
Dynamic Abstraction in Reinforcement Learning via Clustering

Shie Mannor shie@mit.edu

Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139

Ishai Menache imenache@tx.technion.ac.il
Amit Hoze amithoze@alumni.technion.ac.il
Uri Klein uriklein@alumni.technion.ac.il

Faculty of Electrical Engineering, Technion, 32000 Israel

Keywords:
Reinforcement Learning, Q-Learning, Options, Hierarchical Reinforcement Learning, Clustering

Abstract

We consider a graph theoretic approach for
automatic construction of options in a dy-
namic environment. A map of the envi-
ronment is generated on-line by the learn-
ing agent, representing the topological struc-
ture of the state transitions. A clustering al-
gorithm is then used to partition the state
space to different regions. Policies for reach-
ing the different parts of the space are sep-
arately learned and added to the model in
a form of options (macro-actions). The op-
tions are used for accelerating the Q-Learning
algorithm. We extend the basic algorithm
and consider building a map that includes
preliminary indication of the location of “in-
teresting” regions of the state space, where
the value gradient is significant and addi-
tional exploration might be beneficial. Ex-
periments indicate significant speedups, es-
pecially in the initial learning phase.

1. Introduction

Improving the performance with experience is the hall-
mark of Reinforcement Learning (RL). There are quite
a few successful RL algorithms that theoretically solve
any problem that can be cast in the Markov Deci-
sion Process (MDP) framework. Unfortunately, many
RL techniques are not able to solve moderately large
problems in reasonable time. The difficulty in solving
such tasks is usually a result of the combination of the
size of the state space with the lack of immediate re-

Appearing in Proceedings of the 21 st International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the authors.

inforcement signal (the so-called “temporal credit as-
signment problem”). To date, there are three prin-
cipal approaches for addressing these problems. The
first approach is to consider a limited space of con-
trol strategies and search this space directly (Moriarty
et al., 1999), or within an actor-critic framework (see
Barto et al., 1983; Baxter & Bartlett, 2001). The sec-
ond approach is to apply low order approximations of
the value function (e.g., Bertsekas & Tsitsiklis, 1995).
The third approach is to decompose the control to a hi-
erarchy of several simpler tasks and learn each of them
independently (e.g., Dayan & Hinton, 1993, Dietterich,
2000, Sutton et al., 1999, see Barto & Mahadevan,
2003 for a detailed recent review). This decomposition
simplifies the learning problem in two ways. First, the
effective size of the state space is reduced since every
sub-task considers only a smaller number of relevant
states. Second, learning is accelerated since every sep-
arate task is easier to learn.

In this paper we consider the problem of automati-
cally discovering subtasks and hierarchies. Since in
many cases the environment is unknown (or partially
known), we cannot assume that the agent has the abil-
ity to identify desired subtasks beforehand. Even if the
agent gathers knowledge of the environment, the de-
composition to subtasks may not be straightforward.
Moreover, the collection of advantageous subtasks may
change and evolve throughout the learning process.
We refer the reader to Barto and Mahadevan (2003)
for further discussion on subtask discovery during the
learning process, termed “dynamic abstraction”, and
its impact on RL.

A common approach is to define subtasks in the state
space context. The learning agent identifies important
states, which are believed to possess some “strategic”
importance and are worthwhile reaching. The agent

learns sub-policies for reaching those key states. One
approach is to look for states with non-typical rein-
forcement (a high reinforcement gradient, for exam-
ple, as in Digney, 1998). This approach may not prove
useful in domains with delayed reinforcement. An-
other approach is to choose states based on their fre-
quency of appearance (see McGovern & Barto, 2001).
The motivation here is that states that have been vis-
ited often in the past are likely to be a part of the
agent’s optimal path. Exploration time may be saved
by having local policies for reaching those states di-
rectly. McGovern and Barto (2001) added the suc-
cess condition to the frequency measure—states serve
as potential subgoals if they are frequently visited on
successful paths but are not visited on unsuccessful
ones. A problem with frequency based solutions is
that the agent may need excessive exploration of the
environment in order to distinguish between “impor-
tant” and “regular” states, so that options are defined
at relatively advanced stages of the learning process.
A different approach was introduced in Menache et al.
(2002) where bottleneck states were defined as states
that separate well the initial and target states. Our ap-
proach deviates from these approaches by considering
clusters of states as intermediate stages in the learn-
ing process, rather than unique states, which leads to a
more robust and versatile learning procedure. We de-
fine each option as a sub-policy that allows the agent to
efficiently shift from one cluster of states to the other.

