From Deep Blue to Monte Carlo: An Update on Game Tree Research
Akihiro Kishimoto and Martin Müller

AAAI-14 Tutorial 5:
Monte Carlo Tree Search

Presenter:
Martin Müller, University of Alberta
Tutorial 5 – MCTS - Contents

Part 1:
- Limitations of alphabeta and PNS
- Simulations as evaluation replacement
- Bandits, UCB and UCT
- Monte Carlo Tree Search (MCTS)
Tutorial 5 – MCTS - Contents

Part 2:
- MCTS enhancements: RAVE and prior knowledge
- Parallel MCTS
- Applications
- Research challenges, ongoing work
Go: a Failure for Alphabeta

- Game of Go
- Decades of Research on knowledge-based and alphabeta approaches
- Level weak to intermediate
- Alphabeta works much less well than in many other games
- Why?
Problems for Alphabeta in Go

- **Reason usually given:** Depth and width of game tree
 - 250 moves on average
 - game length > 200 moves

- **Real reason:** Lack of good evaluation function
 - Too subtle to model: very similar looking positions can have completely different outcome
 - Material is mostly irrelevant
 - Stones can remain on the board long after they “die”
 - Finding safe stones and estimating territories is hard
Monte Carlo Methods to the Rescue!

- Hugely successful
 - Backgammon (Tesauro 1995)
 - Go (many)
 - Amazons, Havannah, Lines of Action, ...

- Application to deterministic games pretty recent (less than 10 years)

- Explosion in interest, applications far beyond games
 - Planning, motion planning, optimization, finance, energy management,...
<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1940’s – now</td>
<td>Popular in Physics, Economics, ... to simulate complex systems</td>
</tr>
<tr>
<td>1990</td>
<td>(Abramson 1990) expected-outcome</td>
</tr>
<tr>
<td>1993</td>
<td>Brügmann, Gobble</td>
</tr>
<tr>
<td>2003 – 05</td>
<td>Bouzy, Monte Carlo experiments</td>
</tr>
<tr>
<td>2006</td>
<td>Coulom, Crazy Stone, MCTS</td>
</tr>
<tr>
<td>2006</td>
<td>(Kocsis & Szepesvari2006) UCT</td>
</tr>
<tr>
<td>2007 – now</td>
<td>MoGo, Zen, Fuego, many others</td>
</tr>
<tr>
<td>2012 – now</td>
<td>MCTS survey paper (Browne et al 2012); huge number of applications</td>
</tr>
</tbody>
</table>
Idea: Monte Carlo Simulation

- No evaluation function? No problem!
- Simulate rest of game using random moves (easy)
- Score the game at the end (easy)
- Use that as evaluation (hmm, \textbf{but}...)
The GIGO Principle

- **Garbage In, Garbage Out**
- Even the best algorithms do not work if the input data is bad
- How can we gain any information from playing random games?
Well, it Works!

- For many games, anyway
 - Go, NoGo, Lines of Action, Amazons, Konane, DisKonnect,...,...,...

- Even random moves often preserve *some* difference between a good position and a bad one

- The rest is statistics...

- ...well, not quite.
(Very) Basic Monte Carlo Search

- Play lots of random games
 - start with each possible legal move
- Keep winning statistics
 - Separately for each starting move
- Keep going as long as you have time, then...
- Play move with best winning percentage
Simulation Example in NoGo

- Demo using GoGui and BobNoGo program
- Random legal moves
- End of game when ToPlay has no move (loss)
- Evaluate:
 +1 for win for current player
 0 for loss
Example – Basic Monte Carlo Search

1 ply tree
root = current position
s₁ = state after move m₁
s₂ = ...

state sᵢ
V(mᵢ) = 2/4 = 0.5

Simulations

Outcomes

1 1 0 0
Example for NoGo

- Demo for NoGo
- 1 ply search plus random simulations
- Show winning percentages for different first moves
Evaluation

- Surprisingly good e.g. in Go - much better than random or simple knowledge-based players
- Still limited
- Prefers moves that work “on average”
- Often these moves fail against the best response
- Likes “silly threats”
Improving the Monte Carlo Approach

