
Real-time Reinforcement Learning for
Achieving Goals in Big Worlds

by

Khurram Javed

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

© Khurram Javed, 2025

Abstract

In this dissertation, I motivate the need for real-time learning and propose

algorithms that can learn in real time. I argue that such algorithms are needed

for achieving goals in large and partially observable environments—big worlds.

I then present my algorithms, developed in collaboration with others, in two

parts.

In Part I, I present algorithms that can learn quickly and reliably in the

linear function approximation setting. I introduce an algorithm for learn-

ing temporal predictions—SwiftTD—and use it to develop an algorithm for

decision-making—SwiftSarsa. The key property of these algorithms is that

they can learn with large step-size parameters online without the instability

associated with quick online learning.

In Part II, I present algorithms for learning non-linear recurrent features

efficiently. I introduce the idea of continual imprinting for generating useful

candidate features, and I present an algorithm for efficiently computing the

gradients of recurrent features online.

ii

Preface

Chapter 5, 6, and 7 are based on the paper:

• Javed, K., Sharifnassab, A., and Sutton, R. S. (2024). SwiftTD: Fast and
Robust Temporal Difference Learning. Reinforcement Learning Journal,

which won the outstanding paper award at the reinforcement learning confer-
ence. Chapter 4 is based on a public seminar and a workshop paper. The
workshop paper is:

• Javed, K., and Sutton, R. S. (2023). The Big World Hypothesis and its
Ramifications for Artificial Intelligence. Finding the Frame Workshop,
RLC 2024,

which was selected for an oral presentation, and the public seminar is:

• The Big World Hypothesis and its Ramifications, AI Seminar, University
of Alberta, March 2023 (link).

Chapter 10 is based on the paper:

• Javed, K., Shah, H., Sutton, R. S. , White, M. (2023). Scalable Real-
Time Recurrent Learning Using Columnar-Constructive Networks. Jour-
nal of Machine Learning Research,

which was published in JMLR and presented at ICML 2024 at its journal to
conference track. Chapter 8 is based on work that is in progress, and Chapter
9 is based on two public talks that are:

• Real-time Online Learning by Imprinting at the Time of Low Plasticity,
AI Seminar, University of Alberta, October 2023, and

• Real-time Reinforcement Learning using Dynamic Networks, Cohere for
AI, May 2024 (link).

iii

https://www.youtube.com/embed/Fwkcc9tupCI
https://www.youtube.com/embed/vkhUq3Np_Ao?si=pVEmWeKB3r0CB1DE

To Mom and Dad,

for enabling me to pursue my goals and supporting my eccentric decisions.

iv

Acknowledgements

The work presented in this dissertation started in weekly meetings with Rich.

I was interested in online continual learning, and Rich was happy to spend

time helping me refine my ideas. At some point our discussions turned into a

PhD proposal.

The three years of my PhD were the most rewarding of my life. Early on I

was frustrated by the poor review process of AI conferences. I proposed that

we focus on developing new algorithms without being concerned about papers,

and Rich supported this proposal. The decision to not focus on papers made

it possible to explore a new frontier of learning algorithms.

Throughout my PhD, Rich was available to discuss, brainstorm, and pro-

vide feedback. On many occasions, his lines of inquiry led to insights and

saved me months of work. In addition to shaping my research ideas, he also

taught me how to think clearly and communicate effectively. I am grateful for

his mentorship, wisdom, and friendship.

My committee members, Martha White, Joseph Modayil, Alona Fyshe,

and Benjamin Van Roy, pushed me to think about the broader implications

of the work for AI. Martha pushed me to communicate some of the research

findings to the broader AI audience. It was her persistence and guidance that

led to the JMLR publication.

My external examiner, Prof. Christopher Watkins, carefully read the thesis

and shared insightful feedback during my doctoral exam. His positive response

to the thesis was invaluable validation for me and has given me the confidence

to further pursue the ideas introduced in this thesis.

I am grateful to my colleagues, family, and friends for making the PhD jour-

ney enjoyable. Some of them, in no particular order, are Arsalan, Yi, Abhishek,

v

Kris, Fernando, Kenny, Tian, Chen, Zaheer, Raksha, Suyug, Malvika, Banaf-

she, Sina, Kristen, Maliha, Anahita, Fatima, Adrian, Justin, Yuxin, Dawn,

Aidan, Paritosh, Prabhat, David, Eric, Alex, Katy, Shibhansh, Anna, Scott,

Adam, Martha S., Adrian, Calarina, Esraa, Farzane, Esra’a, Abdul, Han,

Haseeb, Niko, Jiamin, Edan, Subhojeet, Erfan, Manan, Mohamed, Chunlok,

Amir, Vincent, Jun, Vlad, Abdul, Kevin, Jacob, Hugo, Sam, Nicole, Sehrish,

and Taha.

Finally, thank you Leticia for your love and support, and Rumi for forcing

me to take breaks for walks.

vi

Table of Contents

1 Learning by Interacting with the World 1

2 Background 5

2.1 Notation . 5

2.2 Temporal Difference Learning 5

2.3 n-step Return, λ-return and TD(λ) 7

2.4 True Online TD(λ) . 10

2.5 Step-size Optimization . 11

2.6 Feature Generation in Deep Learning 14

2.7 Feature Removal in Deep Learning 15

3 Problem Formulations 16

3.1 The Prediction Problem . 16

3.2 The Control Problem . 17

4 The Big World Hypothesis and its Ramifications 18

4.1 The Big World Hypothesis and Exponentially Growing Compu-

tation . 19

4.2 Evidence Consistent with the Big World Hypothesis 21

4.3 Ramifications of the Big World Hypothesis 22

I Fast and Robust Linear Learning 26

5 Temporal Difference Learning with Step-size Optimization 27

5.1 TD(λ) with Step-size Optimization 28

5.2 Comparing TD(λ) with TIDBD(λ) 31

vii

5.3 The Atari Prediction Benchmark (APB) 33

5.4 Experiments: TD(λ) with Step-size Optimization on APB . . 34

5.5 True Online TD(λ) with Step-size Optimization 39

5.6 Experiments: True Online TD(λ) with Step-size Optimization

on APB . 41

6 Temporal Difference Learning with the Overshoot Bound 47

6.1 Correction Ratio of a Learning Update 47

6.2 Overshoot Bound for Linear Regression 49

6.3 Overshoot Bound for TD Learning 51

6.4 Experiments: TD learning with the Overshoot Bound on APB 55

6.5 Overshoot Bound for True Online TD(λ) with Step-size Opti-

mization . 56

7 SwiftTD: Fast and Robust Temporal Difference Learning 60

7.1 True Online TD(λ) with the η-bound 60

7.2 Step-size Decay . 61

7.3 SwiftTD: Fast and Robust TD Learning 62

7.4 Experiments: SwiftTD on the Atari Prediction Benchmark . . 64

7.5 Experiments: Hyperparameter Sensitivity Study of SwiftTD . 65

7.6 Experiments: SwiftTD with Convolutional Neural Networks . 71

7.7 Experiments: Credit Assignment by SwiftTD 72

8 Swift-Sarsa: Extending SwiftTD to Control 74

8.1 Swift-Sarsa: Fast and Robust Linear Control 74

8.2 The Operant Conditioning Benchmark 76

8.3 Experiments: Swift-Sarsa on the Operant Conditioning Bench-

mark . 77

II Fast Non-linear Recurrent Feature Discovery 81

9 Feature Generation by Continual Imprinting 82

9.1 Learning by Feature Generation and Feature Removal 82

viii

9.2 Feature Generation by Imprinting 85

9.3 The Audio Prediction Benchmark 86

9.4 Experiment: SwiftTD on the Audio Prediction Benchmark . . 89

9.5 Experiments: Imprinting Learner on the Audio Prediction Bench-

mark . 90

10 Feature Tuning using Columnar-Constructive Networks 93

10.1 Columnar Networks . 96

10.2 Constructive Networks . 97

10.3 Columnar-Constructive Networks 98

10.4 The Animal Learning Benchmark 99

10.5 Experiments: Columnar-Constructive Networks on the Animal

Learning Benchmark . 101

11 Conclusions and Future Work 106

References 108

A Baseline Algorithms 114

B Hyperparameters 116

B.1 Columnar-Constructive Networks 116

B.2 SwiftTD . 117

ix

List of Tables

B.1 Hyperparameter sweeps used for comparing columnar-constructive

networks, columnar networks, constructive networks, and T-

BPTT. 116

B.2 Hyper-parameters used in the experiments of SwiftTD. Note

that the number of configurations for SwiftTD and True Online

TD(λ) are the same. This is achieved by doing a much more

fine-grained search for the step-size parameter of True Online

TD(λ). 117

x

List of Figures

5.1 The data stream consists of a single feature that is 1, 0, 0, 1, 0,

· · · . γ is zero when going from C to A and one otherwise. An

agent learning with a simple weight parameter w using TD(λ)

should converge to w = 1 as the value of state A is 1 and w

has no influence on the predictions in states B and C. An agent

using TD(0), on the other hand, should converge to w = 0. . . 32

5.2 Results of TIDBD(λ) and TD(λ) with step-size optimization.

TIDBD(λ) did not increase the step-size of w and as a result,

did not converge to the optimal weight in five million steps.

TD(λ) with step-size optimization, on the other hand, increased

the step-size until w reached one. Then it slowly reduced the

step-size, converging to w = 1. 33

5.3 (a) A simplified example of the binning step with a 3 × 3 image.

