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Abstract

We present a method for learning higher-
order polynomial functions from examples
using linear regression and feature construc-
tion. Regression is used on a set of train-
ing instances to produce a weight vector for
a linear function over the feature set. If
this hypothesis is imperfect, a new feature
is constructed by forming the product of the
two features that most effectively predict the
squared error of the current hypothesis. The
algorithm is then repeated. In an extension
to this method, the specific pair of features to
combine is selected by measuring their joint
ability to predict the hypothesis’ error.

1 INTRODUCTION

We present a method for learning higher-order poly-
nomial functions from examples using linear regression
and feature construction. The linear regression algo-
rithm takes a training set and returns a hypothesis
represented as the coefficients for a linear function over
the feature set. If this hypothesis is less than perfect
when applied to the training set, a new feature is con-
structed by forming the product of the two features
that most effectively predict the squared error of the
current hypothesis; and then the process is repeated.
In an extension to this method, the specific pair of fea-
tures to combine is selected by measuring their joint
ability to predict the hypothesis’ error. Preliminary
experiments with this approach are promising and sug-
gest some extensions.

We begin this paper with a description of the learn-
ing problem followed by a general explanation of our
method. We then describe the algorithm and illustrate
its use on two simple examples. We conclude with a
short discussion of anticipated extensions of this re-
search.
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2 THE PROBLEM

The problem we are interested in is learning polyno-
mial functions from examples: Given a set of real-
valued vectors {y,x1,...x,}, learn the function y =
f(x). This task represents a subset of the general
problem of multivariate function approximation (see
(Breiman et al., 1984; Friedman, 1988)).

When f(z) is a first-order polynomial it can be repre-
sented as a linear function over the independent vari-
ables x:

flz) = wo + Zwil‘i
=0

We can derive the coefficient vector w in this equa-
tion by doing a linear regression on the training in-
stances. Equivalently, we could induce the coefficients
by training a simple linear network using the LMS rule,

Aw; = ax;(f(2) —y), where « is the learning rate and
f(#) is the network’s estimate of f(z):

Aw; = oza:l(f(a:) )

1 = T

FEither of these methods will find the set of coeffi-
cients that form the optimal linear approximation f()
in terms of the minimum mean squared error on the
training instances.

Unfortunately, linear functions are inadequate for rep-
resenting higher-order polynomials. To learn these we
must either use a learning method that searches a more
complex hypothesis space (e.g., a multi-layered con-
nectionist network) or change the set of features used
as the basis for the linear function. The method de-
scribed in this paper implements the latter approach
through a new form of feature construction.



3 THE METHOD

As a simple example, consider the function y = 2x1 +
bxows. Clearly, y is not linear over the set of primitive
features {1, 22, 23}. If, however, we add a new feature
x' = zox3, then y can be represented as a linear func-
tion over this new basis: y = 2z + 52’. The problem
with this sort of feature construction is knowing which
new features to construct. For example, for a polyno-
mial of order § with training instances described by
n independent features and with ¢ constructive opera-
tors, the cardinality of the space of potentially useful
new features is of order ¢(n 4 1)°.

In our method we control the complexity of feature
construction with two major constraints. First, we
use multiplication as our only constructive operator.
For polynomial functions this single operator is suffi-
cient; its use for this problem domain can be viewed
as a piece of domain knowledge. Second, the multi-
plication operator we use is binary. This means we
can combine only two features at a time, and must ap-
ply the operator iteratively to construct higher-order
features. For example, to construct the new fea-
ture x1x.x3 would require two iterations of feature
construction, e.g. ' = product(zy,x,) followed by
2" = product(z’, 23).

Having just this single binary operator reduces the

number of candidate new features at any given mo-
ment to . This number is still rather large to sim-

ply add a121 candidates, most of which would be useless
anyway. Instead, we selectively construct new features
one at a time by rating all features individually and
then forming the product of the pair of features with
the highest ratings. In our method, features are rated
according to their ability to predict the squared error

of the hypothesis (cf., Sanger, 1991).

The rational behind this way of rating features can be
explained by viewing the model in terms of a single
unit network. After the network is trained on a set of
examples it will accurately predict y for some training
instances but not for others. On the instances where
its prediction is poor, the squared error (the square of
the difference between the predicted and actual val-
ues) will be high. When the squared error is high, the
largest adjustments are made by the learning rule, and
the largest of these are made in the coefficients whose
features have the largest magnitudes at the time (re-

call Aw; = ax;(f(x)—y)). If, after the network coeffi-
cients have stabilized, a given feature z; still tends to
be high when the error is high, this implies that this
unit is relevant to the target function but by itself it
is unable to accurately contribute to the prediction of
the function’s value.