- Add a game tree search (Monte Carlo Tree Search)
 - Major new game tree search algorithm
- Improved, better-than-random simulations
 - Mostly game-specific
- Add statistics over move quality
 - RAVE, AMAF
- Add knowledge in the game tree
 - Human knowledge
 - Machine-learnt knowledge
Add game tree search (Monte Carlo Tree Search)

- Naïve approach and why it fails
- Bandits and Bandit algorithms
 - Regret, exploration-exploitation, UCB algorithm
- Monte Carlo Tree Search
 - UCT algorithm
Use simulations directly as an evaluation function for $\alpha\beta$

Problems
- Single simulation is very noisy, only 0/1 signal
- Running many simulations for one evaluation is very slow

Example:
- Typical speed of chess programs **1 million** eval/second
- Go: 1 million moves/second, 400 moves/simulation, 100 simulations/eval = **25** eval/second

Result: Monte Carlo was ignored for over 10 years in Go
Monte Carlo Tree Search

- Idea: use results of simulations to guide growth of the game tree

- **Exploitation**: focus on promising moves

- **Exploration**: focus on moves where uncertainty about evaluation is high

- Two contradictory goals?
 - Theory of *bandits* can help
Bandits

- Multi-armed bandits (slot machines in Casino)

- Assumptions:
 - Choice of several *arms*
 - each arm pull is independent of other pulls
 - Each arm has *fixed, unknown average payoff*

- Which arm has the best average payoff?

- Want to minimize *regret* = loss from playing non-optimal arm
Three arms A, B, C

Each pull of one arm is either
- a win (payoff 1) or
- a loss (payoff 0)

Probability of win for each arm is fixed but *unknown*:
- $p(A \text{ wins}) = 60\%$
- $p(B \text{ wins}) = 55\%$
- $p(C \text{ wins}) = 40\%$

A is best arm (but we don’t know that)
How to find out which arm is best?

The only thing we can do is play them.

Example:
- Play A, win
- Play B, loss
- Play C, win
- Play A, loss
- Play B, loss

Which arm is best ?????

Play each arm many times

- the empirical payoff will approach the (unknown) true payoff

It is expensive to play bad arms too often.

How to choose which arm to pull in each round?
Applying the Bandit Model to Games

- Bandit arm ≈ move in game
- Payoff ≈ quality of move
- Regret ≈ difference to best move
Explore and Exploit with Bandits

- **Explore** all arms, but also:
 - **Exploit**: play promising arms more often
 - Minimize *regret* from playing poor arms
Formal Setting for Bandits

- One specific setting, more general ones exist
- \(K \) arms (actions, possible moves) named 1, 2, \(\dotsc \), \(K \)
- \(t \geq 1 \) time steps
- \(X_i \) random variable, payoff of arm \(i \)
 - Assumed independent of time here
 - Later: discussion of drift over time, i.e. with trees
- Assume \(X_i \in [0\ldots1] \) e.g. 0 = loss, 1 = win
- \(\mu_i = \mathbb{E}[X_i] \) expected payoff of arm \(i \)
- \(r_t \) reward at time \(t \)
 - realization of random variable \(X_i \) from playing arm \(i \) at time \(t \)
Formalization Example

- Same example as with A, B, C before, but use formal notation
- \(K = 3 \) .. 3 arms, arm 1 = A, arm 2 = B, arm 3 = C
- \(X_1 \) = random variable – pull arm 1
 - \(X_1 = 1 \) with probability 0.6
 - \(X_1 = 0 \) with probability 1 - 0.6 = 0.4
 - similar for \(X_2, X_3 \)
 - \(\mu_1 = E[X_1] = 0.6, \mu_2 = E[X_2] = 0.55, \mu_3 = E[X_3] = 0.4 \)
- Each \(r_t \) is either 0 or 1, with probability given by the arm which was pulled.
 - Example: \(r_1 = 0, r_2 = 0, r_3 = 1, r_4 = 1, r_5 = 0, r_6 = 1, \ldots \)
Formal Setting for Bandits (2)

- **Policy**: Strategy for choosing arm to play at time t
 - given arm selections and outcomes of previous trials at times $1, \ldots, t - 1$.