I transform the image into a binary valued tensor by binning

the value of the pixel into two channels. Pixel values from 0 to

127 are binned into the first channel, and 128 to 255 into the

second channel. (b) The binning process applied to a real frame

on the game Freeway. In our experiments, the agent learns from

the binary features generated by the binning process. 35

5.4 The lifetime error of TD(λ) with step-size optimization com-

pared to the lifetime error of TD(λ). In all experiments, TD(λ)

with step-size optimization used a meta-step-size of 10−4. Both

algorithms used λ = 0.90. In all comparisons between the two

algorithms, αinit was the same as α. 36

xi

5.5 The lifetime error of TD(λ) with step-size optimization com-

pared to the lifetime error of TD(λ). In all experiments, TD(λ)

with step-size optimization used a meta-step-size of 10−3. Both

algorithms used λ = 0.90. In all comparisons between the two

algorithms, αinit was the same as α. The red labels show games

on which TD(λ) with step-size optimization diverged. 37

5.6 Lifetime error of TD(λ) with step-size optimization for a wide

range of αinit and θ on Pong. The diagonal lines are hyperpa-

rameter configurations for which the algorithm diverged. . . . 38

5.7 The lifetime error of True Online TD(λ) with step-size optimiza-

tion compared to the lifetime error of True Online TD(λ). In

all experiments, True Online TD(λ) with step-size optimization

used a meta-step-size of 10−4. In all comparisons between the

two algorithms, αinit was the same as α. The red labels show

games on which True Online TD(λ) with step-size optimization

diverged. 42

5.8 The lifetime error of True Online TD(λ) with step-size optimiza-

tion compared to the lifetime error of True Online TD(λ). In

all experiments, True Online TD(λ) with step-size optimization

used a meta-step-size of 10−3. In all comparisons between the

two algorithms, αinit was the same as α. The red labels show

games on which True Online TD(λ) with step-size optimization

diverged. 43

5.9 Lifetime error of True Online TD(λ) with step-size optimization

for a wide range of αinit and θ on Pong. The diagonal lines are

hyperparameter configurations for which the algorithm diverged. 44

xii

5.10 The performance of TD(λ) with step-size optimization (first col-

umn) and True Online TD(λ) with step-size optimization (sec-

ond column) for a wide range of meta-step-size parameters and

initial step-size parameters. The rows are results on different

games. The diagonal lines are hyperparameters for which the

algorithms diverged. The best performance of both algorithms

was comparable, and they both diverged for similar values of

their hyperparameters. The added complexity of True Online

TD(λ) did not provide any advantage over TD(λ) when they

were combined with step-size optimization. 45

6.1 Comparing TD(λ) with the overshoot bound and True Online

TD(λ) with the overshoot bound. The latter fixes the instability

of learning with large step-size parameters, and the former does

not. 56

6.2 Comparing TD(λ) with the overshoot bound and True Online

TD(λ) with the overshoot bound. The latter fixes the instability

of learning with large step-size parameters, and the former does

not. 57

6.3 Comparing TD(λ) with the overshoot bound and True Online

TD(λ) with the overshoot bound. The latter fixes the instability

of learning with large step-size parameters, and the former does

not. 57

6.4 True Online TD(λ) with step-size optimization compared to

True Online TD(λ) with step-size optimization and the over-

shoot bound on the game of Freeway. The latter does not di-

verge for any values of the meta-step-size parameter and initial

step-size parameter, showing the effectiveness of the bound. . . 58

xiii

7.1 Parameter sensitivity study of SwiftTD and baselines. I ran

SwiftTD, True Online TD(λ) with step-size optimization, and

SwiftTD without step-size decay of 55 values of αinit and meta-

step-size parameter for a total of 3025 experiments each. I then

plot the prediction error . 65

7.2 Predictions made by True Online TD(λ) and SwiftTD after

learning for two hours of gameplay on Atari games. The gray

dotted lines show the ground-truth returns. SwiftTD learned

significantly more accurate predictions than True Online TD(λ).

In some games—Pong, Pooyan—the predictions were near per-

fect. Even in more difficult games, like SpaceInvaders, the pre-

dictions anticipated the onset rewards. 66

7.3 Learning curves for eight games. The y-axis is L(time step).

In all games, SwiftTD reduced error faster than True Online

TD(λ). Note that because we are plotting the return error,

the minimum achievable error would not be zero in stochastic

environments such as Atari. The minimum error cannot be es-

timated from experience. Consequently, the y-axis should only

be used to compare algorithms and not to measure absolute

performance. 66

7.4 SwiftTD with fixed hyperparameters compared to True Online

TD(λ) with different values of the step-size parameter. For all

values of α, SwiftTD achieved a lower lifetime error than True

Online TD(λ) on a majority of the games. 67

7.5 Hyperparameter sensitivity study of SwiftTD on the game At-

lantis. Comparing the plots for ϵ = 1 and ϵ = 0.999, we see that

step-size decay improved the performance for large meta-step-

size and large initializations of the step-size parameters. Using

a more restrictive bound also improved performance as η = 0.03

performed better than η = 0.3. 68

xiv

7.6 Hyperparameter sensitivity study of SwiftTD on the game SpaceIn-

vaders. Comparing the plots for ϵ = 1 and ϵ = 0.999, we see

that step-size decay improved the performance for large meta-

step-size and large initializations of the step-size parameters.

Using a more restrictive bound also improved performance as

η = 0.03 performed better than η = 0.3. 69

7.7 Hyperparameter sensitivity study of SwiftTD on the game Se-

quest. Comparing the plots for ϵ = 1 and ϵ = 0.999, we see that

step-size decay improved the performance for large meta-step-

size and large initializations of the step-size parameters. Using

a more restrictive bound also improved performance as η = 0.03

performed better than η = 0.3. 70

7.8 Comparing performance of convolutional networks on the Atari

Prediction Benchmark. SwiftTD significantly outperformed True

Online TD(λ) even when combined with neural networks. The

confidence intervals are +− two standard error around the mean

computed over fifteen runs. 71

7.9 Visualizing the amount of credit assigned to each pixel by SwiftTD

over the lifetime of the agent. The color map is in the log space.

We see that SwiftTD assigned credit to meaningful aspects of

the game. For example, in Pong, it assigned credit to the tra-

jectories of the ball. In MsPacman, it assigned credit to the

dots and the enemies. In SpaceInvaders, it assigned credit to

the locations of enemies, bullets, and the UFO that passes at

the top. 72

8.1 Performance of Swift-Sarsa as a function of the meta-step-size

parameter and the initial values of step-size parameters on the

operant conditioning benchmark. Experiments in the left figure

had n = 60, 000 and the right figure had n = 30, 000. For both

set of experiments η was 1.0, m was 2, and ϵ was 0.9999. . . . 78

xv

8.2 Impact of step-size decay on the performance of Swift-Sarsa as

a function of the meta-step-size parameter and the initial val-

ues of step-size parameters on the operant conditioning bench-

mark. Experiments in the left panel did not use step-size decay

whereas experiments in the right panel used a step-size decay

with decay parameter set to 0.999. Comparing the two results

we see that step-size decay improves performance when the ini-

tial value of the step-size parameters is too large. For both sets

of experiments, η was one and m was two. 78

9.1 Generating a new feature at time step t + 1 by imprinting on

the values of the tenured features at time step t. The solid-

colored features are one (active) and the striped ones are zero

(not active). Here ϕ′
t is the vector of tenured features at time

step t. The new feature is connected to ϕ′[2], ϕ′[4] and ϕ′[7] and

is active at time step j if ϕ′
j−1[2] + ϕ′

j−1[4] + ϕ′
j−1[7] is greater

than or equal to 2.7 (90% of 3.0), which only happens when all

three of the input features are active. 85

9.2 Generating three memory, ϕ[m], ϕ[n], and ϕ[o], from the tenured

feature ϕ′[1]. The three features are triggered by ϕ′
t[1] and

ϕ′
t+8[1]. When triggered, ϕ[m] is active for two time steps with

a delay of two time steps, ϕ[n] is active for three time steps with

a delay of one time step, and ϕ[o] is active for one time steps

with a delay of three time steps. 87

9.3 Visualizing experience from the audio prediction benchmark.

The sound of the word no is followed by a reward of -1 after

a delay of 3 to 5 seconds, and the sound of the word yes is

followed by a reward of +1 after a similar delay. The delay

between the sounds of the two words is 15 to 30 seconds. The

return cannot be perfectly predicted from the audio signal, and

the best learnable prediction starts after the sound is audible. 88

xvi

9.4 Predictions learning by SwiftTD on the three problems from

the Audio Prediction Benchmark. SwiftTD only predicted the

return momentarily, likely when the sound was still audible. . 89

9.5 Predictions learned by imprinting learner on the three problems

from the Audio Prediction Benchmark. In all three problems,

it learned to predict the onset of rewards, and the predictions

are sustained until the reward. 90

9.6 Performance of imprinting learner on the audio prediction bench-

mark. The bar plots show the mean lifetime error over fifty

seeds. The error bars are +- standard error. In the left panel

the imprinting learner is compared to SwiftTD. In the right

panel two versions of the imprinting learner are compared. One

imprints on active tenured features, and the other imprints on

all active features. 91

10.1 Two families of recurrent networks for which gradients can be

efficiently computed without bias or noise. Recurrent networks

with a columnar structure use O(n) operations and memory per

step for learning. However, they do not have hierarchical recur-

rent features—recurrent features composed of other recurrent

features. Constructive networks introduce hierarchical recur-

rent features and learn them in stages to keep learning compu-

tationally efficient. 97

10.2 Columnar-constructive networks (CCNs) combine the ideas from

Columnar and constructive networks. In each stage, they learn

multiple features that are independent of each other, just like

columnar networks. Across stages, they learn hierarchical fea-

tures, similar to constructive networks. 99

xvii

10.3 Visualization of the stream of experience for the trace pattern-

ing task. At each step, the learner receives an observation vector

of length seven. The first six values are the CS and the last is

the US. CS is either a vector of zeros or three of the six values

are one. It can represent 20 different patterns. Ten of these pat-

terns activate the US after ISI number of steps, whereas others

do not. The learner has to predict the discounted sum of fu-

ture values of the US. The bottom part of the figure shows the

ground-truth prediction for the task. 100

10.4 Performance of our algorithms and the best performing T-BPTT

on the trace patterning task. All methods learned to make ac-

curate predictions. Both columnar networks and constructive

networks learned well, exceeding and matching the performance

of the best T-BPTT. CCNs performed the best, showing that

they combine the strengths of columnar networks and construc-

tive networks. All plots are averaged over 100 seeds, and the

shaded areas are +- standard error. 102

10.5 Different versions of T-BPTT on the trace patterning task.

Each curve is denoted by two numbers: a:b. The first number

indicates the truncation length parameter of T-BPTT, and the

second number indicates the number of features in the learner.

