
Chapter 9

On-policy Prediction with
Approximation

In this chapter, we begin our study of function approximation in reinforcement learn-
ing by considering its use in estimating the state-value function from on-policy data,
that is, in approximating v⇡ from experience generated using a known policy ⇡. The
novelty in this chapter is that the approximate value function is represented not as a
table but as a parameterized functional form with parameter vector ✓ 2 Rn. We will
write v̂(s,✓) ⇡ v⇡(s) for the approximated value of state s given parameter vector ✓.
For example, v̂ might be a linear function in features of the state, with ✓ the vector of
feature weights. More generally, v̂ might be the function computed by a multi-layer
artificial neural network, with ✓ the vector of connection weights in all the layers. By
adjusting the weights, any of a wide range of di↵erent functions can be implemented
by the network. Or v̂ might be the function computed by a decision tree, where ✓
is all the parameters defining the split points and leaf values of the tree. Typically,
the number of parameters (the number of components of ✓) is much less than the
number of states (n⌧ |S|), and changing one parameter changes the estimated value
of many states. Consequently, when a single state is updated, the change generalizes
from that state to a↵ect the values of many other states. Such generalization makes
the learning potentially more powerful but also potentially more di�cult to manage
and understand.

9.1 Value-function Approximation

All of the prediction methods covered in this book have been described as backups,
that is, as updates to an estimated value function that shift its value at particular
states toward a “backed-up value” for that state. Let us refer to an individual backup
by the notation s 7! g, where s is the state backed up and g is the backed-up value,
or target, that s’s estimated value is shifted toward. For example, the Monte Carlo
backup for value prediction is St 7! Gt, the TD(0) backup is St 7! Rt+1+�v̂(St+1,✓t),

and the n-step TD backup is St 7! G(n)
t . In the DP policy-evaluation backup,

185

186 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

s 7! E⇡[Rt+1 + �v̂(St+1,✓t) | St =s], an arbitrary state s is backed up, whereas in
the other cases the state encountered in actual experience, St, is backed up.

It is natural to interpret each backup as specifying an example of the desired
input–output behavior of the value function. In a sense, the backup s 7! g means
that the estimated value for state s should be more like the number g. Up to now,
the actual update implementing the backup has been trivial: the table entry for s’s
estimated value has simply been shifted a fraction of the way toward g, and the
estimated values of all other states were left unchanged. Now we permit arbitrarily
complex and sophisticated methods to implement the backup, and updating at s
generalizes so that the estimated values of many other states are changed as well.
Machine learning methods that learn to mimic input–output examples in this way
are called supervised learning methods, and when the outputs are numbers, like g,
the process is often called function approximation. Function approximation methods
expect to receive examples of the desired input–output behavior of the function they
are trying to approximate. We use these methods for value prediction simply by
passing to them the s 7! g of each backup as a training example. We then interpret
the approximate function they produce as an estimated value function.

Viewing each backup as a conventional training example in this way enables us to
use any of a wide range of existing function approximation methods for value pre-
diction. In principle, we can use any method for supervised learning from examples,
including artificial neural networks, decision trees, and various kinds of multivariate
regression. However, not all function approximation methods are equally well suited
for use in reinforcement learning. The most sophisticated neural network and statis-
tical methods all assume a static training set over which multiple passes are made.
In reinforcement learning, however, it is important that learning be able to occur on-
line, while interacting with the environment or with a model of the environment. To
do this requires methods that are able to learn e�ciently from incrementally acquired
data. In addition, reinforcement learning generally requires function approximation
methods able to handle nonstationary target functions (target functions that change
over time). For example, in GPI control methods we often seek to learn q⇡ while ⇡
changes. Even if the policy remains the same, the target values of training exam-
ples are nonstationary if they are generated by bootstrapping methods (DP and TD
learning). Methods that cannot easily handle such nonstationarity are less suitable
for reinforcement learning.

9.2 The Prediction Objective (MSVE)

Up to now we have not specified an explicit objective for prediction. In the tabular
case a continuous measure of prediction quality was not necessary because the learned
value function could come to equal the true value function exactly. Moreover, the
learned values at each state were decoupled—an update at one state a↵ected no
other. But with genuine approximation, an update at one state a↵ects many others,
and it is not possible to get all states exactly correct. By assumption we have far
more states than parameters, so making one state’s estimate more accurate invariably

9.2. THE PREDICTION OBJECTIVE (MSVE) 187

means making others’ less accurate. We are obligated then to say which states we
care most about. We must specify a weighting or distribution d(s) � 0 representing
how much we care about the error in each state s. By the error in a state s we mean
the square of the di↵erence between the approximate value v̂(s,✓) and the true value
v⇡(s). Weighting this over the state space by the distribution d, we obtain a natural
objective function, the Mean Square Value Error, or MSVE:

MSVE(✓)
.
=

X

s2S

d(s)
h
v⇡(s)� v̂(s,✓)

i2
. (9.1)

The square root of this measure, the RMSVE, gives a rough measure of how much the
approximate values di↵er from the true values and is often used in plots. Typically
one chooses d(s) to be the fraction of time spent in s under the target policy ⇡. This
is called the on-policy distribution; we focus entirely on this case in this chapter. In
continuing tasks, the on-policy distribution is the stationary distribution under ⇡.

The on-policy distribution in episodic tasks

In an episodic task, the on-policy distribution is a little di↵erent in that it
depends on how the initial states of episodes are chosen. Let h(s) denote the
probability that an episode begins in each state s, and let ⌘(s) denote the
number of time steps spent, on average, in state s in a single episode. Time is
spent in a state s if episodes start in it, or if transitions are made into it from
a state s̄ in which time is spent:

⌘(s) = h(s) +
X

s̄

⌘(s̄)
X

a

⇡(a|s̄)p(s|s̄, a). (9.2)

This can be solved in vector-matrix form for the expected visitation times
⌘(s), from which the on-policy distribution is obtained by normalizing so that
it sums to one:

d(s) =
⌘(s)P
s0 ⌘(s0)

. (9.3)

The two cases, continuing and episodic, behave similarly, but with approximation
they must be treated separately in formal analyses, as we will see repeatedly in this
part of the book. This completes the specification of the learning objective.

It is not completely clear that the MSVE is the right performance objective for
reinforcement learning. Remember that our ultimate purpose, the reason we are
learning a value function, is to use it in finding a better policy. The best value func-
tion for this purpose is not necessarily the best for minimizing MSVE. Nevertheless,
it is not yet clear what a more useful alternative goal for value prediction might be.
For now, we will focus on MSVE.

An ideal goal in terms of MSVE would be to find a global optimum, a parameter
vector ✓⇤ for which MSVE(✓⇤) MSVE(✓) for all possible ✓. Reaching this goal is
sometimes possible for simple function approximators such as linear ones, but is rarely

188 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

possible for complex function approximators such as artificial neural networks and
decision trees. Short of this, complex function approximators may seek to converge
instead to a local optimum, a parameter vector ✓⇤ for which MSVE(✓⇤) MSVE(✓)
for all ✓ in some neighborhood of ✓⇤. Although this guarantee is only slightly reas-
suring, it is typically the best that can be said for nonlinear function approximators,
and often it is enough. Still, for many cases of interest in reinforcement learning,
convergence to an optimum, or even to within a bounded distance from an optimum
cannot be assured. Some methods may in fact diverge, with their MSVE approaching
infinity in the limit.

In the last two sections we have outlined a framework for combining a wide range
of reinforcement learning methods for value prediction with a wide range of function
approximation methods, using the backups of the former to generate training ex-
amples for the latter. We have also described a MSVE performance measure which
these methods may aspire to minimize. The range of possible methods is far too large
to cover all, and anyway too little is known about most of them to make a reliable
evaluation or recommendation. Of necessity, we consider only a few possibilities.
In the rest of this chapter we focus on function approximation methods based on
gradient principles, and on linear gradient-descent methods in particular. We focus
on these methods in part because we consider them to be particularly promising and
because they reveal key theoretical issues, but also because they are simple and our
space is limited.

9.3 Stochastic-gradient and Semi-gradient Methods

We now develop in detail one class of learning methods for function approximation in
value prediction, those based on stochastic gradient descent (SGD). SGD methods
are among the most widely used of all function approximation methods and are
particularly well suited to online reinforcement learning.

In gradient-descent methods, the parameter vector is a column vector with a fixed
number of real valued components, ✓

.
= (✓1, ✓2, . . . , ✓n)>,1 and the approximate value

function v̂(s,✓) is a smooth di↵erentiable function of ✓ for all s 2 S. We will be
updating ✓ at each of a series of discrete time steps, t = 0, 1, 2, 3, . . ., so we will
need a notation ✓t for the parameter vector at each step. For now, let us assume
that, on each step, we observe a new example St 7! v⇡(St) consisting of a (possibly
randomly selected) state St and its true value under the policy. These states might
be successive states from an interaction with the environment, but for now we do
not assume so. Even though we are given the exact, correct values, v⇡(St) for each
St, there is still a di�cult problem because our function approximator has limited
resources and thus limited resolution. In particular, there is generally no ✓ that
gets all the states, or even all the examples, exactly correct. In addition, we must
generalize to all the other states that have not appeared in examples.

1The > denotes transpose, needed here to turn the horizontal row vector in the text into a vertical
column vector; in this book all vectors are column vectors unless transposed.

9.3. STOCHASTIC-GRADIENT AND SEMI-GRADIENT METHODS 189

We assume that states appear in examples with the same distribution, d, over
which we are trying to minimize the MSVE as given by (9.1). A good strategy in
this case is to try to minimize error on the observed examples. Stochastic gradient-
descent (SGD) methods do this by adjusting the parameter vector after each example
by a small amount in the direction that would most reduce the error on that example:

✓t+1
.
= ✓t �

1

2
↵r

h
v⇡(St)� v̂(St,✓t)

i2
(9.4)

= ✓t + ↵
h
v⇡(St)� v̂(St,✓t)

i
rv̂(St,✓t), (9.5)

where ↵ is a positive step-size hyperparameter, and rf(✓), for any scalar expression
f(✓), denotes the vector of partial derivatives with respect to the components of the
parameter vector:

rf(✓)
.
=

✓
@f(✓)

@✓1
,
@f(✓)

@✓2
, . . . ,

@f(✓)

@✓n

◆>
. (9.6)

This derivative vector is the gradient of f with respect to ✓. SGD methods are
“gradient descent” methods because the overall step in ✓t is proportional to the
negative gradient of the example’s squared error (9.4). This is the direction in which
the error falls most rapidly. Gradient descent methods are called “stochastic” when
the update is done, as here, on only a single example, which might have been selected
stochastically. Over many examples, making small steps, the overall e↵ect is to
minimize an average performance measure such as the MSVE.

It may not be immediately apparent why SGD takes only a small step in the
direction of the gradient. Could we not move all the way in this direction and
completely eliminate the error on the example? In many cases this could be done,
but usually it is not desirable. Remember that we do not seek or expect to find
a value function that has zero error for all states, but only an approximation that
balances the errors in di↵erent states. If we completely corrected each example in
one step, then we would not find such a balance. In fact, the convergence results
for SGD methods assume that ↵ decreases over time. If it decreases in such a way
as to satisfy the standard stochastic approximation conditions (2.7), then the SGD
method (9.5) is guaranteed to converge to a local optimum.

We turn now to the case in which the target output, here denoted Ut 2 R, of
the tth training example, St 7! Ut, is not the true value, v⇡(St), but some, possibly
random, approximation to it. For example, Ut might be a noise-corrupted version
of v⇡(St), or it might be one of the bootstrapping targets using v̂ mentioned in the
previous section. In these cases we cannot perform the exact update (9.5) because
v⇡(St) is unknown, but we can approximate it by substituting Ut in place of v⇡(St).
This yields the following general SGD method for state-value prediction:

✓t+1
.
= ✓t + ↵

h
Ut � v̂(St,✓t)

i
rv̂(St,✓t). (9.7)

If Ut is an unbiased estimate, that is, if E[Ut] = v⇡(St), for each t, then ✓t is guar-
anteed to converge to a local optimum under the usual stochastic approximation
conditions (2.7) for decreasing ↵.

190 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

Gradient Monte Carlo for approximating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S⇥ Rn ! R

Initialize value-function parameter ✓ as appropriate (e.g., ✓ = 0)
Repeat forever:

Generate an episode S0, A0, R1, S1, A1, . . . , RT , ST using ⇡
For t = 0, 1, . . . , T � 1:

✓ ✓ + ↵
⇥
Gt � v̂(St,✓)

⇤
rv̂(St,✓)

For example, suppose the states in the examples are the states generated by in-
teraction (or simulated interaction) with the environment using policy ⇡. Because
the true value of a state is the expected value of the return following it, the Monte
Carlo target Ut

.
= Gt is by definition an unbiased estimate of v⇡(St). With this

choice, the general SGD method (9.7) converges to a locally optimal approximation
to v⇡(St). Thus, the gradient-descent version of Monte Carlo state-value prediction
is guaranteed to find a locally optimal solution. Pseudocode for a complete algorithm
is shown in the box.

One does not obtain the same guarantees if a bootstrapping estimate of v⇡(St)

is used as the target Ut in (9.7). Bootstrapping targets such as n-step returns G(n)
t

or the DP target
P

a,s0,r ⇡(a|St)p(s0, r|St, a)[r + �v̂(s0,✓t)] all depend on the current
value of the parameter ✓t, which implies that they will be biased and that they will
not produce a true gradient-descent method. One way to look at this is that the key
step from (9.4) to (9.5) relies on the target being independent of ✓t. This step would
not be valid if a bootstrapping estimate was used in place of v⇡(St). Bootstrapping
methods are not in fact instances of true gradient descent (Barnard, 1993). They
take into account the e↵ect of changing the parameter ✓t on the estimate, but ignore
its e↵ect on the target. They include only a part of the gradient and, accordingly,
we call them semi-gradient methods.

Although semi-gradient (bootstrapping) methods do not converge as robustly as
gradient methods, they do converge reliably in important cases such as the linear
case discussed in the next section. Moreover, they o↵er important advantages which
makes them often clearly preferred. One reason for this is that they are typically
significantly faster to learn, as we have seen in Chapters 6 and 7. Another is that they
enable learning to be continual and online, without waiting for the end of an episode.
This enables them to be used on continuing problems and provides computational
advantages. A prototypical semi-gradient method is semi-gradient TD(0), which uses
Ut

.
= Rt+1 + �v̂(St+1,✓) as its target. Complete pseudocode for this method is given

in the box at the top of the next page.

9.3. STOCHASTIC-GRADIENT AND SEMI-GRADIENT METHODS 191

Semi-gradient TD(0) for estimating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S+ ⇥ Rn ! R such that v̂(terminal,·) = 0

Initialize value-function parameter ✓ arbitrarily (e.g., ✓ = 0)
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A ⇠ ⇡(·|S)
Take action A, observe R, S0

✓ ✓ + ↵
⇥
R + �v̂(S0,✓)� v̂(S,✓)

⇤
rv̂(S,✓)

S S0

until S0 is terminal

Example 9.1: State Aggregation on the 1000-state Random Walk State
aggregation is a simple form of generalizing function approximation in which states
are grouped together, with one estimated value (one component of the parameter
vector ✓) for each group. The value of a state is estimated as its group’s component,
and when the state is updated, that component alone is updated. State aggregation
is a special case of SGD (9.7) in which the gradient, rv̂(St,✓t), is 1 for St’s group’s
component and 0 for the other components.

Consider a 1000-state version of the random walk task (Examples 6.2 and 7.1).
The states are numbered from 1 to 1000, left to right, and all episodes begin near the
center, in state 500. State transitions are from the current state to one of the 100
states to its left, or to one of the 100 states to its right, all with equal probability.
If the current state is near an edge, with fewer that 100 neighbors on one side, a
transition occurs to the terminal state with probability equal to that which would
have been given to the missing neighbor states (thus, state 1 has a 0.5 chance of
terminating, and state 2 has a .495 chance of terminating). As usual, termination
on the left produces a reward of �1, and termination on the right produces a reward
of +1. All other transitions have a reward of zero. We use this task as a running
example throughout this section.

Figure 9.1 shows the true value function v⇡ for this task. It is nearly a straight
line, but tilted slightly toward the horizontal and curving further in this direction for
the last 100 states at each end. Also shown is the final approximate value function
learned by the gradient Monte-Carlo algorithm with state aggregation after 100,000
episodes with a step size of ↵ = 2⇥ 10�5. For the state aggregation, the 1000 states
were partitioned into 10 groups of 100 states each (i.e., states 1–100 were one group,
states 101-200 were another, and so on). The staircase e↵ect shown in the figure is
typical of state aggregation; within each group, the approximate value is constant,
and it changes abruptly from one group to the next. These approximate values are
close to the global minimum of the MSVE (9.1).

192 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

0

State

Value
scale

 True
value v⇡

 Approximate
MC value v̂

 State distribution d
0.0017

0.0137

Distribution
scale

10001

0

-1

1

Figure 9.1: Function approximation by state aggregation on the 1000-state random walk
task, using the gradient Monte Carlo algorithm (page 190).

Some of the details of the approximate values are best appreciated by reference
to the state distribution d for this task, shown in the lower portion of the figure
with a right-side scale. Recall that d is a weighting rather than a distribution in
episodic tasks like this. Numerically it corresponds to the number of times each
state is visited, on average, in a single episode. State 500, in the center, is the first
state of every episode, but it is rarely visited again. On average, it is visited about
1.14 times per episode. The states reachable in one step from the start state are
the second most visited, about 0.14 times per episode each. From there d falls o↵
almost linearly, reaching about 0.012 at the extreme states 1 and 1000. The start
state falls within the 401-500 group just to the left of the center. This state is given
much more weight in the approximation that the other states in the group. Since
the correct value for it is almost zero (because it is almost at the center), its group’s
value should be slightly higher that the unweighted average of the true values within
the group, and indeed it appears to be so. The e↵ect is small, however, presumably
because the other states in the group are so many. A larger e↵ect to a similar result
is most evident in the leftmost groups, whose values are clearly shifted higher than
the unweighted average of the true values of states within the group, and in the
rightmost groups, whose values are clearly shifted lower. This is due to the states in
these areas having the greatest asymmetry in their weightings by d. For example, in
the leftmost group, state 99 is weighted more than 3 times more strongly than state
0. Thus the estimate for the group is biased toward the true value of state 99, which
is higher than the true value of state 0.

9.4 Linear Methods

One of the most important special cases of function approximation is that in which
the approximate function, v̂(·,✓), is a linear function of the parameter vector, ✓.

9.4. LINEAR METHODS 193

Corresponding to every state s, there is a real-valued vector of features �(s)
.
=

(�1(s), �2(s), . . . , �n(s))>, with the same number of components as ✓. The features
may be constructed from the states in many di↵erent ways; we cover a few possibilities
in the next sections. However the features are constructed, the approximate state-
value function is given by

v̂(s,✓)
.
= ✓>�(s)

.
=

nX

i=1

✓i�i(s). (9.8)

In this case the approximate value function is said to be linear in the parameters,
or simply linear. The individual functions �i : S ! R are called basis functions
because they form a linear basis for the set of approximate functions of this form.
Constructing n-dimensional feature vectors to represent states is the same as selecting
a set of n basis functions.

It is natural to use SGD updates with linear function approximation. The gradient
of the approximate value function with respect to ✓ in this case is

rv̂(s,✓) = �(s).

Thus, the general SGD update (9.7) reduces to a particularly simple form in the
linear case.

Because it is so simple, the linear SGD case is one of the most favorable for
mathematical analysis. Almost all useful convergence results for learning systems of
all kinds are for linear (or simpler) function approximation methods.

In particular, in the linear case there is only one optimum (or, in degenerate cases,
one set of equally good optima), and thus any method that is guaranteed to converge
to or near a local optimum is automatically guaranteed to converge to or near the
global optimum. For example, the gradient Monte Carlo algorithm presented in the
previous section converges to the global optimum of the MSVE under linear function
approximation if ↵ is reduced over time according to the usual conditions.

The semi-gradient TD(0) algorithm presented in the previous section also con-
verges under linear function approximation, but this does not follow from general
results on SGD; a separate theorem is necessary. The parameter converged to is also
not the global optimum, but rather to a point near the local optimum. It is useful to
consider this important case in more detail, specifically for the continuing case. The
update at each time t is

✓t+1
.
= ✓t + ↵

⇣
Rt+1 + �✓>

t �t+1 � ✓>
t �t

⌘
�t (9.9)

= ✓t + ↵
⇣
Rt+1�t � �t

�
�t � ��t+1

�>
✓t

⌘
,

where here we have used the notational shorthand �t = �(St). Once the system has
reached steady state, for any given ✓t, the expected next parameter vector can be
written

E[✓t+1|✓t] = ✓t + ↵(b�A✓t), (9.10)

194 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

where

b
.
= E[Rt+1�t] 2 Rn and A

.
= E

h
�t

�
�t � ��t+1

�>
i
2 Rn ⇥ Rn (9.11)

From (9.10) it is clear that, if the system converges, it must converge to the parameter
✓TD at which

b�A✓TD = 0

) b = A✓TD

) ✓TD
.
= A�1b. (9.12)

This quantity is called the TD fixpoint. In fact linear semi-gradient TD(0) converges
to this point. Some of the theory proving its convergence, and the existence of the
inverse above, is given in the box.

Proof of Convergence of Linear TD(0)

What properties assure convergence of the linear TD(0) algorithm (9.9)? Some
insight can be gained by rewriting (9.10) as

E[✓t+1|✓t] = (I� ↵A)✓t + ↵b. (9.13)

Note that the matrix A multiplies the parameter ✓t and not b; only A is
important to convergence. To develop intuition, consider the special case in
which A is a diagonal matrix. If any of the diagonal elements are negative,
then the corresponding diagonal element of I � ↵A will be greater than one,
and the corresponding component of ✓t will be amplified, which will lead to
divergence if continued. On the other hand, if the diagonal elements of A
are all positive, then ↵ can be chosen smaller than one over the largest of
them, such that I� ↵A is diagonal with all diagonal elements between 0 and
1. In this case the first term of the update tends to shrink ✓t, and stability
is assured. In general case, ✓t will be reduced toward zero whenever A is
positive definite, meaning y>Ay > 0 for real vector y. Positive definiteness
also ensures that the inverse A�1 exists.

For linear TD(0), in the continuing case with � < 1, the A matrix (9.11)
can be written

A =
X

s

d(s)
X

a

⇡(a|s)
X

r,s0

p(r, s0|s, a)�(s)
�
�(s)� ��(s0)

�>

=
X

s

d(s)
X

s0

p(s0|s)�(s)
�
�(s)� ��(s0)

�>

=
X

s

d(s)�(s)

✓
�(s)� �

X

s0

p(s0|s)�(s0)

◆>

= �>D(I� �P)�,

9.4. LINEAR METHODS 195

where d(s) is the stationary distribution under ⇡, p(s0|s) is the probability
of transition from s to s0 under policy ⇡, P is the |S| ⇥ |S| matrix of these
probabilities, D is the |S|⇥ |S| diagonal matrix with the d(s) on its diagonal,
and � is the |S| ⇥ n matrix with �(s) as its rows. From here it is clear that
the inner matrix D(I� �P) is key to determining the positive definiteness of
A.

