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This work concerns the learning problem of predicting the behavior of time series. For
concreteness, consider a time series of the states passed through by an unknown ergodic
Markov chain. When any of a special set of states S is entered, a scalar outcome z is emitted;
its expected value depends on the special state entered. Whether or not an outcome is emitted,
the current state is assumed to be explicitly known. We want an estimate e;, for each state i,
of the expected value of the next outcome, given that the process is in 1.

We desire solutions that are 1) incremental, meaning that their memory and computational
requirements do not increase with time, and 2) efficient, meaning that their space require-
ments and per-step computations are O(n), where n is the number of states. We discuss four
algorithms.

The optimal algorithm accumulates maximum likelihood estimates of the Markov process
and the outcome process, and forms e; that would be exact if these estimates were exactly
correct. We call these e; the optimal estimates. This algorithm is ruled out by the efficiency
requirement, since it is O(n?) in memory and O(n?) in computation.

The simple averaging algorithm forms each e; as the arithmetic average of the outcomes
that have followed visits to 7. The algorithm can be implemented incrementally and efficiently,
yields unbiased estimates, and has well-understood convergence behavior. Although its esti-
mates for a finite training series are not optimal, they do minimize the mean squared error
(MSE) on the training data. The algorithm has two disadvantages: 1) it cannot be applied
to non-stationary processes, and 2) it is difficult to extend to the important case in which the
estimates are to be formed as a (typically linear) function of a real-valued feature vector.

The recency-weighted averaging algorithm overcomes both of these difficulties. Its esti-
mates are averages of past outcomes that weight recent outcomes more than older ones. The
algorithm starts with the e; arbitrary. Then, for each occurrence of state i, e; is updated by
e; < €; + a(z — ¢;), where z is the actual next outcome and «, 0 < o < 1, is a learning-rate
parameter. The estimates are not optimal, but they converge in the mean to the correct ex-
pected values, for sufficiently small .. If a finite series is presented repeatedly to the algorithm
(with slight modifications for this case), then it converges to the same estimates as found by
the simple averaging algorithm in one presentation. This algorithm, extended to handle the



case of feature vectors, is widely used for pattern classification and prediction.

Finally, the new kind of prediction learning mentioned in the title is the family of temporal-
difference (TD) algorithms. The simplest of these, called T'D(0), is only slightly different from
the recency-weighted averaging algorithm. Whereas that algorithm adjusts each prediction to
look more like the outcome that followed it, TD(0) adjusts each prediction to look more like the
prediction that followed it. The e; start arbitrary, and then, on each transitioni — j € S, e; is
updated e; < e¢;+a(ej—e;), and, on each transition i — j € S, ¢; is updated e; < e;+a(z—e¢;),
where z is the outcome emitted upon arrival at j.

TD(0) converges in the mean to the correct expected values, and it is efficient and incre-
mental. In fact, its estimates are usefully updated on every state transition, even on those
on which an outcome is not emitted. It is also applicable to the non-stationary case and is
easily extended to handle feature vectors. The estimates learned by TD(0) for a finite series
presented once are not optimal, but in computational experiments they appear to be more
accurate than those learned by the recency-weighted averaging algorithm. Moreover, the esti-
mates learned by TD(0) are optimal for a finite series presented repeatedly. The relationship
of TD(0) to the optimal algorithm is analogous to that of the recency-weighted averaging
algorithm to the simple averaging algorithm.

Learning algorithms based on the TD idea have previously been used in Samuel’s checker-
playing program, in Holland’s bucket brigade, in Barto, Sutton & Anderson’s pole-balancing
system, and in other learning systems studied by Witten, Booker, and Hampson. The TD idea
has also been used in several models of animal learning phenomena. Surprisingly, there appears
not to have been any previous studies of TD methods in the mathematical or engineering
literatures.

The convergence, optimality, and computational results mentioned here are presented in
the referenced article. This work provides a theoretical foundation for earlier TD studies and
extends them in several directions, most notably by using TD algorithms to predict arbitrary
quantities, not just evaluations. The proofs given are actually for the feature vector case,
which subsumes that considered here. Major areas of application for TD algorithms are
temporal pattern recognition such as speech recognition, the learning of evaluation functions,
and learning control.
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