Reinforcement Learning Architectures

Richard S. Sutton
GTE Laboratories Incorporated
Waltham, MA 02254

sutton@gte.com

Abstract

Reinforcement learning is the learning of a mapping from situations to actions so as to
maximize a scalar reward or reinforcement signal. The learner is not told which action
to take, as in most forms of learning, but instead must discover which actions yield the
highest reward by trying them. In the most interesting and challenging cases, actions
affect not only the immediate reward, but also the next situation, and through that
all subsequent rewards. These two characteristics—trial-and-error search and delayed
reward—are the two most important distinguishing features of reinforcement learning.
In this paper I present a brief overview of the development of reinforcement learning
architectures over the past decade, including reinforcement-comparison, actor-critic,
and Q-learning architectures. Finally, I present Dyna, a class of architectures based
on reinforcement learning but which go beyond trial-and-error learning to include a
learned internal model of the world. By intermixing conventional trial and error with
hypothetical trial and error using the world model, Dyna systems can plan and learn

optimal behavior very rapidly.

1 Reinforcement Learning

The reinforcement learning problem is summarized
in Figure 1. On some short time cycle, a learn-
ing agent receives sensory information from its en-
vironment and chooses an action to send to the en-
vironment. In addition, the learning agent receives
a special signal from the environment called the re-
ward. Unlike the sensory information, which may be
a large feature vector, or the action, which may also
have many components, the reward is a single real-
valued scalar, a number. The goal of learning is the
maximization of the cumulative reward received over
time. Reinforcement learning systems can be defined
as learning systems designed for and that perform
well on this problem. Informally, we define reinforce-
ment learning as learning by trial and error from per-
formance feedback—i.e., from feedback that evaluates
the behavior generated by the learning agent but does
not indicate correct behavior. The term “reinforce-
ment learning” appears to have been coined by Min-
sky (1961), and independently in control theory by
Waltz and Fu (1965). The idea of course comes orig-
inally from animal-learning psychology.

One might object to the problem formulation in
Figure 1 on the grounds that all possible goals have
been reduced to a scalar reward. Although this ap-
pears limiting, in practice it has proved to be a useful

Sensory
Input
(state)

Action

Figure 1. The Reinforcement Learning Problem. The
goal is to maximize cumulative reward.

way of structuring the problem. Some examples of
goals formulated in this way are:

e Foraging: Reward is positive for finding food
objects, negative for energetic motion, slightly
negative for standing still.

e Pole-balancing (balancing a pole by applying
forces to its base): The reward is zero while
the pole is balanced, and then becomes -1 if the
pole falls over or if the base moves too far out
of bounds.

e Towers of Hanoi: Reward is positive for reach-
ing the goal state.

e Recycling Robot: Reward is positive for drop-
ping soda cans in the recycling bin, negative for
bumping into things, more negative for bump-
ing hard into things, most negative for being
yelled at or for running down the battery, etc.

e Video Game Playing: One unit of reward for
every point scored.

Another reason one might object to the problem
formulation in Figure 1 is that the goal of learning
is defined solely in terms of something (the reward)
arising from the external environment, not from the
learning agent itself. Often goals do concern the evo-
lution of the the learning agent’s internal state, e.g.,
its energy reservoirs. Fortunately, it appears that
most goals, perhaps all, can be put in the “exter-
nal reward” form simply by redrawing the boundary
between agent and environment. For example, if the
goal concerns the agent’s energy reservoirs, then these
are considered part of the environment; if the goal
concerns the positions of the agent’s limbs, then these
too can be considered part of the environment—the
learning agent’s boundary is drawn at the interface
between the limbs and their control systems. Roughly
speaking, things are considered part of the learning
agent if they are completely, directly, and with cer-
tainty controllable; things are considered part of the
environment if they are not. Since the goal is always
something over which we have imperfect or uncertain
control, it is placed outside the learning agent.

2 Overview of Reinforcement
Learning Architectures

In this section we review the major steps in the devel-
opment of reinforcement learning architectures over
the last decade. These steps are illustrated by the
four architectures shown in Figures 2-5.