For a key matrix of this type, positive definiteness is assured if all of its
columns sum to a nonnegative number. This was shown by Sutton (1988, p. 27)
based on two previously established theorems. One theorem says that any
matrix M is positive definite if and only if the symmetric matrix S = M+M>

is positive definite (Sutton 1988, appendix). The second theorem says that
any symmetric real matrix S is positive definite if all of its diagonal entries
are positive and greater than the sum of the corresponding o↵-diagonal entries
(Varga 1962, p. 23). For our key matrix, D(I� �P), the diagonal entries are
positive and the o↵-diagonal entries are negative, so all we have to show is
that each row sum plus the corresponding column sum is positive. The row
sums are all positive because P is a stochastic matrix and � < 1. Thus it only
remains to show that the column sums are nonnegative. Note that the row
vector of the column sums of any matrix M can be written as 1>M, where 1 is
the column vector with all components equal to 1. Let d denote the |S|-vector
of the d(s). The column sums of our key matrix, then, are:

1>D(I� �P) = d>(I� �P)

= d> � �d>P

= d> � �d> (because d is the stationary distribution)

= (1� �)d,

all components of which are positive. Thus, the key matrix and its A matrix
are positive definite, and on-policy TD(0) is stable. (Additional conditions
and a schedule for reducing ↵ over time are needed to prove convergence with
probability one.)

At the TD fixpoint, it has also been proven (in the continuing case) that the MSVE
is within a bounded expansion of the lowest possible error:

MSVE(✓TD) 1

1� �
min
✓

MSVE(✓). (9.14)

That is, the asymptotic error of the TD method is no more than 1
1�� times the small-

est possible error, that attained in the limit by the Monte Carlo method. Because
� is often near one, this expansion factor can be quite large, so there is substantial
potential loss in asymptotic performance with the TD method. On the other hand,
recall that the TD methods are often of vastly reduced variance compared to Monte
Carlo methods, and thus faster, as we saw in Chapters 6 and 7. Which method will
be best depends on the nature of the approximation and problem, and on how long

196 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

learning contiunues.

A bound analogous to (9.14) applies to other on-policy bootstrapping methods
as well. For example, linear semi-gradient DP (Eq. 9.7 with Ut

.
=

P
a ⇡(a|St)

P
s0,r

p(s0, r|St, a)[r+�v̂(s0,✓t)]) with backups according the on-policy distribution will also
converge to the TD fixpoint. One-step semi-gradient action-value methods, such as
semi-gradient Sarsa(0) covered in the next chapter converge to analogous fixpoint
and an analogous bound. For episodic tasks, there is a slightly di↵erent but related
bound (see Bertsekas and Tsitsiklis, 1996). There are also a few technical conditions
on the rewards, features, and decrease in the step-size parameter, which we have
omitted here. The full details can be found in the original paper (Tsitsiklis and Van
Roy, 1997).

Critical to the these convergence results is that states are backed up according to
the on-policy distribution. For other backup distributions, bootstrapping methods
using function approximation may actually diverge to infinity. Examples of this and
a discussion of possible solution methods are given in Chapter 11.

Example 9.2: Bootstrapping on the 1000-state Random Walk State aggre-
gation is a special case of linear function approximation, so let’s return to the 1000-
state random walk to illustrate some of the observations made in this chapter. The
left panel of Figure 9.2 shows the final value function learned by the semi-gradient
TD(0) algorithm (page 191) using the same state aggregation as in Example 9.1.
We see that the near-asymptotic TD approximation is indeed farther from the true
values than the Monte Carlo approximation shown in Figure 9.1.

Nevertheless, TD methods retain large potential advantages in learning rate, and
generalize MC methods, as we investigated fully with the multi-step TD methods
of Chapter 7. The right panel of Figure 9.2 shows results with an n-step semi-
gradient TD method using state aggregation and the 1000-state random walk that are
strikingly similar to those we obtained earlier with tabular methods and the 19-state

↵

Average
RMS error

over 1000 states
and first 10
episodes

n=1

n=2
n=4n=8

n=16

n=32
n=64

128512
256

State

 True
value v⇡

 Approximate
TD value v̂

1

0

-1

1

1000

Figure 9.2: Bootstrapping with state aggregation on the 1000-state random walk task.
Left: Asymptotic values of semi-gradient TD are worse than the asymptotic MC values
in Figure 9.1. Right: Performance of n-step methods with state-aggregation are strikingly
similar to those with tabular representations (cf. Figure 7.2).

9.5. FEATURE CONSTRUCTION FOR LINEAR METHODS 197

n-step semi-gradient TD for estimating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S+ ⇥ Rn ! R such that v̂(terminal,·) = 0
Hyperparameters: step size ↵ 2 (0, 1], a positive integer n

Initialize value-function parameter ✓ arbitrarily (e.g., ✓ = 0)
Repeat (for each episode):

Initialize and store S0 6= terminal
For t = 0, 1, 2, . . . :
| Take an action according to ⇡(·|St)
| Observe and store the next reward as Rt+1 and the next state as St+1

| ⌧ t� n + 1 (⌧ is a time whose state’s estimate might be updated)
| If ⌧ � 0:

| G
P⌧+n

i=⌧+1 �i�⌧�1Ri + �nv̂(S⌧+n,✓) (G(n)
⌧)

| ✓ ✓ + ↵ [G� v̂(S⌧ ,✓)]rv̂(S⌧ ,✓)
Until St+1 is terminal, then: T t + 1
For ⌧ = T � n + 1, . . . , T � 1

G
PT

i=⌧+1 �i�⌧�1Ri (G⌧)
✓ ✓ + ↵ [G� v̂(S⌧ ,✓)]rv̂(S⌧ ,✓)

random walk. To obtain such quantitatively similar results we switched the state
aggregation to 20 groups of 50 states each. The 20 groups are then quantitatively
close to the 19 states of the tabular problem. In particular, the state transitions
of at-most 100 states to the right or left, or 50 states on average, were quantitively
analogous to the single-state state transitions of the tabular system. To complete
the match, we use here the same performance measure—an unweighted average of all
the states over the first 10 episodes—rather than a MSVE objective as is otherwise
more appropriate when using function approximation.

The semi-gradient n-step TD algorithm we used in this example is the natural
extension of the tabular algorithm presented in Chapter 7 (on page 148) to semi-
gradient function approximation, as given in the box above.

9.5 Feature Construction for Linear Methods

Linear methods are interesting because of their convergence guarantees, but also
because in practice they can be very e�cient in terms of both data and computation.
Whether or not this is so depends critically on how the states are represented in
terms of the features, which we investigate in this large section. Choosing features
appropriate to the task is an important way of adding prior domain knowledge to
reinforcement learning systems. Intuitively, the features should correspond to the
natural features of the task, those along which generalization is most appropriate.
If we are valuing geometric objects, for example, we might want to have features

198 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

for each possible shape, color, size, or function. If we are valuing states of a mobile
robot, then we might want to have features for locations, degrees of remaining battery
power, recent sonar readings, and so on.

In general, we also need features for combinations of these natural qualities. This is
because the linear form prohibits the representation of interactions between features,
such as the presence of feature i being good only in the absence of feature j. For
example, in the pole-balancing task (Example 3.4), a high angular velocity may be
either good or bad depending on the angular position. If the angle is high, then
high angular velocity means an imminent danger of falling—a bad state—whereas if
the angle is low, then high angular velocity means the pole is righting itself—a good
state. In cases with such interactions one needs to introduce features for conjunctions
of feature values when using linear function approximation methods. In the following
subsections we consider a variety of general ways of doing this.

Exercise 9.1 How could we reproduce the tabular case within the linear framework?

Exercise 9.2 How could we reproduce the state aggregation case within the linear
framework?

9.5.1 Polynomials

For multi-dimensional continuous state spaces, function approximation for reinforce-
ment learning has much in common with the familiar tasks of interpolation and
regression, which aim to define functions between and/or beyond given samples of
function values. Various families of polynomials are commonly used for these tasks
and can sometimes be good choices for reinforcement learning. Here we discuss only
the most basic polynomial family.

Suppose a reinforcement learning problem’s state space is two-dimensional so that
each state is a real vector s = (s1, s2)>. You might choose to represent each s
with the feature vector (1, s1, s2, s1s2)> in order to take the interaction of the state
variables into account by weighting the product s1s2 in an appropriate way. Or
you might choose to use feature vectors like (1, s1, s2, s1s2, s2

1, s
2
2, s1s2

2, s
2
1s2, s2

1s
2
2)

>

to take more complex interactions into account. Using these features means that
functions are approximated as multi-dimensional quadratic functions—even though
the approximation is still linear in the parameters that have to be learned.

These example feature vectors are the result of selecting sets of polynomial basis
functions, which are defined for any dimension and can encompass highly-complex
interactions among the state variables:

For d state variables taking real values, every state s is a d-dimensional vec-
tor (s1, s2, . . . , sd)> of real numbers. Each d-dimensional polynomial basis
function �i can be written as

�i(s) = ⇧d
j=1s

c
i,j

j , (9.15)

where each ci,j is an integer in the set {0, 1, . . . , N} for an integer N � 0. These

9.5. FEATURE CONSTRUCTION FOR LINEAR METHODS 199

functions make up the order-N polynomial basis, which contains (N + 1)d

di↵erent functions.

Higher-order polynomial bases allow for more accurate approximations of more
complicated functions. But because the number of functions in an order-N poly-
nomial basis grows exponentially with the state space dimension (for N > 0), it is
generally necessary to select a subset of them for function approximation. This can
be done using prior beliefs about the nature of the function to be approximated,
and some automated selection methods developed for polynomial regression can be
adapted to deal with the incremental and nonstationary nature of reinforcement
learning.

Exercise 9.3 Why does (9.15) define (N + 1)d distinct functions for dimension d?

Exercise 9.4 Give N and the ci,j defining the basis functions that produce feature
vectors (1, s1, s2, s1s2, s2

1, s
2
2, s1s2

2, s
2
1s2, s2

1s
2
2)

>.

9.5.2 Fourier Basis

Another linear function approximation method is based on the time-honored Fourier
series, which expresses periodic functions as a weighted sum of sine and cosine basis
basis functions of di↵erent frequencies. (A function f is periodic if f(x) = f(x + T)
for all x and some period T .) The Fourier series and the more general Fourier
transform are widely used in applied sciences because—among many other reasons—
if a function to be approximated is known, then the basis function weights are given
by simple formulae and, with enough basis functions, essentially any function can be
approximated as accurately as desired. In reinforcement learning, where the functions
to be approximated are unknown, Fourier basis functions are of interest because they
are easy to use and can perform well in a range of reinforcement learning problems.
The Fourier basis has been developed in a simple form suitable for reinforcement
learning problems with multi-dimensional continuous state spaces and functions that
are not periodic.

First consider the one-dimensional case. The usual Fourier series representation of
a function of one-dimension having period T represents the function as a linear com-
bination of sine and cosine functions that are each periodic with periods that evenly
divide T (in other words, whose frequencies are integer multiples of a fundamental
frequency 1/T). But if you are interested in approximating an aperiodic function
defined over a bounded interval, you can use these Fourier basis functions with T
set to the length the interval. The function of interest is then just one period of the
periodic linear combination of the sine and cosine basis functions.

Furthermore, if you set T to twice the length of the interval of interest and restrict
attention to the approximation over the half interval [0, T/2], you can use just the
cosine basis functions. This is possible because you can represent any even function,
that is, any function that is symmetric about the origin, with just the cosine basis
functions. So any function over the half-period [0, T/2] can be approximated as

200 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Univariate Fourier Basis Function k=1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Univariate Fourier Basis Function k=2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Univariate Fourier Basis Function k=3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Univariate Fourier Basis Function k=4

Figure 9.3: One-dimensonal Fourier cosine basis functions �i, i = 1, 2, 3, 4, for approximat-
ing functions over the interval [0, 1]; �0 is a constant function. From Konidaris et al. (2011),
permission pending.

closely as desired with enough cosine basis functions. (Saying “any function” is not
exactly correct because the function has to be mathematically well-behaved, but
we skip this technicality here.) Similarly, it is possible to use just the sine basis
functions, linear combinations of which are always odd functions, that is functions
that are anti-symmetric about the origin. But it is generally better to keep just the
cosine basis functions because “half-even” functions tend to be easier to approximate
than “half-odd” functions since the latter are often discontinuous at the origin.

Following this logic and letting T = 2 so that the functions are defined over the
half-T interval [0, 1], the one-dimensional order-N Fourier cosine basis consists of the
N + 1 functions

�i(s) = cos(i⇡s), s 2 [0, 1],

for i = 0, . . . , N . Figure 9.3 shows one-dimensional Fourier cosine basis functions �i,
for i = 1, 2, 3, 4; �0 is a constant function. Unlike polynomial basis functions, Fourier
basis functions are always bounded and do not require exponentiation.

This same reasoning applies to the Fourier cosine series approximation in the
multi-dimensional case:

For a state space that is the d-dimensional unit hypercube with the origin in
one corner, states are vectors s = (s1, . . . , sd)>, si 2 [0, 1]. Each function in
the order-N Fourier cosine basis can be written

�i(s) = cos(⇡ci · s), (9.16)

where ci = (ci
1, . . . , c

i
d)

>, with ci
j 2 {0, . . . , N} for j = 1, . . . , d and i =

0, . . . , (N + 1)d. This defines a function for each of the (N + 1)d possible
integer vectors ci. The dot-product ci · s has the e↵ect of assigning an in-
teger in {0, . . . , N} to each dimension. As in the one-dimensional case, this
integer determines the function’s frequency along that dimension. The basis
functions can of course be shifted and scaled to suit the bounded state space
of a particular application.

As an example, consider the d = 2 case in which s = (s1, s2), where each ci =
(ci

1, c
i
2)

>. Figure 9.4 shows a selection of 6 Fourier cosine basis functions, each labeled
by the vector ci that defines it (s1 is horizontal axis and ci is shown as a row vector
with the index i omitted). Any zero in c means the function is constant along

9.5. FEATURE CONSTRUCTION FOR LINEAR METHODS 201

Figure 9.4: A selection of two-dimensional Fourier cosine basis functions �i, i = 0, 1, 2, 3, 4, 5.
From Konidaris et al. (2011), permission pending.

that dimension. So if c = (0, 0), the function is constant over both dimensions;
if c = (c1, 0) the function is constant over the second dimension and varies over
the first with frequency depending on c1; and similarly, for c = (0, c2). When c =
(c1, c2) with neither cj = 0, the basis function varies along both dimensions and
represents an interaction between the two state variables. The values of c1 and
c2 determine the frequency along each dimension, and their gives the direction of
the interaction. Konidaris et al. (2011) found that when using Fourier cosine basis
functions with a learning algorithm such as (9.7), semi-gradient TD(0), or semi-
gradient Sarsa(�), it is helpful to use a di↵erent step-size parameter for each basis
function. If ↵ is the basic step-size parameter, they suggest setting the step-size

parameter for basis function �i to ↵i = ↵/
q

(ci
1)

2 + · · · + (ci
d)

2 (except when each

ci
j = 0 , in which case ↵i = ↵). Fourier cosine basis functions with Sarsa(�) were

found to produce good performance compared to several other collections of basis
functions, including polynomial and radial basis functions, on several reinforcement
learning tasks. Not surprisingly, however, Fourier basis functions have trouble with
discontinuities because it is di�cult to avoid “ringing” around points of discontinuity
unless very high frequency basis functions are included.

As is true for polynomial approximation, the number of basis functions in the
order-N Fourier cosine basis grows exponentially with the state space dimension.
This makes it necessary to select a subset of these functions if the state space has
high dimension (e.g., d > 5). This can be done using prior beliefs about he nature
of the function to be approximated, and some automated selection methods can
be adapted to deal with the incremental and nonstationary nature of reinforcement
learning. Advantages of Fourier basis functions in this regard are that it is easy

202 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

.4

.3

.2

.1

0
0 5000

Episodes

RMSVE Polynomial basis

Fourier basis

Figure 9.5: Fourier basis vs polynomials on the 1000-state random walk. Shown are learning
curves for the gradient MC method with Fourier and polynomial bases of degree 5, 10, and
20. The step-size parameters were roughly optimized for each case: ↵ = 0.0001 for the
polynomial basis and ↵ = 0.00005 for the Fourier basis.

to select functions by setting the ci vectors to account for suspected interactions
among the state variables, and by limiting the values in the cj vectors so that the
approximation can filter out high frequency components considered to be noise.

Figure 9.5 shows learning curves comparing the Fourier and polynomial bases on
the 1000-state random walk example. In general, we do not recommend using the
polynomial basis for online learning.

Exercise 9.5 Why does (9.16) define (N + 1)d distinct functions for dimension d?

9.5.3 Coarse Coding

Consider a task in which the state set is continuous and two-dimensional. A state in
this case is a point in 2-space, a vector with two real components. One kind of feature
for this case is those corresponding to circles in state space, as shown in Figure 9.6.
If the state is inside a circle, then the corresponding feature has the value 1 and is
said to be present; otherwise the feature is 0 and is said to be absent. This kind of
1–0-valued feature is called a binary feature. Given a state, which binary features
are present indicate within which circles the state lies, and thus coarsely code for its
location. Representing a state with features that overlap in this way (although they
need not be circles or binary) is known as coarse coding.

Assuming linear gradient-descent function approximation, consider the e↵ect of
the size and density of the circles. Corresponding to each circle is a single parameter
(a component of ✓) that is a↵ected by learning. If we train at one state, a point in the
space, then the parameters of all circles intersecting that state will be a↵ected. Thus,
by (9.8), the approximate value function will be a↵ected at all states within the union
of the circles, with a greater e↵ect the more circles a point has “in common” with

9.5. FEATURE CONSTRUCTION FOR LINEAR METHODS 203

s0

s

Figure 9.6: Coarse coding. Generalization from state s to state s0 depends on the number
of their features whose receptive fields (in this case, circles) overlap. These states have one
feature in common, so there will be slight generalization between them.

the state, as shown in Figure 9.6. If the circles are small, then the generalization will
be over a short distance, as in Figure 9.7a, whereas if they are large, it will be over a
large distance, as in Figure 9.7b. Moreover, the shape of the features will determine
the nature of the generalization. For example, if they are not strictly circular, but
are elongated in one direction, then generalization will be similarly a↵ected, as in
Figure 9.7c.

Features with large receptive fields give broad generalization, but might also seem
to limit the learned function to a coarse approximation, unable to make discrimina-
tions much finer than the width of the receptive fields. Happily, this is not the case.
Initial generalization from one point to another is indeed controlled by the size and
shape of the receptive fields, but acuity, the finest discrimination ultimately possible,
is controlled more by the total number of features.

a) Narrow generalization b) Broad generalization c) Asymmetric generalization

Figure 9.7: Generalization in linear function approximation methods is determined by the
sizes and shapes of the features’ receptive fields. All three of these cases have roughly the
same number and density of features.

204 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

Example 9.3: Coarseness of Coarse Coding This example illustrates the
e↵ect on learning of the size of the receptive fields in coarse coding. Linear function
approximation based on coarse coding and (9.7) was used to learn a one-dimensional
square-wave function (shown at the top of Figure 9.8). The values of this function
were used as the targets, Ut. With just one dimension, the receptive fields were
intervals rather than circles. Learning was repeated with three di↵erent sizes of the
intervals: narrow, medium, and broad, as shown at the bottom of the figure. All
three cases had the same density of features, about 50 over the extent of the function
being learned. Training examples were generated uniformly at random over this
extent. The step-size parameter was ↵ = 0.2

m , where m is the number of features
that were present at one time. Figure 9.8 shows the functions learned in all three
cases over the course of learning. Note that the width of the features had a strong
e↵ect early in learning. With broad features, the generalization tended to be broad;
with narrow features, only the close neighbors of each trained point were changed,
causing the function learned to be more bumpy. However, the final function learned
was a↵ected only slightly by the width of the features. Receptive field shape tends to
have a strong e↵ect on generalization but little e↵ect on asymptotic solution quality.

10

40

160

640

2560

10240

Narrow
features

desired
function

Medium
features

Broad
features

#Examples
approx-
imation

feature
width

Figure 9.8: Example of feature width’s strong e↵ect on initial generalization (first row) and
weak e↵ect on asymptotic accuracy (last row).

9.5. FEATURE CONSTRUCTION FOR LINEAR METHODS 205

9.5.4 Tile Coding

Tile coding is a form of coarse coding for multi-dimensional continuous spaces that
is flexible and computationally e�cient. It may be the most practical feature repre-
sentation for modern sequential digital computers. Open-source software is available
for many kinds of tile coding.

In tile coding the receptive fields of the features are grouped into partitions of the
input space. Each such partition is called a tiling, and each element of the partition
is called a tile. For example, the simplest tiling of a two-dimensional state space is a
uniform grid such as that shown on the left side of Figure 9.9. The tiles or receptive
field here are squares rather than the circles in Figure 9.6. If just this single tiling
were used, then the state indicated by the white spot would be represented by the
single feature whose tile it falls within; generalization would be complete to all states
within the same tile and nonexistent to states outside it. With just one tiling, we
would not have coarse coding by just a case of state aggregation.

To get the strengths of coarse coding requires overlapping receptive fields, and by
definition the tiles of a partition do not overlap. To get true coarse coding with
tile coding, multiple tilings are used, each o↵set by a fraction of a tile width. A
simple case with four tilings is shown on the right side of Figure 9.9. Every state,
such as that indicated by the white spot, falls in exactly one tile in each of the four
tilings. These four tiles correspond to four features that become active when the
state occurs. Specifically, the feature vector �(s) has one component for each tile in
each tiling. In this example there are 4 ⇥ 4 ⇥ 4 = 64 components, all of which will
be 0 except for the four corresponding to the tiles that s falls within. Figure 9.10
shows the advantage of multiple o↵set tilings (coarse coding) over a single tiling on
the 1000-state random walk example.

An immediate practical advantage of tile coding is that, because it works with
partitions, the overall number of features that are active at one time is the same
for any state. Exactly one feature is present in each tiling, so the total number of
features present is always the same as the number of tilings. This allows the step-

Point in
state space

to be
represented

Tiling 1
Tiling 2

Tiling 3
Tiling 4Continuous

2D state
space

Four active
tiles/features

overlap the point
and are used to

represent it

Figure 9.9: Multiple, overlapping grid-tilings on a limited two-dimensional space. These
tilings are o↵set from one another by a uniform amount in each dimension.