- $I_t \in \{1, \ldots, K\}$.. arm selected at time t

- $T_i(t) = \sum_{s=1}^{t} \mathbb{I}(I_s = i)$
 - total number of times arm i was played from time $1, \ldots, t$
Example:

- Example: \(l_1 = 2, l_2 = 3, l_3 = 2, l_4 = 3, l_5 = 2, l_6 = 2 \)
- \(T_1(6) = 0, T_2(6) = 4, T_3(6) = 2 \)
- Simple policies:
 - Uniform - play a least-played arm, break ties randomly
 - Greedy - play an arm with highest empirical playoff
 - Question – what is a *smart* strategy?
Formal Setting for Bandits (3)

- Best possible payoff: \(\mu^* = \max_{1 \leq i \leq K} \mu_i \)
- Expected payoff after \(n \) steps: \(\sum_{i=1}^{K} \mu_i \mathbb{E}[T_i(n)] \)
- Regret after \(n \) steps is the difference:
 \[
 n\mu^* - \sum_{i=1}^{K} \mu_i \mathbb{E}[T_i(n)]
 \]
- Minimize regret: minimize \(T_i(n) \) for the non-optimal moves, especially the worst ones
Example, continued

- $\mu_1 = 0.6$, $\mu_2 = 0.55$, $\mu_3 = 0.4$
- $\mu^* = 0.6$
- With our fixed exploration policy from before:
 - $E[T_1(6)] = 0$, $E[T_2(6)] = 4$, $E[T_3(6)] = 2$
 - expected payoff $\mu_1 \times 0 + \mu_2 \times 4 + \mu_3 \times 2 = 3.0$
 - expected payoff if always plays arm 1: $\mu^* \times 6 = 3.6$
 - Regret = $3.6 - 3.0 = 0.6$
- Important: regret of a policy is expected regret
 - Will be achieved in the limit, as average of many repetitions of this experiment
 - In any single experiment with six rounds, the payoff can be anything from 0 to 6, with varying probabilities
(Auer et al 2002)

- Statistics on each arm so far
- \bar{X}_i average reward from arm i so far
- n_i number of times arm i played so far (same meaning as $T_i(t)$ above)
- n total number of trials so far
Name UCB stands for Upper Confidence Bound

Policy:

1. First, try each arm once

2. Then, at each time step:
 - choose arm i that maximizes the $UCB1$ formula for the upper confidence bound:

$$\bar{x}_i + \sqrt{\frac{2 \ln(n)}{n_i}}$$
Exploitation: higher observed reward \bar{X}_i is better

Expect "true value" μ_i to be in some confidence interval around \bar{X}_i.

"Optimism in face of uncertainty": choose move for which the upper bound of confidence interval is highest

$$\bar{X}_i + \sqrt{\frac{2 \ln(n)}{n_i}}$$
Interval is large when number of trials n_i is small. Interval shrinks in proportion to $\sqrt{n_i}$

High uncertainty about move
- large exploration term in UCB formula
- move is explored

$\sqrt{\ln(n)}$ term, intuition:
explore children more if parent is important (has many simulations)
Main question: rate of convergence to optimal arm

Huge amount of literature on different bandit algorithms and their properties

Typical goal: regret $O(\log n)$ for n trials

For many kinds of problems, cannot do better asymptotically (Lai and Robbins 1985)

UCB1 is a simple algorithm that achieves this asymptotic bound for many input distributions
Is UCB What we Really Want???

- No.
- UCB minimizes cumulative regret
- Regret is accumulated over all trials
- In games, we only care about the final move choice
 - We do not care about simulating bad moves
- Simple regret: loss of our final move choice, compared to best move
 - Better measure, but theory is much less developed for trees
The case of Trees: From UCB to UCT

- UCB makes a single decision
- What about sequences of decisions (e.g. planning, games)?
- Answer: use a lookahead tree (as in games)
- Scenarios
 - Single-agent (planning, all actions controlled)
 - Adversarial (as in games, or worst-case analysis)
 - Probabilistic (average case, “neutral” environment)
Monte Carlo Planning - UCT

- Main ideas:
- Build lookahead tree (e.g. game tree)
- Use rollouts (simulations) to generate rewards
- Apply UCB – like formula in interior nodes of tree
 - choose “optimistically” where to expand next
Generic Monte Carlo Planning Algorithm

MonteCarloPlanning(state)
repeat search(state, 0) until Timeout
return bestAction(state, 0)

search(state, depth)
if Terminal(state) then return 0
if Leaf(state, depth) then return Evaluate(state)
action ::= selectAction(state, depth)
(nextstate, reward) ::= simulate (state, action)
q ::= reward + γ search(nextstate, depth + 1)
UpdateValue(state, action, q, depth)
return q

