approximation methods. In the following
subsections we consider a variety of general ways of doing this.

Exercise 9.1 How could we reproduce the tabular case within the linear framework?

Exercise 9.2 How could we reproduce the state aggregation case within the linear
framework?

9.5.1 Polynomials

For multi-dimensional continuous state spaces, function approximation for reinforce-
ment learning has much in common with the familiar tasks of interpolation and
regression, which aim to define functions between and/or beyond given samples of
function values. Various families of polynomials are commonly used for these tasks
and can sometimes be good choices for reinforcement learning. Here we discuss only
the most basic polynomial family.

Suppose a reinforcement learning problem’s state space is two-dimensional so that
each state is a real vector s = (s1, s2)>. You might choose to represent each s
with the feature vector (1, s1, s2, s1s2)> in order to take the interaction of the state
variables into account by weighting the product s1s2 in an appropriate way. Or
you might choose to use feature vectors like (1, s1, s2, s1s2, s2

1, s
2
2, s1s2

2, s
2
1s2, s2

1s
2
2)

>

to take more complex interactions into account. Using these features means that
functions are approximated as multi-dimensional quadratic functions—even though
the approximation is still linear in the parameters that have to be learned.

These example feature vectors are the result of selecting sets of polynomial basis
functions, which are defined for any dimension and can encompass highly-complex
interactions among the state variables:

For d state variables taking real values, every state s is a d-dimensional vec-
tor (s1, s2, . . . , sd)> of real numbers. Each d-dimensional polynomial basis
function �i can be written as

�i(s) = ⇧d
j=1s

c
i,j

j , (9.15)

where each ci,j is an integer in the set {0, 1, . . . , N} for an integer N � 0. These
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functions make up the order-N polynomial basis, which contains (N + 1)d

di↵erent functions.

Higher-order polynomial bases allow for more accurate approximations of more
complicated functions. But because the number of functions in an order-N poly-
nomial basis grows exponentially with the state space dimension (for N > 0), it is
generally necessary to select a subset of them for function approximation. This can
be done using prior beliefs about the nature of the function to be approximated,
and some automated selection methods developed for polynomial regression can be
adapted to deal with the incremental and nonstationary nature of reinforcement
learning.

Exercise 9.3 Why does (9.15) define (N + 1)d distinct functions for dimension d?

Exercise 9.4 Give N and the ci,j defining the basis functions that produce feature
vectors (1, s1, s2, s1s2, s2

1, s
2
2, s1s2

2, s
2
1s2, s2

1s
2
2)

>.

9.5.2 Fourier Basis

Another linear function approximation method is based on the time-honored Fourier
series, which expresses periodic functions as a weighted sum of sine and cosine basis
basis functions of di↵erent frequencies. (A function f is periodic if f(x) = f(x + T )
for all x and some period T .) The Fourier series and the more general Fourier
transform are widely used in applied sciences because—among many other reasons—
if a function to be approximated is known, then the basis function weights are given
by simple formulae and, with enough basis functions, essentially any function can be
approximated as accurately as desired. In reinforcement learning, where the functions
to be approximated are unknown, Fourier basis functions are of interest because they
are easy to use and can perform well in a range of reinforcement learning problems.
The Fourier basis has been developed in a simple form suitable for reinforcement
learning problems with multi-dimensional continuous state spaces and functions that
are not periodic.

First consider the one-dimensional case. The usual Fourier series representation of
a function of one-dimension having period T represents the function as a linear com-
bination of sine and cosine functions that are each periodic with periods that evenly
divide T (in other words, whose frequencies are integer multiples of a fundamental
frequency 1/T ). But if you are interested in approximating an aperiodic function
defined over a bounded interval, you can use these Fourier basis functions with T
set to the length the interval. The function of interest is then just one period of the
periodic linear combination of the sine and cosine basis functions.

Furthermore, if you set T to twice the length of the interval of interest and restrict
attention to the approximation over the half interval [0, T/2], you can use just the
cosine basis functions. This is possible because you can represent any even function,
that is, any function that is symmetric about the origin, with just the cosine basis
functions. So any function over the half-period [0, T/2] can be approximated as
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Figure 9.3: One-dimensonal Fourier cosine basis functions �i, i = 1, 2, 3, 4, for approximat-
ing functions over the interval [0, 1]; �0 is a constant function. From Konidaris et al. (2011),
permission pending.

closely as desired with enough cosine basis functions. (Saying “any function” is not
exactly correct because the function has to be mathematically well-behaved, but
we skip this technicality here.) Similarly, it is possible to use just the sine basis
functions, linear combinations of which are always odd functions, that is functions
that are anti-symmetric about the origin. But it is generally better to keep just the
cosine basis functions because “half-even” functions tend to be easier to approximate
than “half-odd” functions since the latter are often discontinuous at the origin.

Following this logic and letting T = 2 so that the functions are defined over the
half-T interval [0, 1], the one-dimensional order-N Fourier cosine basis consists of the
N + 1 functions

�i(s) = cos(i⇡s), s 2 [0, 1],

for i = 0, . . . , N . Figure 9.3 shows one-dimensional Fourier cosine basis functions �i,
for i = 1, 2, 3, 4; �0 is a constant function. Unlike polynomial basis functions, Fourier
basis functions are always bounded and do not require exponentiation.

This same reasoning applies to the Fourier cosine series approximation in the
multi-dimensional case:

For a state space that is the d-dimensional unit hypercube with the origin in
one corner, states are vectors s = (s1, . . . , sd)>, si 2 [0, 1]. Each function in
the order-N Fourier cosine basis can be written

�i(s) = cos(⇡ci · s), (9.16)

where ci = (ci
1, . . . , c

i
d)

>, with ci
j 2 {0, . . . , N} for j = 1, . . . , d and i =

0, . . . , (N + 1)d. This defines a function for each of the (N + 1)d possible
integer vectors ci. The dot-product ci · s has the e↵ect of assigning an in-
teger in {0, . . . , N} to each dimension. As in the one-dimensional case, this
integer determines the function’s frequency along that dimension. The basis
functions can of course be shifted and scaled to suit the bounded state space
of a particular application.