For example, 30:2 means an LSTM with two features trained

with a truncation length parameter of 30. All versions use

roughly the same amount of computation. We see that different

values of truncation length parameters result in different perfor-

mances. Large networks trained with small truncation length

parameters—3:10 and 5:8—performed the worst. Smaller net-

works with larger truncation length parameters—15:4, 30:2, and

20:3—performed better. All lines are averaged over 100 random

seeds. 103

xviii

10.6 LSTMs with 10 features trained using truncation length param-

eters of 1, 3, 5, 8, 10, and 20. For each value of the truncation

length parameter, we independently tuned the step-size param-

eter. As the truncation length increased, the performance im-

proved at the expense of more computation. The sensitivity

of performance to truncation length parameter highlights the

impact of bias introduced by truncation. All lines are averaged

over 100 random seeds and the shaded regions correspond to +-

standard error. 104

xix

Chapter 1

Learning by Interacting with
the World

Learning by interacting with the world is a powerful paradigm for building

general-purpose autonomous systems. An agent can sense its environment

through sensors, such as cameras and microphones, and take actions to influ-

ence its environment. It receives feedback from the environment—information

about the influences of its actions—and can use this feedback to adapt its

behavior. In the simplest case, the feedback can tell the agent how good the

outcome of an action was. It is natural for the agent to adapt to repeat ac-

tions that led to good outcomes and avoid those that led to poor outcomes.

More often the feedback is more nuanced: perhaps it tells the agent that the

outcome of a sequence of actions was better than what the agent anticipated.

Regardless of how clear the feedback is, as long as certain sequences of sensory

inputs and actions are consistently correlated with good or bad outcomes, it

can be used to adapt the future behavior of the agent. In other words, it can

be used to learn.

It is easy to introspect and realize that we, humans, learn by interacting

with the world. We are worse at a new video game or sport the first time we

try it and get better over time, often without any explicit coaching. Navigating

to an address for the first time is more effortful than navigating to the same

address the second time. Navigating to an address we frequent requires almost

no mental effort.

It is also evident that we learn immediately and continually. If we meet

1

someone new and see them again in an hour, we remember their face; miss-

ing a stop sign obstructed by trees once is sufficient to make us wary of the

obstruction the next time we drive the same route. Learning is ingrained in

our everyday lives, and we cannot switch off our ability to learn at will. An

inability to learn in a person is considered a disability due to its debilitating

effects on their everyday life.

Saying learning is continual is not the same as saying learning is permanent.

A bounded learner can only learn so much before it has to discard some infor-

mation. We, humans, forget information that is not reinforced or rehearsed.

We don’t remember our old addresses, phone numbers, email addresses, and

license plate numbers. There is no simple rule that dictates when and what

we forget. We don’t remember many aspects of our lives for more than a day,

and we remember many aspects for years. For example, most of us would be

hard-pressed if asked to remember what we had for lunch two days ago and

hardly any of us would remember our lunch from a week ago. At the same

time, we would have no problem recalling the last concert or conference we

attended, even if we attended it months ago.

The exact mechanisms of learning and forgetting in humans are unclear,

but there is little doubt that we learn continually, and we forget gracefully. The

holy grail of artificial intelligence researchers, in my view, should be algorithms

that can enable agents to learn continually and forget gracefully.

Is it always essential to learn immediately and continually? In other words,

are there problems for which agents can discover the optimal behavior once

and remain unchanged for the rest of their lives? In certain problems, learning

immediately and continually is not essential. A system that can play Chess or

Go at a superhuman level does not need to continue to adapt to play against

humans. The rules of these games are fixed and adaptation is not needed

once an unbeatable policy has been discovered. In other problems learning

continually and immediately is a necessity. These problems exist in large, ever-

changing, and partially observable environments. I call these environments big

worlds and hypothesize that many real-world problems involve achieving goals

in big worlds—the big world hypothesis.

2

An agent living in a big world encounters new situations throughout its

lifetime. To such an agent the world appears non-stationary and even pre-

viously seen situations can require adaptation. Any amount of experience is

insufficient for all future predictions and continual learning is necessary for

strong performance. Learning immediately is also advantageous in big worlds

to minimize repeating poor behavior.

How close are we to building systems that can learn immediately and con-

tinually? We have made significant progress towards building algorithms that

can learn complex behaviors from interaction by combining principles from

the fields of deep learning and reinforcement learning. The resulting algo-

rithms are collectively referred to as deep RL. Deep RL, while quite capable

of learning sophisticated behavior for complex tasks, is ineffective for learning

continually and immediately. It uses deep neural networks for learning which

do not forget gracefully in supervised learning settings (French, 1999) and re-

inforcement learning settings (Kirkpatrick et al., 2017). Deep neural networks

also lose the ability to learn over time (Dohare et al., 2024). Moreover, they

rely on large amounts of computational resources only available in a special

training phase and missing for the majority of the lifetime of the agents (e.g.,

see the difference in resources used for training vs inference in works by Vinyals

et al., 2019 and Berner et al., 2019).

In this dissertation, I propose several algorithms for learning in big worlds.

My algorithms, developed in collaboration with others, can learn quickly and

continually while only using resources available to the agent throughout its

lifetime. They can be grouped into two categories: 1) algorithms for quick

and robust linear learning, and 2) algorithms for learning non-linear recurrent

features.

For quick and robust linear learning, I augment TD learning with three

ideas that are 1) step-size optimization, 2) a bound to prevent updates that

are too large, and 3) a mechanism to reduce step-size parameters when they

are too large. I combine the three ideas into a single algorithm called SwiftTD.

I then combine the same three ideas with Sarsa to get Swift-Sarsa.

For learning non-linear recurrent features I propose two ideas. First, I

3

show that by initializing recurrent features using experience, as opposed to

initializing them with random weights, we can find useful recurrent features.

Second, I show that by constraining the architecture of a recurrent network

we can achieve unbiased and efficient gradient-based recurrent learning.

4

Chapter 2

Background

The solution methods introduced in this dissertation build upon earlier work on

temporal-difference (TD) learning, step-size optimization, real-time recurrent

learning (RTRL), and generate-and-test algorithms.

2.1 Notation

I use bold lowercase letters for real-valued vectors, for example, x ∈ Rn is a

vector with n components, and I use square brackets to refer to a component

of a vector; for example, x[i] ∈ R is the ith component of the vector x.

I use subscripts to show time steps for time-dependent vectors and scalars,

for example, xt, xt[i], and αt. In some places, I use a list in the subscript for

elements that are a function of variables from different time steps, for example,

yt1,t2 = xt1 + xt2 .

2.2 Temporal Difference Learning

TD learning (Sutton, 1988) is an online and scalable mechanism for learn-

ing predictive knowledge. It is a crucial building block of many reinforce-

ment learning algorithms, such as Sarsa(λ) (Rummery & Niranjan, 1994), Q-

learning (Watkins & Dayan, 1992), PPO (Schulman et al., 2017), Actor-Critic

(Konda & Tsitsiklis, 2000), etc.

The key idea of TD learning is to learn from bootstrapped targets that

are a combination of partial feedback and the difference between the agent’s

5

Algorithm 1: TD(0) with linear function approximation

Hyperparameters: α
Initializations: w ← 0 ∈ Rn,ϕold = 0 ∈ Rn, vold = 0 ∈ R
while alive do

Receive ϕ, γ and r
v ←

∑n
i=1 w[i]ϕ[i]

δ ← r + γv − vold

for i ∈ {0, 1, · · · , n} do
w[i]← w[i] + αδϕold[i]

ϕold ← ϕ
vold ←

∑n
i=1 w[i]ϕ[i]

subjective values of different situations. Using bootstrapped targets allows

TD algorithms to learn online and incrementally without storing experience.

One of the simplest algorithms for temporal difference learning is TD(0) with

linear function approximation.

TD(0) with linear function approximation learns to predict the discounted

sum of future values of a cumulant, r, by linearly combining a feature vector,

ϕ, with a learnable weight parameter vector, w. The sum of future values of

r are discounted by the discount factor, γ.