One way to measure the ability of a feature to pre-
dict the squared error is to measure the correlation
between the squared error and the square of the fea-

ture’s value: correlation; =E[e?z?

7] where E stands
for the expected value. This is the approach proposed
by Sanger (1991), who notes that this correlation is
proportional to the variance of the coefficients in the
limit as they approach stability.! We have used this
feature-rating method successfully, but we have also
had a problem with it: if a new feature such as z7 is
constructed, its correlation is typically very similar to
that of its single parent z;, and therefore it is rated
highly for inclusion in a further new features. Con-
sequently, the system proceeds to construct more and
more complex features in the same terms, contributing

little new to the feature set.

We have modified Sanger’s idea to give it a competi-
tive quality that discourages the formation of features
that do not improve the prediction of the squared er-
ror. Instead of using the correlations between squared
error and squared value we use the coefficients from a
regression of the squared error over the squared values:
Regress(e?|z?). The equivalent network is as shown
below:

Ap; = oza:z(eAz —e?)

)

We refer to these coefficients p as “potentials” because
we use them to determine a feature’s relative potential
for being useful as part of a new feature. To construct
a new feature we take the product of the two features
with the highest potentials.?

4 THE ALGORITHM

The algorithm to implement our method is written as
pseudo-code in Figure 1. After normalizing the train-
ing instances such that all features have zero mean and
variance of one, a regression is performed (step 1) on
the training set to learn the best set of coefficients for
predicting y given x. If the error (the residual) is ap-
proximately zero, then the function has been learned
and the algorithm halts; otherwise feature construc-
tion is initiated (step 2). A second regression is per-
formed to derive the potentials p for predicting the
squared error from the (normalized) values of z7. The
product of the two features with the highest potentials
becomes the definition of a new feature. This feature

'Note that this differs from “cascade correlation”
(Fahlman and Lebiere, 1990) in that we correlate with the
square of the error, rather that with the error itself.

21f the two features with the highest potentials have
already been used to define a feature then the next best
pair is used.



step 0: initialize variables

I = number of instances

n = number of features

X =norm({{zl..ah}. {=1,..2L}})

Y = norm({y*...y"})

FeatureSet = {X;...X,,}
step 1: do the regression

w = Regress(Y|X)

I I i i

SquaredError = azi=1((w0 + Z]=1 wyxy) —y )2

if SquaredFrror = 0 return results and STOP.
step 2: construct new feature

(zn)?}})

X2 = norm({{(21)...(z5)?}.. {(2])?, ...
p = Regress(Squared Error| X?)
Indexz, = index(heighest(p))

Indexz, = index(second — heighest(p))
NewFeature = product(xmdeml , Tindexs
FeatureSet = FeatureSet + NewFeature
n=n-+1

X = norm({{x%, "'xgz—lapTOdUCt(lende.rl ’ lende.rg)}

{CE{, "'xgz—lapTOdUCt(innde.rl ) CEijncle.rg)}})

GOTO step 1.

Figure 1: The Potentials Algorithm

is added to the feature set and all the instances are up-
dated and renormalized. The algorithm then returns
to step 1 and the process is repeated.

5 AN EXAMPLE

Figure 2 shows a simple example illustrating the algo-
rithm and some of its problems. For this example 200
training instances were created by randomly generat-
ing five real-value variables (range = [0,1]) and calcu-
lating their values for the function y = 2 + 3zy22 +
4xsxqxs. In addition to y and these five relevant vari-
ables w1, o, x3, 24, and x5, four distracter variables
zg, x7, ¥g, and xg were added to each instance (ran-
domly generated in the same way).

In this example, the algorithm derived the correct
function in the seventh cycle, after creating six new
terms: 5Ly, Laly, T4X4aX5T5, £3X4X5, L2X2, and r1X9.
The output from each cycle reports the following in-
formation:

Coeffs the coefficients for each feature resulting from
the linear regression

Potentials the potentials used to select the two fea-
tures to combine into a new term

Residual the total squared error of the best linear
model of the target function as derived by the
regression algorithm

New Terms the new term that was constructed

One thing to notice in this example is that the algo-
rithm completely disregards the distracter variables (a
characteristic shared by the correlation method). This
has been a consistent result in all our tests in which the
training set was sufficiently large for the complexity of
the terms in the function. As the number of primitive
features in a term increases, each individual feature’s
contribution to the function’s value decreases; as this
contribution becomes small it becomes difficult to sep-
arate from the random noise of the distracters, unless
the size of the training set is appropriately increased.