206 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

.4

.3

.2

.1

0

RMSVE

0 5000
Episodes

State aggregation
(one tiling)

Tile coding (50 tilings)

Figure 9.10: Why we use coarse coding. Shown are learning curves on the 1000-state random
walk example for the gradient MC algorithm with a single and with multiple tilings. The
space of 1000 states was treated as a single continuous dimension, covered with tiles each
200 states wide. The multiple tilings were o↵set from each other by 4 states. The step-size
parameter was set so that the initial learning rate in the two cases was the same, ↵ = 0.0001
for the single tiling and ↵ = 0.0001/50 for the 50 tilings.

size parameter, ↵, to be set in an easy, intuitive way. For example, choosing ↵ = 1
m ,

where m is the number of tilings, results in exact one-trial learning. If the example
s 7! v is trained on, then whatever the prior estimate, v̂(s,✓t), the new estimate will
be v̂(s,✓t+1) = v. Usually one wishes to change more slowly than this, to allow for
generalization and stochastic variation in target outputs. For example, one might
choose ↵ = 1

10m , in which case the estimate for the trained state would move one-
tenth of the way to the target in one update, and neighboring states will be moved
less, proportional to the number of tiles they have in common.

Tile coding also gains computational advantages from its use of binary feature
vectors. Because each component is either 0 or 1, the weighted sum making up
the approximate value function (9.8) is almost trivial to compute. Rather than
performing n multiplications and additions, one simply computes the indices of the
m ⌧ n active features and then adds up the m corresponding components of the
parameter vector.

Generalization occurs to states other than the one trained if the those states fall
within any of the same tiles, proportional to the number of tiles in common. Even
the choice of how to o↵set the tilings from each other a↵ects generalization. If they
are o↵set uniformly in each dimension, as they were in Figure 9.9, then di↵erent
states can generalize in qualitatively di↵erent ways, as shown below in the upper
half of Figure 9.11. Each of the eight subfigures show the pattern of generalization
from a trained state to nearby points. In this example their are eight tilings, thus
64 subregions within a tile that generalize distinctly, but all according to one of
these eight patterns. Note how uniform o↵sets result in a strong e↵ect along the
diagonal in many patterns. These artifacts can be avoided if the tilings are o↵set
asymmetrically, as shown in the lower half of the figure. These lower generalization
patterns are better because they are all well centered on the trained state with no

9.5. FEATURE CONSTRUCTION FOR LINEAR METHODS 207

Possible
generalizations
for uniformly
offset tilings

Possible
generalizations

for asymmetrically
offset tilings

Figure 9.11: Why tile coding uses asymmetrical o↵sets. Shown is the strength of gener-
alization from a trained state, indicated by the plus, to nearby states, for the case of eight
tilings. If the tilings are uniformly o↵set (above), then there are diagonal artifacts and sub-
stantial variations in the generalization kernel, whereas with asymmetrically o↵set tilings the
generalization kernel is more spherical and homogeneous.

obvious asymmetries.

Tilings in all cases are o↵set from each other by a fraction of a tile width in each
dimension. If w denotes the tile width and k the number of tilings, then w

k is a
fundamental unit. Within small squares w

k on a side, all states activate the same
tiles, have the same feature representation, and the same approximated value. If a
state is moved by w

k in any cartesian direction, the feature representation changes
by one component/tile. Uniformly o↵set tilings are o↵set from each other by exactly
this unit distance. For a two-dimensional space, we say that each tiling is o↵set by
the displacement vector (1, 1), meaning that it is o↵set from the previous tiling by
w
k times this vector. In these terms, the asymmetrically o↵set tilings shown in the
lower part of Figure 9.11 are o↵set by a displacement vector of (1, 3).

Extensive studies have been made of the e↵ect of di↵erent displacement vectors
on the generalization of tile coding (Parks and Militzer, 1991; An, 1991; An, Miller
and Parks, 1991; Miller, Glanz and Carter, 1991), assessing their homegeneity and
tendency toward diagonal artifacts like those seen for the (1, 1) displacement vectors.

208 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

Based on this work, Miller and Glanz (1996) recommend using displacement vectors
consisting of the first odd integers. In particular, for a continuous space of dimension
d, a good choice is to use the first odd integers (1, 3, 5, 7, . . . , 2d � 1), with k (the
number of tilings) set to an integer power of 2 greater than or equal to 4d. This is
what we have done to produce the tilings in the lower half of Figure 9.11, in which
d = 2, k = 23 � 4d, and the displacement vector is (1, 3). In a three-dimensional
case, the first four tilings would be o↵set in total from a base position by (0, 0, 0),
(1, 3, 5), (2, 6, 10), and (3, 9, 15). Open-source software that can e�ciently make this
sort of tilings for any d is readily available.

In choosing a tiling strategy, one has to pick the number of the tilings and the shape
of the tiles. The number of tilings, along with the size of the tiles, determines the
resolution or fineness of the asymptotic approximation, as in general coarse coding
and illustrated in Figure 9.8. The shape of the tiles will determine the nature of
generalization as in Figure 9.7. Square tiles will generalize roughly equally in each
dimension as indicated in Figure 9.11 (lower). Tiles that are elongated along one
dimension, such as the stripe tilings in Figure 9.12 b, will promote generalization
along that dimension. The tilings in Figure 9.12 b are also denser and thinner on the
left, promoting discrimination along the horizonal dimension at lower values along
that dimension. The diagonal stripe tiling in Figure 9.12c will promote generalization
along one diagonal. In higher dimensions, axis-aligned stripes correspond to ignoring
some of the dimensions in some of the tilings, that is, to hyperplanar slices. Irregular
tilings such as shown in Figure 9.12 a are also possible, though rare in practice and
beyond the standard software.

In practice, it is often desirable to use di↵erent shaped tiles in di↵erent tilings. For
example, one might use some vertical stripe tilings and some horizontal stripe tilings.
This would encourage generalization along either dimension. However, with stripe
tilings alone it is not possible to learn that a particular conjunction of horizontal and
vertical coordinates has a distinctive value (whatever is learned for it will bleed into
states with the same horizontal and vertical coordinates). For this one needs the
conjunctive rectangular tiles such as originally shown in Figure 9.9. With multiple
tilings—some horizontal, same vertical, and some conjunctive—one can get every-
thing: a preference for generalizing along each dimension, yet the ability to learn

a) Irregular b) Log stripes c) Diagonal stripes

Figure 9.12: Tilings need not be grids. They can be arbitrarily shaped and non-uniform,
while still in many cases being computationally e�cient to compute.

9.5. FEATURE CONSTRUCTION FOR LINEAR METHODS 209

specific values for conjunctions (see Section 16.3 for a case study using this). The
choice of tilings determines generalization, and until this choice can be e↵ectively
automated, it is important that tile coding enables it to me done flexibly and in a
way that people can understand.

one

tile

Another important trick for reducing memory requirements
is hashing—a consistent pseudo-random collapsing of a large
tiling into a much smaller set of tiles. Hashing produces tiles
consisting of noncontiguous, disjoint regions randomly spread
throughout the state space, but that still form an exhaustive
tiling. For example, one tile might consist of the four subtiles
shown to the right. Through hashing, memory requirements
are often reduced by large factors with little loss of perfor-
mance. This is possible because high resolution is needed in
only a small fraction of the state space. Hashing frees us from
the curse of dimensionality in the sense that memory requirements need not be ex-
ponential in the number of dimensions, but need merely match the real demands of
the task. Good open-source implementations of tile coding, including hashing, are
widely available.

Exercise 9.6 Suppose we believe that one of two state dimensions is more likely to
have an e↵ect on the value function than is the other, that generalization should be
primarily across this dimension rather than along it. What kind of tilings could be
used to take advantage of this prior knowledge?

9.5.5 Radial Basis Functions

Radial basis functions (RBFs) are the natural generalization of coarse coding to
continuous-valued features. Rather than each feature being either 0 or 1, it can
be anything in the interval [0, 1], reflecting various degrees to which the feature
is present. A typical RBF feature, i, has a Gaussian (bell-shaped) response �i(s)
dependent only on the distance between the state, s, and the feature’s prototypical
or center state, ci, and relative to the feature’s width, �i:

�i(s)
.
= exp

✓
� ||s� ci||2

2�2
i

◆
.

The norm or distance metric of course can be chosen in whatever way seems most
appropriate to the states and task at hand. Figure 9.13 shows a one-dimensional

c
i

!
i

c
i+1

c
i-1

Figure 9.13: One-dimensional radial basis functions.

210 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

example with a Euclidean distance metric.

The primary advantage of RBFs over binary features is that they produce ap-
proximate functions that vary smoothly and are di↵erentiable. Although this is
appealing, in most cases it has no practical significance. Nevertheless, extensive
studies of graded response functions such as RBFs in the context of tile coding (An,
1991; Miller et al., 1991; An, Miller and Parks, 1991; Lane, Handelman and Gelfand,
1992). All of these methods require substantial addition computational complexity
(over tile coding) and often reduce performance when there are more more than two
state dimensions. In high dimensions the edges of tiles are much more important,
and has proven di�cult to obtain well controlled graded tile activations near the
edges.

An RBF network is a linear function approximator using RBFs for its features.
Learning is defined by equations (9.7) and (9.8), exactly as in other linear function
approximators. In addition, some learning methods for RBF networks change the
centers and widths of the features as well, bringing them into the realm of nonlinear
function approximators. Nonlinear methods may be able to fit target functions much
more precisely. The downside to RBF networks, and to nonlinear RBF networks es-
pecially, is greater computational complexity and, often, more manual tuning before
learning is robust and e�cient.

9.6 Nonlinear Function Approximation: Artificial Neu-
ral Networks

Artificial neural networks (ANNs) are widely used for nonlinear function approxima-
tion. An ANN is a network of interconnected units that have some of the properties
of neurons. ANNs have a long history, with latest advances in training deeply-layered
ANNs being responsible for some of the most impressive abilities of machine learn-
ing systems, including reinforcement learning systems. In Chapter 16 we describe
several stunning examples of reinforcement learning systems that use ANN function
approximation.

Figure 9.14 shows a generic feedforward ANN, meaning that there are no loops
in the network. This network has an output layer consisting of two output units,
an input layer with four input units, and two hidden layers: layers that are neither
input nor output layers. A real-valued parameter—a weight—is associated with each
link. A weight roughly corresponds to the e�cacy of a synaptic connection in a real
neural network (see Section 15.1).

The units (the circles in Figure 9.14) are typically semi-linear units, meaning that
they compute a weighted sum of their input signals and then apply to the result a
nonlinear function, called the activation function, to produce the unit’s output, or
activation. Many di↵erent activation functions are used, but they are typically S-
shaped, or sigmoid, functions such as the logistic function f(x) = 1/1 + e�x, though
sometimes the rectifier nonlinearity f(x) = max(0, x) is used. A step function like
f(x) = 1 if x � ✓, and 0 otherwise, results in a binary unit with threshold ✓. It

9.6. NONLINEAR FUNCTION APPROXIMATION: ARTIFICIAL NEURAL NETWORKS211

Figure 9.14: A generic feedforward neural network with four input units, two output units,
and two hidden layers.

is often useful for units in di↵erent layers to use di↵erent activation functions. An
ANN is recurrent if there is at least one loop in its connections. Although both
feedforward and recurrent ANNs have been used in reinforcement learning, here we
look only at the simpler feedforward case.

The activation of each output unit of a feedforward ANN is a nonlinear function
of the activation patterns over the network’s input units. The functions are param-
eterized by the network’s connection weights. An ANN with no hidden layers can
represent only a very small fraction of the possible input-output functions. However
an ANN with a single hidden layer having a large enough finite number of sigmoid
units can approximate any continuous function on a compact region of the network’s
input space to any degree of accuracy (Cybenko, 1989). This is also true for other
nonlinear activation functions that satisfy mild conditions, but nonlinearity is essen-
tial: if all the units in a multi-layer feedforward ANN have linear activation functions,
the entire network is equivalent to a network with no hidden layers (because linear
functions of linear functions are themselves linear).

Despite this “universal approximation” property of one-hidden-layer ANNs, both
experience and theory show that approximating the complex functions needed for
many artificial intelligence tasks is made easier—indeed may require—abstractions
that are hierarchical compositions of many layers of lower-level abstractions, that
is, abstractions produced by deep architectures such as ANNs with many hidden
layers. (See Bengio, 2009, for a thorough review.) The successive layers of a deep
ANN compute increasingly abstract representations of the network’s “raw” input,
with each unit providing a feature contributing to a hierarchical representation of
the overall input-output function of the network.

Creating these kinds of hierarchical representations without relying exclusively
on hand-crafted features has been an enduring challenge for artificial intelligence.

212 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

This is why learning algorithms for ANNs with hidden layers have received so much
attention over the years. ANNs typically learn by a stochastic gradient method
(Section 9.3). Each weight is adjusted in a direction aimed at improving the network’s
overall performance as measured by an objective function to be either minimized or
maximized. In the most common supervised learning case, the objective function is
the expected error, or loss, over a set of labeled training examples. In reinforcement
learning, ANNs can use TD errors to learn value functions, or they can aim to
maximize expected reward as in a gradient bandit (Section 2.7) or a policy-gradient
algorithm (Chapter 13). In all of these cases it is necessary to estimate how a
change in each connection weight would influence the network’s overall performance,
in other words, to estimate the partial derivative of an objective function with respect
to each weight, given the current values of all the network’s weights. The gradient
is the vector of these partial derivatives.

The most successful way to do this for ANNs with hidden layers (provided the units
have di↵erentiable activation functions) is the backpropagation algorithm, which
consists of alternating forward and backward passes through the network (Rumelhart,
Hinton, and Williams, 1986). Each forward pass computes the activation of each unit
given the current activations of the network’s input units. After each forward pass, a
backward pass e�ciently computes a partial derivative for each weight. (As in other
stochastic gradient learning algorithms, the vector of these partial derivatives is an
estimate of the true gradient.)

The backpropagation algorithm can produce good results for shallow networks
having 1 or 2 hidden layers, but it does not work well for deeper ANNs. In fact,
training a network with k+1 hidden layers can actually result in poorer performance
than training a network with k hidden layers, even though the deeper network can
represent all the functions that the shallower network can (Bengio, 2009). Explaining
all results like these is not easy, but several factors are important. First, the large
number of weights in a typical deep ANN makes it di�cult to avoid the problem of
overfitting, that is, the problem of failing to generalize correctly to cases on which
the network has not been trained. Second, backpropagation does not work well for
deep ANNs because the partial derivatives computed by its backward passes either
decay rapidly toward the input end of the network, making learning by deep layers
extremely slow, or they grow rapidly, making learning unstable. Methods for dealing
with these problems are largely responsible for many impressive results achieved by
systems that use deep ANNs.

Overfitting is a problem for any function approximation method that adjusts func-
tions with many degrees of freedom on the basis of limited training data. It is less of
a problem for on-line reinforcement learning that does not rely on limited training
sets, but generalizing e↵ectively is still an important issue. Overfitting is a problem
for ANNs in general, but especially so for deep ANNs because they tend to have
very large numbers of weights. Many methods have been developed for reducing
overfitting. These include stopping training when performance begins to decrease
on validation data di↵erent from the training data (cross validation), modifying the
objective function to discourage complexity of the approximation (regularization),

9.6. NONLINEAR FUNCTION APPROXIMATION: ARTIFICIAL NEURAL NETWORKS213

and introducing dependencies among the weights to reduce the number of degrees of
freedom (e.g., weight sharing).

A particularly e↵ective method for reducing overfitting by deep ANNs is the
dropout method introduced by Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhut-
dinov (2014). During training, units are randomly removed from the network (dropped
out) along with their connections. This can be thought of as training a large number
of “thinned” networks. Combining the results of these thinned networks at test time
is a way to improve generalization performance. The dropout method e�ciently ap-
proximates this combination by multiplying each outgoing weight of a unit by the
probability that that unit was retained during training. Srivastava et al. found that
this method significantly improves generalization performance. It encourages indi-
vidual hidden units to learn features that work well with random collections of other
features. This increases the versatility of the features formed by the hidden units so
that the network does overly specialize to rarely-occurring cases.

Hinton, Osindero, and Teh (2006) took a major step toward solving the problem
of training the deep layers of a deep ANN in their work with deep belief networks,
layered networks closely related to the deep ANNs discussed here. In their method,
the deepest layers are trained one at a time using an unsupervised learning algorithm.
Without relying on the overall objective function, unsupervised learning can extract
features that capture statistical regularities of the input stream. The deepest layer is
trained first, then with input provided by this trained layer, the next deepest layer is
trained, and so on, until the weights in all, or many, of the network’s initial layers are
set to values that now act as initial values for supervised learning of the whole network
to fine-tune it by backpropagation with respect to the overall objective function.
Studies show that this approach generally works much better than backpropagation
with weights initialized with random values. This could happen for many reasons,
but one idea is that this way of initializing weights places the network in a region of
parameter space from which a gradient-based algorithm can make good progress.

A type of deep ANN that has proven to be very successful in applications, includ-
ing impressive reinforcement learning applications (Chapter 16) is the deep convolu-
tional network. This type of network is specialized for processing high-dimensional
data arranged in spatial arrays, such as images. It was inspired by how early visual
processing works in the brain (LeCun, Bottou, Bengio and Ha↵ner, 1998). Because
of its special architecture, a deep convolutional network can be trained by backprop-
agation without resorting to methods like those described above to train the deep
layers.

Figure 9.15 illustrates the architecture of a deep convolutional network. This in-
stance, from LeCun et al. (1998), was designed to recognize hand-written characters.
It consists of alternating convolutional and subsampling layers, followed by several
fully connected final layers. Each convolutional layer produces a number of feature
maps. A feature map is a pattern of activity over an array of units, where each unit
performs the same operation on data in its receptive field, which is the part of the
data it “sees” from the preceding layer (or from the external input in the case of the
first convolutional layer). The units of a feature map are identical to one another

214 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

Figure 9.15: Deep Convolutional Network. Reprinted from LeCun, Bottou, Bengio, and
Ha↵ner (1998). Permission pending.

except that their receptive fields, which are all the same size and shape, are shifted
to di↵erent locations on the arrays incoming data. Units in the same feature map
share the same weights. This means that a feature map detects the same feature
no matter where it is located in the input array. In the network in Figure 9.15, for
example, the first convolutional layer produces 6 feature maps, each consisting of 28
⇥ 28 units. Each unit in each feature map has a 5 ⇥ 5 receptive field, and these
receptive fields overlap (in this case by four columns and five rows). Consequently,
each of the 6 feature maps is specified by just 25 adjustable weights.

The subsampling layers of a deep convolutional network reduce the spatial res-
olution of the feature maps. Each feature map in a subsampling layer consists of
units that average over a receptive field of units in the feature maps of the preceding
convolutional layer. For example, each unit in each of the 6 feature maps in first
subsampling layer of the network of Figure 9.15 average over a 2 ⇥ 2 non-overlapping
receptive fields of a feature map produced by the first convolutional layer, resulting
in six 14 ⇥ 14 feature maps. The subsampling layers reduce the network’s sensitivity
to the spacial locations of the features detected, that is, they help make the network’s
responses spatially invariant. This is useful because a feature detected at one place
in an image is likely to be useful at other places as well.

Advances in the design and training of ANNs—of which we have only mentioned
a few—all contribute to reinforcement learning. Although current reinforcement
learning theory is mostly limited to methods using tabular or linear function ap-
proximation methods, the impressive performances of notable reinforcement learn-
ing applications of owe much of their success to nonlinear function approximation by
ANNs, in particular, by deep ANNs.

9.7 Least-Squares TD

In Section 9.4 we established that TD(0) with linear function approximation con-
verges asymptotically, for appropriately decreasing step sizes, to the TD fixpoint:

✓TD = A�1b,

9.7. LEAST-SQUARES TD 215

where

A
.
= E

h
�t(�t � ��t+1)

>
i

and b
.
= E[Rt+1�t] .

Why, we might ask, must we compute this solution iteratively? This is wasteful of
data! Could one not do better by computing estimates of A and b, and then directly
computing the TD fixpoint? The Least-Squares TD algorithm, commonly known as
LSTD, does exactly this. It forms the natural estimates

bAt
.
=

tX

k=0

�k(�k � ��k+1)
> + "I and bbt

.
=

tX

k=0

Rt+1�k (9.17)

(where "I, for some small " > 0, ensures that bAt is always invertible) and then
estimates the TD fixpoint as

✓t+1
.
= bA�1

t
bbt. (9.18)

This algorithm is the most data e�cient form of linear TD(0), but it is also much
more expensive computationally. Recall that semi-gradient TD(0) requires memory
and per-step computation that is only O(n).

How complex is LSTD? As it is written above the complexity seems to increase
with t, but the two approximations in (9.17) could be implemented incrementally
using the techniques we have covered earlier (e.g., in Chapter 2) so that they can be
done in constant time per step. Even so, the update for bAt would involve an outer
product (a column vector times a row vector) and thus would be a matrix update;
its computational complexity would be O(n2), and of course the memory required to
hold the bAt matrix would be O(n2).

A potentially greater problem is that our final computation (9.18) uses the inverse
of bAt, and the computational complexity of a general inverse computation is O(n3).
Fortunately, an inverse of a matrix of our special form—a sum of outer products—can
also be updated incrementally with only O(n2) computations, as

bA�1
t =

⇣
bAt�1 + �t(�t � ��t+1)

>
⌘�1

(from (9.17))

= bA�1
t�1 �

bA�1
t�1�t(�t � ��t+1)> bA�1

t�1

1 + (�t � ��t+1)> bA�1
t�1�t

, (9.19)

with bA�1
.
= "I. Although the identity (9.19), known as the Sherman-Morrison

formula, is superficially complicated, it involves only vector-matrix and vector-vector
multiplications and thus is only O(n2). Thus we can store and maintain the inverse

matrix dA�1
t, and then use it in (9.18), all with only O(n2) memory and per-step

computation. The complete algorithm is given in the box.

Of course, O(n2) is still significantly more expensive than the O(n) of semi-gradient
TD. Whether the greater data e�ciency of LSTD is worth this computational expense
depends on how large n is, how important it is to learn quickly, and the expense of

216 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

LSTD for estimating v̂ ⇡ v⇡ (O(n2) version)

Input: feature representation �(s) 2 Rn, 8s 2 S, �(terminal)
.
= 0

dA�1 "�1I An n⇥ n matrix
bb 0 An n-dimensional vector
Repeat (for each episode):

Initialize S; obtain corresponding �
Repeat (for each step of episode):

Choose A ⇠ ⇡(·|S)
Take action A, observe R, S0; obtain corresponding �0

v dA�1
>
(�� ��0)

dA�1 dA�1 �
� dA�1�

�
v>/

�
1 + v>�

�

bb bb + R�

✓ dA�1bb
S S0; � �0

until S0 is terminal

other parts of the system. The fact that LSTD requires no step-size hyperparameter
is sometimes also touted, but the advantage of this is probably overstated. LSTD
does not require a step size, but it does requires "; if " is chosen too small the sequence
of inverses can vary wildly, and if " is chosen too large then learning is slowed. In
addition, LSTD’s lack of a step size parameter means that it never forgets. This is
sometimes desirable, but it is problematic if the target policy ⇡ changes as it does
in reinforcement learning and GPI. In control applications, LSTD typically has to
be combined with some other mechanism to induce forgeting, mooting any initial
advantage of not requiring a step size parameter.