Let wt−1 ∈ Rn, ϕt ∈ Rn, γ and rt be the weight parameter vector, the

feature vector, the discount factor, and the cumulant at the start of time step

t, respectively. The prediction made by TD(0) at time step t is

vt−1,t =
n∑

i=1

wt−1[i]ϕt[i]. (2.1)

The bootstrapped target for learning is rt + γvt−1,t, which depends on the

weight parameter vector. TD(0) ignores the impact of changing the weight

parameter vector on the target in its learning update—the semi-gradient as-

sumption. It learns by updating the prediction for the feature vector from one

step ago to match the bootstrapped target. The prediction associated with

the feature vector from one time step ago is:

vt−1,t−1 =
n∑

i=1

wt−1[i]ϕt−1[i], (2.2)

6

Algorithm 2: TD(λ)

Hyperparameters: α and λ
Initializations: w ← 0 ∈ Rn, z ← 0 ∈ Rn, and vold = 0
while alive do

Receive ϕ, γ, and r
v ←

∑n
i=1 w[i]ϕ[i]

δ ← r + γv − vold

for i ∈ {0, 1, · · · , n} do
w[i]← w[i] + αδz[i]
z[i]← γλz[i] + ϕ[i]

end
vold ←

∑n
i=1 w[i]ϕ[i]

end

and the TD error is

δt = rt + γvt−1,t − vt−1,t−1. (2.3)

TD(0) learns by minimizing the squared error between the prediction and the

target and updates the ith parameter as:

wt[i] = wt−1[i] + αδtϕt−1[i], (2.4)

where α is the step-size parameter. The pseudocode of TD(0) with linear

function approximation is Algorithm 1.

Bootstrapped targets that only use one step of feedback are not always

ideal. For many real-world problems, it is better to use targets that incorporate

feedback from multiple time steps. Two examples of bootstrapped targets that

use multiple time steps of feedback are n-step returns and λ-returns (Sutton

& Barto, 2018).

2.3 n-step Return, λ-return and TD(λ)

The n-step return is defined as:

Gt:t+n
.
= rt+1 + γrt+2 + · · ·+ γn−1rt+n + γnvt+n−1,t+n, (2.5)

where vt+n−1,t+n is the agent’s prediction at time t + n using the weight pa-

rameter vector at the end of time t+ n− 1.

7

Bootstrapped targets can be constructed by combining multiple bootstrapped

targets to form compound returns. The λ-return is a special form of a com-

pound return that combines n-step returns for all n weighted by a geometric

series. For λ ∈ [0, 1) it is defined as:

Gλ
t
.
= (1− λ)

∞∑
n=1

λn−1Gt:t+n. (2.6)

λ-returns are unique because the prediction error with respect to the λ-return

can be written as a sum of td errors as

Gλ
t − vt−1,t =

∞∑
i=t+1

(γλ)i−t−1δi. (2.7)

TD(λ) (Sutton, 1988)—Algorithm 2—exploits the identity in Equation 2.7 to

achieve online and incremental learning from λ-returns using an eligibility trace

vector with the same number of components as the weight parameter vector.

It updates the ith component of the eligibility trace vector as

zt[i] = γλzt−1[i] + ϕt[i], (2.8)

which is used to update the ith component of the weight parameter vector as

wt[i] = wt−1[i] + αδtzt−1[i]. (2.9)

TD(λ) was used by Tesauro (1995) to develop TD-Gammon, a program that

learned to play backgammon well using reinforcement learning. Learning from

λ-returns also provably improves convergence under the right conditions (Tsit-

siklis & Van Roy, 1996).

The weight updates performed by TD(λ), however, are not identical to an

algorithm learning directly from λ-returns. The identity in Equation 2.7 only

holds when the weight parameter vector does not change over time. TD(λ) is

a good approximation to learning from λ-returns when the step-size parameter

is small.

TD(λ) uses a constant step-size parameter. A simple change gives us TD(λ)

with time-dependent step-size parameter. Instead of using the step-size param-

eter in the weight update, TD(λ) with a time-dependent step-size parameter

8

Algorithm 3: TD(λ) with time-dependent step-size parameter

Hyperparameters: λ
Initializations: w ← 0 ∈ Rn, z ← 0 ∈ Rn, and vold = 0
while alive do

Receive α,ϕ, γ, and reward r
v ←

∑n
i=1 w[i]ϕ[i]

δ ← r + γv − vold

for i ∈ {0, 1, · · · , n} do
w[i]← w[i] + δz[i]
z[i]← γλz[i] + αϕ[i]

vold ←
∑n

i=1 w[i]ϕ[i]

scales the update to the eligibility trace vector with the step-size parameter.

Let αt be the step-size parameter at time t. Then TD(λ) with time-dependent

step-size parameter updates the ith component of the eligibility trace vector

as:

zt[i] = zt−1[i] + αtϕt[i], (2.10)

and updates the ith component of the weight parameter vector as

wt[i] = wt−1[i] + δtzt−1[i]. (2.11)

The pseudocode for TD(λ) with time-dependent step-size parameter is in Al-

gorithm 3.

Algorithm 2 and 3 iterate over all components of the feature vector and the

eligibility trace vector at every time step. If the feature vector or the eligibility

trace vector are sparse, resources can be saved by skipping some computation.

Some operations on TD(λ) can be skipped for zero components of the feature

vector and some can be skipped for zero components of the eligibility trace

vector. I call the algorithm that takes advantage of sparse feature vectors and

eligibility trace vectors TD(λ) with sparse computation.

Algorithm 4 implements TD(λ) with sparse computation. It replaces the

single loop over all components of vectors with two loops, one over non-zero

components of the eligibility trace vector and one over non-zero components

of the feature vector.

9

Algorithm 4: TD(λ) with time-dependent step-size parameter and
sparse computation

Hyperparameters: λ
Initializations: w ← 0 ∈ Rn, z ← 0 ∈ Rn, and vold = 0
while alive do

Receive α,ϕ, γ, and r
v ←

∑
i|ϕ[i]̸=0 w[i]ϕ[i]

δ ← r + γv − vold

for i | z[i] ̸= 0 do
w[i]← w[i] + δz[i] // Update weight

z[i]← γλz[i] // Decay eligibility trace

for i | ϕ[i] ̸= 0 do
z[i]← z[i] + αϕ[i] // Update eligibility of the weight

vold ←
∑

i|ϕ[i]̸=0 w[i]ϕ[i]

2.4 True Online TD(λ)

TD(λ) approximates the algorithm that learns from λ-returns. When the step-

size parameter is small, it is a good approximation. When it is large, the error

in the approximation can be significant. Van Seijen et al. (2016) proposed

True Online TD(λ) to address the approximation error of TD(λ). True Online

TD(λ) performs the same updates as the Online λ-return algorithm (Sutton

& Barto, 2018).

True Online TD(λ) updates the ith component of the eligibility trace vector

as:

zt[i] = γλzt−1[i] + αϕt[i](1− bt), (2.12)

where:

bt = λγ
∑

i|ϕ[i]̸=0

z[i]ϕ[i]. (2.13)

It does not use the standard TD error, δ, but a slightly different term,

δ′t = rt + γvt−1,t − vt−2,t−1, (2.14)

in its updates. The difference between δ and δ′ is in the time indices of the

prediction term.

10

Algorithm 5: True Online TD(λ) with time-dependent step-size pa-
rameter by Van siejen et al. (2016)

Hyperparameters: α and λ
Initializations: (w,ϕold, z)← (0,0,0), and vold = 0
while alive do

Receive ϕ,γ, and r
v ←

∑n
i=1 w[i]ϕ

old[i]
v′ ←

∑n
i=1 w[i]ϕ[i]

δ′ ← r + γv − vold

for i ∈ {1, 2, · · · , n} do
z[i]← γλz[i] + αϕold[i](1− γλ(zTϕ))
w[i]← w[i] + δ′z[i]− αϕold[i](v − vold)

ϕold ← ϕ
vold ← v

It updates the ith components of the weight parameter vector as:

wt[i] = wt−1[i] + δ′tzt−1[i]− αϕt−1[i](vt−1,t−1 − vt−2,t−1). (2.15)

It can be extended to use time-dependent step-size parameters. Algorithm 5 is

the pseudocode of True Online TD(λ) with time-dependent step-size parame-

ters and is the same as by Van Seijen et al. (2016) (See Algorithm 4 in their

paper). Similar to TD(λ), True Online TD(λ) can be implemented by only

iterating over non-zero components of the feature vectors and eligibility trace

vectors. Algorithm 6 is True Online TD(λ) with sparse computation.

Mapping Algorithm 6 to Algorithm 5 takes some effort. The scalar vδ in

Algorithm 6 is the same as the scalar (v−vold) in Algorithm 5. The scalar b in

Algorithm 6 is the same as γλ(zTϕ). The term γλ is missing when estimating

b because, by the time b is estimated, the eligibility vector has already been

multiplied by γλ.

2.5 Step-size Optimization

The step-size parameter is an important hyperparameter of a learning algo-

rithm. If it is too small, learning can be slow. If it is too large, learning can

be unstable, and it can diverge. The optimal value of the step-size parameter

is problem-dependent and can change over time.

