How simple can mind be?

Rich Sutton
Department of Computing Science
University of Alberta
Reinforcement Learning and Artificial Intelligence

PIs:
Rich Sutton
Michael Bowling
Dale Schuurmans
Csaba Szepesvari

Pls:
Rich Sutton
Michael Bowling
Dale Schuurmans
Csaba Szepesvari
personal motivations

- To understand what mind means well enough to make some

- The incredible complexity of everyday knowledge and decision making

- Impatiently seeking general principles
 - reductionist, absolutist, simplistic
 - but ready to backtrack

- That horrible trial-and-error learning: Reinforcement learning
Hajime Kimura’s RL Robots

Before

Backward

After

New Robot, Same algorithm
AI is not biology

- AI is easier in some ways
 - we are more concerned with sufficiency
 - we know the agent’s goal
 - we can look inside its head
 - we can ignore evolution
 - our experiments take less time

- On the other hand, we can’t just theorize about mind – we have to actually make it
Marr’s three levels of explanation for information-processing systems

- Computation theory
 - What is computed?
 - Algorithms and representations
 - How is it computed?
 - Implementation
 - Really, how is it done?

Levels can be separated, validated independently

- TD error = Dopamine
- TD learning
- expected future reward
Ideas on offer

1. The interplay of goal-related signals: reward, value, and TD error

2. Learning on simulated experience (as planning, understanding, cognition, reasoning, thought, goal-directed...?)

3. Option models as an approach to the hard problem of representing knowledge that is abstract yet strongly linked to low-level experience
Essentials of mind (outline)

- Experience
- Goals
- Learning from experience
- Learning from simulated experience
- Abstraction
- Constructivism, discovery, generalization
Actor-critic architecture

- Policy
 - Actor
 - Critic
 - Value Function
 - State
 - Action
 - Reward
 - TD Error
 - World or world model

S → R learning
S → S* learning
S → S learning
Understanding

- Knowing how the world works (having a predictive model of causes and effects)
- Being able to use that knowledge flexibly to achieve goals
 - a.k.a. planning, reasoning
Learning from simulated experience

1. Learn a predictive model of the world
2. Use the model to generate simulated experience
3. Learn from the simulated experience as if it had actually happened

= cognition, model-based reasoning

cf. vicarious trial and error (Tolman, 1932)
Recreation of Tolman & Honzik’s “Reasoning in Rats” experiment (1930)
Experience

- The low-level stream of inputs and outputs – sensations and actions at 100Hz
- The final common paths of mind and world
- The data of artificial intelligence
- The only thing that is real
- It suffices to draw a hard line...
Goals

Mind

Environment

actions

sensations

reward
The reward hypothesis

That all of what we mean by goals and purposes can be well thought of as maximizing the expected cumulative sum of a received scalar signal (reward)

- Simple, but not trivial
- A good null hypothesis
Values

- A value V_t is an expectation of cumulative future reward:

\[
V_t = E \left\{ \sum_{k=1}^{\infty} r_{t+k} \right\}
\]

- Values are defined in terms of rewards
- Approximate values $\hat{V}_t \approx V_t$ are learned from experience
- Rewards are primary, values secondary
- but it is values that guide decision-making
The value hypothesis

All efficient methods for solving sequential decision problems must learn or compute values as an intermediate step

- dynamic programming
- most reinforcement learning methods
TD error

- For learning, the key scalar is neither reward nor value, but the temporal-difference error:

\[r_{t+1} + \hat{V}_{t+1} - \hat{V}_t \]

- The TD error is a measure of how pleased or disappointed you are in moving from \(t \) to \(t+1 \):

\[
\hat{V}_t \approx \sum_{k=1}^{\infty} r_{t+k} = r_{t+1} + \sum_{k=2}^{\infty} r_{t+k} \approx r_{t+1} + \hat{V}_{t+1}
\]
The interplay of reward, value, and TD error is a significant contribution to our understanding of goal-directed learning.
Abstraction in time and state

- Options
 - a way of behaving with a termination condition
- Option models
 - predictions about the outcomes of options
- Compositionality
 - predictions can be about other predictions
Examples of option-conditional compositional predictions

If I were to follow this hallway to its end, would I find a restroom?

If I were to look in the fridge, would I see a beer?

If I were to open the box, would I see an apple?

If I were to turn over the glass, would the carpet be wet?

Outcomes are not primitive observations

They are sets of predictions
Compass world

- sensation: color ahead
- actions:
 - L(eft)
 - R(ight)
 - F(orward)
- options:
 - Leap (to wall)
 - Wander (randomly)
Examples in compass world

If I were to...

...step forward till I hit a wall, would it be orange?

“facing an orange wall”

not compositional

...step forward till I hit a wall, then turn left, would I be “facing a green wall?”

compositional
Constructivism a.k.a. discovery

- We have machinery for representing abstract knowledge
- We have so-so algorithms for learning option models
- But we don’t know how to automatically create options with good properties:
 - Markov, linear, independent, not too numerous
- We construct the world
- and I have no idea how
Conclusions

- Simple general principles are possible in AI that may relate to animal behavior.
- Learning from simulated experience suffices to explain much that seems beyond ordinary associative learning.
- RL’s sense of reward, value, and TD error contribute to understanding goal-directed behavior.
- It may be possible someday to relate abstract knowledge to low-level experience.