9.8 Summary

Reinforcement learning systems must be capable of generalization if they are to be
applicable to artificial intelligence or to large engineering applications. To achieve
this, any of a broad range of existing methods for supervised-learning function ap-
proximation can be used simply by treating each backup as a training example.
Perhaps the most suitable of these methods are those using parameterized function
approximation and variations of stochastic gradient descent (SGD). In this chapter
we have focused on the on-policy case with a fixed policy, also known as policy evalu-
ation or prediction; a natural learning algorithm for this case is n-step semi-gradient
TD, with includes gradient MC and semi-gradient TD(0) algorithms as the special
cases when n =1 and n = 1 respectively.

We have also focused on linear function approximation, in which the value esti-
mates are sums of features weighted by corresponding parameters. The linear case

9.8. SUMMARY 217

is the most well understood theoretically and works well in practice when provided
with appropriate features. Choosing the features is one of the most important ways
of adding prior domain knowledge to reinforcement learning systems. They can be
chosen as polynomials, but this case generalizes poorly in the online learning setting
typically considered in reinforcement learning. Better is to choose features according
the Fourier basis, or according to some form of coarse coding with sparse overlap-
ping receptive fields. Tile coding is a form of coarse coding that is particularly
computationally e�cient and flexible. Radial basis functions are useful for one- or
two-dimensional tasks in which a smoothly varying response is important. LSTD is
the most data-e�cient linear TD prediction method, but requires computation pro-
portional to the square of the number of parameters, whereas all the other methods
are of complexity linear in the number of parameters. Nonlinear methods include
artificial neural networks trained by backpropagation and variations of SGD; these
methods have become very popular in recent years under the name deep reinforce-
ment learning.

Semi-gradient TD methods are not true gradient methods. In such bootstrapping
methods (including DP), the parameter vector appears in the update target, yet this
is not taken into account in computing the gradient—thus they are semi -gradient
methods. As such, they cannot rely on classical SGD results. Nevertheless, linear
semi-gradient n-step TD is guaranteed to converge under standard conditions, for
all n, to a MSVE that is within a bound of the optimal error. Although the bound
is always tighter for higher n, approaching zero as n ! 1, in practice this choice
results in very slow learning and some degree of bootstrapping (n11) is preferrable.

Bibliographical and Historical Remarks

Generalization and function approximation have always been an integral part of rein-
forcement learning. Bertsekas and Tsitsiklis (1996), Bertsekas (2012), and Sugiyama
et al. (2013) present the state of the art in function approximation in reinforce-
ment learning. Some of the early work with function approximation in reinforcement
learning is discussed at the end of this section.

9.3 Gradient-descent methods for the minimizing mean-squared error in super-
vised learning are well known. Widrow and Ho↵ (1960) introduced the
least-mean-square (LMS) algorithm, which is the prototypical incremental
gradient-descent algorithm. Details of this and related algorithms are pro-
vided in many texts (e.g., Widrow and Stearns, 1985; Bishop, 1995; Duda
and Hart, 1973).

Semi-gradient TD(0) was first explored by Sutton (1984, 1988), as part of
the linear TD(�) algorithm that we will treat in Chapter 12. The term
“semi-gradient” to describe these bootstrapping methods is new to the second
edition of this book.

The earliest use of state aggregation in reinforcement learning may have been
Michie and Chambers’s BOXES system (1968). The theory of state aggre-

218 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

gation in reinforcement learning has been developed by Singh, Jaakkola, and
Jordan (1995) and Tsitsiklis and Van Roy (1996). State aggregation has been
used in dynamic programming from its earliest days (e.g., Bellman, 1957a).

9.4 Sutton (1988) proved convergence of linear TD(0) in the mean to the minimal
MSVE solution for the case in which the feature vectors, {�(s) : s 2 S}, are
linearly independent. Convergence with probability 1 (and for general �) was
proved by several researchers at about the same time (Peng, 1993; Dayan and
Sejnowski, 1994; Tsitsiklis, 1994; Gurvits, Lin, and Hanson, 1994). In addi-
tion, Jaakkola, Jordan, and Singh (1994) proved convergence under on-line
updating. All of these results assumed linearly independent feature vectors,
which implies at least as many components to ✓t as there are states. Conver-
gence for the more important case of general (dependent) feature vectors was
first shown by Dayan (1992). A significant generalization and strengthening
of Dayan’s result was proved by Tsitsiklis and Van Roy (1997). They proved
the main result presented in this section, the bound on the asymptotic error
of linear bootstrapping methods.

9.5 Our presentation of the range of possibilities for linear function approximation
is based on that by Barto (1990).

9.5.3 The term coarse coding is due to Hinton (1984), and our Figure 9.6 is based
on one of his figures. Waltz and Fu (1965) provide an early example of this
type of function approximation in a reinforcement learning system.

9.5.4 Tile coding, including hashing, was introduced by Albus (1971, 1981). He de-
scribed it in terms of his “cerebellar model articulator controller,” or CMAC,
as tile coding is known in the literature. The term “tile coding” is new to
this book, though the idea of describing CMAC in these terms is taken from
Watkins (1989). Tile coding has been used in many reinforcement learning
systems (e.g., Shewchuk and Dean, 1990; Lin and Kim, 1991; Miller, Scalera,
and Kim, 1994; Sofge and White, 1992; Tham, 1994; Sutton, 1996; Watkins,
1989) as well as in other types of learning control systems (e.g., Kraft and
Campagna, 1990; Kraft, Miller, and Dietz, 1992). This section draws heavily
on the work of Miller and Glanz (1996).

9.5.5 Function approximation using radial basis functions (RBFs) has received wide
attention ever since being related to neural networks by Broomhead and Lowe
(1988). Powell (1987) reviewed earlier uses of RBFs, and Poggio and Girosi
(1989, 1990) extensively developed and applied this approach.

9.7 LSTD is due to Bradtke and Barto (see Bradtke, 1993, 1994; Bradtke and
Barto, 1996; Bradtke, Ydstie, and Barto, 1994), and was further developed
by Boyan (2002). The incremental update of the inverse matrix has been
known at least since 1949 (Sherman and Morrison, 1949).

9.8. SUMMARY 219

The use of function approximation in reinforcement learning goes back to the
early neural networks of Farley and Clark (1954; Clark and Farley, 1955), who used
reinforcement learning to adjust the parameters of linear threshold functions repre-
senting policies. The earliest example we know of in which function approximation
methods were used for learning value functions was Samuel’s checkers player (1959,
1967). Samuel followed Shannon’s (1950) suggestion that a value function did not
have to be exact to be a useful guide to selecting moves in a game and that it might
be approximated by linear combination of features. In addition to linear function
approximation, Samuel experimented with lookup tables and hierarchical lookup ta-
bles called signature tables (Gri�th, 1966, 1974; Page, 1977; Biermann, Fairfield,
and Beres, 1982).

At about the same time as Samuel’s work, Bellman and Dreyfus (1959) proposed
using function approximation methods with DP. (It is tempting to think that Bell-
man and Samuel had some influence on one another, but we know of no reference
to the other in the work of either.) There is now a fairly extensive literature on
function approximation methods and DP, such as multigrid methods and methods
using splines and orthogonal polynomials (e.g., Bellman and Dreyfus, 1959; Bellman,
Kalaba, and Kotkin, 1973; Daniel, 1976; Whitt, 1978; Reetz, 1977; Schweitzer and
Seidmann, 1985; Chow and Tsitsiklis, 1991; Kushner and Dupuis, 1992; Rust, 1996).

Holland’s (1986) classifier system used a selective feature-match technique to gen-
eralize evaluation information across state–action pairs. Each classifier matched a
subset of states having specified values for a subset of features, with the remaining
features having arbitrary values (“wild cards”). These subsets were then used in a
conventional state-aggregation approach to function approximation. Holland’s idea
was to use a genetic algorithm to evolve a set of classifiers that collectively would im-
plement a useful action-value function. Holland’s ideas influenced the early research
of the authors on reinforcement learning, but we focused on di↵erent approaches to
function approximation. As function approximators, classifiers are limited in several
ways. First, they are state-aggregation methods, with concomitant limitations in
scaling and in representing smooth functions e�ciently. In addition, the matching
rules of classifiers can implement only aggregation boundaries that are parallel to
the feature axes. Perhaps the most important limitation of conventional classifier
systems is that the classifiers are learned via the genetic algorithm, an evolutionary
method. As we discussed in Chapter 1, there is available during learning much more
detailed information about how to learn than can be used by evolutionary methods.
This perspective led us to instead adapt supervised learning methods for use in rein-
forcement learning, specifically gradient-descent and neural network methods. These
di↵erences between Holland’s approach and ours are not surprising because Holland’s
ideas were developed during a period when neural networks were generally regarded
as being too weak in computational power to be useful, whereas our work was at
the beginning of the period that saw widespread questioning of that conventional
wisdom. There remain many opportunities for combining aspects of these di↵erent
approaches.

A number of reinforcement learning studies using function approximation meth-

220 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

ods that we have not covered previously should be mentioned. Barto, Sutton, and
Brouwer (1981) and Barto and Sutton (1981b) extended the idea of an associative
memory network (e.g., Kohonen, 1977; Anderson, Silverstein, Ritz, and Jones, 1977)
to reinforcement learning. Hampson (1983, 1989) was an early proponent of multi-
layer neural networks for learning value functions. Anderson (1986, 1987) coupled
a TD algorithm with the error backpropagation algorithm to learn a value func-
tion. Barto and Anandan (1985) introduced a stochastic version of Widrow, Gupta,
and Maitra’s (1973) selective bootstrap algorithm, which they called the associa-
tive reward-penalty (AR�P) algorithm. Williams (1986, 1987, 1988, 1992) extended
this type of algorithm to a general class of REINFORCE algorithms, showing that
they perform stochastic gradient ascent on the expected reinforcement. Gullapalli
(1990) and Williams devised algorithms for learning generalizing policies for the
case of continuous actions. Phansalkar and Thathachar (1995) proved both local
and global convergence theorems for modified versions of REINFORCE algorithms.
Christensen and Korf (1986) experimented with regression methods for modifying
coe�cients of linear value function approximations in the game of chess. Chapman
and Kaelbling (1991) and Tan (1991) adapted decision-tree methods for learning
value functions. Explanation-based learning methods have also been adapted for
learning value functions, yielding compact representations (Yee, Saxena, Utgo↵, and
Barto, 1990; Dietterich and Flann, 1995).

References

Adams, C. D. and Dickinson, A. (1981). Instrumental responding following reinforcer deval-
uation. The Quarterly Journal of Experimental Psychology, 33(2):109–121.

Agrawal, R. (1995). Sample mean based index policies with O(logn) regret for the multi-
armed bandit problem. Advances in Applied Probability, 27:1054–1078.

Agre, P. E. (1988). The Dynamic Structure of Everyday Life. Ph.D. thesis, Massachusetts
Institute of Technology. AI-TR 1085, MIT Artificial Intelligence Laboratory.

Agre, P. E., Chapman, D. (1990). What are plans for? Robotics and Autonomous Systems,
6:17–34.

Albus, J. S. (1971). A theory of cerebellar function. Mathematical Biosciences, 10:25–61.

Albus, J. S. (1981). Brain, Behavior, and Robotics. Byte Books, Peterborough, NH.

An, P.-C. E. (1991). An Improved Multi-dimensional CMAC Neural network: Receptive
Field Function and Placement (Doctoral dissertation, PhD Thesis, Dept. Electrical and
Computer Engineering, New Hampshire Univ., New Hampshire, USA).

An, P. C. E., Miller, W. T., Parks, P. C. (1991). Design improvements in associative mem-
ories for cerebellar model articulation controllers (CMAC). Artificial Neural Networks,
pp. 1207–1210, Elsvier North-Holland.

Anderson, C. W. (1986). Learning and Problem Solving with Multilayer Connectionist Sys-
tems. Ph.D. thesis, University of Massachusetts, Amherst.

Anderson, C. W. (1987). Strategy learning with multilayer connectionist representations.
Proceedings of the Fourth International Workshop on Machine Learning, pp. 103–114.
Morgan Kaufmann, San Mateo, CA.

Anderson, J. A., Silverstein, J. W., Ritz, S. A., Jones, R. S. (1977). Distinctive features,
categorical perception, and probability learning: Some applications of a neural model.
Psychological Review, 84:413–451.

Andreae, J. H. (1963). STELLA: A scheme for a learning machine. In Proceedings of the
2nd IFAC Congress, Basle, pp. 497–502. Butterworths, London.

Andreae, J. H. (1969a). A learning machine with monologue. International Journal of
Man–Machine Studies, 1:1–20.

Andreae, J. H. (1969b). Learning machines—a unified view. In A. R. Meetham and
R. A. Hudson (eds.), Encyclopedia of Information, Linguistics, and Control, pp. 261–
270. Pergamon, Oxford.

Andreae, J. H. (1977). Thinking with the Teachable Machine. Academic Press, London.

Arthur, W. B. (1991). Designing economic agents that act like human agents: A behavioral
approach to bounded rationality. The American Economic Review 81 (2):353-359.

Auer, P., Cesa-Bianchi, N., Fischer, P. (2002). Finite-time analysis of the multiarmed bandit

415

416 CHAPTER 17. FRONTIERS

problem. Machine learning, 47(2-3):235–256.

Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function approxi-
mation. In Proceedings of the Twelfth International Conference on Machine Learning,
pp. 30–37. Morgan Kaufmann, San Francisco.

Baldassarre, G. and Mirolli, M., editors (2013). Intrinsically Motivated Learning in Natural
and Artificial Systems. Springer-Verlag, Berlin.

Balke, A., Pearl, J. (1994). Counterfactual probabilities: Computational methods, bounds
and applications. In Proceedings of the Tenth International Conference on Uncertainty
in Artificial Intelligence (pp. 46-54). Morgan Kaufmann.

Bao, G., Cassandras, C. G., Djaferis, T. E., Gandhi, A. D., Looze, D. P. (1994). Elevator
dispatchers for down peak tra�c. Technical report. ECE Department, University of
Massachusetts, Amherst.

Baras, D. and Meir, R. (2007). Reinforcement learning, spike-time-dependent plasticity, and
the BCM rule. Neural Computation, 19(8):2245–2279.

Barnard, E. (1993). Temporal-di↵erence methods and Markov models. IEEE Transactions
on Systems, Man, and Cybernetics, 23:357–365.

Bartlett, P. L. and Baxter, J. (1999). Hebbian synaptic modifications in spiking neurons
that learn. Technical report, Research School of Information Sciences and Engineering,
Australian National University.

Bartlett, P. L. and Baxter, J. (2000). A biologically plausible and locally optimal learning
algorithm for spiking neurons. Rapport technique, Australian National University.

Barto, A. G. (1985). Learning by statistical cooperation of self-interested neuron-like com-
puting elements. Human Neurobiology, 4:229–256.

Barto, A. G. (1986). Game-theoretic cooperativity in networks of self-interested units. In
J. S. Denker (ed.), Neural Networks for Computing, pp. 41–46. American Institute of
Physics, New York.

Barto, A. G. (1989). From chemotaxis to cooperativity: Abstract exercises in neuronal
learning strategies. In Durbin, R., Maill, R., and Mitchison, G., editors, The Computing
Neuron, pages 73–98. Addison-Wesley, Reading, MA.

Barto, A. G. (1990). Connectionist learning for control: An overview. In T. Miller,
R. S. Sutton, and P. J. Werbos (eds.), Neural Networks for Control, pp. 5–58. MIT
Press, Cambridge, MA.

Barto, A. G. (1991). Some learning tasks from a control perspective. In L. Nadel and
D. L. Stein (eds.), 1990 Lectures in Complex Systems, pp. 195–223. Addison-Wesley,
Redwood City, CA.

Barto, A. G. (1992). Reinforcement learning and adaptive critic methods. In D. A. White
and D. A. Sofge (eds.), Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive
Approaches, pp. 469–491. Van Nostrand Reinhold, New York.

Barto, A. G. (1995a). Adaptive critics and the basal ganglia. In J. C. Houk, J. L. Davis, and
D. G. Beiser (eds.), Models of Information Processing in the Basal Ganglia, pp. 215–232.
MIT Press, Cambridge, MA.

Barto, A. G. (1995b). Reinforcement learning. In M. A. Arbib (ed.), Handbook of Brain
Theory and Neural Networks, pp. 804–809. MIT Press, Cambridge, MA.

Barto, A. G. (2013). Intrinsic motivation and reinforcement learning. In Baldassarre, G. and
Mirolli, M., editors, Intrinsically Motivated Learning in Natural and Artificial Systems,
pages 17–47. Springer-Verlag, Berlin.

17.8. THE FUTURE OF ARTIFICIAL INTELLIGENCE 417

Barto, A. G., Anandan, P. (1985). Pattern recognizing stochastic learning automata. IEEE
Transactions on Systems, Man, and Cybernetics, 15:360–375.

Barto, A. G., Anderson, C. W. (1985). Structural learning in connectionist systems. In
Program of the Seventh Annual Conference of the Cognitive Science Society, pp. 43–54.

Barto, A. G., Anderson, C. W., Sutton, R. S. (1982). Synthesis of nonlinear control surfaces
by a layered associative search network. Biological Cybernetics, 43:175–185.

Barto, A. G., Bradtke, S. J., Singh, S. P. (1991). Real-time learning and control using
asynchronous dynamic programming. Technical Report 91-57. Department of Computer
and Information Science, University of Massachusetts, Amherst.

Barto, A. G., Bradtke, S. J., Singh, S. P. (1995). Learning to act using real-time dynamic
programming. Artificial Intelligence, 72:81–138.

Barto, A. G., Du↵, M. (1994). Monte Carlo matrix inversion and reinforcement learning. In
J. D. Cohen, G. Tesauro, and J. Alspector (eds.), Advances in Neural Information Pro-
cessing Systems: Proceedings of the 1993 Conference, pp. 687–694. Morgan Kaufmann,
San Francisco.

Barto, A. G., Jordan, M. I. (1987). Gradient following without back-propagation in layered
networks. In M. Caudill and C. Butler (eds.), Proceedings of the IEEE First Annual
Conference on Neural Networks, pp. II629–II636. SOS Printing, San Diego, CA.

Barto, A. G., Singh, S., and Chentanez, N. (2004). Intrinsically motivated learning of
hierarchical collections of skills. In International Conference on Developmental Learning
(ICDL), LaJolla, CA.

Barto, A. G., Sutton, R. S. (1981a). Goal seeking components for adaptive intelligence: An
initial assessment. Technical Report AFWAL-TR-81-1070. Air Force Wright Aeronau-
tical Laboratories/Avionics Laboratory, Wright-Patterson AFB, OH.

Barto, A. G., Sutton, R. S. (1981b). Landmark learning: An illustration of associative
search. Biological Cybernetics, 42:1–8.

Barto, A. G., Sutton, R. S. (1982). Simulation of anticipatory responses in classical condi-
tioning by a neuron-like adaptive element. Behavioural Brain Research, 4:221–235.

Barto, A. G., Sutton, R. S., Anderson, C. W. (1983). Neuronlike elements that can solve
di�cult learning control problems. IEEE Transactions on Systems, Man, and Cybernet-
ics, 13:835–846. Reprinted in J. A. Anderson and E. Rosenfeld (eds.), Neurocomputing:
Foundations of Research, pp. 535–549. MIT Press, Cambridge, MA, 1988.

Barto, A. G., Sutton, R. S., Brouwer, P. S. (1981). Associative search network: A reinforce-
ment learning associative memory. Biological Cybernetics, 40:201–211.

Bellman, R. E. (1956). A problem in the sequential design of experiments. Sankhya,
16:221–229.

Bellman, R. E. (1957a). Dynamic Programming. Princeton University Press, Princeton.

Bellman, R. E. (1957b). A Markov decision process. Journal of Mathematical Mechanics,
6:679–684.

Bellman, R. E., Dreyfus, S. E. (1959). Functional approximations and dynamic program-
ming. Mathematical Tables and Other Aids to Computation, 13:247–251.

Bellman, R. E., Kalaba, R., Kotkin, B. (1973). Polynomial approximation—A new com-
putational technique in dynamic programming: Allocation processes. Mathematical
Computation, 17:155–161.

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine
Learning, 2(1):1–27.

418 CHAPTER 17. FRONTIERS

Berg, H. C. (1975). Chemotaxis in bacteria. Annual review of biophysics and bioengineering,
4(1):119–136.

Bernoulli, D. (1954). Exposition of a new theory on the measurement of risk. Econometrica,
22(1):23–36. English translation of the 1738 paper.

Berridge, K. C. and Kringelbach, M. L. (2008). A↵ective neuroscience of pleasure: reward
in humans and animals. Psychopharmacology, 199(3):457–480.

Berridge, K. C. and Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic
impact, reward learning, or incentive salience? Brain Research Reviews, 28(3):309–369.

Berry, D. A., Fristedt, B. (1985). Bandit Problems. Chapman and Hall, London.

Bertsekas, D. P. (1982). Distributed dynamic programming. IEEE Transactions on Auto-
matic Control, 27:610–616.

Bertsekas, D. P. (1983). Distributed asynchronous computation of fixed points. Mathemat-
ical Programming, 27:107–120.

Bertsekas, D. P. (1987). Dynamic Programming: Deterministic and Stochastic Models.
Prentice-Hall, Englewood Cli↵s, NJ.

Bertsekas, D. P. (2005). Dynamic Programming and Optimal Control, Volume 1, third
edition. Athena Scientific, Belmont, MA.

Bertsekas, D. P. (2012). Dynamic Programming and Optimal Control, Volume 2: Approxi-
mate Dynamic Programming, fourth edition. Athena Scientific, Belmont, MA.

Bertsekas, D. P., Tsitsiklis, J. N. (1989). Parallel and Distributed Computation: Numerical
Methods. Prentice-Hall, Englewood Cli↵s, NJ.

Bertsekas, D. P., Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena Scientific,
Belmont, MA.

Bertsekas, D. P., Yu, H. (2009). Projected equation methods for approximate solution of
large linear systems. Journal of Computational and Applied Mathematics, 227(1):27–50.

Biermann, A. W., Fairfield, J. R. C., Beres, T. R. (1982). Signature table systems and
learning. IEEE Transactions on Systems, Man, and Cybernetics, 12:635–648.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Clarendon, Oxford.