• Reinforcement-learning-like framework (Kocsis and Szepesvari 2006)
• Rewards at every time step
 • future rewards discounted by factor γ
• Apply to games:
 • 0/1 reward, only at end of game
 • γ = 1 (no discount)
Generic Monte Carlo Tree Search

- **Select** leaf node L in game tree
- **Expand** children of L
- **Simulate** a randomized game from (new) leaf node
- **Update** (or backpropagate) statistics on path to root

Image source: http://en.wikipedia.org/wiki/Monte-Carlo_tree_search
In basic bandit framework, we assumed that payoff for each arm comes from a *fixed* (stationary) distribution.

If distribution changes over time, UCB will still converge under some relatively weak conditions.

In UCT, the tree changes over time:
- payoffs of choices within tree also change.
- Example: better move is discovered for one of the players.
Convergence Property of UCT

- Very informal presentation here. See (K+S 2006), Section 2.4 for precise statements.

- Assumptions:
 1. average payoffs converge for each arm \(I \)
 2. “tail inequalities”: probability of being “far off” is very small

- Under those conditions: probability of selecting a suboptimal move approaches zero in the limit
Towards Practice: UCB1-tuned

- Finite-time Analysis of the Multiarmed Bandit Problem (Auer et al 2002)
- UCB1 formula simply assumes variance decreases with $1/\sqrt{n_i}$
- UCB1-tuned idea: take measured variance of each arm (move choice) into account
- Compute upper confidence bound using that measured variance
 - Can be better in practice
- We will see many more extensions to UCB ideas
MoGo – First UCT Go Program

> Original MoGo technical report (Gelly et al 2006)

> Modify UCB1-tuned, add two parameters:

> *First-play urgency* - value for unplayed move

> *exploration constant c* (called p in first paper) - controls rate of exploration

 $p = 1.2$ found best empirically for early MoGo

$$
\bar{X}_j + p \sqrt{\frac{\log n}{T_j(n)}} \min\{1/4, V_j(n_j)\}
$$

Formula from original MoGo report
Move Selection for UCT

- **Scenario:**
 - run UCT as long as we can
 - run simulations, grow tree

- **When out of time, which move to play?**
 - Highest mean
 - Highest UCB
 - **Most-simulated move**
 - later refinement: most wins
UCB, UCT are very important algorithms in both theory and practice.

Well founded, convergence guarantees under relatively weak conditions.

Basis for extremely successful programs for games and many other applications.
MCTS Enhancements

- Improved simulations
 - Mostly game-specific
 - We will discuss it later

- Improved in-tree child selection
 - General approaches
 - Review – the history heuristic
 - AMAF and RAVE

- Prior knowledge for initializing nodes in tree
Improved In-Tree Child Selection

- Plain UCT: in-tree child selection by UCB formula
 - Components: exploitation term (mean) and exploration term

- Enhancements: modify formula, add other terms
 - Collect other kinds of statistics – AMAF, RAVE
 - Prior knowledge – game specific evaluation terms

- Two main approaches
 - Add another term
 - “Equivalent experience” – translate knowledge into (virtual, fake) simulation wins or losses
Game-independent enhancement for alphabeta

Goal: improve move ordering
(Schaeffer 1983, 1989)

Give bonus for moves that lead to cutoff
Prefer those moves at other places in the search

Similar ideas in MCTS:
- all-moves-as-first (AMAF) heuristic, RAVE
Assumptions of History Heuristic

- Abstract concept of *move*
 - Not just a single edge in the game graph
 - Identify *class of all moves* e.g. “Black F3” - place stone of given color on given square
- History heuristic: quality of such moves is correlated
 - Tries to exploit that correlation
 - Special case of reasoning by similarity: in similar state, the same action may also be good
 - Classical: if move often lead to a beta cut in search, try it again, might lead to similar cutoff in similar position.
 - MCTS: if move helped to win previous simulations, then give it a bonus for its evaluation - will lead to more exploration of the move
All Moves As First (AMAF) Heuristic

- (Brügmann 1993)
- Plain Monte Carlo search:
 - no game tree, only simulations, winrate statistics for each first move
- AMAF idea: bonus for all moves in a winning simulation, not just the first.
 - Treat all moves like the first
 - Statistics in global table, separate from winrate
- Main advantage: statistics accumulate much faster
- Disadvantage: some moves good only if played right now - they will get a very bad AMAF score.
RAVE - Rapid Action Value Estimate

- Idea (Gelly and Silver 2007): compute separate AMAF statistics in each node of the MCTS tree.