All reinforcement learning involves the learning
of a mapping from a representation of a situation or
state to an appropriate action (or a probability distri-
bution over actions) for that situation. This mapping
is called the policy; it specifies what the agent will
do in each situation at its current stage of learning.
The simplest reinforcement learner that one might
imagine, then, would consist only of a policy and a
way of adjusting it based on reward, as shown in Fig-
ure 2. Such architectures, in which the policy is the
only modifiable data structure (and, indeed, the only
structure at all) are here called policy-only architec-

tures.

V 4
Policy

iReward

World
e/

State Action

Figure 2. The Policy-Only Architecture.

The policy can be implemented in any of a number
of ways. It can be a connectionist neural network, or
a symbolic learning structure such as a decision tree
or lisp program, or a conventional set of statistics
such as is used by maximum-likelihood or nearest-
neighbor techniques. Any of these methods can be
used—with varying advantages and disadvantages—
to implement this and the other modifiable structures
shown in Figures 2-5.

The learning algorithm for the policy must be of a
slightly unusual type. Standard supervised learning
methods such as backpropagation are not sufficient
here, but must be modified, at least slightly, to take
into account the fact that a “target” action is not di-
rectly available. Instead, a form of correlation must
be done between the reward received and the actions
taken by the agent, all with respect to the sensory in-
put. Actions correlated with high reward have their
probability of being repeated increased, while those
correlated with low reward have their probability de-
creased. Examples of such algorithms for policy-only
architectures can be found in (Farley & Clark, 1954;
Widrow, Gupta & Maitra, 1973; Barto & Sutton,
1981; Barto & Anandan, 1985).

Policy-only architectures really only work well
when it is clear a priori what constitutes a high
reward and what constitutes a low one—for exam-
ple, if all high rewards are positive and all low re-
wards are negative. Often, however, rewards are not
distributed around a baseline of zero, but around
some other, unknown value. Worse yet, the base-
line may change from state to state. A low re-
ward value in one state may be the highest attain-
able in another. To handle such variations, a base-
line value must be learned that is a function of
the state; the actual reward is then compared with
the current state’s baseline. This is what is done
in reinforcement-comparison architectures (Figure 3).
As a baseline, these architectures usually use a pre-
diction of the reward. The prediction error—the
difference between predicted and actual reward—is
used both as an enhanced, zero-balanced reward sig-

State Action

World |~eg—

Figure 3. Reinforcement-Comparison Architecture.

A

| Return
Predictor
State Action
World | -ged
Figure 4. Adaptive-Heuristic-Critic Architecture.

The symbol z~! indicates a one-time-step delay, and
the symbol ® indicates multiplication.

nal for adjusting the policy and as an ordinary er-
ror for learning the reward predictions. A variety
of reinforcement-comparison algorithms have been
explored and compared (Barto, Sutton & Brouwer,
1981; Sutton, 1984; Williams, 1992).

Reinforcement comparison architectures are effec-
tive at optimizing immediate rewards, but not at op-
timizing total reward in the long run. The problem
is that actions have two kinds of consequences—they
affect the next reward and they affect the next state,
but reinforcement-comparison architectures only take
the first of these into account. Suppose an action pro-
duces high immediate reward but deposits the envi-
ronment in a state from which only low reward can
be obtained? In order to optimize long-term reward,
these delayed affects of action must be taken into ac-
count.

The adaptive heuristic critic (AHC) architecture,
shown in Figure 4, was designed to take such delayed
effects into account. The predictor of immediate re-
ward has been replaced with a predictor of return,
a measure of long-term cumulative reward. For any
state x, the return is formally defined as the expected
value of the sum of all future rewards, discounted by
their delay, given that the systen starts in x:

o = l‘},

where v, 0 < v < 1, is the discount rate determin-
ing how fast one’s concern for delayed reward falls off
with length of the delay.! The “return predictor” box
in Figure 4 comes to predict this return by virtue of
the circuit shown below it for calculating a temporal-
difference error (Sutton, 1988; Tesauro, 1992). In all

o0
return(z) = E{Z Vi
t=0

I'This is analogous to the discount rate in economics—a dol-
lar today is worth more than a dollar tomorrow.