As an example, consider the d = 2 case in which s = (s1, s2), where each ci =
(ci

1, c
i
2)

>. Figure 9.4 shows a selection of 6 Fourier cosine basis functions, each labeled
by the vector ci that defines it (s1 is horizontal axis and ci is shown as a row vector
with the index i omitted). Any zero in c means the function is constant along
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Figure 9.4: A selection of two-dimensional Fourier cosine basis functions �i, i = 0, 1, 2, 3, 4, 5.
From Konidaris et al. (2011), permission pending.

that dimension. So if c = (0, 0), the function is constant over both dimensions;
if c = (c1, 0) the function is constant over the second dimension and varies over
the first with frequency depending on c1; and similarly, for c = (0, c2). When c =
(c1, c2) with neither cj = 0, the basis function varies along both dimensions and
represents an interaction between the two state variables. The values of c1 and
c2 determine the frequency along each dimension, and their gives the direction of
the interaction. Konidaris et al. (2011) found that when using Fourier cosine basis
functions with a learning algorithm such as (9.7), semi-gradient TD(0), or semi-
gradient Sarsa(�), it is helpful to use a di↵erent step-size parameter for each basis
function. If ↵ is the basic step-size parameter, they suggest setting the step-size

parameter for basis function �i to ↵i = ↵/
q

(ci
1)

2 + · · · + (ci
d)

2 (except when each

ci
j = 0 , in which case ↵i = ↵). Fourier cosine basis functions with Sarsa(�) were

found to produce good performance compared to several other collections of basis
functions, including polynomial and radial basis functions, on several reinforcement
learning tasks. Not surprisingly, however, Fourier basis functions have trouble with
discontinuities because it is di�cult to avoid “ringing” around points of discontinuity
unless very high frequency basis functions are included.

As is true for polynomial approximation, the number of basis functions in the
order-N Fourier cosine basis grows exponentially with the state space dimension.
This makes it necessary to select a subset of these functions if the state space has
high dimension (e.g., d > 5). This can be done using prior beliefs about he nature
of the function to be approximated, and some automated selection methods can
be adapted to deal with the incremental and nonstationary nature of reinforcement
learning. Advantages of Fourier basis functions in this regard are that it is easy
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Figure 9.5: Fourier basis vs polynomials on the 1000-state random walk. Shown are learning
curves for the gradient MC method with Fourier and polynomial bases of degree 5, 10, and
20. The step-size parameters were roughly optimized for each case: ↵ = 0.0001 for the
polynomial basis and ↵ = 0.00005 for the Fourier basis.

to select functions by setting the ci vectors to account for suspected interactions
among the state variables, and by limiting the values in the cj vectors so that the
approximation can filter out high frequency components considered to be noise.

Figure 9.5 shows learning curves comparing the Fourier and polynomial bases on
the 1000-state random walk example. In general, we do not recommend using the
polynomial basis for online learning.

Exercise 9.5 Why does (9.16) define (N + 1)d distinct functions for dimension d?

9.5.3 Coarse Coding

Consider a task in which the state set is continuous and two-dimensional. A state in
this case is a point in 2-space, a vector with two real components. One kind of feature
for this case is those corresponding to circles in state space, as shown in Figure 9.6.
If the state is inside a circle, then the corresponding feature has the value 1 and is
said to be present; otherwise the feature is 0 and is said to be absent. This kind of
1–0-valued feature is called a binary feature. Given a state, which binary features
are present indicate within which circles the state lies, and thus coarsely code for its
location. Representing a state with features that overlap in this way (although they
need not be circles or binary) is known as coarse coding.

Assuming linear gradient-descent function approximation, consider the e↵ect of
the size and density of the circles. Corresponding to each circle is a single parameter
(a component of ✓) that is a↵ected by learning. If we train at one state, a point in the
space, then the parameters of all circles intersecting that state will be a↵ected. Thus,
by (9.8), the approximate value function will be a↵ected at all states within the union
of the circles, with a greater e↵ect the more circles a point has “in common” with
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s0

s

Figure 9.6: Coarse coding. Generalization from state s to state s0 depends on the number
of their features whose receptive fields (in this case, circles) overlap. These states have one
feature in common, so there will be slight generalization between them.

the state, as shown in Figure 9.6. If the circles are small, then the generalization will
be over a short distance, as in Figure 9.7a, whereas if they are large, it will be over a
large distance, as in Figure 9.7b. Moreover, the shape of the features will determine
the nature of the generalization. For example, if they are not strictly circular, but
are elongated in one direction, then generalization will be similarly a↵ected, as in
Figure 9.7c.

Features with large receptive fields give broad generalization, but might also seem
to limit the learned function to a coarse approximation, unable to make discrimina-
tions much finer than the width of the receptive fields. Happily, this is not the case.
Initial generalization from one point to another is indeed controlled by the size and
shape of the receptive fields, but acuity, the finest discrimination ultimately possible,
is controlled more by the total number of features.

a) Narrow generalization b) Broad generalization c) Asymmetric generalization

Figure 9.7: Generalization in linear function approximation methods is determined by the
sizes and shapes of the features’ receptive fields. All three of these cases have roughly the
same number and density of features.
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Example 9.3: Coarseness of Coarse Coding This example illustrates the
e↵ect on learning of the size of the receptive fields in coarse coding. Linear function
approximation based on coarse coding and (9.7) was used to learn a one-dimensional
square-wave function (shown at the top of Figure 9.8). The values of this function
were used as the targets, Ut. With just one dimension, the receptive fields were
intervals rather than circles. Learning was repeated with three di↵erent sizes of the
intervals: narrow, medium, and broad, as shown at the bottom of the figure. All
three cases had the same density of features, about 50 over the extent of the function
being learned. Training examples were generated uniformly at random over this
extent. The step-size parameter was ↵ = 0.2

m , where m is the number of features
that were present at one time. Figure 9.8 shows the functions learned in all three
cases over the course of learning. Note that the width of the features had a strong
e↵ect early in learning. With broad features, the generalization tended to be broad;
with narrow features, only the close neighbors of each trained point were changed,
causing the function learned to be more bumpy. However, the final function learned
was a↵ected only slightly by the width of the features. Receptive field shape tends to
have a strong e↵ect on generalization but little e↵ect on asymptotic solution quality.
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10240
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desired
function
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#Examples
approx-
imation
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Figure 9.8: Example of feature width’s strong e↵ect on initial generalization (first row) and
weak e↵ect on asymptotic accuracy (last row).
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9.5.4 Tile Coding