11

Algorithm 6: True Online TD(λ) with time-dependent step-size pa-
rameter and sparse computation

Hyperparameters: α and λ
Initializations: (w, zδ, z)← (0,0,0), and (vδ, vold) = (0, 0)
while alive do

Receive ϕ, γ, and r
v ←

∑
i|ϕ[i]̸=0 w[i]ϕ[i]

δ′ ← r + γv − vold

for i | z[i] ̸= 0 do
δw[i]← δ′z[i]− zδ[i]vδ

w[i]← w[i] + δw[i]
zδ[i] = 0
z[i]← γλz[i]

vδ ← 0
b←

∑
i|ϕ[i]̸=0 z[i]ϕ[i]

for i | ϕ[i] ̸= 0 do
vδ ← vδ + δw[i]ϕ[i]
zδ[i]← αϕ[i]
z[i]← z[i] + zδ[i](1− b)

vold ← v

Using a scalar step-size parameter for updating all components of the

weight parameter vector can be limiting. Some features are more important for

learning than others, and it can be beneficial to update the weight parameters

associated with them with larger step-size parameters. On the other hand,

weight parameters associated with some features don’t have to change once

learned, and it can be beneficial to reduce the step-size parameters in their

updates over time. The degree of noise can also vary across features requiring

different step-size parameters when updating different weight parameters.

IDBD (Sutton, 1992) is a supervised learning algorithm that uses a step-

size parameter vector to overcome the limitations of sharing a scalar step-size

parameter, and it automatically finds a good value of the step-size parameter

vector by meta-learning. It uses gradient-based meta-learning and incremen-

tally approximates the gradients of the step-size parameters using forward-view

differentiation (Williams & Zipser, 1989). Intuitively, IDBD increases step-size

parameters associated with features that generalize well to future examples.

12

Let w be the weight parameter vector and β be the step-size parameter

vector of IDBD. To update the ith component of the weight parameter vector,

IDBD uses eβ[i] instead of α. If ϕt ∈ Rn is the feature vector at time t and

y∗t+1 is the target associated with this feature vector, then the prediction made

by IDBD is

yt =
n∑

i=1

ϕt[i]wt[i], (2.16)

and the ith component of the step-size parameter vector is updated as

βt+1[i] = βt+1[i] + θ
(
y∗t+1 − yt

)
ϕt[i]ht[i], (2.17)

where θ is the meta-step-size parameter. h[i] is initialized to be zero and ht[i]

is estimated as

ht[i] = ht−1[i]
(
1− eβt[i]ϕt−1[i]

2
)
+ eβt[i] (y∗t − yt−1)ϕt−1[i]. (2.18)

Sutton (1992) showed that ht[i] approximates the meta-gradient ∂wt[i]
β[i]

under

the assumption that β[i] is not updated during learning. However, IDBD

updates β[i] using Equation 2.17. The updates to β[i] introduce further ap-

proximation error to an already approximate estimate of the meta-gradient.

IDBD updates the ith component of the weight parameter vector as

wt+1[i] = wt[i] + eβt+1[i]
(
y∗t+1 − yt

)
ϕt[i]. (2.19)

IDBD is fundamentally different from popular adaptive step-size algorithms

such as RMSProp (Tieleman & Hinton, 2012) and Adam (Kingma & Ba, 2015).

Degris, Javed, Sharifnassab, Liu, & Sutton (2024) argued that IDBD is do-

ing step-size optimization when adapting the step-size parameters as opposed

to RMSProp (Tieleman & Hinton, 2012), which is doing step-size normaliza-

tion. They articulated the difference using a simple problem for which they

analytically computed the step-size parameter vector that achieved the best

performance. They showed that updates done by IDBD moved the step-size

parameter vector towards the optimal step-size parameter vector whereas step-

size normalization, as done by RMSProp, did not.

13

2.6 Feature Generation in Deep Learning

Using observational data linearly is rarely sufficient for learning complex pre-

dictions and behaviors. To do well in general problems it can be necessary to

have features that are complex functions of the history of the agent’s observa-

tions.

The dominant paradigm for learning complex features is deep learning (Le-

cun, Bengio, & Hinton, 2015). Deep learning is a collection of ideas for train-

ing artificial neural networks with many layers to perform well on supervised

learning problems. In deep learning, features are generated in three distinct

stages.

In the first stage, the functional form of the features is designed by hu-

man experts. The design incorporates prior knowledge, for example, trans-

lation invariance of convolutional neural networks (Lecun et al., 1988); ease

of optimization, for example, skip connections (He et al., 2016) and batch-

normalization (Santurkar et al., 2018); and hardware constraints, for example,

transformers designed to be parallelizable (Vaswani et al., 2017). All functional

forms have some parameters that can be learned.

In the second stage, the learnable parameters are initialized by sampling

them from some distribution. Generally, the parameters are initialized to small

values, and special care is taken to ensure that the scales of gradients of the

parameters are similar in different layers.

In the third and final step, the learnable parameters are updated using gra-

dient descent. The gradients are computed using back-propagation (Rumel-

hart et al., 1986) for feedforward networks and using back-propagation through

time (BPTT) (Werbos, 1988 and Robinson & Fallside, 1987) for recurrent net-

works. Some form of gradient normalization, such as RMSProp (Tieleman &

Hinton, 2012) or Adam (Kingma & Ba, 2015), is used to make the scale of the

updates to parameters in different layers comparable.

14

2.7 Feature Removal in Deep Learning

Feature removal is the idea of measuring the importance of features for the

predictions and behaviors learned by the agent and removing those that are

not useful. Most existing works do not look at feature removal as a continual

process. The common paradigm is to train a large model and remove the

useless features and parameters after training has finished. An important

question for feature removal is to decide how to measure the usefulness of

different features.

Neural network researchers have proposed multiple algorithms for esti-

mating the importance of features or parameters for predictions and behav-

iors (for a detailed overview see Blalock et al., 2020). For example, Han et

al. (2015) proposed pruning the parameters with the smallest magnitudes, and

LeCun (1989) proposed approximating the impact of different parameters on

predictions and pruning the features with the smallest impact. The general

idea of these methods is to rank the parameters or features of a deep network

and discard the least useful ones to get a smaller network that can be deployed

more efficiently.

A handful of papers have explored the idea of online and continual pruning

to improve performance. One family of works is called dynamic sparse train-

ing (DST) (see work by Mocanu et al., 2018 and Evci et al., 2020). In DST,

features are pruned based on the magnitude of their outgoing weights and re-

placed with new features with randomly initialized weights. An independently

evolving body of work under the umbrella term Generate & Test (G&T) al-

gorithms has also looked at continual feature replacement as a mechanism for

learning (Mahmood, 2017; Mahmood & Sutton, 2013). Both DST and G&T

algorithms improve performance on supervised learning tasks. More recent

work has discovered that deep neural networks lose their ability to learn over

time (Dohare et al., 2024). They call this phenomenon the loss of plastic-

ity and showed that continually replacing useless features with new random

features mitigates the loss of plasticity.

15

Chapter 3

Problem Formulations

The goal of an agent learning from an online stream of data for predicting

or controlling the future can be formalized as the lifetime performance of the

agent on the prediction or the control problem.

3.1 The Prediction Problem

The prediction problem consists of observations and predictions. The agent

receives an observation vector xt ∈ Rn and a discount factor γt at time step t

and makes a scalar prediction vt ∈ R. The target for evaluating the prediction

is computed by summing the future values of a scalar called the cumulant

discounted by the discount factors. The cumulant can be any component of

the observation vector with a fixed index. A common choice for the cumulant

is the reward signal.

Performance on our prediction problem is measured by the lifetime error.

Let rt, a component of xt, be the cumulant at time step t. The lifetime error

is defined as:

Lifetime error(T) =
1

T

T∑
t=1

(
vt −

T∑
j=t+1

γj−t−1
j rj

)2

, (3.1)

where T is the lifetime parameter of the agent and is part of the problem. The

lifetime error captures not only the quality of the solution discovered by the

agent at the end of learning but also how quickly the agent finds the solution.

The lifetime error metric differs from the popular paradigm of splitting the

data into a disjoint train set and test set. Splitting the data is important in

16

offline learning settings where the learner has access to the complete data set.

It is unnecessary in online learning settings where the agent is evaluated on

predictions made before getting the ground truth.

3.2 The Control Problem

The control problem consists of observations and actions. The agent perceives

an observation vector xt ∈ Rn at time step t. It outputs an action vector

at ∈ Rd. A special component of the observation vector is the reward, rt. The

index of the component that is the reward is fixed throughout the lifetime of

the agent. Performance on a control problem is measured using the lifetime

average reward defined as

Lifetime reward(T) =
1

T

T∑
t=1

rt. (3.2)

In a control problem, the actions chosen by the agent control what observations

the agent perceives in the future, and the agent seeks to maximize its lifetime

reward by controlling its future.

17

Chapter 4

The Big World Hypothesis and
its Ramifications

The big world hypothesis says that in many decision-making problems the

agent is orders of magnitude smaller than the environment. It can neither

fully perceive the state of the world nor can it represent the value or optimal

action for every state. Instead, it must learn to make sound decisions using

its limited understanding of the environment. The key research challenge

for achieving goals in big worlds is to come up with solution methods that

efficiently use the limited resources of the agent.

An opposing view to the big world hypothesis is that real-world decision-

making problems have simple solutions. The agent is not only capable of

representing the simple solution but also has additional capacity that can be

used to search for the solution more efficiently—it is over-parameterized. The

key research challenge for achieving goals with over-parameterized agents is to

find solutions that enable optimal decision-making in perpetuity.

There are many problems that satisfy the big world hypothesis and many

that do not. The problem of finding roots of a second-degree polynomial

admits a simple solution that always works. Representing the value function

of the game of Go for all states does not have a simple solution. The big world

hypothesis is more a statement about the class of problems we should care

about than a fact about all decision-making problems. It can be made true or

false by exercising control over the design of the environment and the agent

(e.g., when developing benchmarks).