State Action

Figure 5. Q-learning Architecture. The line labeled
“for best” is the prediction of return for the best ac-
tion; the other output from the return predictor is
the prediction of return for the action actually taken.

other respects, the learning algorithm inside this box
could be exactly the same as that used in the “reward
predictor” box of Figure 3. The AHC architecture
has been used in a variety of learning control tasks
(Sutton, 1984; Barto, Sutton & Anderson, 1983; An-
derson, 1987; Barto, Sutton & Watkins, 1989).

Finally, Figure 5 shows the most recent rein-
forcement learning architecture, Q-learning (Watkins,
1989; Watkins & Dayan, 1992). The primary innova-
tion here is that the predicted return is now a function
of action as well as state. Formally, the return for a
state x and action a is defined as

oo
return(x,a) = E{Z Ve

t=0

o = T, a0 = a}. (1)

Two kinds of return are always predicted for the cur-
rent state. One is the best predicted return for the
state—the predicted return for the action with the
highest predicted return. The other is the predicted
return for the action actually selected. These two pre-
dictions are then combined according to the same cir-
cuit as used in the AHC architecture. In Q-learning,
the policy could be a separate modifiable data struc-
ture as suggested by Figure 5, but most often it is
simply a dependent function of the return predictions.
For example, the policy may be simply to pick the ac-
tion that obtains the maximal return prediction.

3 Dyna Architectures

Reinforcement learning architectures are effective at
trial-and-error learning, but no more. They can not
do any of the things that are considered “cognitive,”
such as reasoning or planning. They do not learn
an internal model of the world’s dynamics, of what-
causes-what, but only of what-to-do (policy) and

1. Observe the current state x and choose an ac-
tion: a « Policy(x).

2. Send the action to the world and observe the
resultant next state y and reward r.

3. Apply a reinforcement learning method to the
experience z, y, a, and .

4. Update the world model based on the experi-
ence x, Yy, a, and 7.

5. Repeat the following steps k times:

5.1 Select a hypothetical state x and hypothet-
ical action a.

5.2 Send z and a to the world model and obtain
predictions of next state y and reward r.

5.3 Apply a reinforcement learning method to
the hypothetical experience z, ¥y, a, and r.

6. Go to 1.

Figure 6. Main Loop of the Dyna Algorithm.

how-good-is-it (return predictions). This is an im-
portant limitation because potentially much more can
be learned in the form of a world model than can be
learned by trial and error; the reward signal is just a
scalar, while the sensory input signal is a much richer
potential source of training information. And what if
the goal changes? Typically, a world model can re-
main relatively intact over goal changes and can assist
in achieving the new goal, whereas policy and return
predictions must be totally changed.

Dyna architectures are simple extensions of rein-
forcement learning architectures to include an inter-
nal world model (Sutton, 1990; Whitehead, 1989; see
also Werbos, 1987). The world model is defined as
something that behaves like the world: given a state
and an action it is supposed to output a prediction
of the resultant reward and next state. If the world’s
state is observable, then it is straightforward to learn
a world model using supervised learning methods and
training examples taken from actual interactions with
the world. If the world’s state is not observable, then
it must be inferred from the history of sensory in-
put and action. Although there are a variety of al-
gorithms for doing this, in the general case it is still
an open problem (see Whitehead and Ballard, 1991;
Chrisman, 1992). Here we assume that the state is
observable.

In Dyna architectures the world model is used as
a direct replacement for the world in one of the re-
inforcement learning architectures shown in Figures
2-5. Reinforcement learning continues in the usual
way, but, in addition, learning steps are also run us-

800
G
700
S
500
STEPS
PER
TRIAL
400
300 0 Planning steps
(Trial and Error Learning
Only)
200 10 Planning
Steps
100 Planning
Steps
100
14
1 20 40 60 80 100

TRIALS

Figure 7. Learning Curves for Dyna-AHC Systems
on a Simple Navigation Task. A trial is one trip from
the start state “S” to the goal state “G”. The more
hypothetical experiences (“planning steps”) using the
world model, the faster an optimal path was found.
These data are averages over 100 runs.

ing the model in place of the world, using predicted
outcomes rather than actual ones. For each real ex-
perience with the world, many hypothetical experi-
ences generated by the world model can be processed
and learned from as well. The cumulative effect of
these hypothetical experiences is that the policy ap-
proaches the optimal policy given the current model;
a form of planning has been achieved. The overall
Dyna algorithm is given in Figure 6.

