This project is a combination of the following programming exercises, newly added to Chapter 2. You may have to experiment with some of the parameters to get good results.

Exercise 2.4 (programming) Design and conduct an experiment to demonstrate the difficulties that sample-average methods have for nonstationary problems. Use a modified version of the 10-armed testbed in which all the $q_*(a)$ start out equal and then take independent random walks (say by adding a normally distributed increment with mean zero and standard deviation 0.01 to all the $q_*(a)$ on each step). Prepare plots like Figure 2.2 for an action-value method using sample averages, incrementally computed, and another action-value method using a constant step-size parameter, $\alpha = 0.1$. Use $\varepsilon = 0.1$ and longer runs, say of 10,000 steps.

Exercise 2.7 (programming) Make a figure analogous to Figure 2.6 for the nonstationary case outlined in Exercise 2.4. Create a single long sequence of true action values $q_t^*(a)$ over 200,000 steps. As a performance measure for each algorithm (and parameter setting) use its average reward over the second 100,000 steps.