Our approach is to let the agent roam around the en-
vironment and then after some, possibly inaccurate,
information was collected perform a clustering algo-
rithm, and generate options for reaching the clusters.
This approach relies on the assumption that the path
towards achieving a complex goal passes through inter-
mediate stages (each consists of multiple states) that
occupy different parts of the state space. If those
stages are discovered, and a policy that reaches each of
them is separately learned, the overall learning proce-
dure may become simpler and faster. An additional
advantage of the clustering approach is that explo-
ration may become more efficient since the agent can
quickly wander to states that would be otherwise less
explored, since they may be harder to reach from the
initial states. The input for the clustering algorithm
consists of the agent’s recorded state transitions, which
may be seen as a topological representation of the
learning task dynamics. We then generalize the clus-
tering algorithm by suggesting to use not only the
state-transition map as an input, but also the cur-
rent value estimates. The suggested algorithm encour-
ages creating clusters with small deviation in the value
function. The idea is to encourage the agent to travel

between homogeneous clusters, increasing its proba-
bility to reach clusters with “interesting” values. In
essence, the process of creating clusters may be consid-
ered as bootstrapping. The clusters are formed early in
the learning process, much before convergence, and are
based on a rough estimate of the environment. Using
this rough estimate we improve the exploration, and
focus on promising areas.

The paper is organized as follows: In Section 2 we
describe the RL setup, extended to use options. The
clustering problem is formally defined in Section 3. We
consider two types of information that can be used
by the clustering procedure. First, we limit our at-
tention to clustering using topological state transition
information. We then suggest to incorporate the pre-
liminary value function estimation as well. Three ex-
periments are described in Section 4: a simple maze
world, the car-hill problem, and a more complicated
maze. Section 5 contains concluding remarks.

2. Reinforcement Learning with
Options

In this section we define the setup and survey the RL
with options. See McGovern et al. (1997) for further
details. We will consider a discrete time MDP with a
finite set of states S and a finite set of actions A. At
each time step t, t = 1, 2, . . . , the learning agent is in
some state st ∈ S. The agent can choose an action
at from the set of available actions at state st, A(st),
causing a state transition to st+1 ∈ S. The agent ob-
serves a scalar reward rt which is a (possibly random)
function of the current state and the action performed
by the agent. The agent’s goal is to find a map from
states to actions, called a policy, which maximizes the
expected discounted reward over time, IE{∑∞

t=0 γtrt},
where γ < 1 is the discount factor and expectation
is taken with respect to the random transitions, ran-
dom rewards, and possibly random policy of the agent.
A popular RL algorithm is the Q-Learning algorithm
(Dayan & Watkins, 1992). In Q-Learning the agent
updates the Q-function at every time epoch. The Q-
function maps every state-action pair to the expected
reward for taking this action at that state, and follow-
ing an optimal strategy from that point on.