Tile coding is a form of coarse coding for multi-dimensional continuous spaces that
is flexible and computationally e�cient. It may be the most practical feature repre-
sentation for modern sequential digital computers. Open-source software is available
for many kinds of tile coding.

In tile coding the receptive fields of the features are grouped into partitions of the
input space. Each such partition is called a tiling, and each element of the partition
is called a tile. For example, the simplest tiling of a two-dimensional state space is a
uniform grid such as that shown on the left side of Figure 9.9. The tiles or receptive
field here are squares rather than the circles in Figure 9.6. If just this single tiling
were used, then the state indicated by the white spot would be represented by the
single feature whose tile it falls within; generalization would be complete to all states
within the same tile and nonexistent to states outside it. With just one tiling, we
would not have coarse coding by just a case of state aggregation.

To get the strengths of coarse coding requires overlapping receptive fields, and by
definition the tiles of a partition do not overlap. To get true coarse coding with
tile coding, multiple tilings are used, each o↵set by a fraction of a tile width. A
simple case with four tilings is shown on the right side of Figure 9.9. Every state,
such as that indicated by the white spot, falls in exactly one tile in each of the four
tilings. These four tiles correspond to four features that become active when the
state occurs. Specifically, the feature vector �(s) has one component for each tile in
each tiling. In this example there are 4 ⇥ 4 ⇥ 4 = 64 components, all of which will
be 0 except for the four corresponding to the tiles that s falls within. Figure 9.10
shows the advantage of multiple o↵set tilings (coarse coding) over a single tiling on
the 1000-state random walk example.

An immediate practical advantage of tile coding is that, because it works with
partitions, the overall number of features that are active at one time is the same
for any state. Exactly one feature is present in each tiling, so the total number of
features present is always the same as the number of tilings. This allows the step-

Point in 
state space

to be
represented

Tiling 1
Tiling 2

Tiling 3
Tiling 4Continuous 

2D state 
space

Four active
tiles/features 

overlap the point
and are used to 

represent it

Figure 9.9: Multiple, overlapping grid-tilings on a limited two-dimensional space. These
tilings are o↵set from one another by a uniform amount in each dimension.
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Figure 9.10: Why we use coarse coding. Shown are learning curves on the 1000-state random
walk example for the gradient MC algorithm with a single and with multiple tilings. The
space of 1000 states was treated as a single continuous dimension, covered with tiles each
200 states wide. The multiple tilings were o↵set from each other by 4 states. The step-size
parameter was set so that the initial learning rate in the two cases was the same, ↵ = 0.0001
for the single tiling and ↵ = 0.0001/50 for the 50 tilings.

size parameter, ↵, to be set in an easy, intuitive way. For example, choosing ↵ = 1
m ,

where m is the number of tilings, results in exact one-trial learning. If the example
s 7! v is trained on, then whatever the prior estimate, v̂(s,✓t), the new estimate will
be v̂(s,✓t+1) = v. Usually one wishes to change more slowly than this, to allow for
generalization and stochastic variation in target outputs. For example, one might
choose ↵ = 1

10m , in which case the estimate for the trained state would move one-
tenth of the way to the target in one update, and neighboring states will be moved
less, proportional to the number of tiles they have in common.

Tile coding also gains computational advantages from its use of binary feature
vectors. Because each component is either 0 or 1, the weighted sum making up
the approximate value function (9.8) is almost trivial to compute. Rather than
performing n multiplications and additions, one simply computes the indices of the
m ⌧ n active features and then adds up the m corresponding components of the
parameter vector.

Generalization occurs to states other than the one trained if the those states fall
within any of the same tiles, proportional to the number of tiles in common. Even
the choice of how to o↵set the tilings from each other a↵ects generalization. If they
are o↵set uniformly in each dimension, as they were in Figure 9.9, then di↵erent
states can generalize in qualitatively di↵erent ways, as shown below in the upper
half of Figure 9.11. Each of the eight subfigures show the pattern of generalization
from a trained state to nearby points. In this example their are eight tilings, thus
64 subregions within a tile that generalize distinctly, but all according to one of
these eight patterns. Note how uniform o↵sets result in a strong e↵ect along the
diagonal in many patterns. These artifacts can be avoided if the tilings are o↵set
asymmetrically, as shown in the lower half of the figure. These lower generalization
patterns are better because they are all well centered on the trained state with no



9.5. FEATURE CONSTRUCTION FOR LINEAR METHODS 207

Possible 
generalizations 
for uniformly 
offset tilings

Possible 
generalizations

for asymmetrically 
offset tilings

Figure 9.11: Why tile coding uses asymmetrical o↵sets. Shown is the strength of gener-
alization from a trained state, indicated by the plus, to nearby states, for the case of eight
tilings. If the tilings are uniformly o↵set (above), then there are diagonal artifacts and sub-
stantial variations in the generalization kernel, whereas with asymmetrically o↵set tilings the
generalization kernel is more spherical and homogeneous.

obvious asymmetries.

