Online representation learning in the state update function

Rich Sutton
Summer, 2009
Rep’n learning is a little different in RL

- we don’t want to be batch
 - because we have a use for improvements in rep’n as soon as we can find them
- because we want to handle nonstationarity
- we have a natural source of multiple tasks
 - knowledge! learning to predict everything
 - some will be easy, some hard
- effectively a sequence of tasks of graded difficulty
outline

1. the state-update function
2. the expand-and-add architecture
3. an insight into how to combine them nicely
RLAI architecture has two parts

- the *reactive part* contains all the things that must run at the fastest rate of agent-environment interaction
 - e.g., in the critterbot, this is 100 times a second
 - the agent’s state rep’n must be updated this fast
- the *deliberative part* is slower, accumulative
 - responsible for planning, cognition
RLAI architecture (reactive part)

- everything updates and learns 100 times a second
- the pulse of the mind
The (agent-)state update function

\[s_{t+1} = u(s_t, a_t, o_{t+1}) \]

- the state-update function \(u \) creates/defines the state
- state update = perception
- changes in \(u \) = representation learning
- state is used by the demons to make predictions, learn policies
- state is also used for planning (not covered here)
RLAI architecture (demons)

- the demons don’t directly affect the state-update function
- but they can provide a reason for changing state update
- they provide a large set of tasks (general value functions)
- a feature good for one demon might also be good for another
- the demons are the tester in the generate-and-test search for good state features
outline

1. the state-update function
2. the expand-and-add architecture
3. an insight into how to combine them nicely
Expand and Add
the world’s most popular function-approximation architecture

for example:
• tile coding
• radial basis functions
• support vector machines
• the original perceptron
• coarse coding
• kanerva coding
Expand and Add

the world’s most popular function-approximation architecture

- fast learning
- learns well online or batch
- powerful (expressive)
- well suited to representation learning
LTU-based Expand and Add
using Linear Threshold Units (LTUs) to form the feature rep’n

Can we map this onto the state-update function?
outline

1. the state-update function
2. the expand-and-add architecture
3. an insight into how to combine them nicely
salience (step-size)

• let each feature i have a step-size, $\alpha_i \in \mathbb{R}^+$, also called its salience

• this determines how much the demons will generalize according to that feature

• important features should have high salience, irrelevant ones low salience

• salience is an important part of the rep’n

• IDBD and similar algorithms can be used to learn salience
Demon functions may depend on all old data, and in a non-linear way.

Demons are linear features are LTUs.
d_t - demons

S_t - state features

S_{t-1} - old-state features

a_{t-1}, o_t

data
\[d_t \text{ - demons} \]

\[S_t \text{ - state features} \]

\[S_{t-1} \text{ - old-state features} \]

\[\alpha_{t-1}, O_t \text{ - data} \]

valuable features

high salience

moderate salience

low salience
\(d_t \) - demons

\(s_t \) - state features

\(s_{t-1} \) - old-state features

\(d_{t-1}, o_t \) - data

valuable features

fast

slow

static or v. slow

slower (imprinting)
imprinting

• imprint candidate features on time steps of high demon error

• if error is low on a time step, then do nothing

• if error is high, then try to make a feature that responds preferentially and distinctly to that time step

• such a feature will help you reduce demon error in the future
support and valuableness

- state components (features) may be valuable because they are salient, or because they are used to construct features that are salient

- thus valuableness can be propagated from component to component

- we say that salient states are “valuable”, and valueableness propagates by supporting relationships

- perhaps with a little friction, so that mutually supporting but non-salient components die off
conclusion

• state-update and expand-and-add combine nicely

• the state vector is *both* the small input vector *and* the massively expanded feature vector

• via salience

• recursion, and thus higher-order features, is immediate

• we should be able to get fast, online learning and representation learning—generate and test through random feature space