We now recall the extension of Q-Learning to Macro-
Q-Learning (or learning with options, see McGovern
et al., 1997). An option is a sequence of (primitive)
actions that are executed by the agent (governed by
a “local” policy) until a termination condition is met.
Formally, an option is defined by a triplet 〈I, π, β〉,
where: I is the options input set, i.e., all the states
from which the option can be initiated; π is the op-

tion’s policy, mapping states belonging to I to a se-
quence of actions; β is the termination condition over
states (i.e., β(s) denotes the termination probability
of the option when reaching state s). When the agent
is following an option, it must follow it until it termi-
nates. When not following an option, the agent can
choose, at any given state, either a primitive action
or to initiate an option, if available (we shall use the
notation A′(st) for denoting all choices, i.e., the col-
lection of primitives and options available at state st).
The update rule for an option ot, initiated at state st,
is:

Q(st, ot) := Q(st, ot) + α(n(t, st, ot))
(

γτ max
a′∈A′(st+τ)

Q(st+τ , a′)−Q(st, ot)

+rt + γrt+1 + . . . γτ−1rt+τ−1

)
,

where τ is the actual duration of the option ot,
α(n(t, st, at)) is the learning rate function which de-
pends on n(t, st, ot), the number of times ot was ex-
ercised in state st until time t. The update rule for a
primitive action is similar with τ = 1.

We now add the automatic option generation pro-
cedure and show how to combine it with Macro-Q-
Learning. The outline of the learning procedure is de-
scribed in Fig. 1. After some initiation conditions are
met a clustering algorithm is invoked and options are
created. The options in the context of clusters consist
of supplying the shortest-path policies from each clus-
ter to neighboring clusters to which it is connected(one
option per neighboring cluster). We now supply addi-

Repeat:

1. Interact with environment and learn using
Macro Q-Learning.

2. Save state transition history.

3. If clustering conditions are met, and the clus-
tering procedure was not invoked previously:

(a) Translate the state transition history to a
graph representation.

(b) Run clustering algorithm.
(c) Learn the options for reaching neighboring

clusters from each cluster.
(d) Add the new options to the agent’s

choices.

Figure 1. Outline of the Q-Learning with options, based on
clustering.

tional details on the different steps of the algorithm.

Activating clustering conditions: The timing of
activating the clustering algorithm introduces a trade-
off. On the one hand, we would like the clustering
algorithm to be performed early in the learning pro-
cess, where the impact on the exploration would be
the most significant. On the other hand, if clustering
is performed too early, the information obtained may
not suffice for finding meaningful clusters, and the re-
sulting options would contribute less to the learning
effort. We found that a decent activation condition
for the domains we experimented with is to wait un-
til no new states were encountered for T time steps
(or N episodes), indicating a stable state-transition
model, with T (or N) being a task-dependent parame-
ter. Conditions for activating the clustering algorithm
should in general be task dependent and call for fur-
ther study.
Translating the graph from history: Each visited
state becomes a node in the graph. Each observed
transition s → s′ (s, s′ ∈ S), is translated to an edge
(s, s′) in the graph.
Learning an option: After clusters have been cho-
sen, a local policy for reaching neighboring clusters is
learned by an Experience Replay (Lin, 1992) proce-
dure. Dynamic Programming (DP) is performed sepa-
rately on each cluster, in order to determine the short-
est paths to the neighboring clusters. The inputs for
the DP are as follows: All border states belonging to
neighboring clusters are assigned an artificial positive
reward; the recorded experience serves as an estima-
tion for the state transition probabilities. The termi-
nation probability of the option β(s) is set to 1 for
border states and 0 for internal states (in addition, we
limit the maximal number of actual time steps of an
option to some τmax À 1). The details of the cluster-
ing algorithm itself are the topic of the next section.

3. Clustering

In order to explain the use of a clustering algorithm in
the context of option discovery in RL, we first briefly
review the graph theoretic problem it solves. Consider
a directed graph G = (V, E) (V is the set of nodes and
E is the set of edges). We denote by f a function mea-
suring the quality of a cluster. The function f takes
as input a subset of nodes C ⊆ V and the set of cor-
responding edges {(s, s′)|s, s′ ∈ C} ⊆ E and returns a
real number representing the cluster’s quality. Denote
by ECi→Cj the set of edges that originate in Ci and ter-
minate in Cj and by ECi↔Cj the set ECi→Cj ∪ECj→Ci

of edges that connect Ci to Cj or vice versa. In addi-
tion, let us define the inter-cluster quality function g.
The function g(Ci, Cj , ECi↔Cj) takes two sets of nodes
(Ci and Cj) and the set of edges between them, and

returns a number representing the separation quality
between the clusters. The clustering problem is to de-
termine the best partition of the (encountered) states
for a given graph.