Figure 7 shows results for a Dyna architecture
based on the AHC architecture, called Dyna-AHC.
The task is to navigate through the maze shown
in Figure 7 from the starting state “S” to the goal
state “G”. From each state there are four possible ac-
tions: UP, DOWN, RIGHT, and LEFT, which change
the state accordingly, except where such a movement
would take the system into a barrier (shaded state)
or outside the maze, in which case the state is not
changed. Reward is zero for all transitions except for

WITHOUT PLANNING (k = 0)

u G
T
S
WITH PLANNING (k = 100)
ar G
- r l T
S . fnd —| J, T
B S o o o o T
T S T[T
. t - L — T
Figure 8. Policies Found by Planning and Non-

Planning Dyna-AHC Systems by the Middle of the
Second Trial. The black square indicates the current
location of the Dyna system. The arrows indicate ac-
tion probabilities (excess over the smallest) for each
direction of movement.

those into the goal state, for which it is +1. The
lower left portion of the figure shows learning curves
for Dyna-AHC systems with & = 100, £ = 10, and
k = 0. The k£ = 0 case involves no hypothetical steps;
this is a pure trial-and-error reinforcement-learning
system. Although the length of path taken from start
to goal falls dramatically for this case, it falls much
more rapidly for the cases including hypothetical ex-
periences, showing the benefit of planning using the
learned world model. For k£ = 100, the optimal path
was generally found and followed by the fourth trip
from start to goal. This is extremely rapid learning.
Figure 8 shows why the Dyna-AHC system solved
this problem so much faster than the pure reinforce-
ment learning system. Shown are the policies found
by the £k = 0 and k = 100 systems half-way through
the second trial. Without planning (k = 0), each
trial adds only one additional step to the policy, and
so only one step (the last) has been learned so far.
With planning, the first trial also learned only one
step, but here during the second trial an extensive
policy has been developed that by the trial’s end will
reach back almost to the start state. By the end of
the third or fourth trial a complete optimal policy will
have been found and perfect performance attained.

4 Limitations and Conclusions

The simple illustrations presented here are clearly
limited in many ways. The state and action spaces are
small and denumerable, permitting tables to be used
for all learning processes and making it feasible for
the entire state space to be explicitly explored. For
large state spaces it is not practical to use tables or to
visit all states; instead one must represent a limited
amount of experience compactly and generalize from
it. Both Dyna architectures are fully compatible with
the use of a wide range of learning methods for doing
this. For example, Lin (1992) has explored the use of
Dyna architectures using backpropagation networks
instead of tables, and Tesauro has obtained excellent
results in computer backgammon by combining back-
propagation with temporal-difference learning.

Another limitation of the Dyna systems presented
here is the trivial form of search control used. Search
control in Dyna boils down to the decision of whether
to consider hypothetical or real experiences, and of
picking the order in which to consider hypotheti-
cal experiences. The tasks considered here are so
small that search control is unimportant, and thus
it was done trivially, but a wide variety of more so-
phisticated methods could be used (e.g., see Peng &
Williams, 1992).

Despite these limitations, the results presented
here are significant. They show that the use of an
internal model can dramatically speed trial-and-error
learning processes even on simple problems. More-
over, they show how planning can be done with world
models contructed through learning (see also Sutton,
1990). Finally, they show how the functionality of
planning can be obtained in a completely incremen-
tal manner, and how a planning process can be freely
intermixed with execution and learning. I conclude
that it is not necessary to choose between planning,
reacting, and learning. These three can be integrated
not only into one learning agent, but into a single al-
gorithm, where each appears as a different facet of
that algorithm.

Acknowledgments

The author gratefully acknowledges the extensive
contributions to these ideas by Andrew Barto, Chris
Watkins, Ron Williams, and Steve Whitehead. 1
also wish to also thank the following people for ideas
and discussions: Paul Werbos, Luis Almeida, Glenn
Iba, Leslie Kaelbling, John Vittal, Charles Anderson,
Bernard Silver, Oliver Selfridge, Judy Franklin, Tom
Dean and Chris Matheus.