Blodgett, H. C. (1929). The e↵ect of the introduction of reward upon the maze performance
of rats. University of California Publications in Psychology, 4:113–134.

Boakes, R. A. and Costa, D. S. J. (2014). Temporal contiguity in associative learning: Iinter-
ference and decay from an historical perspective. Journal of Experimental Psychology:
Animal Learning and Cognition, 40(4):381–400.

Booker, L. B. (1982). Intelligent Behavior as an Adaptation to the Task Environment.
Ph.D. thesis, University of Michigan, Ann Arbor.

Boone, G. (1997). Minimum-time control of the acrobot. In 1997 International Conference
on Robotics and Automation, pp. 3281–3287. IEEE Robotics and Automation Society.

Boutilier, C., Dearden, R., Goldszmidt, M. (1995). Exploiting structure in policy con-
struction. In Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, pp. 1104–1111. Morgan Kaufmann.

Boyan, J. (2002). Technical update: Least-squares temporal di↵erence learning. Machine
Learning 49:233–246.

Boyan, J. A., Moore, A. W. (1995). Generalization in reinforcement learning: Safely ap-
proximating the value function. In G. Tesauro, D. S. Touretzky, and T. Leen (eds.),
Advances in Neural Information Processing Systems: Proceedings of the 1994 Confer-

17.8. THE FUTURE OF ARTIFICIAL INTELLIGENCE 419

ence, pp. 369–376. MIT Press, Cambridge, MA.

Bradtke, S. J. (1993). Reinforcement learning applied to linear quadratic regulation. In
S. J. Hanson, J. D. Cowan, and C. L. Giles (eds.), Advances in Neural Information Pro-
cessing Systems: Proceedings of the 1992 Conference, pp. 295–302. Morgan Kaufmann,
San Mateo, CA.

Bradtke, S. J. (1994). Incremental Dynamic Programming for On-Line Adaptive Optimal
Control. Ph.D. thesis, University of Massachusetts, Amherst. Appeared as CMPSCI
Technical Report 94-62.

Bradtke, S. J., Barto, A. G. (1996). Linear least–squares algorithms for temporal di↵erence
learning. Machine Learning, 22:33–57.

Bradtke, S. J., Ydstie, B. E., Barto, A. G. (1994). Adaptive linear quadratic control using
policy iteration. In Proceedings of the American Control Conference, pp. 3475–3479.
American Automatic Control Council, Evanston, IL.

Bradtke, S. J., Du↵, M. O. (1995). Reinforcement learning methods for continuous-time
Markov decision problems. In G. Tesauro, D. Touretzky, and T. Leen (eds.), Advances
in Neural Information Processing Systems: Proceedings of the 1994 Conference, pp. 393–
400. MIT Press, Cambridge, MA.

Brafman, R. I., Tennenholtz, M. (2003). R-max – a general polynomial time algorithm for
near-optimal reinforcement learning. Journal of Machine Learning Research, 3, 213–231.

Breland, K. and Breland, M. (1961). The misbehavior of organisms. American Psychologist,
16(11):681–684.

Bridle, J. S. (1990). Training stochastic model recognition algorithms as networks can
lead to maximum mutual information estimates of parameters. In D. S. Touretzky (ed.),
Advances in Neural Information Processing Systems: Proceedings of the 1989 Conference,
pp. 211–217. Morgan Kaufmann, San Mateo, CA.

Broomhead, D. S., Lowe, D. (1988). Multivariable functional interpolation and adaptive
networks. Complex Systems, 2:321–355.

Bromberg-Martin, E. S., Matsumoto, M., Hong, S., and Hikosaka, O. (2010). A pallidus-
habenula-dopamine pathway signals inferred stimulus values. Journal of Neurophysiol-
ogy, 104(2):1068–1076.

Brown, J., Bullock, D., and Grossberg, S. (1999). How the basal ganglia use parallel exci-
tatory and inhibitory learning pathways to selectively respond to unexpected rewarding
cues. The Journal of Neuroscience, 19(23):10502–10511.

Bryson, A. E., Jr. (1996). Optimal control—1950 to 1985. IEEE Control Systems, 13(3):26–
33.

Buchanan, B. G., Mitchell, T., Smith, R. G., and Jr., C. R. J. (1978). Models of learning
systems. Encyclopeadia of Computer Science and technology, 11.

Burke, C. J., Dreher, J.-C., Seymour, B., and Tobler, P. N. (2014). State-dependent value
representation: evidence from the stiatum. Frontiers in Neuroscience, 8.

Bush, R. R., Mosteller, F. (1955). Stochastic Models for Learning. Wiley, New York.

Byrne, J. H., Gingrich, K. J., Baxter, D. A. (1990). Computational capabilities of single neu-
rons: Relationship to simple forms of associative and nonassociative learning in aplysia.
In R. D. Hawkins and G. H. Bower (eds.), Computational Models of Learning, pp. 31–63.
Academic Press, New York.

Calabresi, P., Picconi, B., Tozzi, A., and Filippo, M. D. (2007). Dopamine-mediated regu-
lation of corticostriatal synaptic plasticity. Trends in Neuroscience, 30(5):211–219.

420 CHAPTER 17. FRONTIERS

Camerer, C. (2003). Behavioral game theory: Experiments in strategic interaction. Princeton
University Press.

Campbell, D. T. (1960). Blind variation and selective survival as a general strategy in
knowledge-processes. In M. C. Yovits and S. Cameron (eds.), Self-Organizing Systems,
pp. 205–231. Pergamon, New York.

Carlström, J., Nordström, E. (1997). Control of self-similar ATM call tra�c by reinforce-
ment learning. In Proceedings of the International Workshop on Applications of Neural
Networks to Telecommunications 3, pp. 54–62. Erlbaum, Hillsdale, NJ.

Chapman, D., Kaelbling, L. P. (1991). Input generalization in delayed reinforcement learn-
ing: An algorithm and performance comparisons. In Proceedings of the Twelfth In-
ternational Conference on Artificial Intelligence, pp. 726–731. Morgan Kaufmann, San
Mateo, CA.

Chow, C.-S., Tsitsiklis, J. N. (1991). An optimal one-way multigrid algorithm for discrete-
time stochastic control. IEEE Transactions on Automatic Control, 36:898–914.

Chrisman, L. (1992). Reinforcement learning with perceptual aliasing: The perceptual
distinctions approach. In Proceedings of the Tenth National Conference on Artificial
Intelligence, pp. 183–188. AAAI/MIT Press, Menlo Park, CA.

Christensen, J., Korf, R. E. (1986). A unified theory of heuristic evaluation functions and
its application to learning. In Proceedings of the Fifth National Conference on Artificial
Intelligence, pp. 148–152. Morgan Kaufmann, San Mateo, CA.

Cichosz, P. (1995). Truncating temporal di↵erences: On the e�cient implementation of
TD(�) for reinforcement learning. Journal of Artificial Intelligence Research, 2:287–318.

Clark, W. A., Farley, B. G. (1955). Generalization of pattern recognition in a self-organizing
system. In Proceedings of the 1955 Western Joint Computer Conference, pp. 86–91.

Clouse, J. (1996). On Integrating Apprentice Learning and Reinforcement Learning TITLE2.
Ph.D. thesis, University of Massachusetts, Amherst. Appeared as CMPSCI Technical
Report 96-026.

Clouse, J., Utgo↵, P. (1992). A teaching method for reinforcement learning systems. In Pro-
ceedings of the Ninth International Machine Learning Conference, pp. 92–101. Morgan
Kaufmann, San Mateo, CA.

Colombetti, M., Dorigo, M. (1994). Training agent to perform sequential behavior. Adaptive
Behavior, 2(3):247–275.

Connell, J. (1989). A colony architecture for an artificial creature. Technical Report AI-
TR-1151. MIT Artificial Intelligence Laboratory, Cambridge, MA.

Connell, J., Mahadevan, S. (1993). Robot Learning. Kluwer Academic, Boston.

Contreras-Vidal, J. L. and Schultz, W. (1999). A predictive reinforcement model of dopamine
neurons for learning approach behavior. Journal of computational neuroscience, 6(3):191–
214.

Coulom, R. (2006). E�cient selectivity and backup operators in Monte-Carlo tree search. In
Proceedings of the 5th International Conference on Computers and Games, pp. 72–83.

Courville, A. C., Daw, N. D., and Touretzky, D. S. (2006). Bayesian theories of conditioning
in a changing world. Trends in Cognitive Science, 10(7):294–300.

Craik, K. J. W. (1943). The Nature of Explanation. Cambridge University Press, Cambridge.

Crites, R. H. (1996). Large-Scale Dynamic Optimization Using Teams of Reinforcement
Learning Agents. Ph.D. thesis, University of Massachusetts, Amherst.

Crites, R. H., Barto, A. G. (1996). Improving elevator performance using reinforcement

17.8. THE FUTURE OF ARTIFICIAL INTELLIGENCE 421

learning. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo (eds.), Advances in
Neural Information Processing Systems: Proceedings of the 1995 Conference, pp. 1017–
1023. MIT Press, Cambridge, MA.

Cross, J. G. (1973). A stochastic learning model of economic behavior. The Quarterly
Journal of Economics 87 (2):239-266.

Crow, T. J. (1968). Cortical synapses and reinforcement: a hypothesis. Nature, 219:736–737.

Curtiss, J. H. (1954). A theoretical comparison of the e�ciencies of two classical methods
and a Monte Carlo method for computing one component of the solution of a set of
linear algebraic equations. In H. A. Meyer (ed.), Symposium on Monte Carlo Methods,
pp. 191–233. Wiley, New York.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics
of control, signals and systems, 2(4):303–314.

Cziko, G. (1995). Without Miracles: Universal Selection Theory and the Second Darvinian
Revolution. MIT Press, Cambridge, MA.

Daniel, J. W. (1976). Splines and e�ciency in dynamic programming. Journal of Mathe-
matical Analysis and Applications, 54:402–407.

Daw, N. D., Courville, A. C., and Touretzky, D. S. (2003). Timing and partial observability
in the dopamine system. In Advances in neural information processing systems, pages
99–106.

Daw, N., Niv, Y., and Dayan, P. (2005). Uncertainty based competition between pre-
frontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience,
8(12):1704–1711.

Daw, N. D. and Shohamy, D. (2008). The cognitive neuroscience of motivation and learning.
Social Cognition, 26(5):593–620.

Dayan, P. (1991). Reinforcement comparison. In D. S. Touretzky, J. L. Elman, T. J. Se-
jnowski, and G. E. Hinton (eds.), Connectionist Models: Proceedings of the 1990 Summer
School, pp. 45–51. Morgan Kaufmann, San Mateo, CA.

Dayan, P. (1992). The convergence of TD(�) for general �. Machine Learning, 8:341–362.

Dayan, P. (2008). The role of value systems in decision making. In Engel, C. and Singer, W.,
editors, Better Than Conscious?: Decision Making, the Human Mind, and Implications
For Institutions (Strüngmann Forum Reports), pages 51–70. MIT Press, Cambridge,
MA.

Dayan, P. and Abbott, L. F. (2001). Theoretical Neuroscience: Computational and Mathe-
matical Modeling of Neural Systems. MIT Press, Cambridge, MA.

Dayan, P. and Berridge, K. C. (2014). Model-based and model-free Pavlovian reward learn-
ing: Revaluation, revision, and revaluation. Cognitive, A↵ective, & Behavioral Neuro-
science, 14(2):473–492.

Dayan, P., Hinton, G. E. (1993). Feudal reinforcement learning. In S. J. Hanson, J. D. Cohen,
and C. L. Giles (eds.), Advances in Neural Information Processing Systems: Proceedings
of the 1992 Conference, pp. 271–278. Morgan Kaufmann, San Mateo, CA.

Dayan, P. and Niv, Y. (2008). Reinforcement learning: the good, the bad and the ugly.
Current Opinion in Neurobiology, 18(2):185–196.

Dayan, P., Sejnowski, T. (1994). TD(�) converges with probability 1. Machine Learning,
14:295–301.

Dean, T., Lin, S.-H. (1995). Decomposition techniques for planning in stochastic domains.
In Proceedings of the Fourteenth International Joint Conference on Artificial Intelli-

422 CHAPTER 17. FRONTIERS

gence, pp. 1121–1127. Morgan Kaufmann. See also Technical Report CS-95-10, Brown
University, Department of Computer Science, 1995.

DeJong, G., Spong, M. W. (1994). Swinging up the acrobot: An example of intelligent
control. In Proceedings of the American Control Conference, pp. 2158–2162. American
Automatic Control Council, Evanston, IL.

Denardo, E. V. (1967). Contraction mappings in the theory underlying dynamic program-
ming. SIAM Review, 9:165–177.

Dennett, D. C. (1978). Brainstorms, pp. 71–89. Bradford/MIT Press, Cambridge, MA.

Deutsch, J. A. (1953). A new type of behaviour theory. British Journal of Psychology.
General Section, 44(4):304–317.

Deutsch, J. A. (1954). A machine with insight. Quarterly Journal of Experimental Psychol-
ogy, 6(1):6–11.

Dick, T. (2015). A Regret-full Perspective on Policy Gradient Methods for Reinforcement
Learning. MSc Thesis, University of Alberta.

Dickinson, A. (1980). Contemporary Animal Learning Theory. Cambridge University Press,
Cambridge.

Dickinson, A. (1985). Actions and habits: the development of behavioral autonomy. Phil.
Trans. R. Soc. Lond. B, 308(1135):67–78.

Dickinson, A. and Balleine, B. W. (2002). The role of learning in motivation. In Gallistel,
C. R., editor, Stevens handbook of experimental psychology, volume 3, pages 497–533.
Wiley, NY.

Dietterich, T. and Buchanan, B. G. (1984). The role of the critic in learning systems.
In Selfridge, O. G., Rissland, E. L., and Arbib, M. A., editors, Adaptive Control of Ill-
Defined Systems, pages 127–147. Plenum Press, NY. Proceedings of the NATO Advanced
Research Institute on Adaptive Control of Ill-defined Systems, NATO Conference Series
II, Systems Science, Vol. 16.

Dietterich, T. G., Flann, N. S. (1995). Explanation-based learning and reinforcement learn-
ing: A unified view. In A. Prieditis and S. Russell (eds.), Proceedings of the Twelfth
International Conference on Machine Learning, pp. 176–184. Morgan Kaufmann, San
Francisco.

Dolan, R. J. and Dayan, P. (2013). Goals and habits in the brain. Neuron, 80(2):312–325.

Doll, B. B., Simon, D. A., and Daw, N. D. (2012). The ubiquity of model-based reinforcement
learning. Current Opinion in Neurobiology, 22:1–7.

Donahoe, J. W. and Burgos, J. E. (2000). Behavior analysis and revaluation. Journal of
the Experimental Analysis of Behavior, 74(3):331–346.

Dorigo, M. and Colombetti, M. (1994). Robot shaping: Developing autonomous agents
through learning. Artificial Intelligence, 71(2):321–370.

Doya, K. (1996). Temporal di↵erence learning in continuous time and space. In D. S. Touret-
zky, M. C. Mozer, and M. E. Hasselmo (eds.), Advances in Neural Information Processing
Systems: Proceedings of the 1995 Conference, pp. 1073–1079. MIT Press, Cambridge,
MA.

Doyle, P. G., Snell, J. L. (1984). Random Walks and Electric Networks. The Mathematical
Association of America. Carus Mathematical Monograph 22.

Dreyfus, S. E., Law, A. M. (1977). The Art and Theory of Dynamic Programming. Academic
Press, New York.

Duda, R. O., Hart, P. E. (1973). Pattern Classification and Scene Analysis. Wiley, New

17.8. THE FUTURE OF ARTIFICIAL INTELLIGENCE 423

York.

Du↵, M. O. (1995). Q-learning for bandit problems. In A. Prieditis and S. Russell (eds.),
Proceedings of the Twelfth International Conference on Machine Learning, pp. 209–217.
Morgan Kaufmann, San Francisco.

Estes, W. K. (1950). Toward a statistical theory of learning. Psychololgical Review, 57:94–
107.

Farley, B. G., Clark, W. A. (1954). Simulation of self-organizing systems by digital computer.
IRE Transactions on Information Theory, 4:76–84.

Farries, M. A. and Fairhall, A. L. (2007). Reinforcement learning with modulated spike
timingdependent synaptic plasticity. Journal of neurophysiology, 98(6):3648–3665.

Feldbaum, A. A. (1965). Optimal Control Systems. Academic Press, New York.

Finnsson, H., Björnsson, Y. (2008). Simulation-based approach to general game playing. In
Proceedings of the Association for the Advancement of Artificial Intelligence, 259–264.

Fiorillo, C. D., Tobler, P. N., and Schultz, W. (2003). Discrete coding of reward probability
and uncertainty by dopamine neurons. Science, 299(5614):1898–1902.

Fiorillo, C. D., Yun, S. R., and Song, M. R. (2013). Diversity and homogeneity in responses
of midbrain dopamine neurons. The Journal of Neuroscience, 33(11):4693–4709.

Florian, R. V. (2007). Reinforcement learning through modulation of spike-timing-dependent
synaptic plasticity. Neural Computation, 19(6):1468–1502.

Fogel, L. J., Owens, A. J., Walsh, M. J. (1966). Artificial intelligence through simulated
evolution. John Wiley and Sons.

Frey, U. and Morris, R. G. M. (1997). Synaptic tagging and long-term potentiation. Nature,
385(6616):533–536.

Friston, K. J., Tononi, G., Reeke, G. N., Sporns, O., Edelman, G. M. (1994). Value-
dependent selection in the brain: Simulation in a synthetic neural model. Neuroscience,
59:229–243.

Fu, K. S. (1970). Learning control systems—Review and outlook. IEEE Transactions on
Automatic Control, 15:210–221.

Galanter, E., Gerstenhaber, M. (1956). On thought: The extrinsic theory. Psychological
Review, 63:218–227.

Gallant, S. I. (1993). Neural Network Learning and Expert Systems. MIT Press, Cambridge,
MA.

Gallistel, C. R. (2005). Deconstructing the law of e↵ect. Games and Economic Behavior
52 (2), 410-423.

Gällmo, O., Asplund, L. (1995). Reinforcement learning by construction of hypothetical
targets. In J. Alspector, R. Goodman, and T. X. Brown (eds.), Proceedings of the
International Workshop on Applications of Neural Networks to Telecommunications 2,
pp. 300–307. Erlbaum, Hillsdale, NJ.

Gardner, M. (1973). Mathematical games. Scientific American, 228(1):108–115.

Gelperin, A., Hopfield, J. J., Tank, D. W. (1985). The logic of limax learning. In A. Selver-
ston (ed.), Model Neural Networks and Behavior, pp. 247–261. Plenum Press, New York.

Genesereth, M., Thielscher, M. (2014). General game playing. Synthesis Lectures on Artifi-
cial Intelligence and Machine Learning, 8(2), 1–229.

Gershman, S. J., Moustafa, A. A., and Ludvig, E. A. (2013). Time representation in rein-
forcement learning models of the basal ganglia. Frontiers in computational neuroscience,

424 CHAPTER 17. FRONTIERS

7.

Gershman, S. J. and Niv, Y. (2010). Learning latent structure: Carving nature at its joints.
Current Opinions in Neurobiology, 20:251–256.

Gittins, J. C., Jones, D. M. (1974). A dynamic allocation index for the sequential design
of experiments. In J. Gani, K. Sarkadi, and I. Vincze (eds.), Progress in Statistics,
pp. 241–266. North-Holland, Amsterdam–London.

Glimcher, P. W. (2011). Understanding dopamine and reinforcement learning: The dopamine
reward prediction error hypothesis. Proceedings of the National Academy of Sciences,
108(Supplement 3):15647–15654.

Glimcher, P. W. (2003). Decisions, uncertainty, and the brain: The science of neuroeco-
nomics. MIT Press, Cambridge, MA.

Glimcher, P. W. and Fehr, E., editors (2013). Neuroeconomics: Decision making and the
brain, Second Edition. Academic Press.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading, MA.

Goldstein, H. (1957). Classical Mechanics. Addison-Wesley, Reading, MA.

Goodwin, G. C., Sin, K. S. (1984). Adaptive Filtering Prediction and Control. Prentice-Hall,
Englewood Cli↵s, NJ.

Gopnik, A., Glymour, C., Sobel, D., Schulz, L. E., Kushnir, T., and Danks, D. (2004). A
theory of causal learning in children: Causal maps and Bayes nets. Psychological Review,
111(1):3–32.

Gordon, G. J. (1995). Stable function approximation in dynamic programming. In A. Priedi-
tis and S. Russell (eds.), Proceedings of the Twelfth International Conference on Machine
Learning, pp. 261–268. Morgan Kaufmann, San Francisco. An expanded version was
published as Technical Report CMU-CS-95-103. Carnegie Mellon University, Pittsburgh,
PA, 1995.

Gordon, G. J. (1996). Chattering in SARSA(�). CMU learning lab internal report.

Gordon, G. J. (1996). Stable fitted reinforcement learning. In D. S. Touretzky, M. C. Mozer,
M. E. Hasselmo (eds.), Advances in Neural Information Processing Systems: Proceedings
of the 1995 Conference, pp. 1052–1058. MIT Press, Cambridge, MA.

Gordon, G. J. (2001). Reinforcement learning with function approximation converges to a
region. Advances in neural information processing systems.

Greensmith, E., Bartlett, P. L., Baxter, J. (2001). Variance reduction techniques for gradi-
ent estimates in reinforcement learning. In Advances in Neural Information Processing
Systems: Proceedings of the 2000 Conference, pp. 1507–1514.

Greensmith, E., Bartlett, P. L., Baxter, J. (2004). Variance reduction techniques for gradient
estimates in reinforcement learning. Journal of Machine Learning Research 5, 1471-1530.

Greybiel, A. M. (2000). The basal ganglia. Current Biology, 10(14):R509–R511.

Gri�th, A. K. (1966). A new machine learning technique applied to the game of checkers.
Technical Report Project MAC, Artificial Intelligence Memo 94. Massachusetts Institute
of Technology, Cambridge, MA.

Gri�th, A. K. (1974). A comparison and evaluation of three machine learning procedures
as applied to the game of checkers. Artificial Intelligence, 5:137–148.

Grossberg, S. (1975). A neural model of attention, reinforcement, and discrimination learn-
ing. International Review of Neurobiology, 18:263–327.

Gullapalli, V. (1990). A stochastic reinforcement algorithm for learning real-valued functions.

17.8. THE FUTURE OF ARTIFICIAL INTELLIGENCE 425

Neural Networks, 3:671–692.

Gurney, K., Prescott, T. J., and Redgrave, P. (2001). A computational model of action
selection in the basal ganglia I. A new functional anatomy. Biological cybernetics,
84(6):401–410.