18

Developing algorithms for big worlds poses unique challenges. The best

algorithms for big worlds might prefer fast approximate solutions over slow

exact ones. They might learn incorrect simplistic models that are sufficient

for achieving the agent’s goals over causally correct complex models (e.g.,

Newtonian physics as opposed to quantum mechanics). They might forgo

knowledge that is not frequently used by the agent to make room for knowledge

used more often. Such trade-offs do not exist for over-parameterized agents.

The big world hypothesis is not a novel proposition. Over the past few

years, several independent works have entertained the idea of small-bounded

agents learning in large unbounded environments. Sutton (2020) argued that

the world is large and complex and an agent cannot learn everything there is

to learn exactly. He proposed embracing function approximation for learning

values, policies, models, and states. Dong et al. (2022) theoretically studied

the performance of a reinforcement learning algorithm without making sim-

plifying assumptions about the environment. Their work shifts the focus from

making assumptions about the environment to making assumptions about the

capabilities of the agent. Javed et al. (2023) empirically studied the perfor-

mance of small agents in large environments. They found that approximate

algorithms that use less computation can outperform exact algorithms that

use more computation in big worlds. Kumar et al. (2023) showed that contin-

ual learning is a necessary element of reinforcement learning when the agent

is computationally constrained.

Is the big world hypothesis a temporary artifact of the limitations of our

current computers? Or would it have relevance even as computational re-

sources grow? In the next section, I argue that the big world hypothesis is

here to stay irrespective of the rate at which computational resources grow.

4.1 The Big World Hypothesis and Exponen-

tially Growing Computation

Historically access to computation has increased exponentially. With contin-

uing growth computers of the future could be sufficiently powerful to solve all

19

problems we care about using over-parameterized agents. I see two problems

with this view.

First, it is not just our agents that are constrained by compute. The sensors

used by our agents are also constrained by compute. A rise in computation

makes it possible to sense the world with more precision and at a higher

frequency. For example, within the last decade the camera sensors in our

phones have gone from sensing 640 x 420 pixels at 30 fps—around 7 million

pixels per second—to sensing in 4k at 60 fps—around 500 million pixels per

second. To put these numbers in perspective, a modern smartphone camera

sensor in 2024 can generate more data in a week than that used to train GPT-3

(Brown et al., 2020). Even with these massive increases in the ability to sense

the world, our agents are not even close to sensing the world at its full scale.

I speculate that as computational resources grow so would the appetite to

sense the world at higher fidelity, making the decision-making problem more

challenging.

The second problem with waiting for compute to grow is that as compute

becomes more readily available, the world itself becomes more complex. From

the perspective of an agent, the world consists of everything outside of itself.

This includes other equally complex agents and computers. An agent that

interacts with multiple other agents of similar capabilities would be unable to

model the world exactly regardless of the rate at which computation grows.

A concrete example of the world getting more complex as computation

grows is that of an agent playing the game of Go against an opponent. If the

opponent picks moves randomly, then it is fairly simple for the agent to model

the environment exactly. The dynamics of the environment can be simulated

with a short program. However, if the opponent is more complex, such as an

AlphaZero (Silver et al., 2015) agent, then the only way to model the dynamics

of the environment correctly is to be able to represent the policy of the large

AlphaZero agent accurately.

20

As computational resources increase so does the complexity of the world.
The big world hypothesis is not a temporary artifact of the limitations
of our current computers. For many problems, the world will always be
much larger than any single agent.

4.2 Evidence Consistent with the Big World

Hypothesis

There is some indirect evidence that the behavior of our learning algorithms

on large problems is consistent with the big world hypothesis.

Silver et al. (2017) trained a large neural network to learn the value func-

tion for the game of Go. They found that even after extensive training the

performance of the system could be improved if the decisions were taken by

combining the value function with a planner.

If the neural network had the capacity to represent the optimal value func-

tion of Go, and it had been trained for a sufficiently long time, then decision-

time planning should not have improved performance. Perhaps the neural

network did not have sufficient capacity to represent the value function cor-

rectly for all states and the planner was able to fill in the gaps.

The second and more direct evidence comes from the work of Brown et

al. (2020). They showed a clear trend between the model size and performance

of neural networks when fitting large language datasets. They found that the

train error and validation error on the dataset could be reduced by increasing

the number of parameters in the network. Their findings make little sense if

the neural networks were over-parameterized.

Neither of the two papers directly set out to test the big world hypothesis

and their results have other explanations. However, they don’t contradict it

and provide circumstantial evidence for its relevance.

21

4.3 Ramifications of the Big World Hypothe-

sis

The big world hypothesis is only worth discussing if accepting it would directly

impact how we do research in AI. In the next subsections, I discuss three ways

accepting the hypothesis can influence research today.

Online continual learning for achieving goals in big worlds

The need for online continual learning in big worlds is intuitive—if the agent

does not have the resources to learn and retain everything important about the

world simultaneously, then it can learn aspects that are important for decision-

making at the current time and discard them when they are no longer. In the

over-parameterized setting, on the other hand, there is no need for online

continual learning. Once the agent has found the underlying optimal solution

it can use it forever without changing.

Learning things when they are needed and discarding them when they are

not is sometimes called tracking. Tracking has been empirically demonstrated

to be superior to fixed solutions in partially observable environments by Sut-

ton, Koop, & Silver (2007) and Silver, Sutton, & Müller (2008).

A key requirement for tracking to be effective is temporal coherence. Tem-

poral coherence means that parts of the world the agent experiences from one

step to the next are correlated. An agent learning online can exploit the tem-

poral coherence to direct its resources to learn about the states of the world

that are temporally close at the expense of those that are far away. Tracking

can be a powerful solution method in temporally coherent big worlds.

Humans extensively rely on tracking in everyday life
Humans are continually learning agents. We extensively rely on tracking
to achieve our goals. An intuitive example is that of exams. Given the
choice between taking exams of different subjects on different days or
taking them all on the same day, most of us would pick the former.
Intuitively, it feels easier to have to only have to learn and remember
the material for one exam at a time. This is exactly the behavior we
should expect from a tracking agent in a big world.

22

An analogy of a tracking system is the cache used by a CPU. The cache is

much smaller than the memory and can only store a small fraction of instruc-

tions and data used by a program. However, by retaining the right pieces of

information and discarding the least useful ones, a small cache can have a high

hit ratio. A high hit ratio is only possible when a program accesses memory

predictably, akin to having temporal coherence in big worlds.

If we are to accept the hypothesis then we have to develop algorithms

that can learn online and continually. This is a significant departure from the

current practice of training agents offline and then deploying them.

Need for Computationally Efficient Learning Algorithms

In big worlds, increasing the size of the agent can improve performance. This

raises an important trade-off between the complexity of the learning algorithm

and the size of the agent. A trivial example is the mini-batch size of a deep RL

algorithm, such as DQN (Mnih et al. 2015). For a fixed amount of resources,

an agent can double the number of parameters by halving the mini-batch size.

Javed, Shah, Sutton, & White (2023) empirically demonstrated that ap-

proximate but efficient learning algorithms can outperform computationally

expensive exact algorithms in big worlds. In their experiments, they evaluated

tiny recurrent networks on the Arcade Learning Environment (Bellemare et

al., 2013). They constrained all algorithms to use the same amount of per-step

computation and found that a simple algorithm that used less computation

was able to outperform a more complex algorithm by repurposing the saved

computation to increase the size of the network.

Accepting the big world hypothesis means we should actively look for
more efficient learning algorithms.

Benchmarking in Big Worlds

A common way to evaluate algorithms is to run them on a standardized

benchmark. A good benchmark is an accurate proxy for the problem we

care about and allows us to do careful experiments. Designing a benchmark

23

for big worlds requires a different approach than designing a benchmark for

over-parameterized agents.

One way to evaluate algorithms for big worlds is to test them on complex

environments so that even our largest agents on the latest hardware are not

over-parameterized. While this approach has merit, it makes it difficult to do

careful and reproducible experiments.

The alternative is to restrict the computational capabilities of the agents

instead of making the environments larger. The primary limitation of restrict-

ing agents is that we might miss out on emergent properties of large agents.

However, a small agent learning in a non-trivial environment is still a better

proxy for learning in big worlds than a large over-parameterized agent learning

in the same environment.

Example: A typical DQN agent for Atari users orders of mag-
nitude more computation than the environment.
Arcade learning environment (Bellemare et al., 2013) is a popular bench-
mark for reinforcement learning. A typical game in the benchmark can
run at around 7000 frames per second on a modern CPU core. A DQN
agent (Mnih et al., 2014), on the other hand, runs at 300 frames per
second on a modern GPU. While it is hard to directly compare different
implementations of the agent and the environment running on differ-
ent hardware, it is clear that the agent uses orders of magnitude more
computation than the environment in this case.

Restricting the computational capabilities of the agents is not trivial. There

is no consensus on what aspects of the agents should be restricted. We could

restrict the number of operations, the amount of memory, the amount of mem-

ory bandwidth, or the amount of energy the agent can use. The choice of

constraints can have a significant impact on algorithms that win.

One option is to match the constraints on the agent with the constraints

imposed by current computers. For example, if memory is cheaper than CPU

cycles, then we might want to restrict the CPU cycles. Alternatively, if access-

ing the memory is a bottleneck, then we might want to restrict the memory

bandwidth.

A second option is to limit energy usage. Energy is a universal constraint

24

that can take into account the evolution of hardware over time and can even

drive research for designing better hardware for our agents. The downside of

using energy as a constraint is that it is difficult to measure. Normally the

computer running the agent is also running the environment, an operating

system, and other unrelated processes, and isolating the energy used by the

agent from background tasks is challenging.