- After each simulation, update the RAVE scores of all ancestors that are in the tree.

- Each move i in the tree now also has a RAVE score:
 - number of simulations $n_{i,RAVE}$
 - number of wins $v_{i,RAVE}$
 - $RAVE$ value $x_{i,RAVE} = v_{i,RAVE}/n_{i,RAVE}$
Adding RAVE to the UCB Formula

- Basic idea: replace mean value x_i with weighted combination of mean value and RAVE value
 \[\beta x_i + (1 - \beta) x_{i,RAVE} \]

- How to choose β?
 Not constant, depends on all statistics

- Try to find best combined estimator given x_i and $x_{i,RAVE}$
Adding RAVE (2)

- Original method in MoGo (Gelly and Silver 2007):
 - *equivalence parameter* $k = \text{number of simulations when mean and RAVE have equal weight}
 - When $n_i = k$, then $\beta = 0.5$
 - Results were quite stable for wide range of $k=50...10000$

- Formula

$$\beta(s, a) = \sqrt{\frac{k}{3n(s) + k}}$$
(Silver 2009, Chapter 8.4.3)

- Assume independence of estimates
 - Not true in real life, but useful assumption
- Can compute optimal choice in closed form (!)
- Estimated by machine learning, or trial and error
Adding RAVE (4) – Fuego Program

- General scheme to combine different estimators
 - Combining mean and RAVE is special case
 - Very similar to Silver’s scheme

- General scheme: each estimator has:
 1. *initial slope*
 2. *final asymptotic value*

Using Prior Knowledge

- (Gelly and Silver 2007)
- Most nodes in the game tree are leaf nodes (exponential growth)
- Almost no statistics for leaf nodes - only simulated once
- Use domain-specific knowledge to initialize nodes
 - “equivalent experience” - a number of wins and losses
 - additive term (Rosin 2011)
- Similar to heuristic initialization in proof-number search
(Silver 2009) machine-learned 3x3 pattern values

Later Mogo and Fuego: hand-crafted features

Crazy Stone: many features, weights trained by Minorization-Maximization (MM) algorithm (Coulom 2007)

Fuego today:
- large number of simple features
- weights and interaction weights trained by Latent Feature Ranking (Wistuba et al 2013)
Example – Pattern Features (Coulom)
Improving Simulations

- Goal: strong correlation between initial position and result of simulation
- Preserve wins and losses
- How?
 - Avoid blunders
 - “Stabilize” position
 - Go: prefer local replies
 - Go: urgent pattern replies
Improving Simulations (2)

- Game-independent techniques
 - If there is an immediate win, then take it (1 ply win check)
 - Avoid immediate losses in simulation (1 ply mate check)
 - Avoid moves that give opponent an immediate win (2 play mate check)
 - Last Good Reply – next slide
Last Good Reply (Drake 2009), Last Good Reply with Forgetting (Baier et al 2010)

Idea: after winning simulation, store (opponent move, our answer) move pairs

- Try same reply in future simulations
- Forgetting: delete move pair if it fails

Evaluation: worked well for Go program with simpler playout policy (Orego)

- Trouble reproducing success with stronger Go programs
- Simple form of adaptive simulations
Hybrid Approaches

- Combine MCTS with “older” ideas from the alphabeta world

- Examples
 - Prove wins/losses
 - Use evaluation function
 - Hybrid search strategy MCTS+alphabeta
Hybrids: MCTS + Game Solver

- Recognize leaf nodes that are wins/losses
- Backup in minimax/proof tree fashion
- Problem: how to adapt child selection if some children are proven wins or losses?
 - At least, don’t expand those anymore
- Useful in many games, e.g. Hex, Lines of Action, NoGo, Havannah, Konane,...
Hybrids: MCTS + Evaluation

- Use evaluation function
 - Standard MCTS plays until end of game
 - Some games have reasonable and fast evaluation functions, but can still profit from exploration
 - Examples: Amazons, Lines of Action