Gurvits, L., Lin, L.-J., Hanson, S. J. (1994). Incremental learning of evaluation functions
for absorbing Markov chains: New methods and theorems. Preprint.

Hampson, S. E. (1983). A Neural Model of Adaptive Behavior. Ph.D. thesis, University of
California, Irvine.

Hampson, S. E. (1989). Connectionist Problem Solving: Computational Aspects of Biological
Learning. Birkhauser, Boston.

Hare, T. A., O’Doherty, J., Camerer, C. F., Schultz, W., and Rangel, A. (2008). Dissociating
the role of the orbitofrontal cortex and the striatum in the computation of goal values
and prediction errors. The Journal of Neuroscience, 28(22):5623–5630.

Hassabis, D. and Maguire, E. A. (2007). Deconstructing episodic memory with construction.
Trends in cognitive sciences, 11(7):299–306.

Hawkins, R. D., Kandel, E. R. (1984). Is there a cell-biological alphabet for simple forms of
learning? Psychological Review, 91:375–391.

He, K., Huertas, M., Hong, S. Z., Tie, X., Hell, J. W., Shouval, H., and Kirkwood, A. (2015).
Distinct eligibility traces for LTP and LTD in cortical synapses. Neuron, 88(3):528–538.

Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. John Wiley
and Sons Inc., New York. Reissued by Lawrence Erlbaum Associates Inc., Mahwah NJ,
2002.

Herrnstein, R. J. (1970). On the Law of E↵ect. Journal of the Experimental Analysis of
Behavior 13 (2), 243-266.

Hersh, R., Griego, R. J. (1969). Brownian motion and potential theory. Scientific American,
220:66–74.

Hesterberg, T. C. (1988), Advances in importance sampling, Ph.D. Dissertation, Statistics
Department, Stanford University.

Hilgard, E. R. (1956). Theories of Learning, Second Edition. Appleton-Century-Cofts, Inc.,
New York.

Hilgard, E. R., Bower, G. H. (1975). Theories of Learning. Prentice-Hall, Englewood Cli↵s,
NJ.

Hinton, G. E. (1984). Distributed representations. Technical Report CMU-CS-84-157.
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA.

Hinton, G. E., Osindero, S., and Teh, Y. (2006). A fast learning algorithm for deep belief
nets. Neural Computation, 18(7):1527–1554.

Hochreiter, S., Schmidhuber, J. (1997). LTSM can solve hard time lag problems. In Advances
in Neural Information Processing Systems: Proceedings of the 1996 Conference, pp. 473–
479. MIT Press, Cambridge, MA.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor.

Holland, J. H. (1976). Adaptation. In R. Rosen and F. M. Snell (eds.), Progress in
Theoretical Biology, vol. 4, pp. 263–293. Academic Press, New York.

Holland, J. H. (1986). Escaping brittleness: The possibility of general-purpose learning
algorithms applied to rule-based systems. In R. S. Michalski, J. G. Carbonell, and
T. M. Mitchell (eds.), Machine Learning: An Artificial Intelligence Approach, vol. 2,

426 CHAPTER 17. FRONTIERS

pp. 593–623. Morgan Kaufmann, San Mateo, CA.

Hollerman, J. R. and Schultz, W. (1998). Dopmine neurons report an error in the temporal
prediction of reward during learning. Nature Neuroscience, 1:304–309.

Houk, J. C., Adams, J. L., Barto, A. G. (1995). A model of how the basal ganglia generates
and uses neural signals that predict reinforcement. In J. C. Houk, J. L. Davis, and
D. G. Beiser (eds.), Models of Information Processing in the Basal Ganglia, pp. 249–270.
MIT Press, Cambridge, MA.

Howard, R. (1960). Dynamic Programming and Markov Processes. MIT Press, Cambridge,
MA.

Hull, C. L. (1932). The goal-gradient hypothesis and maze learning. Psychological Review,
39(1):25–43.

Hull, C. L. (1943). Principles of Behavior. Appleton-Century, New York.

Hull, C. L. (1952). A Behavior System. Wiley, New York.

Izhikevich, E. M. (2007). Solving the distal reward problem through linkage of STDP and
dopamine signaling. Cerebral cortex, 17(10):2443–2452.

Jaakkola, T., Jordan, M. I., Singh, S. P. (1994). On the convergence of stochastic iterative
dynamic programming algorithms. Neural Computation, 6:1185–1201.

Jaakkola, T., Singh, S. P., Jordan, M. I. (1995). Reinforcement learning algorithm for
partially observable Markov decision problems. In G. Tesauro, D. S. Touretzky, T. Leen
(eds.), Advances in Neural Information Processing Systems: Proceedings of the 1994
Conference, pp. 345–352. MIT Press, Cambridge, MA.

Joel, D., Niv, Y., and Ruppin, E. (2002). Actor-critic models of the basal ganglia: New
anatomical and computational perspectives. Neural networks, 15(4):535–547.

Johanson, E. B., Killeen, P. R., Russell, V. A., Tripp, G., Wickens, J. R., Tannock, R.,
Williams, J., and Sagvolden, T. (2009). Origins of altered reinforcement e↵ects in
ADHD. Behavioral and Brain Functions, 5(7).

Johnson, A. and Redish, A. D. (2007). Neural ensembles in CA3 transiently encode paths
forward of the animal at a decision point. The Journal of neuroscience, 27(45):12176–
12189.

Kaelbling, L. P. (1993a). Hierarchical learning in stochastic domains: Preliminary results.
In Proceedings of the Tenth International Conference on Machine Learning, pp. 167–173.
Morgan Kaufmann, San Mateo, CA.

Kaelbling, L. P. (1993b). Learning in Embedded Systems. MIT Press, Cambridge, MA.

Kaelbling, L. P. (Ed.) (1996). Special triple issue on reinforcement learning, Machine
Learning 22 (1/2/3).

Kaelbling, L. P., Littman, M. L., Moore, A. W. (1996). Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4:237–285.

Kahneman, D. and Tversky, A. (1979). Prospect theory: An analysis of decision under risk.
Econometrica: Journal of the Econometric Society, 47:263–291.

Kakutani, S. (1945). Markov processes and the Dirichlet problem. Proceedings of the Japan
Academy, 21:227–233.

Kalos, M. H., Whitlock, P. A. (1986). Monte Carlo Methods. Wiley, New York.

Kamin, L. J. (1968). “Attention-like” processes in classical conditioning. In Jones, M. R.,
editor, Miami Symposium on the Prediction of Behavior, 1967: Aversive Stimulation,
pages 9–31. University of Miami Press, Coral Gables, Florida.

17.8. THE FUTURE OF ARTIFICIAL INTELLIGENCE 427

Kamin, L. J. (1969). Predictability, surprise, attention, and conditioning. In Campbell,
B. A. and Church, R. M., editors, Punishment and Aversive Behavior, pages 279–296.
Appleton-Century-Crofts, New York, NY.

Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A., and Hudspeth, A. J.,
editors (2013). Principles of Neural Science, Fifth Edition. McGraw-Hill Companies,
Inc.

Kanerva, P. (1988). Sparse Distributed Memory. MIT Press, Cambridge, MA.

Kanerva, P. (1993). Sparse distributed memory and related models. In M. H. Hassoun
(ed.), Associative Neural Memories: Theory and Implementation, pp. 50–76. Oxford
University Press, New York.

Karampatziakis, N., and Langford, J. (2010). Online importance weight aware updates.
ArXiv:1011.1576.

Kashyap, R. L., Blaydon, C. C., Fu, K. S. (1970). Stochastic approximation. In J. M. Mendel
and K. S. Fu (eds.), Adaptive, Learning, and Pattern Recognition Systems: Theory and
Applications, pp. 329–355. Academic Press, New York.

Kearns, M., Singh, S. (2002). Near-optimal reinforcement learning in polynomial time. Ma-
chine Learning, 49(2-3), 209–232.

Keerthi, S. S., Ravindran, B. (1997). Reinforcement learning. In E. Fiesler and R. Beale
(eds.), Handbook of Neural Computation, C3. Oxford University Press, New York.

Kehoe, E. J., Schreurs, B. G., and Graham, P. (1987). Temporal primacy overrides prior
training in serial compound conditioning of the rabbits nictitating membrane response.
Animal Learning & Behavior, 15(4):455–464.

Keiflin, R. and Janak, P. H. (2015). Dopamine prediction errors in reward learning and
addiction: Ffrom theory to neural circuitry. Neuron, 88(2):247– 263.

Kimble, G. A. (1961). Hilgard and Marquis’ Conditioning and Learning. Appleton-Century-
Crofts, New York.

Kimble, G. A. (1967). Foundations of Conditioning and Learning. Appleton-Century-Crofts,
New York.

Klopf, A. H. (1972). Brain function and adaptive systems—A heterostatic theory. Technical
Report AFCRL-72-0164, Air Force Cambridge Research Laboratories, Bedford, MA. A
summary appears in Proceedings of the International Conference on Systems, Man, and
Cybernetics. IEEE Systems, Man, and Cybernetics Society, Dallas, TX, 1974.

Klopf, A. H. (1975). A comparison of natural and artificial intelligence. SIGART Newsletter,
53:11–13.

Klopf, A. H. (1982). The Hedonistic Neuron: A Theory of Memory, Learning, and Intelli-
gence. Hemisphere, Washington, DC.

Klopf, A. H. (1988). A neuronal model of classical conditioning. Psychobiology, 16:85–125.

Kocsis, L., Szepesvári, Cs. (2006). Bandit based Monte-Carlo planning. In Proceedings of
the European Conference on Machine Learning, 282–293. Springer Berlin Heidelberg.

Kohonen, T. (1977). Associative Memory: A System Theoretic Approach. Springer-Verlag,
Berlin.

Koller, D., Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques.
MIT Press, 2009.

Kolodziejski, C., Porr, B., and Wörgötter, F. (2009). On the asymptotic equivalence between
di↵erential Hebbian and temporal di↵erence learning. Neural computation, 21(4):1173–
1202.

428 CHAPTER 17. FRONTIERS

Korf, R. E. (1988). Optimal path finding algorithms. In L. N. Kanal and V. Kumar (eds.),
Search in Artificial Intelligence, pp. 223–267. Springer Verlag, Berlin.

Koshland, D. E. (1980). Bacterial Chemotaxis as a Model Bhavioral System. Raven Press,
New York.

Koza, J. R. (1992). Genetic programming: On the programming of computers by means of
natural selection (Vol. 1). MIT press.

Kraft, L. G., Campagna, D. P. (1990). A summary comparison of CMAC neural network
and traditional adaptive control systems. In T. Miller, R. S. Sutton, and P. J. Werbos
(eds.), Neural Networks for Control, pp. 143–169. MIT Press, Cambridge, MA.

Kraft, L. G., Miller, W. T., Dietz, D. (1992). Development and application of CMAC neural
network-based control. In D. A. White and D. A. Sofge (eds.), Handbook of Intelligent
Control: Neural, Fuzzy, and Adaptive Approaches, pp. 215–232. Van Nostrand Reinhold,
New York.

Kumar, P. R., Varaiya, P. (1986). Stochastic Systems: Estimation, Identification, and
Adaptive Control. Prentice-Hall, Englewood Cli↵s, NJ.

Kumar, P. R. (1985). A survey of some results in stochastic adaptive control. SIAM Journal
of Control and Optimization, 23:329–380.

Kumar, V., Kanal, L. N. (1988). The CDP: A unifying formulation for heuristic search,
dynamic programming, and branch-and-bound. In L. N. Kanal and V. Kumar (eds.),
Search in Artificial Intelligence, pp. 1–37. Springer-Verlag, Berlin.

Kushner, H. J., Dupuis, P. (1992). Numerical Methods for Stochastic Control Problems in
Continuous Time. Springer-Verlag, New York.

Lai, T. L., Robbins, H. (1985). Asymptotically e�cient adaptive allocation rules. Advances
in applied mathematics, 6(1):4–22.

Lakshmivarahan, S. and Narendra, K. S. (1982). Learning algorithms for two-person zero-
sum stochastic games with incomplete information: A unified approach. SIAM Journal
of Control and Optimization, 20:541–552.

Lammel, S., Lim, B. K., and Malenka, R. C. (2014). Reward and aversion in a heterogeneous
midbrain dopamine system. Neuropharmacology, 76:353–359.

Lane, S. H., Handelman, D. A., Gelfand, J. J. (1992). Theory and development of higher-
order CMAC neural networks. IEEE Control Systems 12 (2):23–30.

Lang, K. J., Waibel, A. H., Hinton, G. E. (1990). A time-delay neural network architecture
for isolated word recognition. Neural Networks, 3:33–43.

LeCun, Y., Bottou, L., Bengio, Y., and Ha↵ner, P. (1998). Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Legenstein, R. and andW. Maass, D. P. (2008). A learning theory for reward-modulated
spike-timing-dependent plasticity with application to biofeedback. PLoS Computational
Biology, 4(10).

Levy, W. B. and Steward, D. (1983). Temporal contiguity requirements for long-term
associative potentiation/depression in thehippocampus. Neuroscience, 8:791–797.

Lewis, F. L., Liu, D. (Eds.). (2013). Reinforcement Learning and Approximate Dynamic
Programming for Feedback Control. John Wiley and Sons.

Lewis, R. L., Howes, A., and Singh, S. (2014). Computational rationality: Linking mecha-
nism and behavior through utility maximization. Topics in Cognitive Science, 6(2):279–
311.

Lin, C.-S., Kim, H. (1991). CMAC-based adaptive critic self-learning control. IEEE

17.8. THE FUTURE OF ARTIFICIAL INTELLIGENCE 429

Transactions on Neural Networks, 2:530–533.

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning, planning
and teaching. Machine Learning, 8:293–321.

Lin, L.-J., Mitchell, T. (1992). Reinforcement learning with hidden states. In Proceedings of
the Second International Conference on Simulation of Adaptive Behavior: From Animals
to Animats, pp. 271–280. MIT Press, Cambridge, MA.

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning.
In Proceedings of the Eleventh International Conference on Machine Learning, pp. 157–
163. Morgan Kaufmann, San Francisco.

Littman, M. L., Cassandra, A. R., Kaelbling, L. P. (1995). Learning policies for partially
observable environments: Scaling up. In A. Prieditis and S. Russell (eds.), Proceedings
of the Twelfth International Conference on Machine Learning, pp. 362–370. Morgan
Kaufmann, San Francisco.

Littman, M. L., Dean, T. L., Kaelbling, L. P. (1995). On the complexity of solving Markov
decision problems. In Proceedings of the Eleventh Annual Conference on Uncertainty in
Artificial Intelligence, pp. 394–402.

Liu, J. S. (2001). Monte Carlo strategies in scientific computing. Berlin, Springer-Verlag.

Ljung, L. (1998). System identification. In Procházka, A., Uhl´îr, J., Rayner, P. W. J.,
and Kingsbury, N. G., editors, Signal Analysis and Prediction, pages 163–173. Springer
Science + Business Media New York, LLC.

Ljung, L., Söderstrom, T. (1983). Theory and Practice of Recursive Identification. MIT
Press, Cambridge, MA.

Ljungberg, T., Apicella, P., and Schultz, W. (1992). Responses of monkey dopamine neurons
during learning of behavioral reactions. Journal of Neurophysiology, 67(1):145–163.

Lovejoy, W. S. (1991). A survey of algorithmic methods for partially observed Markov
decision processes. Annals of Operations Research, 28:47–66.

Luce, D. (1959). Individual Choice Behavior. Wiley, New York.

Ludvig, E. A., Sutton, R. S., and Kehoe, E. J. (2008). Stimulus representation and the timing
of reward-prediction errors in models of the dopamine system. Neural Computation,
20(12):3034–3054.

Ludvig, E. A., Sutton, R. S., and Kehoe, E. J. (2012). Evaluating the TD model of classical
conditioning. Learning & behavior, 40(3):305–319.

Mackintosh, N. J. (1975). A theory of attention: Variations in the associability of stimuli
with reinforcement. Psychological Review, 82(4):276–298.

Maclin, R., and Shavlik, J. W. (1994). Incorporating advice into agents that learn from rein-
forcements. In Proceedings of the Twelfth National Conference on Artificial Intelligence,
pp. 694–699. AAAI Press, Menlo Park, CA.

Mahadevan, S. (1996). Average reward reinforcement learning: Foundations, algorithms,
and empirical results. Machine Learning, 22:159–196.

Mahadevan, S., and Connell, J. (1992). Automatic programming of behavior-based robots
using reinforcement learning. Artificial Intelligence, 55:311–365.

Mahmood, A. R., and Sutton, R. S. (2015). O↵-policy learning based on weighted importance
sampling with linear computational complexity. In Proceedings of the 31st Conference
on Uncertainty in Artificial Intelligence, Amsterdam, Netherlands.

Mahmood, A. R., Sutton, R. S., Degris, T., and Pilarski, P. M. (2012). Tuning-free step-size
adaptation. In Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE Interna-

430 CHAPTER 17. FRONTIERS

tional Conference on (pp. 2121-2124). IEEE.

Markey, K. L. (1994). E�cient learning of multiple degree-of-freedom control problems
with quasi-independent Q-agents. In M. C. Mozer, P. Smolensky, D. S. Touretzky,
J. L. Elman, and A. S. Weigend (eds.), Proceedings of the 1990 Connectionist Models
Summer School. Erlbaum, Hillsdale, NJ.

Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of synaptic
e�cacy by coincidence of postsynaptic APs and EPSPs. Science, 275:213–215.

Mataric, M. J. (1994). Reward functions for accelerated learning. In Machine Learning:
Proceedings of the Eleventh international conference, pages 181–189.

Matsuda, W., Furuta, T., Nakamura, K. C., Hioki, H., Fujiyama, F., Arai, R., and Kaneko, T.
(2009). Single nigrostriatal dopaminergic neurons form widely spread and highly dense
axonal arborizations in the neostriatum. The Journal of Neuroscience, 29(2):444–453.

Mazur, J. E. (1994). Learning and Behavior, 3rd ed. Prentice-Hall, Englewood Cli↵s, NJ.

McCallum, A. K. (1993). Overcoming incomplete perception with utile distinction memory.
In Proceedings of the Tenth International Conference on Machine Learning, pp. 190–196.
Morgan Kaufmann, San Mateo, CA.

McCallum, A. K. (1995). Reinforcement Learning with Selective Perception and Hidden
State. Ph.D. thesis, University of Rochester, Rochester, NY.

Mendel, J. M. (1966). A survey of learning control systems. ISA Transactions, 5:297–303.

Mendel, J. M., McLaren, R. W. (1970). Reinforcement learning control and pattern recog-
nition systems. In J. M. Mendel and K. S. Fu (eds.), Adaptive, Learning and Pattern
Recognition Systems: Theory and Applications, pp. 287–318. Academic Press, New York.

Michie, D. (1961). Trial and error. In S. A. Barnett and A. McLaren (eds.), Science Survey,
Part 2, pp. 129–145. Penguin, Harmondsworth.

Michie, D. (1963). Experiments on the mechanisation of game learning. 1. characterization
of the model and its parameters. Computer Journal, 1:232–263.

Michie, D. (1974). On Machine Intelligence. Edinburgh University Press, Edinburgh.

Michie, D., Chambers, R. A. (1968). BOXES: An experiment in adaptive control. In E. Dale
and D. Michie (eds.), Machine Intelligence 2, pp. 137–152. Oliver and Boyd, Edinburgh.

Miller, R. (1981). Meaning and Purpose in the Intact Brain: A Philosophical, Psychological,
and Biological Account of Conscious Process. Clarendon Press, Oxford.

Miller, W. T., An, E., Glanz, F., Carter, M. (1990). The design of CMAC neural networks
for control. Adaptive and Learning Systems 1 :140–145.

Miller, W. T., Glanz, F. H. (1996). UNH CMAC verison 2.1: The University of New Hamp-
shire Implementation of the Cerebellar Model Arithmetic Computer - CMAC. Robotics
Laboratory Technical Report, University of New Hampshire, Durham, New Hampshire.

Miller, S., Williams, R. J. (1992). Learning to control a bioreactor using a neural net Dyna-
Q system. In Proceedings of the Seventh Yale Workshop on Adaptive and Learning
Systems, pp. 167–172. Center for Systems Science, Dunham Laboratory, Yale University,
New Haven.

Miller, W. T., Scalera, S. M., Kim, A. (1994). Neural network control of dynamic balance
for a biped walking robot. In Proceedings of the Eighth Yale Workshop on Adaptive and
Learning Systems, pp. 156–161. Center for Systems Science, Dunham Laboratory, Yale
University, New Haven.

Minsky, M. L. (1954). Theory of Neural-Analog Reinforcement Systems and Its Application
to the Brain-Model Problem. Ph.D. thesis, Princeton University.

17.8. THE FUTURE OF ARTIFICIAL INTELLIGENCE 431

Minsky, M. L. (1961). Steps toward artificial intelligence. Proceedings of the Institute
of Radio Engineers, 49:8–30. Reprinted in E. A. Feigenbaum and J. Feldman (eds.),
Computers and Thought, pp. 406–450. McGraw-Hill, New York, 1963.

Minsky, M. L. (1967). Computation: Finite and Infinite Machines. Prentice-Hall, Englewood
Cli↵s, NJ.

Montague, P. R., Dayan, P., Nowlan, S. J., Pouget, A., and Sejnowski, T. J. (1992). Using
aperiodic reinforcement for directed self-organization during development. In Advances
in neural information processing systems 5, pages 969–976.

Montague, P. R., Dayan, P., Person, C., and Sejnowski, T. J. (1995). Bee foraging in
uncertain environments using predictive hebbian learning. Nature, 377(6551):725–728.

Montague, P. R., Dayan, P., Sejnowski, T. J. (1996). A framework for mesencephalic
dopamine systems based on predictive Hebbian learning. Journal of Neuroscience,
16:1936–1947.

Montague, P. R. and Sejnowski, T. J. (1994). The predictive brain: Temporal coincidence
and temporal order in synaptic learningmechanisms. Learning & Memory, 1:1–33.

Moore, A. W. (1990). E�cient Memory-Based Learning for Robot Control. Ph.D. thesis,
University of Cambridge.

Moore, A. W. (1994). The parti-game algorithm for variable resolution reinforcement learn-
ing in multidimensional spaces. In J. D. Cohen, G. Tesauro and J. Alspector (eds.),
Advances in Neural Information Processing Systems: Proceedings of the 1993 Confer-
ence, pp. 711–718. Morgan Kaufmann, San Francisco.

Moore, A. W., Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement learning with
less data and less real time. Machine Learning, 13:103–130.

Moore, J. W. and Blazis, D. E. J. (1989). Simulation of a classically conditioned response:
A cerebellar implementation of the sutton-barto-desmond model. In Byrne, J. H. and
Berry, W. O., editors, Neural Models of Plasticity, pages 187–207. Academic Press, San
Diego, CA.