max
k≥1,C1,C2,...,Ck s.t.⋃

Ci=V and Ci∩Cj=∅ for i6=j

k∑

i=1

f(Ci, ECi→Ci)

+
∑

i 6=j

g(Ci, Cj , ECi↔Cj). (1)

The choice of functions f and g is important to the
success of the algorithm. However, it turns out that
even without laboriously tuning the parameters of f
and g, reasonable results were obtained.

The maximization problem posed in Eq. (1) is not triv-
ial. In fact, the problem is often NP-hard even for
“simple” f and g. We refer the reader to Jain and
Dubes (1988) and Hochbaum (1996) for a detailed dis-
cussion on the complexity of various variants of clus-
tering algorithms and to Jain et al. (1999) for a survey
of the vast number of applications. Given a choice of f
and g we applied the so-called agglomerative approach
(Anderberg, 1973; Jain & Dubes, 1988). According to
this approach one starts with more clusters than de-
sired and then merges the clusters by selecting the pair
whose merging improves Eq. (1) by most. The algo-
rithm (which is polynomial in the number of nodes,
assuming that a calculation of f and g can be done in
polynomial time) is described in Fig. 2.

Begin with n clusters. We selected each initial clus-
ter to contain one state (i.e., n = |S|).
Repeat until stopping conditions are met:

1. Go over all pairs of neighboring clusters (i.e.,
i, j such that ECi↔Cj 6= ∅).

2. Calculate the utility in Eq. (1) with merging
Ci and Cj .

3. Choose the pair whose union contributes the
most to the utility.

Figure 2. A greedy agglomerative clustering algorithm.

There are several possible stopping conditions for the
clustering algorithm. For example, the agent can wait
until the total utility in Eq. (1) reaches a predeter-
mined value. Another possible stopping condition is
to wait until the difference in utilities between two
consecutive clustering iterations is less than some pre-
determined threshold. In the experiments reported in
this paper we assumed that the number of clusters is

predetermined, so that the stopping condition is sim-
ply to stop when the number of clusters reaches some
predetermined k.

We now introduce and motivate two possible cluster-
ing methodologies, whose solution is likely to produce
useful options. We start with clustering based on topo-
logical information in Section 3.1. We then present in
Section 3.2 an extension that considers reward related
information in addition to topological information.

3.1. Clustering by Topology

As the learning agent interacts with the environ-
ment, information is gathered regarding the topolog-
ical structure of the environment. We consider two
desired properties of the partition of states to clus-
ters. First, the size of the clusters should be roughly
the same. If a cluster is too large then reaching it
might be meaningless, and the options that reach it
would probably not contribute much to the learning
process. On the other hand, if the cluster is too small
then the options reaching it may not play a signifi-
cant role in the overall exploration effort. Second, the
clusters should be well separated. It is preferable that
neighboring clusters are distinct and have minimal in-
teraction. This requirement captures the bottleneck
notion of McGovern and Barto (2001) and Menache
et al. (2002), where it was argued that bottlenecks
between well separated clusters of states make useful
intermediate subgoals.

Various choices for f and g may satisfy the above prop-
erties. We explored several heuristic possibilities for f ,
but none proved significantly better than using a triv-
ial f = 0. We used

g(Ci, Cj , ECi↔Cj) =
min(|Ci|, |Cj |) log(max(|Ci|, |Cj |))

|ECi↔Cj |
.