Tilings in all cases are o↵set from each other by a fraction of a tile width in each
dimension. If w denotes the tile width and k the number of tilings, then w

k is a
fundamental unit. Within small squares w

k on a side, all states activate the same
tiles, have the same feature representation, and the same approximated value. If a
state is moved by w

k in any cartesian direction, the feature representation changes
by one component/tile. Uniformly o↵set tilings are o↵set from each other by exactly
this unit distance. For a two-dimensional space, we say that each tiling is o↵set by
the displacement vector (1, 1), meaning that it is o↵set from the previous tiling by
w
k times this vector. In these terms, the asymmetrically o↵set tilings shown in the
lower part of Figure 9.11 are o↵set by a displacement vector of (1, 3).

Extensive studies have been made of the e↵ect of di↵erent displacement vectors
on the generalization of tile coding (Parks and Militzer, 1991; An, 1991; An, Miller
and Parks, 1991; Miller, Glanz and Carter, 1991), assessing their homegeneity and
tendency toward diagonal artifacts like those seen for the (1, 1) displacement vectors.
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Based on this work, Miller and Glanz (1996) recommend using displacement vectors
consisting of the first odd integers. In particular, for a continuous space of dimension
d, a good choice is to use the first odd integers (1, 3, 5, 7, . . . , 2d � 1), with k (the
number of tilings) set to an integer power of 2 greater than or equal to 4d. This is
what we have done to produce the tilings in the lower half of Figure 9.11, in which
d = 2, k = 23 � 4d, and the displacement vector is (1, 3). In a three-dimensional
case, the first four tilings would be o↵set in total from a base position by (0, 0, 0),
(1, 3, 5), (2, 6, 10), and (3, 9, 15). Open-source software that can e�ciently make this
sort of tilings for any d is readily available.

In choosing a tiling strategy, one has to pick the number of the tilings and the shape
of the tiles. The number of tilings, along with the size of the tiles, determines the
resolution or fineness of the asymptotic approximation, as in general coarse coding
and illustrated in Figure 9.8. The shape of the tiles will determine the nature of
generalization as in Figure 9.7. Square tiles will generalize roughly equally in each
dimension as indicated in Figure 9.11 (lower). Tiles that are elongated along one
dimension, such as the stripe tilings in Figure 9.12 b, will promote generalization
along that dimension. The tilings in Figure 9.12 b are also denser and thinner on the
left, promoting discrimination along the horizonal dimension at lower values along
that dimension. The diagonal stripe tiling in Figure 9.12c will promote generalization
along one diagonal. In higher dimensions, axis-aligned stripes correspond to ignoring
some of the dimensions in some of the tilings, that is, to hyperplanar slices. Irregular
tilings such as shown in Figure 9.12 a are also possible, though rare in practice and
beyond the standard software.

In practice, it is often desirable to use di↵erent shaped tiles in di↵erent tilings. For
example, one might use some vertical stripe tilings and some horizontal stripe tilings.
This would encourage generalization along either dimension. However, with stripe
tilings alone it is not possible to learn that a particular conjunction of horizontal and
vertical coordinates has a distinctive value (whatever is learned for it will bleed into
states with the same horizontal and vertical coordinates). For this one needs the
conjunctive rectangular tiles such as originally shown in Figure 9.9. With multiple
tilings—some horizontal, same vertical, and some conjunctive—one can get every-
thing: a preference for generalizing along each dimension, yet the ability to learn

a) Irregular b) Log stripes c) Diagonal stripes

Figure 9.12: Tilings need not be grids. They can be arbitrarily shaped and non-uniform,
while still in many cases being computationally e�cient to compute.
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specific values for conjunctions (see Section 16.3 for a case study using this). The
choice of tilings determines generalization, and until this choice can be e↵ectively
automated, it is important that tile coding enables it to me done flexibly and in a
way that people can understand.

one

tile

Another important trick for reducing memory requirements
is hashing—a consistent pseudo-random collapsing of a large
tiling into a much smaller set of tiles. Hashing produces tiles
consisting of noncontiguous, disjoint regions randomly spread
throughout the state space, but that still form an exhaustive
tiling. For example, one tile might consist of the four subtiles
shown to the right. Through hashing, memory requirements
are often reduced by large factors with little loss of perfor-
mance. This is possible because high resolution is needed in
only a small fraction of the state space. Hashing frees us from
the curse of dimensionality in the sense that memory requirements need not be ex-
ponential in the number of dimensions, but need merely match the real demands of
the task. Good open-source implementations of tile coding, including hashing, are
widely available.

Exercise 9.6 Suppose we believe that one of two state dimensions is more likely to
have an e↵ect on the value function than is the other, that generalization should be
primarily across this dimension rather than along it. What kind of tilings could be
used to take advantage of this prior knowledge?

9.5.5 Radial Basis Functions

Radial basis functions (RBFs) are the natural generalization of coarse coding to
continuous-valued features. Rather than each feature being either 0 or 1, it can
be anything in the interval [0, 1], reflecting various degrees to which the feature
is present. A typical RBF feature, i, has a Gaussian (bell-shaped) response �i(s)
dependent only on the distance between the state, s, and the feature’s prototypical
or center state, ci, and relative to the feature’s width, �i:

�i(s)
.
= exp

✓
� ||s� ci||2

2�2
i

◆
.

The norm or distance metric of course can be chosen in whatever way seems most
appropriate to the states and task at hand. Figure 9.13 shows a one-dimensional

c
i

!
i

c
i+1

c
i-1

Figure 9.13: One-dimensional radial basis functions.
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example with a Euclidean distance metric.

The primary advantage of RBFs over binary features is that they produce ap-
proximate functions that vary smoothly and are di↵erentiable. Although this is
appealing, in most cases it has no practical significance. Nevertheless, extensive
studies of graded response functions such as RBFs in the context of tile coding (An,
1991; Miller et al., 1991; An, Miller and Parks, 1991; Lane, Handelman and Gelfand,
1992). All of these methods require substantial addition computational complexity
(over tile coding) and often reduce performance when there are more more than two
state dimensions. In high dimensions the edges of tiles are much more important,
and has proven di�cult to obtain well controlled graded tile activations near the
edges.