There are two problems with this example, one obvi-
ous and the other more subtle. First, four unnecessary
features were constructed: zbzb, 323, z4xzdxbxb, and
xlxl. These did not prevent solution of the problem,
but they did slow down the process; for more complex
functions these additional terms could become prob-
lematic. Second, the target function is such that the
potentials of the relevant features are significantly dif-
ferent depending upon which of the two terms of the
function they participated in. As a result, the algo-
rithm is able to determine which relevant features go
together. So for example, 1 1s in a term of two fea-
tures having a coefficient of 3 whereas z3 is in a term
of three features weighted by 4; consequently their ini-
tial potentials are quite different. If we had used the
function y = z1x9 + w3xs the algorithm would not
have been able to tell that x; should be paired with
x5 rather than with xz or x4, other than by chance.

6 JOINT POTENTIALS

The example discussed above shows that the method
of potentials is good at identifying which terms are
relevant to the function, but not at determining which
combinations of these terms are relevant. To remedy
this shortcoming we developed the notion of “joint po-
tentials,” that is, the potentials of pairs of features.
To compute the potentials of all pairs of n features
is not feasible as it would require a regression on n?
variables. Instead, we restrict attention to the pairs
of features that appear most promising according to
the product of the potentials of their constituent fea-
tures. For the m most promising pairs, for m << n?,
we perform another regression onto the squared error.
The coefficients of this regression are called the joint
potentials. The pair with the highest joint potential
is then selected as the next new feature. This is basi-
cally a traditional generate-and-test approach to fea-
ture construction,® but guided by the potential ratings
of the individual original features.

The example run in Figure 3 shows the results of using
this method on the training set from the first example
(using n = m = 9). This time the algorithm constructs
the minimum number of new features required to learn

?As in, e.g., (Ivakhnenko, 1971).



Cycle 1: 1 2 3 4 5 6 7
Coeffs: -0.19 0.14 0.24 0.31 0.17 0.48 0.03
Potentials: 0.22 0.24 0.25 0.32 0.33 0.01 0.08
Residual: 193 New Terms: X5X5

Cycle 2: 1 2 3 4 5 6 7
Coeffs: -0.20 0.14 0.23 0.31 0.17 0.48 0.02
Potentials: 0.22 0.24 0.25 0.33 0.38 0.01 0.07
Residual: 193 New Terms: X4X5

Cycle 3: 1 2 3 4 5 6 7
Coeffs: -0.20 0.14 0.24 0.31 0.18 0.48 0.02
Potentials: 0.26 0.23 0.25 0.05 0.07 0.03 0.07
Residual: 193 New Terms: X4X4X5X5

Cycle 4: 1 2 3 4 5 6 7
Coeffs: -0.22 0.16 0.25 0.25 0.24 0.46 -0.05
Potentials: 0.19 0.22 0.24 -0.00 -0.01 -0.01 0.09
Residual: 189 New Terms: X3X4X5

Cycle 5: 1 2 3 4 5 6 7
Coeffs: 0.03 -0.25 0.09 0.34 -0.01 0.27 0.07
Potentials: 0.51 0.59 0.02 0.02 -0.09 0.01 -0.04
Residual: 69 New Terms: X2X2

Cycle 6: 1 2 3 4 5 6 7
Coeffs: 0.02 -0.22 0.09 0.33 -0.01 0.28 0.06
Potentials: 0.51 0.58 0.03 0.03 -0.08 -0.00 -0.04
Residual: 68 New Terms: X1X2

Cycle 7: 1 2 3 4 5 6 7
Coeffs: -0.00 0.00 -0.00 0.00 0.00 0.00 -0.00
Residual: 0
Solution: (+ 2.0 (* 4.0 X3 X4 X5) (* 3.0 X1 X2) )
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Figure 2: Application of the algorithm to the target function y = 24 3z125 + 4xzzsxs. The training set included

four distracter variables and 200 examples.

the target function. The information displayed on each
cycle now includes the top four joint potentials (limited
to four for display purposes).

The example run in Figure 4 shows how the joint
potentials method also solves the problem of deter-
mining which pairs of relevant features belong to-
gether. Recall our statement that functions of the
form y = @129 + 23wy (where each term is of equal
weight and length) are difficult for the straight poten-
tial method because it has no way of deciding how to
pair features. This third example demonstrates that
the joint potential selection method can correctly de-
cide which of the relevant features to combine. Notice
that if the algorithm had used the (non-joint) poten-
tials to pick the new feature pair on cycle 1, it would
have created the useless new feature ;x4 since 1 and
x4 have the two highest potentials. Using joint poten-
tials, the relevant feature x5 is constructed instead.