(2)
In words, g is proportional to the size of the smaller
cluster, log the size of the larger, and inversely pro-
portional to the number of edges that connect the two
clusters (also g ≡ 0 if ECi↔Cj = ∅). This particular
choice of g is justified as follows. The general optimiza-
tion procedure (Eq. (1)) tries to maximize the sum of
g between clusters. As a result, a small cluster would
cause small value of g and is therefore likely to be
“swallowed” by some neighboring cluster. In addition,
a term of the form log(max(|Ci|, |Cj |)) encourages big
clusters to swallow small ones. Since the total size of
the clusters

∑ |Cj | equals |S|, and does not change
with the partition, the numerator encourages all the
clusters to have roughly the same size. A different
interpretation of the numerator in Eq. (2), is to con-
sider the entropy of the clustering,

∑
Pi log Pi, (Pi is

the fraction of states in cluster i) which achieves its
maximum when P is a uniform distribution. The de-
nominator decreases for well separated clusters (e.g.,
if there is a “bottleneck” between them) so that g in-
creases for clusters that are distinctively apart.

3.2. Clustering by Value

In addition to the topological information (state tran-
sitions) there is some reward related information,
which the learning agent gathers. When the clustering
process is initiated, this information may be far from
being complete, however it can be used in order to
look for “interesting” regions in the state space. For
example, an area in the state-space with a dense con-
centration of distinct rewards should not be contained
in a large cluster, since careful control is required to
maximally exploit it. On the other hand, an area with
a few rewards may be regarded as one cluster, since
the only interest of the agent is to exit it and explore
other areas. Thus, we consider the current estimate
of the value function and use it in order to encour-
age separating clusters with an inhomogeneous value
estimation. Specifically, we use a different g,

g′(Ci, Cj , ECi↔Cj) = g(Ci, Cj , ECi↔Cj) (3)

·
(

∆(ECi↔Cj)
|ECi↔Cj |

)ν

,

where g was specified in Eq. (2) and ∆(ECi↔Cj) =∑
(s,s′)∈ECi↔Cj

(1 + |V (s) − V (s′)|) is the sum of
differences of the value function (that is V (s) =
maxa∈A(s) Q(s, a), where the current estimates of the
Q-function are considered) of the edges connecting the
two clusters. The constant ν > 0 is chosen by trial and
error. The additional term is intended to encourage
uniting clusters with a small value gradient.

4. Experiments

In this section we describe three experiments. We start
with a simple maze-world with a single initial state
and a single goal and compare standard Q-Learning
with Q-Learning with options that are discovered us-
ing clustering based on topology. We then consider
the classical car-hill problem and perform a similar
comparison. We finally consider a larger maze with
multiple positive and negative rewards, and show the
advantage of clustering by value.

4.1. A Simple Maze

The first experiment is with a maze environment de-
scribed in Fig. 3. This is a maze with approximately
1,000 states. In each state the agent can move to one

of the four directions, unless there is an obstacle in
that direction. The agent starts from the upper left
corner and its goal is to reach the bottom right cor-
ner as quickly as possible. The immediate reward the
agent obtains is 0 except for the goal state, where it
is +20. Each trial starts in the upper left corner and
terminates in the goal state. The discount factor was
set to γ = 0.9. There is a probability of 0.1 that the
agent fails to move in the desired direction. We tested
both standard Q-Learning and Q-Learning with op-
tions using clustering by topology (see Section 3.1).
The initial Q-values were set to 0 and the learning
rate was a constant α = 0.1. An ε-greedy exploration
was used for both algorithms, with ε = 0.3. The num-
ber of clusters was set in advance to 19 (there are 19
rooms). The clustering was initiated if no new state
was observed in the last N = 10 episodes. The maze
is essentially comprised of rooms that are “well sepa-
rated”, so the clustering algorithm worked particularly
well, matching clusters to rooms in almost every run.

G

S

Figure 3. The simple maze containing 19 rooms and a sin-
gle goal. The goal is marked as “G” in the bottom right
corner. The initial state is marked “S” in the top left cor-
ner. The optimal policy is shown using arrows.