An RBF network is a linear function approximator using RBFs for its features.
Learning is defined by equations (9.7) and (9.8), exactly as in other linear function
approximators. In addition, some learning methods for RBF networks change the
centers and widths of the features as well, bringing them into the realm of nonlinear
function approximators. Nonlinear methods may be able to fit target functions much
more precisely. The downside to RBF networks, and to nonlinear RBF networks es-
pecially, is greater computational complexity and, often, more manual tuning before
learning is robust and e�cient.

9.6 Nonlinear Function Approximation: Artificial Neu-
ral Networks

Artificial neural networks (ANNs) are widely used for nonlinear function approxima-
tion. An ANN is a network of interconnected units that have some of the properties
of neurons. ANNs have a long history, with latest advances in training deeply-layered
ANNs being responsible for some of the most impressive abilities of machine learn-
ing systems, including reinforcement learning systems. In Chapter 16 we describe
several stunning examples of reinforcement learning systems that use ANN function
approximation.

Figure 9.14 shows a generic feedforward ANN, meaning that there are no loops
in the network. This network has an output layer consisting of two output units,
an input layer with four input units, and two hidden layers: layers that are neither
input nor output layers. A real-valued parameter—a weight—is associated with each
link. A weight roughly corresponds to the e�cacy of a synaptic connection in a real
neural network (see Section 15.1).

The units (the circles in Figure 9.14) are typically semi-linear units, meaning that
they compute a weighted sum of their input signals and then apply to the result a
nonlinear function, called the activation function, to produce the unit’s output, or
activation. Many di↵erent activation functions are used, but they are typically S-
shaped, or sigmoid, functions such as the logistic function f(x) = 1/1 + e�x, though
sometimes the rectifier nonlinearity f(x) = max(0, x) is used. A step function like
f(x) = 1 if x � ✓, and 0 otherwise, results in a binary unit with threshold ✓. It
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Figure 9.14: A generic feedforward neural network with four input units, two output units,
and two hidden layers.

is often useful for units in di↵erent layers to use di↵erent activation functions. An
ANN is recurrent if there is at least one loop in its connections. Although both
feedforward and recurrent ANNs have been used in reinforcement learning, here we
look only at the simpler feedforward case.

The activation of each output unit of a feedforward ANN is a nonlinear function
of the activation patterns over the network’s input units. The functions are param-
eterized by the network’s connection weights. An ANN with no hidden layers can
represent only a very small fraction of the possible input-output functions. However
an ANN with a single hidden layer having a large enough finite number of sigmoid
units can approximate any continuous function on a compact region of the network’s
input space to any degree of accuracy (Cybenko, 1989). This is also true for other
nonlinear activation functions that satisfy mild conditions, but nonlinearity is essen-
tial: if all the units in a multi-layer feedforward ANN have linear activation functions,
the entire network is equivalent to a network with no hidden layers (because linear
functions of linear functions are themselves linear).

Despite this “universal approximation” property of one-hidden-layer ANNs, both
experience and theory show that approximating the complex functions needed for
many artificial intelligence tasks is made easier—indeed may require—abstractions
that are hierarchical compositions of many layers of lower-level abstractions, that
is, abstractions produced by deep architectures such as ANNs with many hidden
layers. (See Bengio, 2009, for a thorough review.) The successive layers of a deep
ANN compute increasingly abstract representations of the network’s “raw” input,
with each unit providing a feature contributing to a hierarchical representation of
the overall input-output function of the network.

Creating these kinds of hierarchical representations without relying exclusively
on hand-crafted features has been an enduring challenge for artificial intelligence.
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This is why learning algorithms for ANNs with hidden layers have received so much
attention over the years. ANNs typically learn by a stochastic gradient method
(Section 9.3). Each weight is adjusted in a direction aimed at improving the network’s
overall performance as measured by an objective function to be either minimized or
maximized. In the most common supervised learning case, the objective function is
the expected error, or loss, over a set of labeled training examples. In reinforcement
learning, ANNs can use TD errors to learn value functions, or they can aim to
maximize expected reward as in a gradient bandit (Section 2.7) or a policy-gradient
algorithm (Chapter 13). In all of these cases it is necessary to estimate how a
change in each connection weight would influence the network’s overall performance,
in other words, to estimate the partial derivative of an objective function with respect
to each weight, given the current values of all the network’s weights. The gradient
is the vector of these partial derivatives.

The most successful way to do this for ANNs with hidden layers (provided the units
have di↵erentiable activation functions) is the backpropagation algorithm, which
consists of alternating forward and backward passes through the network (Rumelhart,
Hinton, and Williams, 1986). Each forward pass computes the activation of each unit
given the current activations of the network’s input units. After each forward pass, a
backward pass e�ciently computes a partial derivative for each weight. (As in other
stochastic gradient learning algorithms, the vector of these partial derivatives is an
estimate of the true gradient.)

The backpropagation algorithm can produce good results for shallow networks
having 1 or 2 hidden layers, but it does not work well for deeper ANNs. In fact,
training a network with k+1 hidden layers can actually result in poorer performance
than training a network with k hidden layers, even though the deeper network can
represent all the functions that the shallower network can (Bengio, 2009). Explaining
all results like these is not easy, but several factors are important. First, the large
number of weights in a typical deep ANN makes it di�cult to avoid the problem of
overfitting, that is, the problem of failing to generalize correctly to cases on which
the network has not been trained. Second, backpropagation does not work well for
deep ANNs because the partial derivatives computed by its backward passes either
decay rapidly toward the input end of the network, making learning by deep layers
extremely slow, or they grow rapidly, making learning unstable. Methods for dealing
with these problems are largely responsible for many impressive results achieved by
systems that use deep ANNs.

