The critterbot project
The critterbot project

- A series of sensor-rich, animal-like robots
- Dense sensorimotor interaction (>10 Hz)
- A worked example of autonomous, adaptive AI
- Much of the work will be in simulation
- Potentially a focal project for the RLAI group
outline

• Goals and opportunities in subjective robotics
• The current critterbot Mach 1
• Examples of subjective knowledge in the critterbot
Objective robotics

• The robot’s knowledge is grounded in public terms like those people use to talk to each other: meters, objects, doorways...

• Robot does not need to understand the knowledge in order for it to work

• But robot and human terms must be kept aligned… mostly manually

• Often brittle to unforeseen situations, and scales poorly - breaking down when the knowledge exceeds what one person can know
Subjective robotics

- Robotics grounded in experience
- Knowledge is in terms of the robot’s own sensors and actuators
- Knowledge is predictive or otherwise autonomously verifiable by the robot
- Oriented toward the robot self-maintaining its knowledge
- Ground everything bottom-up in data
- Sounds good, but is it really practical?
For example, in subjective robotics:

- Instead of calibration, use unsupervised learning
- Instead of filtering and smoothing, use predictive representations
- Instead of training robot to label objects like people, let it learn when its options will succeed
Goals - gain experience in

- Subjective robotics/knowledge
- Sensori-motor models of the world
- Connecting low-level experience to high-level knowledge
- Perception - large sensor spaces
- State
- Teaching, social aspects
Goals - gain experience in

- Continual, life-long learning, accretion of knowledge
- Living with open-ended knowledge
- Discovery
- Exploration
- Real-time constraints
Mach I critterbot
Actuators

- Wheels (three, holonomic drive)
 - Omni-directional
 - Independent translation and rotation
- Speaker
- Lights (12 polychromatic LEDs)
- Tail/scoop
Sensors I

- Touch/bump/contact
- Inertial
- Proximity (infra-red)
- Light (non-imaging)
- Wheel motions
- Motor resistances
Sensors 2

- Sound (two microphones)
- Radio (sees wireless base stations)
- Magnetic (compass)
- Temperature
- Camera (future)
My Hamming problem

• How we can know lots of stuff about how the world works and what we can do, and apply it efficiently to maximize reward

• We know so much! So much sensorimotor stuff

• How can we relate higher-level knowledge to the low-level sensorimotor stuff?

• How can it all be organized and maintained? What are the principles?
Critterbot knowledge

- Base rates (means and variances) for all the sensors
- Some configurations of sensor readings happen, some don’t
 - Extend this into time
 - Within and across sensations
- Unsupervised learning in sensor-time space
Critterbot knowledge

• How do motor torques affect wheel rotation?
• How do motor torques affect motor strain?
• How do wheel torques affect compass and inertial sensors?
• How do bumps affect inertial sensors?
• What about velocity?
Critterbot knowledge

- Inter-relationship of touch, proximity, and wheel rotation
- Proximity predicts touch
- Wheel rotation predicts proximity, then touch
- But all in very particular ways - certain motions correlate with certain sensations
Critterbot knowledge

• There is no action for forward or rotate
• But certain wheel motions will cause certain “motions” and associated sensations
• Rotating the body when close to a wall will cause patterns of proximity and contact
• Complex relationships, but lots of regularities.
• Use geometry? No! Use memory and gain robustness and generality, accuracy
Knowledge of state

- Wall to the left/right/front/back of me?
- Naturally represented as predictions of proximity and/or touch readings
- Is there a lot of open space ahead of me?
- Will running forward cause bump?
- Instead of filtering/smoothing, use predictions
- Past readings inform future readings
Some options we might build in

• Null options over various time-scales (for predictions that are not action conditional)
• Constant actions over various time-scales
• Move randomly (without motor strain)
• Maximize/minimize each sensor
• Run wheels without changing compass
• Run wheels without changing proximity
Higher-level knowledge

- Places in the room
 - Along a wall?
 - In a corner?
- Facing open space?
- Long wall vs short wall, right vs left?
- Battery charger nearby?
Higher-level knowledge

• The rattle
 • A distinctive sound
 • Some actions may “cause” the sound
 • There are times when it can be caused, and times when it cannot (presence/absence)
• It has a location
• The location can change (state)
• I can move it
Higher-level knowledge

- people
- Distinctive sounds
 - Voices, door opening
- Opportunities for reward (clicker, petting)
- Temporal coherence (presence/absence)
- Correlated with rattle, learning opportunities…
- Help. E.g., back to the charger
Teaching

- Can a subjective robot be quickly taught to do new things?
- Think of it as a cooperative dog
- Can we direct it by physically pushing on it?
- Can we reward and/or direct it with tone of voice?
- What about when we don’t want to manually reward it every time?
Agent design principles

• Nested, horizontal agent design
 • Independent layers - reflex, RL, planning, discovery
• Continual learning - long-lived agent
• Incremental, online computation
 • The same algorithms run all the time
stages of progress

• representation - can we represent the solution if we don’t worry about learning it

• learning - can we tune the parameters of the solution if we don’t worry about discovering its structure

• discovery - can we find the structure of the solution as well?
Conclusion

• An opportunity to really come to grips with subjective, experience-based knowledge

• We may be uniquely positioned to do this well
 • Right robot: lots of sensors, simple dynamics, local hardware expertise, long-running design
 • Right attitude: far-sighted funder, patience, and modest expectations, multiple tries
 • (some) Right ideas: RL, Dyna, PSRs and TD nets, options and option models, learning feels good...