Fig. 4 presents the performance of the greedy policy
derived from the current Q-function as a function of
the trial number for both algorithms. This graph rep-
resents the expected number of steps to the goal (on a
log scale) of the greedy policy w.r.t. to the Q-function
learned at the end of the trial. It can be observed
that Q-Learning with clustering approaches optimal-
ity much earlier than standard Q-Learning. The ad-
vantage of using the clustering algorithm is further
demonstrated in Fig. 5. Here we show the Q-value of
the initial state as a function of time, where each in-
teraction with the environment takes one unit of time.
Learning is accelerated on average by a factor of more
than two, with a lower variance at the initial learning

phase (a smaller variance).

0 50 100 150 200
1.5

2

2.5

3

3.5

4

4.5

5

Trial number

lo
g 10

 n
um

be
r

of
 s

te
ps

 to
 g

oa
l

Q learning with Clusters
Q Learning

Figure 4. Simple maze performance. Number of steps to
goal for the greedy policy. We compare Q-Learning and
Q-Learning with clustering by topology, as a function of
the trial number. The log10 of the average steps to goal of
the greedy policy is depicted, averaged over 100 runs.

0 1 2 3 4 5 6 7 8 9

x 10
6

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Time step

Q
−

va
lu

e
of

 fi
rs

t s
ta

te

Q learning with Clusters
Q Learning

Figure 5. Simple maze performance. The Q-values of the
initial state for Q-Learning and Q-Learning with cluster-
ing by topology as a function of time (number of steps).
Results are averaged over 100 runs. The thin dotted lines
represent plus/minus one empirical standard deviation.

4.2. The Car-Hill Problem

The second experiment considers the well known car-
hill problem. In this problem a car tries to climb a
one dimensional hill. In order to climb it, the car has
to move in the opposite direction first, to build mo-
mentum, and then climb the hill. The state space
of this problem is the position (|p| ≤ 1) and velocity
(|v| ≤ 3). The agent tries to get to the right, i.e., to
p = 1. The control decision is the direction of accel-
eration (either left or right), see Ernst et al. (2003)
for the exact specifications that were used here. We
considered continuous state space in discrete time, and

discretized the space uniformly to a 50×50 space. The
discretization was performed only with respect to the
learning process - the dynamics were kept continuous
(we used the closest point when referring to Q-values).

We tested standard Q-Learning and Q-Learning with
clustering by topology on the car-hill domain. For
the second algorithm we used k = 14 clusters (in
practice, the number of clusters k had little effect on
performance; using k ∈ [10, 20] gave similar results).
The clustering algorithm was invoked after N = 10
episodes where new states were not observed. The
learning parameters for the two algorithms remain the
same as in the previous experiment (Section 4.1), with
the reward being +1 to get to the goal, −1 to be
thrown away at the left side, and 0 otherwise. In Fig. 6
we show the clusters generated by a typical run. It can
be seen that there is a single large cluster (noted by ·)
and then small clusters marked by the letters “a”-“m”.
The optimal policy turned up to be gaining height on
the opposite direction (e.g., reaching cluster “b”), and
then moving to cluster “k”, possibly through cluster
“g”. We note that a significant part of the state space
was never visited (the white area), indicating efficient
exploration. In Fig. 7 we compare the Q-values of the
initial state (p = −0.5 and v = 0), showing a signifi-
cant improvement made by the clustering approach.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

a

a

a

a

a
a

a

a

a

b

b

b

c

c

c

c
c

c

c
c

d

d d
d

d

d
d

d
d
d

d

d

d

d
d

d

d

d

d

e

e e

e

e

e

e

e

f
f

f

f

f

f

f
f

f

g
g

g

g

g

g
g

g

g
g

g

g
g
g
g

g
g
g
g

g

i

i
i

i

i i

i

i
i

h

h

h

h

j

j

j

j j

l

l
l

l
l
l

k k
k

k
k

k
k

m
m m

Position

V
el

oc
ity

Figure 6. The clusters for the car-hill problem. The · sign
represents the biggest cluster, the rest of the clusters are
denoted by a letter (“a” to “m”). The target is to reach a
position of p = 1, which is achieved within cluster “k”.