Overfitting is a problem for any function approximation method that adjusts func-
tions with many degrees of freedom on the basis of limited training data. It is less of
a problem for on-line reinforcement learning that does not rely on limited training
sets, but generalizing e↵ectively is still an important issue. Overfitting is a problem
for ANNs in general, but especially so for deep ANNs because they tend to have
very large numbers of weights. Many methods have been developed for reducing
overfitting. These include stopping training when performance begins to decrease
on validation data di↵erent from the training data (cross validation), modifying the
objective function to discourage complexity of the approximation (regularization),
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and introducing dependencies among the weights to reduce the number of degrees of
freedom (e.g., weight sharing).

A particularly e↵ective method for reducing overfitting by deep ANNs is the
dropout method introduced by Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhut-
dinov (2014). During training, units are randomly removed from the network (dropped
out) along with their connections. This can be thought of as training a large number
of “thinned” networks. Combining the results of these thinned networks at test time
is a way to improve generalization performance. The dropout method e�ciently ap-
proximates this combination by multiplying each outgoing weight of a unit by the
probability that that unit was retained during training. Srivastava et al. found that
this method significantly improves generalization performance. It encourages indi-
vidual hidden units to learn features that work well with random collections of other
features. This increases the versatility of the features formed by the hidden units so
that the network does overly specialize to rarely-occurring cases.

Hinton, Osindero, and Teh (2006) took a major step toward solving the problem
of training the deep layers of a deep ANN in their work with deep belief networks,
layered networks closely related to the deep ANNs discussed here. In their method,
the deepest layers are trained one at a time using an unsupervised learning algorithm.
Without relying on the overall objective function, unsupervised learning can extract
features that capture statistical regularities of the input stream. The deepest layer is
trained first, then with input provided by this trained layer, the next deepest layer is
trained, and so on, until the weights in all, or many, of the network’s initial layers are
set to values that now act as initial values for supervised learning of the whole network
to fine-tune it by backpropagation with respect to the overall objective function.
Studies show that this approach generally works much better than backpropagation
with weights initialized with random values. This could happen for many reasons,
but one idea is that this way of initializing weights places the network in a region of
parameter space from which a gradient-based algorithm can make good progress.

A type of deep ANN that has proven to be very successful in applications, includ-
ing impressive reinforcement learning applications (Chapter 16) is the deep convolu-
tional network. This type of network is specialized for processing high-dimensional
data arranged in spatial arrays, such as images. It was inspired by how early visual
processing works in the brain (LeCun, Bottou, Bengio and Ha↵ner, 1998). Because
of its special architecture, a deep convolutional network can be trained by backprop-
agation without resorting to methods like those described above to train the deep
layers.

Figure 9.15 illustrates the architecture of a deep convolutional network. This in-
stance, from LeCun et al. (1998), was designed to recognize hand-written characters.
It consists of alternating convolutional and subsampling layers, followed by several
fully connected final layers. Each convolutional layer produces a number of feature
maps. A feature map is a pattern of activity over an array of units, where each unit
performs the same operation on data in its receptive field, which is the part of the
data it “sees” from the preceding layer (or from the external input in the case of the
first convolutional layer). The units of a feature map are identical to one another
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Figure 9.15: Deep Convolutional Network. Reprinted from LeCun, Bottou, Bengio, and
Ha↵ner (1998). Permission pending.

except that their receptive fields, which are all the same size and shape, are shifted
to di↵erent locations on the arrays incoming data. Units in the same feature map
share the same weights. This means that a feature map detects the same feature
no matter where it is located in the input array. In the network in Figure 9.15, for
example, the first convolutional layer produces 6 feature maps, each consisting of 28
⇥ 28 units. Each unit in each feature map has a 5 ⇥ 5 receptive field, and these
receptive fields overlap (in this case by four columns and five rows). Consequently,
each of the 6 feature maps is specified by just 25 adjustable weights.

The subsampling layers of a deep convolutional network reduce the spatial res-
olution of the feature maps. Each feature map in a subsampling layer consists of
units that average over a receptive field of units in the feature maps of the preceding
convolutional layer. For example, each unit in each of the 6 feature maps in first
subsampling layer of the network of Figure 9.15 average over a 2 ⇥ 2 non-overlapping
receptive fields of a feature map produced by the first convolutional layer, resulting
in six 14 ⇥ 14 feature maps. The subsampling layers reduce the network’s sensitivity
to the spacial locations of the features detected, that is, they help make the network’s
responses spatially invariant. This is useful because a feature detected at one place
in an image is likely to be useful at other places as well.

Advances in the design and training of ANNs—of which we have only mentioned
a few—all contribute to reinforcement learning. Although current reinforcement
learning theory is mostly limited to methods using tabular or linear function ap-
proximation methods, the impressive performances of notable reinforcement learn-
ing applications of owe much of their success to nonlinear function approximation by
ANNs, in particular, by deep ANNs.

9.7 Least-Squares TD

In Section 9.4 we established that TD(0) with linear function approximation con-
verges asymptotically, for appropriately decreasing step sizes, to the TD fixpoint:

✓TD = A�1b,
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where
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Why, we might ask, must we compute this solution iteratively? This is wasteful of
data! Could one not do better by computing estimates of A and b, and then directly
computing the TD fixpoint? The Least-Squares TD algorithm, commonly known as
LSTD, does exactly this. It forms the natural estimates
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(where "I, for some small " > 0, ensures that bAt is always invertible) and then
estimates the TD fixpoint as

✓t+1
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= bA�1

t
bbt. (9.18)

This algorithm is the most data e�cient form of linear TD(0), but it is also much
more expensive computationally. Recall that semi-gradient TD(0) requires memory
and per-step computation that is only O(n).

How complex is LSTD? As it is written above the complexity seems to increase
with t, but the two approximations in (9.17) could be implemented incrementally
using the techniques we have covered earlier (e.g., in Chapter 2) so that they can be
done in constant time per step. Even so, the update for bAt would involve an outer
product (a column vector times a row vector) and thus would be a matrix update;
its computational complexity would be O(n2), and of course the memory required to
hold the bAt matrix would be O(n2).