The big world hypothesis has direct implications on what we choose to

study and how we evaluate our algorithms. It is not a temporary artifact of

the current limitations of our computers. It is imperative that we develop

algorithms that can allow agents to achieve goals in big worlds. This requires

developing computationally efficient algorithms for learning continually and

rethinking the way we benchmark our algorithms.

25

Part I

Fast and Robust Linear
Learning

26

Chapter 5

Temporal Difference Learning
with Step-size Optimization

Existing algorithms for TD learning can be ineffective for learning incremen-

tally and quickly. They force us to make one of the following three unsat-

isfactory choices. First, we could use them to learn with a small step-size

parameter over a long period. This results in stable but slow learning. Sec-

ond, we could attempt to learn with them using a large step-size parameter.

Doing so could result in faster learning but risks divergence. Third, we could

use them to learn with a small step-size parameter but use every data point

in multiple updates (e.g., by using a replay buffer). The third choice allows

sample efficient and robust learning and is used by popular Deep RL algo-

rithms (e.g., see Mnih et al., 2015 and Schulman et al., 2017). However, using

every sample in multiple learning updates is computationally wasteful, and it

makes agents less reactive—feedback is not reflected in their predictions and

behaviors immediately.

An alternative and computationally efficient solution is to use a combina-

tion of large and small step-size parameters. Each component of the weight

parameter vector can be updated using its own step-size parameter. If the

agent can set the step-size parameters to small values for features that are

not correlated with the prediction error and to large values for features that

are correlated with the prediction error, it could learn quickly without risking

divergence. The challenge is to find the right step-size parameters for different

features.

27

A promising solution for setting different step-size parameters for different

features is to learn them. IDBD (Sutton, 1992) does that for linear regression.

We propose algorithms for learning step-size parameters for TD learning.

Three prior works have extended IDBD to TD learning. Two of them—

by Thill (2015) and Kearney et al. (2018)—incorrectly estimated the meta-

gradient. Thill (2015) made a mistake when deriving the update rule for

the meta-gradient. Kearney et al. (2018) derived the meta-gradient correctly,

but used the TD(0) objective for the meta-gradient even when learning with

TD(λ). Young et al. (2019), independently of my work, correctly extended

IDBD to TD(λ). The extension of IDBD to TD(λ) in this thesis is identical

to that by Young et al. (2019); the extension to True Online TD(λ) is novel.

In the following sections I derive the update rules for computing the meta-

gradient of the step-size parameters for TD(λ) and compare the resulting

algorithm—TD(λ) with step-size optimization—with TD(λ) and TIDBD(λ)

(Kearney et al., 2018). I then derive the update rules for computing the meta-

gradient for True Online TD(λ) and compare the resulting algorithm—True

Online TD(λ) with step-size optimization—with True Online TD(λ). Finally,

I compare TD(λ) with step-size optimization and True Online TD(λ) with

step-size optimization.

5.1 TD(λ) with Step-size Optimization

TD(λ) with step-size optimization uses the λ-return as the target defined as:

Gλ
t = (1− λ)

∞∑
n=1

λn−1Gt:t+1. (5.1)

IDBD parameterizes the step-size parameters with a vector β, and it updates

the ith weight parameter with the step-size parameter eβ[i]. TD(λ) with step-

size optimization uses the same parameterization for the step-size parameters.

It predicts the value at time step t as:

vt−1,t =
n∑

i=1

wt−1[i]ϕt[i], (5.2)

28

and updates the ith weight parameter as:

wt[i] = wt−1[i] + δtzt−1[i], (5.3)

where:

δt = rt + γtvt−1,t − vt−1,t−1, (5.4)

and zt[i] is updated as:

zt[i] = γtλzt−1[i] + eβt[i]ϕt[i]. (5.5)

The step-size parameters are updated to minimize the squared error between

the prediction and the λ-return. The meta-gradient of the squared error with

respect to the ith step-size parameter is:

1

2

∂L(t)
∂β[i]

=
∂

∂β[i]

(Gλ
t − vt−1,t)

2

2
= −(Gλ

t − vt−1,t)
∂vt−1,t

∂β[i]

= −(Gλ
t − vt−1,t)

∂

∂β[i]

n∑
j=1

wt−1[j]ϕt[j]

= −(Gλ
t − vt−1,t)

n∑
j=1

ϕt[j]
∂wt−1[j]

∂β[i]
.

(5.6)

Similar to Sutton (1992), I assume that the indirect impact of β[i] on w[j] for

j ̸= i is negligible, as changing eβ[i] will mostly impact the weight parame-

ter w[i]. For a more detailed discussion on this approximation, see work by

Javed et al. (2021). The approximation simplifies Equation 5.6 as:

(Gλ
t − vt−1,t)

n∑
j=1

ϕt[j]
∂wt−1[j]

∂β[i]
≈ (Gλ

t − vt−1,t)ϕt[i]
∂wt−1[i]

∂β[i]
. (5.7)

I define ht−1[i] to be ∂wt−1[i]
∂β[i]

. Then:

ht−1[i] =
∂wt−1[i]

∂β[i]

=
∂ (wt−2[i] + δt−1zt−2[i])

∂β[i]

=
∂wt−2[i]

∂β[i]
+

∂(δt−1zt−2[i])

∂β[i]

= ht−2[i] + zt−2[i]
∂δt−1

∂β[i]
+ δt−1

∂zt−2[i]

∂β[i]
.

(5.8)

29

The gradient ∂δt−1

∂β[i]
is:

∂δt−1

∂β[i]
=

∂(−
∑n

j=1 wt−2[j]ϕt−2[j])

∂β[i]

≈ −ht−2[i]ϕt−2[i]

(5.9)

Finally, I define z̄t−2[i] as
∂zt−2[i]
∂β[i]

. Then:

z̄t−2[i] =
∂

∂β[i]

(
γt−2λzt−3[i] + eβ[i]ϕt−2[i]

)
= γt−2λz̄t−3[i] + eβ[i]ϕt−2[i]

= zt−2[i].

(5.10)

The final recursive update rule for ht−1[i] is:

ht−1[i] ≈ ht−2[i] + zt−2[i]ht−2[i] (γt−1ϕt−1[i]− ϕt−2[i]) + δt−1zt−2[i]

= ht−2[i] (1− zt−2[i]ϕt−2[i]) + δt−1zt−2[i].
(5.11)

We still need to estimate the error term, Gλ
t − vt−1,t, in Equation 5.6 incre-

mentally. It can be approximated as the sum of TD errors as:

Gλ
t − vt−1,t ≈

∞∑
i=t+1

(γiλ)
i−t−1δi, (5.12)

where equality holds if the weight parameters are kept fixed over time. The

final meta-gradient of the squared error w.r.t β[i] is:

∂L(t)
β[i]

≈

(
∞∑

j=t+1

(γjλ)
j−t−1δj

)
ht−1[i]ϕt[i]

=

(
∞∑

j=t+1

(γjλ)
j−t−1ht−1[i]ϕt[i]δj

)
= ht−1[i]ϕt[i]δt+1 + γjλ ht−1[i]ϕt[i]δt+2 + γ2

jλ
2ht−1[i]ϕt[i]δt+3 + . . . ,

(5.13)

and it is used to update β[i] at time step t as:

βt[i] = βt−1[i] +
θ

eβt−1[i]
δtpt−1[i], (5.14)

where p[i] is initialized to 0 and pt[i] updated as:

pt[i] = λγtpt−1[i] + ϕt[i]ht−1[i]. (5.15)

30

The meta-update in Equation 5.14 uses θ

eβt−1[i]
to scale the meta-gradient,

where θ is a hyperparameter called the meta-step-size, and scaling by 1

eβt−1[i]

makes the scale of the meta-gradient invariant to the magnitude of the step-size

parameter.

TD(λ) with step-size optimization has two important hyperparameters, the

value of the step-size parameters at initialization (αinit) and the meta-step-

size parameter (θ). The pseudocode for TD(λ) with step-size optimization is

Algorithm 7.

Algorithm 7: TD(λ) with Step-size Optimization

Hyperparameters: αinit, λ, θ
Initializations: (w, z)← (0,0) ∈ Rn,β = ln(αinit) ∈ Rn

while alive do
Receive ϕ, γ, and r
δ ← r + γ

∑
i|ϕ[i]̸=0 w[i]ϕ[i]−

∑
i|ϕold[i]̸=0 w[i]ϕ

old[i]

for i | zi ̸= 0 do
w[i]← w[i] + δz[i]

β[i]← β[i] + θ
eβ[i]

δp[i]

hold[i]← h[i]
h[i]← htemp[i] + z[i]δ
(z[i], p[i])← (γλz[i], γλp[i])

for i | ϕ[i] ̸= 0 do
z[i]← z[i] + eβ[i]ϕ[i]
p[i]← p[i] + ϕ[i]hold[i]
htemp[i]← h[i](1− z[i]ϕ[i])

ϕold ← ϕ

5.2 Comparing TD(λ) with TIDBD(λ)

Kearney et al. (2018) used a different meta-gradient for learning the step-size

parameters of TD(λ). Their meta-gradient is:

∂

β[i]

(Gt:t+1 − vt−1,t)
2

2
, (5.16)

where Gt:t+1 is:

Gt:t+1 = rt+1 + γt+1vt,t+1. (5.17)

31

r = 0, γ = 1 r = 1, γ = 1

r = 0, γ = 0

Φ=0Φ=0Φ=1

Data stream
A B C

Figure 5.1: The data stream consists of a single feature that is 1, 0, 0, 1, 0,
· · · . γ is zero when going from C to A and one otherwise. An agent learning
with a simple weight parameter w using TD(λ) should converge to w = 1 as
the value of state A is 1 and w has no influence on the predictions in states B
and C. An agent using TD(0), on the other hand, should converge to w = 0.