4.3. A Multi-Reward Maze

We now consider a larger (50 × 50 states) and more
complicated maze with multiple positive (+20) and
negative (−20) rewards (see Fig. 8 for the maze map).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time step

Q
−

va
lu

e
of

 fi
rs

t s
ta

te

Q learning with Clusters
Q Learning

Figure 7. Car-hill performance. The Q-value of state
(p, v) = (−0.5, 0) (the initial state) for Q-Learning and Q-
Learning with clustering by topology as a function of time
(number of steps). Results are averaged over 100 runs.
The thin dotted lines represent plus/minus one empirical
standard deviation.

The maze follows similar rules to the simpler maze con-
sidered in Section 4.1, however multiple starting states
are possible (the agent starts from one of the possi-
ble starting states, at random). We ran Q-Learning,
Q-Learning with clustering by topology (utility func-
tion of Eq. (2) with k = 40 clusters), and Q-Learning
with clustering by value (utility function of Eq. (3)
with ν = 10 and k = 40 clusters). The rest of the
learning parameters remained as in Section 4.1. In
Fig. 9 we compare the average Q-value of the initial
states using the three algorithms. Clearly, our cluster-
ing approach has a significant advantage over standard
Q-Learning. Moreover, the performance of clustering
by value is better than the performance of clustering
only by topology, as the steep rise in performance (the
“knee”) starts earlier. In Fig. 8 we present the differ-
ent clusters generated by the two clustering algorithms
(clusters boundaries are marked with a dotted line).
Evidently, the clustering by value concentrates more
on the “interesting” region (with high reward density)
in the center of the maze.

5. Concluding Remarks

In this paper we explored a clustering approach to
automatically generating options in RL. We consid-
ered two alternative clustering heuristics and showed
that the concept works well in experiments. Our learn-
ing algorithm has the ability to define useful clusters,
which can not be easily figured out, even when the
model of the environment is known. As a consequence,
learning is enhanced in tasks, which do not possess a
natural hierarchical structure (e.g., the car-hill prob-

S
S

S

S

S

S

S

S

S
S

S

S

O

X

O

X

O

X

O

X

O
X

O
X

O

X
O

X

O

X
O

X

S
S

S

S

S

S

S

S

S
S

S

S

O

X

O

X

O

X

O

X

O
X

O
X

O

X
O

X

O

X
O

X

Figure 8. The multi-reward maze with the clusters gener-
ated by the two clustering algorithms (one map per al-
gorithm). Each possible starting state is marked with an
“S”, states with positive reward are marked with “O” and
states with negative reward are marked with “X”. The up-
per graph is the map generated by clustering by topology
and the lower graph is the map generated by clustering by
value. Cluster boundaries are presented by a dotted line.

lem).

The clustering approach is not a panacea for finding
options in all types of MDPs. We expect it to enhance
learning when the state space is well separated. The
identification of conditions under which the generated
options are useful requires further study.

The most important research direction, in our opinion,
involves scaling up the method. The examples pre-
sented in this paper are of moderate size, and while
the performance of the clustering method is encourag-
ing, some effort should be devoted to scaling it up to
real-world applications. For example, when the state
space is continuous the construction of the graph it-
self is an issue as multiple states should probably be

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

0

2

4

6

8

10

12

14

16

18

20

Time step

A
ve

ra
ge

d
Q

−
va

lu
e

of
 fi

rs
t s

ta
te

Clustering by Value
Clustering by Topology
Q Learning

Figure 9. Multi-reward maze performance. The Q-value
of the initial states (averaged over the 12 possible ini-
tial states) for Q-Learning, Q-Learning with clustering by
topology, and Q-Learning with clustering by value. Results
are averaged over 100 runs. The thin dotted lines represent
plus/minus one empirical standard deviation.

aggregated before using the clustering algorithm. In
addition, the condition for activating the clustering al-
gorithm should be modified.