- Hybrid approach (Lorentz 2008, Winands et al 2010)
 - run short simulation for fixed number of moves (e.g. 5-6 in Amazons)
 - call static evaluation at end, use as simulation result
Hybrids: MCTS + Minimax

- 1-2 ply lookahead in playouts (discussed before)
 - Require strong evaluation function

- (Baier and Winands 2013) add minimax with no evaluation function to MCTS
 - Playouts
 - Avoid forced losses
 - Selection/Expansion
 - Find shallow wins/losses
Towards a Tournament-Level Program

- Early search termination – best move cannot change
- Pondering – think in opponent’s time
- Time control – how much time to spend for each move
- Reuse sub-tree from previous search
- Multithreading (see later)
- Code optimization
- Testing, testing, testing,...
Machine Learning for MCTS

- Learn better knowledge
 - Patterns, features (discussed before)

- Learn better simulation policies
 - Simulation balancing (Silver and Tesauro 2009)
 - Simulation balancing in practice (Huang et al 2011)

- Adapt simulations online
 - Dyna2, RLGo (Silver et al 2012)
 - Nested Rollout Policy Adaptation (Rosin 2011)
 - Last Good Reply (discussed before)
 - Use RAVE (Rimmel et al 2011)
MCTS scales well with more computation
Currently, hardware is moving quickly towards more parallelism
MCTS simulations are “embarassingly parallel”
Growing the tree is a sequential algorithm
 How to parallelize it?
Parallel MCTS - Approaches

- root parallelism
- shared memory
- distributed memory

- New algorithm: depth-first UCT (Yoshizoe et al 2011)
 - Avoid bottleneck of updates to the root
(Cazenave and Jouandeau 2007, Soejima et al. 2010)

- Run n independent MCTS searches on n nodes
- Add up the top-level statistics
- Easiest to implement, but limited
- Majority vote may be better
n cores together build one tree in shared memory

How to synchronize access? Need to write results (changes to statistics for mean and RAVE), add nodes, and read statistics for in-tree move selection

Simplest approach: lock tree during each change

Better: lock-free hash table (Coulom 2008) or tree (Enzenberger and Müller 2010)

Possible to use spinlock
Limits to Parallelism

- Loss of information from running n simulations in parallel as opposed to sequentially

- Experiment (Segal 2010)
 - run single-threaded
 - delay tree updates by $n - 1$ simulations

- Best-case experiment for behavior of parallel MCTS

- Predicts upper limit of strength over 4000 Elo above single-threaded performance
Virtual Loss

- Record simulation as a loss at start
 - Leads to more variety in UCT-like child selection
- Change to a win if outcome is a win
- Crucial technique for scaling
- With virtual loss, scales well up to 64 threads
- Can also use virtual wins
Fuego Virtual Loss Experiment

Fig. 2. Self-play of N threads against a uni-processor with equal total computation.

Fig. 4. Self-play of N threads against a uni-processor and virtual loss enabled.

Image source: (Segal 2010)
Distributed Memory Parallelism

- Many copies of MCTS engine, one on each compute node
- Communicate by message passing (MPI)

MoGo model:
- synchronize a few times per second
- synchronize only “heavy” nodes which have many simulations

Performance depends on
- hardware for communication
- shape of tree
- game-specific properties, length of playouts
Normal UCT vs. Depth-first UCT

Normal UCT
always return to root

Depth First UCT
returns only if needed

Image source: K. Yoshizoe
Bottleneck of updates to “heavy” nodes including root

Depth-first reformulation of UCT
- stay in subtree while best-child selection is unlikely to change
 - about 1 - 2% wrong child selections
- Delay updates further up the tree
- Similar idea as df-pn
- Unlike df-pn, sometimes the 3rd-best (or worse) child can become best
Distributed Memory: TDS

- TDS – Transposition Table Driven Scheduling (Romein et al 1999)

- Single global hash table
 - Each node in tree owned by one processor
 - Work is sent to the processor that owns the node
 - In single-agent search, achieved almost perfect speedup on mid-size parallel machines
Use TDS approach to implement df-UCT on (massively) parallel machines
- TSUBAME2 (17984 cores)
- SGI UV-1000 (2048 cores)