A potentially greater problem is that our final computation (9.18) uses the inverse
of bAt, and the computational complexity of a general inverse computation is O(n3).
Fortunately, an inverse of a matrix of our special form—a sum of outer products—can
also be updated incrementally with only O(n2) computations, as
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with bA�1
.
= "I. Although the identity (9.19), known as the Sherman-Morrison

formula, is superficially complicated, it involves only vector-matrix and vector-vector
multiplications and thus is only O(n2). Thus we can store and maintain the inverse

matrix dA�1
t, and then use it in (9.18), all with only O(n2) memory and per-step

computation. The complete algorithm is given in the box.

Of course, O(n2) is still significantly more expensive than the O(n) of semi-gradient
TD. Whether the greater data e�ciency of LSTD is worth this computational expense
depends on how large n is, how important it is to learn quickly, and the expense of
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LSTD for estimating v̂ ⇡ v⇡ (O(n2) version)
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other parts of the system. The fact that LSTD requires no step-size hyperparameter
is sometimes also touted, but the advantage of this is probably overstated. LSTD
does not require a step size, but it does requires "; if " is chosen too small the sequence
of inverses can vary wildly, and if " is chosen too large then learning is slowed. In
addition, LSTD’s lack of a step size parameter means that it never forgets. This is
sometimes desirable, but it is problematic if the target policy ⇡ changes as it does
in reinforcement learning and GPI. In control applications, LSTD typically has to
be combined with some other mechanism to induce forgeting, mooting any initial
advantage of not requiring a step size parameter.

9.8 Summary

Reinforcement learning systems must be capable of generalization if they are to be
applicable to artificial intelligence or to large engineering applications. To achieve
this, any of a broad range of existing methods for supervised-learning function ap-
proximation can be used simply by treating each backup as a training example.
Perhaps the most suitable of these methods are those using parameterized function
approximation and variations of stochastic gradient descent (SGD). In this chapter
we have focused on the on-policy case with a fixed policy, also known as policy evalu-
ation or prediction; a natural learning algorithm for this case is n-step semi-gradient
TD, with includes gradient MC and semi-gradient TD(0) algorithms as the special
cases when n =1 and n = 1 respectively.

We have also focused on linear function approximation, in which the value esti-
mates are sums of features weighted by corresponding parameters. The linear case
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is the most well understood theoretically and works well in practice when provided
with appropriate features. Choosing the features is one of the most important ways
of adding prior domain knowledge to reinforcement learning systems. They can be
chosen as polynomials, but this case generalizes poorly in the online learning setting
typically considered in reinforcement learning. Better is to choose features according
the Fourier basis, or according to some form of coarse coding with sparse overlap-
ping receptive fields. Tile coding is a form of coarse coding that is particularly
computationally e�cient and flexible. Radial basis functions are useful for one- or
two-dimensional tasks in which a smoothly varying response is important. LSTD is
the most data-e�cient linear TD prediction method, but requires computation pro-
portional to the square of the number of parameters, whereas all the other methods
are of complexity linear in the number of parameters. Nonlinear methods include
artificial neural networks trained by backpropagation and variations of SGD; these
methods have become very popular in recent years under the name deep reinforce-
ment learning.

Semi-gradient TD methods are not true gradient methods. In such bootstrapping
methods (including DP), the parameter vector appears in the update target, yet this
is not taken into account in computing the gradient—thus they are semi -gradient
methods. As such, they cannot rely on classical SGD results. Nevertheless, linear
semi-gradient n-step TD is guaranteed to converge under standard conditions, for
all n, to a MSVE that is within a bound of the optimal error. Although the bound
is always tighter for higher n, approaching zero as n ! 1, in practice this choice
results in very slow learning and some degree of bootstrapping (n11) is preferrable.

Bibliographical and Historical Remarks

Generalization and function approximation have always been an integral part of rein-
forcement learning. Bertsekas and Tsitsiklis (1996), Bertsekas (2012), and Sugiyama
et al. (2013) present the state of the art in function approximation in reinforce-
ment learning. Some of the early work with function approximation in reinforcement
learning is discussed at the end of this section.

9.3 Gradient-descent methods for the minimizing mean-squared error in super-
vised learning are well known. Widrow and Ho↵ (1960) introduced the
least-mean-square (LMS) algorithm, which is the prototypical incremental
gradient-descent algorithm. Details of this and related algorithms are pro-
vided in many texts (e.g., Widrow and Stearns, 1985; Bishop, 1995; Duda
and Hart, 1973).

Semi-gradient TD(0) was first explored by Sutton (1984, 1988), as part of
the linear TD(�) algorithm that we will treat in Chapter 12. The term
“semi-gradient” to describe these bootstrapping methods is new to the second
edition of this book.

The earliest use of state aggregation in reinforcement learning may have been
Michie and Chambers’s BOXES system (1968). The theory of state aggre-
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gation in reinforcement learning has been developed by Singh, Jaakkola, and
Jordan (1995) and Tsitsiklis and Van Roy (1996). State aggregation has been
used in dynamic programming from its earliest days (e.g., Bellman, 1957a).

9.4 Sutton (1988) proved convergence of linear TD(0) in the mean to the minimal
MSVE solution for the case in which the feature vectors, {�(s) : s 2 S}, are
linearly independent. Convergence with probability 1 (and for general �) was
proved by several researchers at about the same time (Peng, 1993; Dayan and
Sejnowski, 1994; Tsitsiklis, 1994; Gurvits, Lin, and Hanson, 1994). In addi-
tion, Jaakkola, Jordan, and Singh (1994) proved convergence under on-line
updating. All of these results assumed linearly independent feature vectors,
which implies at least as many components to ✓t as there are states. Conver-
gence for the more important case of general (dependent) feature vectors was
first shown by Dayan (1992). A significant generalization and strengthening
of Dayan’s result was proved by Tsitsiklis and Van Roy (1997). They proved
the main result presented in this section, the bound on the asymptotic error
of linear bootstrapping methods.