Moore, J. W., Choi, J.-S., and Brunzell, D. H. (1998). Predictive timing under temporal un-
certainty: The time derivative model of the conditioned response. In Rosenbaum, D. A.
and Collyer, C. E., editors, Timing of Behavior, pages 3–34. MIT Press, Cambridge,
MA.

Moore, J. W., Desmond, J. E., Berthier, N. E., Blazis, E. J., Sutton, R. S., and Barto, A. G.
(1986). Simulation of the classically conditioned nictitating membrane response by a
neuron-like adaptive element: I. Response topography, neuronal firing, and interstimulus
intervals. Behavioural Brain Research, 21:143–154.

Moore, J. W., Marks, J. S., Castagna, V. E., and Polewan, R. J. (2001). Parameter stability
in the TD model of complex CR topographies. Society for Neuroscience Abstract 642.2.

Moore, J. W. and Schmajuk, N. A. (2008). Kamin blocking. Scholarpedia, 3(5):3542.

Moore, J. W. and Stickney, K. J. (1980). Formation of attentional-associative networks
in real time:Role of the hippocampus and implications for conditioning. Physiological
Psychology, 8(2):207–217.

Narendra, K. S., Thathachar, M. A. L. (1974). Learning automata—A survey. IEEE
Transactions on Systems, Man, and Cybernetics, 4:323–334.

Narendra, K. S., Thathachar, M. A. L. (1989). Learning Automata: An Introduction.
Prentice-Hall, Englewood Cli↵s, NJ.

Narendra, K. S. and Wheeler, R. M. (1983). An n-player sequential stochastic game with

432 CHAPTER 17. FRONTIERS

identical payo↵s. IEEE Transactions on Systems, Man, and Cybernetics, 13:1154–1158.

Narendra, K. S., Wheeler, R. M. (1986). Decentralized learning in finite Markov chains.
IEEE Transactions on Automatic Control, AC31(6):519–526.

Ng, A. Y. (2003). Shaping and policy search in reinforcement learning. PhD thesis, Univer-
sity of California, Berkeley, Berkeley, CA.

Ng, A. Y., Harada, D., and Russell, S. (1999). Policy invariance under reward trans-
formations: Theory and application to reward shaping. In Bratko, I. and Dzeroski,
S., editors, Proceedings of the Sixteenth International Conference on Machine Learning
(ICML 1999), volume 99, pages 278–287.

Nie, J., Haykin, S. (1996). A dynamic channel assignment policy through Q-learning. CRL
Report 334. Communications Research Laboratory, McMaster University, Hamilton,
Ontario.

Niv, Y. (2009). Reinforcement learning in the brain. Journal of Mathematical Psychology,
53(3):139–154.

Niv, Y., Daw, N. D., and Dayan, P. (2005). How fast to work: Response vigor, motivation
and tonic dopamine. In Yeiss, Y., Schölkopft, B., and Platt, J., editors, Advances in
Neural Information Processing Systems 18 (NIPS 2005), pages 1019–1026. MIT Press,
Cambridge, MA.

Niv, Y., Daw, N. D., Joel, D., and Dayan, P. (2007). Tonic dopamine: opportunity costs
and the control of response vigor. Psychopharmacology, 191(3):507–520.

Niv, Y., Joel, D., and Dayan, P. (2006). A normative perspective on motivation. Trends in
Cognitive Sciences, 10(8):375–381.

Nowé, A., Vrancx, P., De Hauwere, Y. M. (2012). Game theory and multi-agent reinforce-
ment learning. In Reinforcement Learning (pp. 441-470). Springer Berlin Heidelberg.

Nutt, D. J., Lingford-Hughes, A., Erritzoe, D., and Stokes, P. R. A. (2015). The dopamine
theory of addiction: 40 years of highs and lows. Nature Reviews Neuroscience, 16:305–
312.

O’Doherty, J. P., Dayan, P., Friston, K., Critchley, H., and Dolan, R. J. (2003). Temporal
di↵erence models and reward-related learning in the human brain. Neuron, 38(2):329–
337.

O’Doherty, J. P., Dayan, P., Schultz, J., Deichmann, R., Friston, K., and Dolan, R. J. (2004).
Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science,
304(5669):452–454.

Ólafsdóttir, H. F., Barry, C., Saleem, A. B., Hassabis, D., and Spiers, H. J. (2015). Hip-
pocampal place cells construct reward related sequences through unexplored space. Elife,
4:e06063.

Olds, J. and Milner, P. (1954). Positive reinforcement produced by electrical stimulation of
the septal area and other regions of rat brain. Journal of Comparative and Physiological
Psychology, 47(6):419–427.

O’Reilly, R. C. and Frank, M. J. (2006). Making working memory work: A computational
model of learning in the prefrontal cortex and basal ganglia. Neural Computation,
18(2):283–328.

O’Reilly, R. C., Frank, M. J., Hazy, T. E., and Watz, B. (2007). PVLV: the primary value
and learned value Pavlovian learning algorithm. Behavioral neuroscience, 121(1):31–49.

Oudeyer, P.-Y. and Kaplan, F. (2007). What is intrinsic motivation? A typology of compu-
tational approaches. Frontiers in Neurorobotics, 1.

17.8. THE FUTURE OF ARTIFICIAL INTELLIGENCE 433

Oudeyer, P.-Y., Kaplan, F., and Hafner, V. V. (2007). Intrinsic motivation systems for
autonomous mental development. IEEE Transactions on Evolutionary Computation,
11(2):265–286.

Page, C. V. (1977). Heuristics for signature table analysis as a pattern recognition technique.
IEEE Transactions on Systems, Man, and Cybernetics, 7:77–86.

Pan, W.-X., Schmidt, R., Wickens, J. R., and Hyland, B. I. (2005). Dopamine cells respond
to predicted events during classical conditioning: Evidence for eligibility traces in the
reward-learning network. The Journal of Neuroscience, 25(26):6235–6242.

Parks, P. C., Militzer, J. (1991). Improved allocation of weights for associative memory
storage in learning control systems. IFAC Design Methods of Control Systems, Zurich,
Switzerland, 507–512.

Parr, R., Russell, S. (1995). Approximating optimal policies for partially observable stochas-
tic domains. In Proceedings of the Fourteenth International Joint Conference on Artifi-
cial Intelligence, pp. 1088–1094. Morgan Kaufmann.

Pavlov, P. I. (1927). Conditioned Reflexes. Oxford University Press, London.

Pawlak, V. and Kerr, J. N. D. (2008). Dopamine receptor activation is required for corti-
costriatal spike-timing-dependent plasticity. The Journal of Neuroscience, 28(10):2435–
2446.

Pawlak, V., Wickens, J. R., Kirkwood, A., and Kerr, J. N. D. (2010). Timing is not
everything: neuromodulation opens the STDP gate. Frontiers in synaptic neuroscience,
2.

Pearce, J. M. and Hall, G. (1980). A model for Pavlovian learning: Variation in the e↵ective-
ness of conditioning but not unconditioned stimuli. Psychological Review, 87(6):532–552.

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley, Reading, MA.

Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 82(4), 669-688.

Pecevski, D., Maass, W., and Legenstein, R. A. (2007). Theoretical analysis of learning with
reward-modulated spike-timing-dependent plasticity. In Advances in Neural Information
Processing Systems, pages 881–888.

Peng, J. (1993). E�cient Dynamic Programming-Based Learning for Control. Ph.D. thesis,
Northeastern University, Boston.

Peng, J., Williams, R. J. (1993). E�cient learning and planning within the Dyna framework.
Adaptive Behavior, 1(4):437–454.

Peng, J., Williams, R. J. (1994). Incremental multi-step Q-learning. In W. W. Cohen
and H. Hirsh (eds.), Proceedings of the Eleventh International Conference on Machine
Learning, pp. 226–232. Morgan Kaufmann, San Francisco.

Peng, J., Williams, R. J. (1996). Incremental multi-step Q-learning. Machine Learning,
22:283–290.

Peters, J. and Büchel, C. (2010). Neural representations of subjective reward value. Behav-
ioral brain research, 213(2):135–141.

Peterson, G. B. (2004). A day of great illumination: B.F. Skinner’s discovery of shaping.
Journal of the Experimental Analysis of Behavior, 82(3):317–28.

Pezzulo, G., van der Meer, M. A. A., Lansink, C. S., and Pennartz, C. M. A. (2014). Inter-
nally generated sequences in learning and executing goal-directed behavior. Trends in
Cognitive Science, 18(12):647–657.

Phansalkar, V. V., Thathachar, M. A. L. (1995). Local and global optimization algorithms

434 CHAPTER 17. FRONTIERS

for generalized learning automata. Neural Computation, 7:950–973.

Poggio, T., Girosi, F. (1989). A theory of networks for approximation and learning. A.I.
Memo 1140. Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA.

Poggio, T., Girosi, F. (1990). Regularization algorithms for learning that are equivalent to
multilayer networks. Science, 247:978–982.

Powell, M. J. D. (1987). Radial basis functions for multivariate interpolation: A review.
In J. C. Mason and M. G. Cox (eds.), Algorithms for Approximation, pp. 143–167.
Clarendon Press, Oxford.

Powell, W. B. (2011). Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality, Second edition. John Wiley and Sons.

Powers, W. T. (1973). Behavior: The Control of Perception. Aldine de Gruyter, Chicago.
2nd expanded edition 2005.

Precup, D., Sutton, R. S., Dasgupta, S. (2001). O↵-policy temporal-di↵erence learning with
function approximation. In Proceedings of the 18th International Conference on Machine
Learning.

Precup, D., Sutton, R. S., Singh, S. (2000). Eligibility traces for o↵-policy policy evaluation.
In Proceedings of the 17th International Conference on Machine Learning, pp. 759–766.
Morgan Kaufmann.

Puterman, M. L. (1994). Markov Decision Problems. Wiley, New York.

Puterman, M. L., Shin, M. C. (1978). Modified policy iteration algorithms for discounted
Markov decision problems. Management Science, 24:1127–1137.

Quartz, S., Dayan, P., Montague, P. R., and Sejnowski, T. J. (1992). Expectation learning
in the brain using di↵use ascending connections. In Society for Neuroscience Abstracts,
volume 18, page 1210.

Randløv, J. and Alstrøm, P. (1998). Learning to drive a bicycle using reinforcement learning
and shaping. In Proceedings of the Fifteenth International Conference on Machine
Learning, pages 463–471.

Rangel, A., Camerer, C., and Montague, P. R. (2008). A framework for studying the
neurobiology of value-based decision making. Nature Reviews Neuroscience, 9(7):545–
556.

Rangel, A. and Hare, T. (2010). Neural computations associated with goal-directed choice.
Current opinion in neurobiology, 20(2):262–270.

Redgrave, P. and Gurney, K. (2006). The short-latency dopamine signal: a role in discovering
novel actions? Nature Reviews Neuroscience, 7:967–975.

Redish, D. A. (2004). Addiction as a computational process gone awry. Science, 306(5703):1944–
1947.

Reetz, D. (1977). Approximate solutions of a discounted Markovian decision process. Bonner
Mathematische Schriften, 98:77–92.

Rescorla, R. A. and Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations
in the e↵ectiveness of reinforcement and nonreinforcement. In Black, A. H. and Prokasy,
W. F., editors, Classical Conditioning II, pages 64–99. Appleton-Century-Crofts, New
York.

Revusky, S. and Garcia, J. (1970). Learned associations over long delays. In Bower, G.,
editor, The psychology of learning and motivation, volume 4, pages 1–84. Academic
Press, Inc., New York.

17.8. THE FUTURE OF ARTIFICIAL INTELLIGENCE 435

Reynolds, J. N. J. and Wickens, J. R. (2002). Dopamine-dependent plasticity of corticostri-
atal synapses. Neural Networks, 15(4):507–521.

Ring, M. B. (1994). Continual Learning in Reinforcement Environments. Ph.D. thesis,
University of Texas, Austin.

Rivest, R. L., Schapire, R. E. (1987). Diversity-based inference of finite automata. In Pro-
ceedings of the Twenty-Eighth Annual Symposium on Foundations of Computer Science,
pp. 78–87. Computer Society Press of the IEEE, Washington, DC.

Robbins, H. (1952). Some aspects of the sequential design of experiments. Bulletin of the
American Mathematical Society, 58:527–535.

Robertie, B. (1992). Carbon versus silicon: Matching wits with TD-Gammon. Inside
Backgammon, 2:14–22.

Roesch, M. R., Calu, D. J., and Schoenbaum, G. (2007). Dopamine neurons encode the
better option in rats deciding between di↵erently delayed or sized rewards. Nature
Neuroscience, 10(12):1615–1624.

Romo, R. and Schultz, W. (1990). Dopamine neurons of the monkey midbrain: Contin-
gencies of responses to active touch during self-initiated arm movements. Journal of
Neurophysiology, 63(3):592–624.

Rosenblatt, F. (1962). Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms. Spartan Books, Washington, DC.

Ross, S. (1983). Introduction to Stochastic Dynamic Programming. Academic Press, New
York.

Ross, T. (1933). Machines that think. Scientific American, pages 206–208.

Rubinstein, R. Y. (1981). Simulation and the Monte Carlo Method. Wiley, New York.

Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986). Learning internal representations
by error propagation. In D. E. Rumelhart and J. L. McClelland (eds.), Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition, vol. I, Foundations.
Bradford/MIT Press, Cambridge, MA.

Rummery, G. A. (1995). Problem Solving with Reinforcement Learning. Ph.D. thesis,
Cambridge University.

Rummery, G. A., Niranjan, M. (1994). On-line Q-learning using connectionist systems.
Technical Report CUED/F-INFENG/TR 166. Engineering Department, Cambridge
University.

Russell, S., Norvig, P. (2009). Artificial Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cli↵s, NJ.

Rust, J. (1996). Numerical dynamic programming in economics. In H. Amman, D. Kendrick,
and J. Rust (eds.), Handbook of Computational Economics, pp. 614–722. Elsevier, Am-
sterdam.

Ryan, R. M. and Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions
and new directions. Contemporary Educational Psychology, 25(1):54–67.

Saddoris, M. P., Cacciapaglia, F., Wightmman, R. M., and Carelli, R. M. (2015). Di↵erential
dopamine release dynamics in the nucleus accumbens core and shell reveal complemen-
tary signals for error prediction and incentive motivation. The Journal of Neuroscience,
35(33):11572–11582.

Saksida, L. M., Raymond, S. M., and Touretzky, D. S. (1997). Shaping robot behavior
using principles from instrumental conditioning. Robotics and Autonomous Systems,
22(3):231–249.

436 CHAPTER 17. FRONTIERS

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM
Journal on Research and Development, 3:211–229. Reprinted in E. A. Feigenbaum and
J. Feldman (eds.), Computers and Thought, pp. 71–105. McGraw-Hill, New York, 1963.

Samuel, A. L. (1967). Some studies in machine learning using the game of checkers. II—
Recent progress. IBM Journal on Research and Development, 11:601–617.

Schmajuk, N. A. (2008). Computational models of classical conditioning. Scholarpedia,
3(3):1664.

Schmidhuber, J. (1991a). Adaptive confidence and adaptive curiosity. Technical Report
FKI-149-91, Institut für Informatik, Technische Universität München, Arcisstr. 21, 800
München 2, Germany.

Schmidhuber, J. (1991b). A possibility for implementing curiosity and boredom in model-
building neural controllers. In From Animals to Animats: Proceedings of the First In-
ternational Conference on Simulation of Adaptive Behavior, pages 222–227, Cambridge,
MA. MIT Press.

Schmidhuber, J. (2009). Driven by compression progress: A simple principle explains essen-
tial aspects of subjective beauty, novelty, surprise, interestingness, attention, curiosity,
creativity, art, science, music, jokes. In Pezzulo, G., Butz, M. V., Sigaud, O., and
Baldassarre, G., editors, Anticipatory Behavior in Adaptive Learning Systems. From
Psychological Theories to Artificial Cognitive Systems, pages 48–76. Springer, Berlin.

Schmidhuber, J., Storck, J., and Hochreiter, S. (1994). Reinforcement driven information
acquisition in nondeterministic environments. Technical report, Fakultät für Informatik,
Technische Universität München, München, Germany.

Schultz, D. G., Melsa, J. L. (1967). State Functions and Linear Control Systems. McGraw-
Hill, New York.

Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysi-
ology, 80:1–27.

Schultz, W., Dayan, P., Montague, P. R. (1997). A neural substrate of prediction and reward.
Science, 275:1593–1598.

Schultz, W. and Romo, R. (1990). Dopamine neurons of the monkey midbrain: contingencies
of responses to stimuli eliciting immediate behavioral reactions. Journal of Neurophysi-
ology, 63(3):607–624.

Schwartz, A. (1993). A reinforcement learning method for maximizing undiscounted rewards.
In Proceedings of the Tenth International Conference on Machine Learning, pp. 298–305.
Morgan Kaufmann, San Mateo, CA.

Schweitzer, P. J., Seidmann, A. (1985). Generalized polynomial approximations in Marko-
vian decision processes. Journal of Mathematical Analysis and Applications, 110:568–
582.

Selfridge, O. G. (1978). Tracking and trailing: Adaptation in movement strategies. Technical
report, Bolt Beranek and Newman, Inc. Unpublished report.

Selfridge, O. G. (1984). Some themes and primitives in ill-defined systems. In Selfridge,
O. G., Rissland, E. L., and Arbib, M. A., editors, Adaptive Control of Ill-Defined Systems,
pages 21–26. Plenum Press, NY. Proceedings of the NATO Advanced Research Institute
on Adaptive Control of Ill-defined Systems, NATO Conference Series II, Systems Science,
Vol. 16.

Selfridge, O. J., Sutton, R. S., Barto, A. G. (1985). Training and tracking in robotics.
In A. Joshi (ed.), Proceedings of the Ninth International Joint Conference on Artificial
Intelligence, pp. 670–672. Morgan Kaufmann, San Mateo, CA.

17.8. THE FUTURE OF ARTIFICIAL INTELLIGENCE 437

Seo, H., Barraclough, D., and Lee, D. (2007). Dynamic signals related to choices and
outcomes in the dorsolateral prefrontal cortex. Cerebral Cortex, 17(suppl 1):110–117.

Seung, H. S. (2003). Learning in spiking neural networks by reinforcement of stochastic
synaptic transmission. Neuron, 40(6):1063–1073.

Shah, A. (2012). Psychological and neuroscientific connections with reinforcement learning.
In Wiering, M. and van Otterlo, M., editors, Reinforcement Learning: State of the Art,
pages 507–537. Springer-Verlag, Berlin.

Shannon, C. E. (1950). Programming a computer for playing chess. Philosophical Magazine,
41:256–275.

Shannon, C. E. (1951). Presentation of a maze-solving machine. In Forester, H. V., editor,
Cybernetics. Transactions of the Eighth Conference, pages 173–180. Josiah Macy Jr.
Foundation.

Shannon, C. E. (1952). “Theseus” maze-solving mouse. http://cyberneticzoo.com/mazesolvers/1952-
-theseus-maze-solving-mouse--claude-shannon-american/.

Shelton, C. R. (2001). Importance Sampling for Reinforcement Learning with Multiple Ob-
jectives. PhD thesis, Massachusetts Institute of Technology.

Sherman, J., Morrison, W. J. (1949). Adjustment of an inverse matrix corresponding to
changes in the elements of a given column or a given row of the original matrix (abstract).
Annals of Mathematical Statistics 20 :621.

Shewchuk, J., Dean, T. (1990). Towards learning time-varying functions with high input
dimensionality. In Proceedings of the Fifth IEEE International Symposium on Intelligent
Control, pp. 383–388. IEEE Computer Society Press, Los Alamitos, CA.

Shimansky, Y. P. (2009). Biologically plausible learning in neural networks: a lesson from
bacterial chemotaxis. Biological Cybernetics, 101(5-6):379–385.

Si, J., Barto, A., Powell, W., Wunsch, D. (Eds.). (2004). Handbook of learning and approxi-
mate dynamic programming. John Wiley and Sons.

Silver, D. (2009). Reinforcement learning and simulation based search in the game of Go.
University of Alberta Doctoral dissertation.

Singh, S. P. (1992a). Reinforcement learning with a hierarchy of abstract models. In
Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 202–207.
AAAI/MIT Press, Menlo Park, CA.

Singh, S. P. (1992b). Scaling reinforcement learning algorithms by learning variable tem-
poral resolution models. In Proceedings of the Ninth International Machine Learning
Conference, pp. 406–415. Morgan Kaufmann, San Mateo, CA.

Singh, S. P. (1993). Learning to Solve Markovian Decision Processes. Ph.D. thesis, Univer-
sity of Massachusetts, Amherst. Appeared as CMPSCI Technical Report 93-77.

Singh, S. P. (Ed.) (2002). Special double issue on reinforcement learning, Machine Learning
49 (2/3).

Singh, S., Barto, A. G., and Chentanez, N. (2005). Intrinsically motivated reinforcement
learning. In Advances in Neural Information Processing Systems 17: Proceedings of the
2004 Conference, pages 1281–1288, Cambridge MA. MIT Press.

Singh, S. P., Bertsekas, D. (1997). Reinforcement learning for dynamic channel allocation
in cellular telephone systems. In Advances in Neural Information Processing Systems:
Proceedings of the 1996 Conference, pp. 974–980. MIT Press, Cambridge, MA.

Singh, S. P., Jaakkola, T., Jordan, M. I. (1994). Learning without state-estimation in
partially observable Markovian decision problems. In W. W. Cohen and H. Hirsch (eds.),

438 CHAPTER 17. FRONTIERS

Proceedings of the Eleventh International Conference on Machine Learning, pp. 284–292.
Morgan Kaufmann, San Francisco.

Singh, S. P., Jaakkola, T., Jordan, M. I. (1995). Reinforcement learing with soft state
aggregation. In G. Tesauro, D. S. Touretzky, T. Leen (eds.), Advances in Neural In-
formation Processing Systems: Proceedings of the 1994 Conference, pp. 359–368. MIT
Press, Cambridge, MA.

Singh, S., Lewis, R. L., and Barto, A. G. (2009). Where do rewards come from? In Taatgen,
N. and van Rijn, H., editors, Proceedings of the 31st Annual Conference of the Cognitive
Science Society, pages 2601–2606. Cognitive Science Society.

Singh, S., Lewis, R. L., Barto, A. G., and Sorg, J. (2010). Intrinsically motivated reinforce-
ment learning: An evolutionary perspective. IEEE Transactions on Autonomous Mental
Development, 2(2):7082. Special issue on Active Learning and Intrinsically Motivated
Exploration in Robots: Advances and Challenges.

Singh, S. P., Sutton, R. S. (1996). Reinforcement learning with replacing eligibility traces.
Machine Learning, 22:123–158.

Sivarajan, K. N., McEliece, R. J., Ketchum, J. W. (1990). Dynamic channel assignment in
cellular radio. In Proceedings of the 40th Vehicular Technology Conference, pp. 631–637.