Additional directions, which we believe are promis-
ing include: performing the clustering multiple times,
modifying the available options during the learning
process as more information becomes available; “for-
getting” options that are not useful or even damaging
over time; using multiple alternative clustering func-
tions, and learning to use the functions that produced
the most useful options (i.e., meta-learning the cluster-
ing objective function); and finally an extension of the
ideas presented here to the partial observed domains
(cf. Theocharous & Kaelbling, 2003).

Acknowledgements

We are grateful for the helpful suggestions made by
three anonymous reviewers. The work of S.M. was
partially supported by the National Science Founda-
tion under grant ECS-0312921.

References

Anderberg, M. (1973). Cluster analysis for applications.
Academic Press.

Barto, A., & Mahadevan, S. (2003). Recent advances in
hierarchical reinforcement learning. Discrete Event Sys-
tems Journal, 13, 41–77.

Barto, A., Sutton, R., & Anderson, C. (1983). Neuron-
like adaptive elements that can solve difficult learning

control problems. IEEE Transactions on Systems, Man,
and Cybernetics, 13, 834–846.

Baxter, J., & Bartlett, P. L. (2001). Infinite-horizon policy-
gradient estimation. Journal of Artificial Intelligence
Research, 15, 319–350.

Bertsekas, D. P., & Tsitsiklis, J. N. (1995). Neuro-dynamic
programming. Athena Scientific.

Dayan, P., & Hinton, G. E. (1993). Feudal reinforcement
learning. Advances in Neural Information Processing
Systems 5. Morgan Kaufmann.

Dayan, P., & Watkins, C. (1992). Q-learning. Machine
Learning, 8, 279–292.

Dietterich, T. G. (2000). Hierarchical reinforcement learn-
ing with the MAXQ value function decomposition. Jour-
nal of Artificial Intelligence Research, 13, 227–303.

Digney, B. (1998). Learning hierarchical control structure
for multiple tasks and changing environments. Proceed-
ings of the Fifth Conference on the Simulation of Adap-
tive Behavior.

Ernst, D., Geurts, P., & Wehenkel, L. (2003). Iteratively
extending time horizon reinforcement learning. Proceed-
ings of the 14th European Conference on Machine Learn-
ing (pp. 96–107).

Hochbaum, D. (1996). Approximation algorithms for NP-
hard problems. Brooks/Cole Publishing Co.

Jain, A., & Dubes, R. (1988). Algorithms for clustering
data. Prentice Hall.

Jain, A., Murty, M., & Flynn, P. (1999). Data clustering:
A review. ACM Computing Surveys, 31, 264–323.

Lin, L. G. (1992). Self-improving reactive agents based on
reinforcement learning, planning and teaching. Machine
Learning, 8, 293–321.

McGovern, A., & Barto, A. G. (2001). Automatic discovery
of subgoals in reinforcement learning using diverse den-
sity. Proceedings of the 18th International Conference on
Machine Learning (pp. 361–368). Morgan Kaufmann.

McGovern, A., Sutton, R. S., & Fagg, A. H. (1997). Roles
of macro-actions in accelerating reinforcement learning.
Proceedings of the 1997 Grace Hopper Celebration of
Women in Computing (pp. 13–18).

Menache, I., Mannor, S., & Shimkin, N. (2002). Q-Cut -
dynamic discovery of sub-goals in reinforcement learn-
ing. Proceedings of the 13th European Conference on
Machine Learning (pp. 295–306). Morgan Kaufmann.

Moriarty, D., Schultz, A., & Grefenstette, J. (1999). Evo-
lutionary algorithms for reinforcement learning. Journal
of Artificial Intelligence Research, 11, 199–229.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between
MDPs and semi-MDPs: A framework for temporal ab-
straction in reinforcement learning. Artificial Intelli-
gence, 112, 181–211.

Theocharous, G., & Kaelbling, L. P. (2003). Approximate
planning in POMDPs with macro-actions. To appear in
Advances in Neural Processing Information Systems 17.