7 EXTENSIONS

This research 1s still preliminary. We are in the process
of designing more thorough tests of this approach and
we are developing a better theoretical explanation for
when and why this approach works. In addition we
are exploring several new ideas, among them:

An incremental algorithm. The current algorithm
assumes that all the instances are available at the
outset. We intend to make it able to construct
features and learn functions incrementally, i.e., by
processing each example only once.

Comparisons. We are currently working with Sanger
to obtain direct comparisons with his original
method on the basis of learning rate and com-
putational requirements.

Multiple new features per cycle. Rather
than adding just a single feature per cycle we are
working on a method that adds a set of features
based on their potentials or joint potentials.

Application to more complex functions.
Because we have constrained our method to the
use of a multiplication operator the domain of
solvable problems is quite limited. We are explor-
ing the use of additional constructive operators,
such as division, roots, and transcendental func-
tions.

Pruning of unnecessary features. As we saw in
the above examples, the method of potentials 1s
quite good at identifying irrelevant features. It
should be a simple matter to use this information
to prune the feature set and thereby reduce the
computation at each cycle.



Cycle 1: 1 2 3 4 5 6 7

8 9

Coeffs: -0.19 0.14 0.24 0.31 0.17 0.48 0.03 0.05 0.58
Potentials: 0.22 0.24 0.25 0.32 0.33 0.01 0.08 0.01 0.05
Joints: ((260 5 . 4) (248 5 . 3) (246 4 . 3) (200 4 . 4))
Residual: 193 New Terms: X4X5

Cycle 2: 1 2 3 4 5 6 7 8 9 45
Coeffs: -0.19 0.14 0.24 0.30 0.18 0.48 0.03 0.05 0.57 0.05
Potentials: 0.26 0.22 0.25 0.05 0.02 0.03 0.08 0.02 0.03 0.47
Joints: ((306 10 . 3) (268 10 . 1) (260 10 . 2) (235 10 . 10))
Residual: 193 New Terms: X3X4X5

Cycle 3: 1 2 3 4 5 6 7 8 9 45 345
Coeffs: 0.04 -0.26 0.09 0.37 -0.04 0.27 0.10 0.22 0.42 -0.26 4.07
Potentials: 0.52 0.59 0.03 0.02 -0.08 0.03 -0.05 -0.06 0.05 -0.05 0.05
Joints: ((114 2 . 1) (81 2 . 9) (782 . 2) (741 . 9))
Residual: 69 New Terms: X1X2

Cycle 4: 1 2 3 4 5 6 7 8 9 45 345 12
Coeffs: -0.00 -0.00 -0.00 0.00 -0.00 0.00 0.00 0.00 0.00 -0.00 4.00 3.00

Residual: 0

Solution: (+ 2.0 (¥ 4.0 X3 X4 X5) (* 3.0 X1 X2) )

Figure 3: Application of the algorithm to the target function y = 2 + 3z125 + 4xszaxs using Joint Potentials.
The training set included four distracter variables and 200 examples.
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Cycle 1: 1 2 3 4 5 6 7
Coeffs: 0.08 -0.13 -0.03 0.16 0.04 -0.04 0.10 0.06 0.16
Potentials: 0.30 0.26 0.25 0.41 -0.03 -0.03 -0.11 -0.03 0.01
Joints: ((230 1 2) (2294 . 1) (228 4 . 2) (189 4
Residual: 189 New Terms: X1X2

Cycle 2: 1 2 3 4 5 6 7
Coeffs: -0.04 -0.02 -0.00 0.07 0.06 -0.10 0.03 -0.00 0.01
Potentials: 0.07 0.02 0.56 0.58 -0.07 0.05 -0.07 -0.04 -0.05 -0.10
Joints: ((151 4 . 3) (111 4 . 6) (109 3 . 6) (100 3
Residual: 89 UNew Terms: X3X4

Cycle 3: 1 2 3 4 5 6 7
Coeffs: -0.00 0.00 0.00 0.00 0.00 -0.00 -0.00 -0.00 -0.00

Residual: 0

Solution: (+ (* 1.0 X1 X2) (* 1.0 X3 X4) )

1.00 1.00

Figure 4: Application of the algorithm to the target function y = w129 4+ xsx4 using Joint Potentials. The
training set included four distracter variables and 200 examples.
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