References

Anderson, C. W. (1987) Strategy learning with mul-
tilayer connectionist representations. Proceedings
of the Fourth International Workshop on Machine
Learning, 103-114. Morgan Kaufmann, Irvine, CA.

Barto, A. G., & Anandan, P. (1985) Pattern recogniz-
ing stochastic learning automata. IEEFE Transactions
on Systems, Man, and Cybernetics 15, 360-375.

Barto, A. G., & Sutton. R. S. (1981) Landmark learn-
ing: An illustration of associative search. Biological
Cybernetics 42, 1-8.

Barto, A. G., Sutton R. S., & Anderson, C. W. (1983)
Neuronlike elements that can solve difficult learning
control problems. I[EEE Transactions on Systems,
Man, and Cybernetics 13, 834-846.

Barto, A. G., Sutton, R. S., & Brouwer, P. S. (1981)
Associative search network: A reinforcement learning
associative memory. Biological Cybernetics 40, 201—
211.

Barto, A. G., Sutton, R. S., & Watkins, C. J. C. H.
(1989) Learning and sequential decision mak-
ing. In Learning and Computational Neuroscience,
M. Gabriel and J.W. Moore (Eds.), 539-602, MIT
Press, 1991.

Chrisman, L. (1992) Reinforcement learning with
perceptual aliasing: The predictive distinctions ap-
proach. AAAI-92.

Farley, B. G., & Clark, W. A. (1954) Simula-
tion of self-organizing systems by digital computer.
LR.E. Transactions on Inf. Theory 4, 76-84.

Lin, L. (1992) Self-improving reactive agents based
on reinforcement learning, planning, and teaching. it
Machine Learning 8, 293-322.

Minsky, M.L. (1961) Steps toward artificial intelli-
gence. Proceedings I.R.E., 49, 8-30. Reprinted in
E.A. Fiegenbaum & J. Feldman (Eds.), Computers
and Thought, 406-450, New York: McGraw-Hill.

Peng, J. & Williams, R.J. (1992) Efficient search con-
trol in Dyna. Northeastern University Technical Re-
port.

Sutton, R. S. (1984) Temporal credit assignment in
reinforcement learning. Doctoral dissertation, De-
partment of Computer and Information Science, Uni-
versity of Massachusetts, Amherst, MA 01003.

Sutton, R.S. (1988) Learning to predict by the meth-
ods of temporal differences. Machine Learning 3, 9—
44.

Sutton, R. S. (1990) Integrated architectures for
learning, planning, and reacting based on approxi-
mating dynamic programming. Proceedings of the

Seventh International Conference on Machine Learn-
ing, 216-224, Morgan-Kaufmann.

Tesauro, G. (1992) Practical issues in temporal-
difference learning. Machine Learning 8, 257-278.

Waltz, M.D. & Fu, K.S. (1965) A heuristic approach
to reinforcement learning control systems. I[EEE
Transactions on Automatic Control, AC-10, 390-398.

Watkins, C. J. C. H. (1989) Learning with Delayed
Rewards. Ph.D. dissertation, Cambridge University,
Psychology Department.

Watkins, C. J. C. H. & Dayan, P. (1992) Q-learning.
Machine Learning 8, 279-292.

Werbos, P. J. (1987) Building and understanding
adaptive systems: A statistical/numerical approach
to factory automation and brain research. IEEE

Transactions on Systems, Man, and Cybernetics,
SMC-17, No. 1, 7-20.

Whitehead, S. D. (1989) Scaling reinforcement learn-
ing systems. Technical Report 304, Dept. of Com-
puter Science, University of Rochester, Rochester,
NY 14627.

Widrow, B., Gupta, N. K., & Maitra, S. (1973) Pun-
ish/reward: Learning with a critic in adaptive thresh-
old systems. IEEE Transactions on Systems, Man,
and Cybernetics 5, 455-465.

Williams, R. J. (1986) Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine Learning 8, 229-256.