9.5 Our presentation of the range of possibilities for linear function approximation
is based on that by Barto (1990).

9.5.3 The term coarse coding is due to Hinton (1984), and our Figure 9.6 is based
on one of his figures. Waltz and Fu (1965) provide an early example of this
type of function approximation in a reinforcement learning system.

9.5.4 Tile coding, including hashing, was introduced by Albus (1971, 1981). He de-
scribed it in terms of his “cerebellar model articulator controller,” or CMAC,
as tile coding is known in the literature. The term “tile coding” is new to
this book, though the idea of describing CMAC in these terms is taken from
Watkins (1989). Tile coding has been used in many reinforcement learning
systems (e.g., Shewchuk and Dean, 1990; Lin and Kim, 1991; Miller, Scalera,
and Kim, 1994; Sofge and White, 1992; Tham, 1994; Sutton, 1996; Watkins,
1989) as well as in other types of learning control systems (e.g., Kraft and
Campagna, 1990; Kraft, Miller, and Dietz, 1992). This section draws heavily
on the work of Miller and Glanz (1996).

9.5.5 Function approximation using radial basis functions (RBFs) has received wide
attention ever since being related to neural networks by Broomhead and Lowe
(1988). Powell (1987) reviewed earlier uses of RBFs, and Poggio and Girosi
(1989, 1990) extensively developed and applied this approach.

9.7 LSTD is due to Bradtke and Barto (see Bradtke, 1993, 1994; Bradtke and
Barto, 1996; Bradtke, Ydstie, and Barto, 1994), and was further developed
by Boyan (2002). The incremental update of the inverse matrix has been
known at least since 1949 (Sherman and Morrison, 1949).



9.8. SUMMARY 219

The use of function approximation in reinforcement learning goes back to the
early neural networks of Farley and Clark (1954; Clark and Farley, 1955), who used
reinforcement learning to adjust the parameters of linear threshold functions repre-
senting policies. The earliest example we know of in which function approximation
methods were used for learning value functions was Samuel’s checkers player (1959,
1967). Samuel followed Shannon’s (1950) suggestion that a value function did not
have to be exact to be a useful guide to selecting moves in a game and that it might
be approximated by linear combination of features. In addition to linear function
approximation, Samuel experimented with lookup tables and hierarchical lookup ta-
bles called signature tables (Gri�th, 1966, 1974; Page, 1977; Biermann, Fairfield,
and Beres, 1982).

At about the same time as Samuel’s work, Bellman and Dreyfus (1959) proposed
using function approximation methods with DP. (It is tempting to think that Bell-
man and Samuel had some influence on one another, but we know of no reference
to the other in the work of either.) There is now a fairly extensive literature on
function approximation methods and DP, such as multigrid methods and methods
using splines and orthogonal polynomials (e.g., Bellman and Dreyfus, 1959; Bellman,
Kalaba, and Kotkin, 1973; Daniel, 1976; Whitt, 1978; Reetz, 1977; Schweitzer and
Seidmann, 1985; Chow and Tsitsiklis, 1991; Kushner and Dupuis, 1992; Rust, 1996).

Holland’s (1986) classifier system used a selective feature-match technique to gen-
eralize evaluation information across state–action pairs. Each classifier matched a
subset of states having specified values for a subset of features, with the remaining
features having arbitrary values (“wild cards”). These subsets were then used in a
conventional state-aggregation approach to function approximation. Holland’s idea
was to use a genetic algorithm to evolve a set of classifiers that collectively would im-
plement a useful action-value function. Holland’s ideas influenced the early research
of the authors on reinforcement learning, but we focused on di↵erent approaches to
function approximation. As function approximators, classifiers are limited in several
ways. First, they are state-aggregation methods, with concomitant limitations in
scaling and in representing smooth functions e�ciently. In addition, the matching
rules of classifiers can implement only aggregation boundaries that are parallel to
the feature axes. Perhaps the most important limitation of conventional classifier
systems is that the classifiers are learned via the genetic algorithm, an evolutionary
method. As we discussed in Chapter 1, there is available during learning much more
detailed information about how to learn than can be used by evolutionary methods.
This perspective led us to instead adapt supervised learning methods for use in rein-
forcement learning, specifically gradient-descent and neural network methods. These
di↵erences between Holland’s approach and ours are not surprising because Holland’s
ideas were developed during a period when neural networks were generally regarded
as being too weak in computational power to be useful, whereas our work was at
the beginning of the period that saw widespread questioning of that conventional
wisdom. There remain many opportunities for combining aspects of these di↵erent
approaches.

A number of reinforcement learning studies using function approximation meth-
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ods that we have not covered previously should be mentioned. Barto, Sutton, and
Brouwer (1981) and Barto and Sutton (1981b) extended the idea of an associative
memory network (e.g., Kohonen, 1977; Anderson, Silverstein, Ritz, and Jones, 1977)
to reinforcement learning. Hampson (1983, 1989) was an early proponent of multi-
layer neural networks for learning value functions. Anderson (1986, 1987) coupled
a TD algorithm with the error backpropagation algorithm to learn a value func-
tion. Barto and Anandan (1985) introduced a stochastic version of Widrow, Gupta,
and Maitra’s (1973) selective bootstrap algorithm, which they called the associa-
tive reward-penalty (AR�P ) algorithm. Williams (1986, 1987, 1988, 1992) extended
this type of algorithm to a general class of REINFORCE algorithms, showing that
they perform stochastic gradient ascent on the expected reinforcement. Gullapalli
(1990) and Williams devised algorithms for learning generalizing policies for the
case of continuous actions. Phansalkar and Thathachar (1995) proved both local
and global convergence theorems for modified versions of REINFORCE algorithms.
Christensen and Korf (1986) experimented with regression methods for modifying
coe�cients of linear value function approximations in the game of chess. Chapman
and Kaelbling (1991) and Tan (1991) adapted decision-tree methods for learning
value functions. Explanation-based learning methods have also been adapted for
learning value functions, yielding compact representations (Yee, Saxena, Utgo↵, and
Barto, 1990; Dietterich and Flann, 1995).
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