Implemented artificial game (P-game) and Go (MP-Fuego program)
- In P-game: measure effect of playout speed (artificial slowdown for fake simulations)
TDS-df-UCT Speedup - 1200 Cores

330 fold speedup for 0.1 ms playout
740 fold speedup for 1.0 ms playout

Image source: K. Yoshizoe
P-game 4,800 Cores

0.1 milli sec playout

- branch 8
- branch 40
- branch 150

1.0 milli sec playout

- branch 8
- branch 40
- branch 150

job number = cores x 10

- 700-fold for 0.1 ms playout
- 3,200-fold for 1.0 ms playout

Image source: K. Yoshizoe
TDS-df-UCT = TDS + depth first UCT

Speedup including Go

- **MP-Fuego**
 - 2 playouts at leaf
 - (approx. 0.8 ms playout)
 - 5 jobs/core

![Graph showing speedup with number of cores](image)

- **P-game, b=150**
- **19x19 MP-Fuego**
- **P-game, b=40**

Number of Cores

Hardware1: TSUBAME2 supercomputer

Hardware2: SGI UV1000 (Hungabee)

Image source: K. Yoshizoe
Search Time and Speedup

MP-Fuego speedup (19x19)

- Short thinking time = slower speedup
- One major difficulty in massive parallel search

Image source: K. Yoshizoe
Summary – MCTS Tutorial so far...

- Reviewed algorithms, enhancements, applications
 - Bandits
 - Simulations
 - Monte Carlo Tree Search
 - AMAF, RAVE, adding knowledge
 - Hybrid algorithms
 - Parallel algorithms

- Still to come: impact of MCTS, research topics
Impact - Applications of MCTS

- Classical Board Games
 - Go, Hex
 - Amazons
 - Lines of Action, Arimaa, Havannah, NoGo, Konane,…

- Multi-player games, card games, RTS, video games

- Probabilistic Planning, MDP, POMDP

- Optimization, energy management, scheduling, distributed constraint satisfaction, library performance tuning, …
Impact – Strengths of MCTS

- Very general algorithm for decision making
- Works with very little domain-specific knowledge
 - Need a simulator of the domain
- Can take advantage of knowledge when present
- Successful parallelizations for both shared memory and massively parallel distributed systems
Current Topics in MCTS

- Recent progress, Limitations, random half-baked ideas, challenges for future work,...
- Dynamically adaptive simulations
- Integrating local search and analysis
- Improve in-tree child selection
- Parallel search
 - Extra simulations should never hurt
 - Sequential halving and SHOT
Dynamically Adaptive Simulations

- Idea: adapt simulations to specific current context
 - Very appealing idea, only modest results so far
 - Biasing using RAVE (Rimmel et al 2010) – small improvement
 - Last Good Reply (with Forgetting) (Drake 2009, Baier et al 2010)
Mainly For Go
- Players do much local analysis
- Much of the work on simulation policies and knowledge is about local replies

Combinatorial Game Theory has many theoretical concepts

Tactical alphabeta search (Fuego, unpublished)

Life and death solvers
Intuition: want to maximize if we’re certain, average if uncertain

Is there a better formula than average weighted by number of simulations? (My intuition: there has to be...)

Part of the benefits of iterative widening may be that the max is over fewer sibling nodes – measure that
 Restrict averaging to top n nodes
Extra Simulations Should Never Hurt

- Ideally, adding more search should never make an algorithm weaker
- For example, if you search nodes that could be pruned in alphabeta, it just becomes slower, but produces the same result
- Unfortunately it is not true for MCTS
- Because of averaging, adding more simulations to bad moves hurts performance - it is worse than doing nothing!
Extra Simulations Should Never Hurt (2)

- Challenge: design a MCTS algorithm that is robust against extra search at the “wrong” nodes
- This would be great for parallel search
- A rough idea: keep two counters in each node - total simulations, and “useful” simulations
- Use only the “useful” simulations for child selections
- Could also “disable” old, obsolete simulations?
Sequential Halving, SHOT

- Early MC algorithm: successive elimination of empirically worst move (Bouzy 2005)

- Sequential halving (Karnin et al 2013):
 - Rounds of uniform sampling
 - keep top half of all moves for next round

- SHOT (Cazenave 2014)
 - Sequential halving applied to trees
 - Like UCT, uses bandit algorithm to control tree growth
 - Promising results for NoGo
 - Promising for parallel search