Skinner, B. F. (1938). The Behavior of Organisms: An Experimental Analysis. Appleton-
Century, New York.

Skinner, B. F. (1958). Reinforcement today. American Psychologist, 13(3):94–99.

Skinner, B. F. (1981). Selection by consequences. Science 213 (4507):501–504.

Smith, K. S. and Greybiel, A. M. (2013). A dual operator view of habitual behavior reflecting
cortical and striatal dynamics. Neuron, 79(2):361–374.

Sofge, D. A., White, D. A. (1992). Applied learning: Optimal control for manufacturing.
In D. A. White and D. A. Sofge (eds.), Handbook of Intelligent Control: Neural, Fuzzy,
and Adaptive Approaches, pp. 259–281. Van Nostrand Reinhold, New York.

Sorg, J., Singh, S., and Lewis, R. (2010). Internal rewards mitigate agent boundedness. In
Proceedings of the 27th International Conference on Machine Learning (ICML), pages
1007–1014.

Sorg, J. D. (2011). The Optimal Reward Problem:Designing E↵ective Reward for Bounded
Agents. PhD thesis, Computer Science and Engineering, The University of Michigan.

Spence, K. W. (1947). The role of secondary reinforcement in delayed reward learning.
Psychological Review, 54(1):1–8.

Spong, M. W. (1994). Swing up control of the acrobot. In Proceedings of the 1994 IEEE
Conference on Robotics and Automation, pp. 2356-2361. IEEE Computer Society Press,
Los Alamitos, CA.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958.

Staddon, J. E. R. (1983). Adaptive Behavior and Learning. Cambridge University Press,
Cambridge.

Steinberg, E. E., Keiflin, R., Boivin, J. R., Witten, I. B., Deisseroth, K., and Janak, P. H.
(2013). A causal link between prediction errors, dopamine neurons and learning. Nature
Neuroscience, 16(7):966–973.

Sterling, P. and Laughlin, S. (2015). Principles of Neural Design. MIT Press, Cambridge,
MA.

17.8. THE FUTURE OF ARTIFICIAL INTELLIGENCE 439

Storck, J., Hochreiter, S., and Schmidhuber, J. (1995). Reinforcement-driven information
acquisition in non-deterministic environments. In Proceedings of ICANN’95, Paris,
France, volume 2, pages 159–164.

Sugiyama, M., Hachiya, H., Morimura, T. (2013). Statistical Reinforcement Learning: Mod-
ern Machine Learning Approaches. Chapman & Hall/CRC.

Suri, R. E., Bargas, J., and Arbib, M. A. (2001). Modeling functions of striatal dopamine
modulation in learning and planning. Neuroscience, 103(1):65–85.

Suri, R. E. and Schultz, W. (1998). Learning of sequential movements by neural net-
work model with dopamine-like reinforcement signal. Experimental Brain Research,
121(3):350–354.

Suri, R. E. and Schultz, W. (1999). A neural network model with dopamine-like reinforce-
ment signal that learns a spatial delayed response task. Neuroscience, 91(3):871–890.

Sutton, R. S. (1978a). Learning theory support for a single channel theory of the brain.
Unpublished report.

Sutton, R. S. (1978b). Single channel theory: A neuronal theory of learning. Brain Theory
Newsletter, 4:72–75. Center for Systems Neuroscience, University of Massachusetts,
Amherst, MA.

Sutton, R. S. (1978c). A unified theory of expectation in classical and instrumental condi-
tioning. Bachelors thesis, Stanford University.

Sutton, R. S. (1984). Temporal Credit Assignment in Reinforcement Learning. Ph.D. thesis,
University of Massachusetts, Amherst.

Sutton, R. S. (1988). Learning to predict by the method of temporal di↵erences. Machine
Learning, 3:9–44.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming. In Proceedings of the Seventh International
Conference on Machine Learning, pp. 216–224. Morgan Kaufmann, San Mateo, CA.

Sutton, R. S. (1991a). Dyna, an integrated architecture for learning, planning, and reacting.
SIGART Bulletin, 2:160–163. ACM Press.

Sutton, R. S. (1991b). Planning by incremental dynamic programming. In L. A. Birnbaum
and G. C. Collins (eds.), Proceedings of the Eighth International Workshop on Machine
Learning, pp. 353–357. Morgan Kaufmann, San Mateo, CA.

Sutton, R. S. (Ed.) (1992). Reinforcement Learning. Kluwer Academic Press. Reprinting of
a special double issue on reinforcement learning, Machine Learning 8 (3/4).

Sutton, R. S. (1995). TD models: Modeling the world at a mixture of time scales. In
A. Prieditis and S. Russell (eds.), Proceedings of the Twelfth International Conference
on Machine Learning, pp. 531–539. Morgan Kaufmann, San Francisco.

Sutton, R. S. (1996). Generalization in reinforcement learning: Successful examples using
sparse coarse coding. In D. S. Touretzky, M. C. Mozer and M. E. Hasselmo (eds.),
Advances in Neural Information Processing Systems: Proceedings of the 1995 Conference,
pp. 1038–1044. MIT Press, Cambridge, MA.

Sutton, R. S. (2009). The grand challenge of predictive empirical abstract knowledge. Work-
ing Notes of the IJCAI-09 Workshop on Grand Challenges for Reasoning from Experi-
ences.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., Precup, D.
(2011). Horde: A scalable real-time architecture for learning knowledge from unsuper-
vised sensorimotor interaction. In Proceedings of the Tenth International Conference on

440 CHAPTER 17. FRONTIERS

Autonomous Agents and Multiagent Systems, pp. 761–768, Taipei, Taiwan.

Sutton, R. S., Barto, A. G. (1981a). Toward a modern theory of adaptive networks: Expec-
tation and prediction. Psychological Review, 88:135–170.

Sutton, R. S., Barto, A. G. (1981b). An adaptive network that constructs and uses an
internal model of its world. Cognition and Brain Theory, 3:217–246.

Sutton, R. S., Barto, A. G. (1987). A temporal-di↵erence model of classical conditioning. In
Proceedings of the Ninth Annual Conference of the Cognitive Science Society, pp. 355-
378. Erlbaum, Hillsdale, NJ.

Sutton, R. S., Barto, A. G. (1990). Time-derivative models of Pavlovian reinforcement. In
M. Gabriel and J. Moore (eds.), Learning and Computational Neuroscience: Foundations
of Adaptive Networks, pp. 497–537. MIT Press, Cambridge, MA.

Sutton, R. S., Mahmood, A. R., Precup, D., van Hasselt, H. (2014). A new Q(�) with interim
forward view and Monte Carlo equivalence. In Proceedings of the 31st International
Conference on Machine Learning, Beijing, China.

Sutton, R. S., Pinette, B. (1985). The learning of world models by connectionist networks. In
Proceedings of the Seventh Annual Conference of the Cognitive Science Society, pp. 54–
64.

Sutton, R. S., Singh, S. (1994). On bias and step size in temporal-di↵erence learning. In
Proceedings of the Eighth Yale Workshop on Adaptive and Learning Systems, pp. 91–96.
Center for Systems Science, Dunham Laboratory, Yale University, New Haven.

Sutton, R. S., Whitehead, D. S. (1993). Online learning with random representations.
In Proceedings of the Tenth International Machine Learning Conference, pp. 314–321.
Morgan Kaufmann, San Mateo, CA.

Szepesvári, C. (2010). Algorithms for reinforcement learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning 4(1), 1–103.

Szita, I. (2012). Reinforcement learning in games. In Reinforcement Learning (pp. 539-577).
Springer Berlin Heidelberg.

Tadepalli, P., Ok, D. (1994). H-learning: A reinforcement learning method to optimize
undiscounted average reward. Technical Report 94-30-01. Oregon State University,
Computer Science Department, Corvallis.

Takahashi, Y., Schoenbaum, G., and Niv, Y. (2008). Silencing the critics: understanding
the e↵ects of cocaine sensitization on dorsolateral and ventral striatum in the context of
an actor/critic model. Frontiers in Neuroscience, 2(1):86–99.

Tan, M. (1991). Learning a cost-sensitive internal representation for reinforcement learning.
In L. A. Birnbaum and G. C. Collins (eds.), Proceedings of the Eighth International
Workshop on Machine Learning, pp. 358–362. Morgan Kaufmann, San Mateo, CA.

Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative agents. In
Proceedings of the Tenth International Conference on Machine Learning, pp. 330–337.
Morgan Kaufmann, San Mateo, CA.

Tesauro, G. J. (1986). Simple neural models of classical conditioning. Biological Cybernetics,
55:187–200.

Tesauro, G. J. (1992). Practical issues in temporal di↵erence learning. Machine Learning,
8:257–277.

Tesauro, G. J. (1994). TD-Gammon, a self-teaching backgammon program, achieves master-
level play. Neural Computation, 6(2):215–219.

Tesauro, G. J. (1995). Temporal di↵erence learning and TD-Gammon. Communications of

17.8. THE FUTURE OF ARTIFICIAL INTELLIGENCE 441

the ACM, 38:58–68.

Tesauro, G. J., Galperin, G. R. (1997). On-line policy improvement using Monte-Carlo
search. In Advances in Neural Information Processing Systems: Proceedings of the 1996
Conference, pp. 1068–1074. MIT Press, Cambridge, MA.

Tham, C. K. (1994). Modular On-Line Function Approximation for Scaling up Reinforcement
Learning. PhD thesis, Cambridge University.

Thathachar, M. A. L. and Sastry, P. S. (1985). A new approach to the design of reinforcement
schemes for learning automata. IEEE Transactions on Systems, Man, and Cybernetics,
15:168–175.

Thathachar, M. and Sastry, P. S. (2002). Varieties of learning automata: an overview. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 36(6):711–722.

Thathachar, M. and Sastry, P. S. (2011). Networks of learning automata: Techniques for
online stochastic optimization. Springer Science & Business Media.

Thistlethwaite, D. (1951). A critical review of latent learning and related experiments.
Psychological Bulletin, 48(2):97–129.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika, 25:285–294.

Thompson, W. R. (1934). On the theory of apportionment. American Journal of Mathe-
matics, 57:450–457.

Thorndike, E. L. (1898). Animal intelligence: An experimental study of the associative
processes in animals. The Psychological Review, Series of Monograph Supplements,
II(4).

Thorndike, E. L. (1911). Animal Intelligence. Hafner, Darien, CT.

Thorp, E. O. (1966). Beat the Dealer: A Winning Strategy for the Game of Twenty-One.
Random House, New York.

Tobler, P. N., Fiorillo, C. D., and Schultz, W. (2005). Adaptive coding of reward value by
dopamine neurons. Science, 307(5715):1642–1645.

Tolman, E. C. (1932). Purposive Behavior in Animals and Men. Century, New York.

Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4):189–208.

Tsai, H.-S., Zhang, F., Adamantidis, A., Stuber, G. D., Bonci, A., de Lecea, L., and Deis-
seroth, K. (2009). Phasic firing in dopaminergic neurons is su�cient for behavioral
conditioning. Science, 324(5930):1080–1084.

Tsetlin, M. L. (1973). Automaton Theory and Modeling of Biological Systems. Academic
Press, New York.

Tsitsiklis, J. N. (1994). Asynchronous stochastic approximation and Q-learning. Machine
Learning, 16:185–202.

Tsitsiklis, J. N. (2002). On the convergence of optimistic policy iteration. Journal of
Machine Learning Research, 3:59–72.

Tsitsiklis, J. N. and Van Roy, B. (1996). Feature-based methods for large scale dynamic
programming. Machine Learning, 22:59–94.

Tsitsiklis, J. N., Van Roy, B. (1997). An analysis of temporal-di↵erence learning with
function approximation. IEEE Transactions on Automatic Control, 42:674–690.

Tsitsiklis, J. N., Van Roy, B. (1999). Average cost temporal-di↵erence learning. Automatica,
35:1799–1808.

Turing, A. M. (1950). Computing machinery and intelligence. Mind 433–460.

442 CHAPTER 17. FRONTIERS

Turing, A. M. (1948). Intelligent Machinery, A Heretical Theory. The Turing Test: Verbal
Behavior as the Hallmark of Intelligence, 105.

Ungar, L. H. (1990). A bioreactor benchmark for adaptive network-based process control.
In W. T. Miller, R. S. Sutton, and P. J. Werbos (eds.), Neural Networks for Control,
pp. 387–402. MIT Press, Cambridge, MA.

Urbanczik, R. and Senn, W. (2009). Reinforcement learning in populations of spiking
neurons. Nature neuroscience, 12(3):250–252.

Urbanowicz, R. J., Moore, J. H. (2009). Learning classifier systems: A complete introduction,
review, and roadmap. Journal of Artificial Evolution and Applications.

Valentin, V. V., Dickinson, A., and O’Doherty, J. P. (2007). Determining the neural sub-
strates of goal-directed learning in the human brain. The Journal of Neuroscience,
27(15):4019–4026.

van Hasselt, H. (2010). Double Q-learning. In Advances in Neural Information Processing
Systems, pp. 2613–2621.

van Hasselt, H. (2011). Insights in Reinforcement Learning: Formal Analysis and Empircal
Evaluation of Temporal-di↵erence Learning. SIKS dissertation series number 2011-04.

van Hasselt, H., Sutton, R. S. (in prep.). Learning to predict independent of span.

Van Roy, B., Bertsekas, D. P., Lee, Y., Tsitsiklis, J. N. (1997). A neuro-dynamic pro-
gramming approach to retailer inventory management. In Proceedings of the 36th IEEE
Conference on Decision and Control, Vol. 4, pp. 4052–4057.

van Seijen, H., Van Hasselt, H., Whiteson, S., Wiering, M. (2009). A theoretical and empiri-
cal analysis of Expected Sarsa. In IEEE Symposium on Adaptive Dynamic Programming
and Reinforcement Learning, pp. 177-184.

van Seijen, H., Sutton, R. S. (2014). True online TD(�). In Proceedings of the 31st Interna-
tional Conference on Machine Learning. JMLR W&CP 32(1):692–700.

van Seijin, H., Mahmood, A. R., Pilarski, P. M., Machado, M. C., Sutton, R. S. (in prep.).
True online temporal-di↵erence learning.

Vasilaki, E., Frémaux, N., Urbanczik, R., Senn, W., and Gerstner, W. (2009). Spike-
based reinforcement learning in continuous state and action space: when policy gradient
methods fail. PLoS Computational Biology, 5(12).

Viswanathan, R. and Narendra, K. S. (1974). Games of stochastic automata. IEEE
Transactions on Systems, Man, and Cybernetics, 4:131–135.

Walter, W. G. (1950). An imitation of life. Scientific American, pages 42–45.

Walter, W. G. (1951). A machine that learns. Scientific American, 185(2):60–63.

Waltz, M. D., Fu, K. S. (1965). A heuristic approach to reinforcement learning control
systems. IEEE Transactions on Automatic Control, 10:390–398.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. Ph.D. thesis, Cambridge
University.

Watkins, C. J. C. H., Dayan, P. (1992). Q-learning. Machine Learning, 8:279–292.

Wiering, M., Van Otterlo, M. (2012). Reinforcement Learning. Springer Berlin Heidelberg.

Werbos, P. J. (1977). Advanced forecasting methods for global crisis warning and models of
intelligence. General Systems Yearbook, 22:25–38.

Werbos, P. J. (1982). Applications of advances in nonlinear sensitivity analysis. In
R. F. Drenick and F. Kozin (eds.), System Modeling and Optimization, pp. 762–770.
Springer-Verlag, Berlin.

17.8. THE FUTURE OF ARTIFICIAL INTELLIGENCE 443

Werbos, P. J. (1987). Building and understanding adaptive systems: A statistical/numerical
approach to factory automation and brain research. IEEE Transactions on Systems,
Man, and Cybernetics, 17:7–20.

Werbos, P. J. (1988). Generalization of back propagation with applications to a recurrent
gas market model. Neural Networks, 1:339–356.

Werbos, P. J. (1989). Neural networks for control and system identification. In Proceedings
of the 28th Conference on Decision and Control, pp. 260–265. IEEE Control Systems
Society.

Werbos, P. J. (1990). Consistency of HDP applied to a simple reinforcement learning
problem. Neural Networks, 3:179–189.

Werbos, P. J. (1992). Approximate dynamic programming for real-time control and neural
modeling. In D. A. White and D. A. Sofge (eds.), Handbook of Intelligent Control:
Neural, Fuzzy, and Adaptive Approaches, pp. 493–525. Van Nostrand Reinhold, New
York.

White, D. J. (1969). Dynamic Programming. Holden-Day, San Francisco.

White, D. J. (1985). Real applications of Markov decision processes. Interfaces, 15:73–83.

White, D. J. (1988). Further real applications of Markov decision processes. Interfaces,
18:55–61.

White, D. J. (1993). A survey of applications of Markov decision processes. Journal of the
Operational Research Society, 44:1073–1096.

Whitehead, S. D., Ballard, D. H. (1991). Learning to perceive and act by trial and error.
Machine Learning, 7:45–83.

Whitt, W. (1978). Approximations of dynamic programs I. Mathematics of Operations
Research, 3:231–243.

Whittle, P. (1982). Optimization over Time, vol. 1. Wiley, New York.

Whittle, P. (1983). Optimization over Time, vol. 2. Wiley, New York.

Wickens, J. and Kötter, R. (1995). Cellular models of reinforcement. In Houk, J. C., Davis,
J. L., and Beiser, D. G., editors, Models of Information Processing in the Basal Ganglia,
pages 187–214. MIT Press, Cambridge, MA.

Widrow, B., Gupta, N. K., Maitra, S. (1973). Punish/reward: Learning with a critic in
adaptive threshold systems. IEEE Transactions on Systems, Man, and Cybernetics,
3:455–465.

Widrow, B., Ho↵, M. E. (1960). Adaptive switching circuits. In 1960 WESCON Convention
Record Part IV, pp. 96–104. Institute of Radio Engineers, New York. Reprinted in J.
A. Anderson and E. Rosenfeld, Neurocomputing: Foundations of Research, pp. 126–134.
MIT Press, Cambridge, MA, 1988.

Widrow, B., Smith, F. W. (1964). Pattern-recognizing control systems. In J. T. Tou
and R. H. Wilcox (eds.), Computer and Information Sciences, pp. 288–317. Spartan,
Washington, DC.

Widrow, B., Stearns, S. D. (1985). Adaptive Signal Processing. Prentice-Hall, Englewood
Cli↵s, NJ.

Williams, R. J. (1986). Reinforcement learning in connectionist networks: A mathematical
analysis. Technical Report ICS 8605. Institute for Cognitive Science, University of
California at San Diego, La Jolla.

Williams, R. J. (1987). Reinforcement-learning connectionist systems. Technical Report
NU-CCS-87-3. College of Computer Science, Northeastern University, Boston.

444 CHAPTER 17. FRONTIERS

Williams, R. J. (1988). On the use of backpropagation in associative reinforcement learning.
In Proceedings of the IEEE International Conference on Neural Networks, pp. I263–I270.
IEEE San Diego section and IEEE TAB Neural Network Committee.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8:229–256.

Williams, R. J., Baird, L. C. (1990). A mathematical analysis of actor-critic architectures
for learning optimal controls through incremental dynamic programming. In Proceedings
of the Sixth Yale Workshop on Adaptive and Learning Systems, pp. 96–101. Center for
Systems Science, Dunham Laboratory, Yale University, New Haven.

Wilson, R. C., Takahashi, Y. K., Schoenbaum, G., and Niv, Y. (2014). Orbitofrontal cortex
as a cognitive map of task space. Neuron, 81(2):267–279.

Wilson, S. W. (1994). ZCS: A zeroth order classifier system. Evolutionary Computation,
2:1–18.

Wise, R. A. (2004). Dopamine, learning, and motivation. Nature Reviews Neuroscience,
5(6):1–12.

Witten, I. H. (1976). The apparent conflict between estimation and control—A survey of
the two-armed problem. Journal of the Franklin Institute, 301:161–189.

Witten, I. H. (1977). An adaptive optimal controller for discrete-time Markov environments.
Information and Control, 34:286–295.

Witten, I. H., Corbin, M. J. (1973). Human operators and automatic adaptive controllers: A
comparative study on a particular control task. International Journal of Man–Machine
Studies, 5:75–104.

Woodworth, R. S., Schlosberg, H. (1938). Experimental psychology. New York: Henry Holt
and Company.

Xie, X. and Seung, H. S. (2004). Learning in neural networks by reinforcement of irregular
spiking. Physical Review E, 69(4).

Yagishita, S., Hayashi-Takagi, A., Ellis-Davies, G. C. R., Urakubo, H., Ishii, S., and Kasai,
H. (2014). A critical time window for dopamine actions on the structural plasticity of
dendritic spines. Science, 345(6204):1616–1619.

Yee, R. C., Saxena, S., Utgo↵, P. E., Barto, A. G. (1990). Explaining temporal di↵erences
to create useful concepts for evaluating states. In Proceedings of the Eighth National
Conference on Artificial Intelligence, pp. 882–888. AAAI Press, Menlo Park, CA.

Yin, H. H. and Knowlton, B. J. (2006). The role of the basal ganglia in habit formation.
Nature Reviews Neuroscience, 7(6):464–476.

Young, P. (1984). Recursive Estimation and Time-Series Analysis. Springer-Verlag, Berlin.

Yu, H. (2012). Least squares temporal di↵erence methods: An analysis under general con-
ditions. SIAM Journal on Control and Optimization, 50(6), 3310–3343.

Zhang, M., Yum, T. P. (1989). Comparisons of channel-assignment strategies in cellular
mobile telephone systems. IEEE Transactions on Vehicular Technology, 38:211-215.

Zhang, W. (1996). Reinforcement Learning for Job-shop Scheduling. Ph.D. thesis, Oregon
State University. Technical Report CS-96-30-1.

Zhang, W., Dietterich, T. G. (1995). A reinforcement learning approach to job-shop schedul-
ing. In Proceedings of the Fourteenth International Joint Conference on Artificial Intel-
ligence, pp. 1114–1120. Morgan Kaufmann.

Zhang, W., Dietterich, T. G. (1996). High-performance job-shop scheduling with a time–
delay TD(�) network. In D. S. Touretzky, M. C. Mozer, M. E. Hasselmo (eds.), Ad-

17.8. THE FUTURE OF ARTIFICIAL INTELLIGENCE 445

vances in Neural Information Processing Systems: Proceedings of the 1995 Conference,
pp. 1024–1030. MIT Press, Cambridge, MA.

Zweben, M., Daun, B., Deale, M. (1994). Scheduling and rescheduling with iterative re-
pair. In M. Zweben and M. S. Fox (eds.), Intelligent Scheduling, pp. 241–255. Morgan
Kaufmann, San Francisco.

446 CHAPTER 17. FRONTIERS

Index