Using Gt:t+1 as the target in the meta-gradient is an odd choice because TD(λ)

uses λ-returns as targets and not the one-step returns. I elucidate the problem

with a simple experiment.

The experiment uses an environment with three states—A, B, and C. The

agent starts in A and deterministically transitions from A to B, B to C, and C

to A. The cycle continues indefinitely. The value of γ is 0 when transitioning

from C to A and one everywhere else. The reward is 1 when transitioning

from B to C and 0 everywhere else. Each state has a scalar feature. State A,

B, and C have features 1, 0, and 0, respectively. The environment is shown in

Figure 5.1.

The agent has a scalar weight parameter initialized to zero and a scalar

step-size parameter, β, initialized to −10; λ is one.

The problem is constructed such that the weight parameter, w, would

converge to 0 if it is updated using TD(0) and to 1 if it is updated using

TD(λ) with λ = 1.

Experiment and Results

I used TD(λ) with step-size optimization and TIDBD(λ) to learn for five

million steps on the above mentioned environment and report the results in

Figure 5.2. TIDBD(λ) did not increase the step-size parameter and did not

converge to the optimal weight in five million steps. TD(λ) with step-size opti-

mization, on the other hand, increased the step-size parameter until w reached

32

Number of steps (in millions)

-4

0

-8

-12
0 1 2 3 4 5 0 1 2 3 4 5

0

1

-1

2

-2

TD(λ) with
step-size optimization

TIDBD(λ)

β w

TD(λ) with
step-size optimization

TIDBD(λ)

Figure 5.2: Results of TIDBD(λ) and TD(λ) with step-size optimization.
TIDBD(λ) did not increase the step-size of w and as a result, did not converge
to the optimal weight in five million steps. TD(λ) with step-size optimization,
on the other hand, increased the step-size until w reached one. Then it slowly
reduced the step-size, converging to w = 1.

1. Then it slowly reduced the step-size parameter, converging to w = 1.

The failure of TIDBD(λ) is not surprising. It is computing the meta-

gradient to minimize the error w.r.t the one-step return. Since w = 0 already

minimizes this error, the step-size parameter does not change.

5.3 The Atari Prediction Benchmark (APB)

The Atari Prediction Benchmark (APB) (Javed et al., 2023) is a suite of predic-

tion problems. It is built on the Arcade Learning Environment (ALE) (Belle-

mare et al., 2013), a collection of Atari 2600 games. In each game, a player can

take up to 18 discrete actions with the goal to maximize the score. The Atari

Prediction Benchmark constructs prediction problems from ALE by picking

actions using pre-trained Rainbow-DQN (Hessel et al., 2018) policies taken

from the model zoo of Chainer-RL (Fujita et al., 2021).

To convert the Atari Prediction Benchmark into a set of temporal predic-

tion problems, as defined in Section 3.1, we have to specify the observation

vector, the cumulant, the discount factor γ, and the lifetime of the agent (T)

for each game.

APB constructs the observation vector of the agent by preprocessing the

game frame and turning it into a binary valued vector as explained in the next

33

subsection. It constructs the cumulant by preprocessing the reward given by

ALE. A positive reward from ALE sets the cumulant to +1, and a negative

reward sets it to -1. The cumulant is zero otherwise. APB uses γ = 0.98 at

all time steps. Finally, it sets the lifetime to 210,000, which is around 1 hour

of gameplay at 60 frames per second.

Constructing the feature vector from the game frame

The Atari game frame is a tensor of dimensions 210 × 160 × 3. Every com-

ponent of this tensor is a scalar in the range [0, 255].

In the preprocessing steps, APB first resizes the frame to 105 × 80 ×

3. It converts each of the three channels in the resized frame to a tensor of

dimensions 105 × 80 × 8 by performing a binning process to the value of each

pixel. Pixel values from 0 to 31 set the first channel to one and the remaining

seven to zero, values from 32 to 63 set the second channel to one and the rest

to zero, and so on. Figure 5.3 (a) illustrates the binning process with a simple

example and Figure 5.3 (b) shows the binning process applied to a frame of

the game Freeway.

The binning process gives us three tensors of dimensions 105 × 80 × 8.

APB stacks them to get a tensor of dimensions 105 × 80 × 24 and flattens the

stacked tensor to get a vector with 201,600 binary components. Finally, APB

appends the previous one-hot coded action (a vector with 18 components) and

the cumulant to the 201,600 length vector to get the final feature vector with

201,620 components.

5.4 Experiments: TD(λ) with Step-size Opti-

mization on APB

I compared TD(λ) with step-size optimization with TD(λ) on the 50 games

in the Atari Prediction Benchmark. For each game, I ran both algorithms for

210,000 steps with λ = 0.90 and compared the lifetime error—Equation 3.1.

An important caveat of the lifetime error is that it measures the return

error, and in stochastic environments, the return error can be high even when

34

Channel 1

Channel 2

120 84

255 44

140

230

179 0 201

3 x 3 image

Game frame Binary features after binning

(a) (b)

Binary features

Figure 5.3: (a) A simplified example of the binning step with a 3 × 3 image.
I transform the image into a binary valued tensor by binning the value of the
pixel into two channels. Pixel values from 0 to 127 are binned into the first
channel, and 128 to 255 into the second channel. (b) The binning process
applied to a real frame on the game Freeway. In our experiments, the agent
learns from the binary features generated by the binning process.

the agent is learning well. The magnitute of the lifetime errors themselves are

not meaningful. We can only use them to compare algorithms.

I plot the ratio of the lifetime error of TD(λ) with step-size optimization

and the lifetime error of TD(λ). A ratio of 1 means both algorithms had the

same lifetime error. A ratio of 0.5 means TD(λ) with step-size optimization

had half the lifetime error of TD(λ).

I plot one set of results of learning with meta-step-size of 10−4 in Figure 5.4.

In all direct comparisons TD(λ) with step-size optimization used αinit that was

the same as α used by TD(λ). For all values of αinit, step-size optimization

helped on a majority of the games. The difference was largest when αinit were

the smallest.

I ran more experiments with a larger meta-step-size of 10−3 and plot the

results in Figure 5.5. Once again, TD(λ) with step-size optimization achieved

a lower lifetime error on many games. In some games, it diverged on a number

of environments (labels shown in red). The divergence of TD(λ) with step-

size optimization is concerning. If step-size optimization in only useful if the

meta-step-size is carefully tuned, it might not be useful in practice.

35

Fi
sh

in
A

tla
nt

Fr
ee

w
a

K
an

ga
r

S
ea

qu
e

S
ta

rG
u

P
on

g
D

em
on

A
S

pa
ce

I
N

am
eT

h
C

ho
pp

e
B

er
ze

r
R

iv
er

r
K

un
gF

u
P

oo
ya

n
B

at
tle

U
pN

D
ow

C
ar

ni
v

A
st

er
i

A
st

er
o

Tu
ta

nk
Ti

m
eP

i
A

m
id

ar
K

ru
ll

C
ra

zy
C

Za
xx

on
R

ob
ot

a
M

sP
ac

m
V

id
eo

P
G

op
he

r
A

irR
ai

H
er

o
Ja

m
es

b
A

lie
n

B
ea

m
R

i
Ic

eH
oc

E
nd

ur
o

Q
be

rt
C

en
tip

W
iz

ar
d

B
re

ak
o

G
ra

vi
t

P
ho

en
i

Y
ar

sR
e

B
ow

lin
B

ox
in

g
Jo

ur
ne

P
riv

at
S

ol
ar

i
B

an
kH

e
D

ou
bl

e
Fr

os
tb

0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
ra

zy
C

K
un

gF
u

Fi
sh

in
P

on
g

Fr
ee

w
a

K
an

ga
r

A
lie

n
M

sP
ac

m
E

nd
ur

o
G

op
he

r
K

ru
ll

B
ox

in
g

Q
be

rt
P

oo
ya

n
S

pa
ce

I
H

er
o

Y
ar

sR
e

C
ho

pp
e

S
ea

qu
e

B
ow

lin
B

ea
m

R
i

Tu
ta

nk
B

at
tle

R
iv

er
r

A
m

id
ar

A
tla

nt
B

re
ak

o
A

st
er

o
C

ar
ni

v
N

am
eT

h
R

ob
ot

a
Ti

m
eP

i
B

er
ze

r
Za

xx
on

S
ol

ar
i

Ic
eH

oc
Ja

m
es

b
A

irR
ai

G
ra

vi
t

W
iz

ar
d

S
ta

rG
u

D
em

on
A

A
st

er
i

U
pN

D
ow

P
riv

at
D

ou
bl

e
B

an
kH

e
Jo

ur
ne

V
id

eo
P

C
en

tip
P

ho
en

i
Fr

os
tb

0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
ra

zy
C

M
sP

ac
m

K
ru

ll
K

un
gF

u
B

ox
in

g
A

lie
n

Fi
sh

in
H

er
o

P
on

g
E

nd
ur

o
S

pa
ce

I
K

an
ga

r
Fr

ee
w

a
Y

ar
sR

e
B

re
ak

o
G

op
he

r
Q

be
rt

S
ea

qu
e

A
st

er
i

P
oo

ya
n

R
iv

er
r

U
pN

D
ow

Tu
ta

nk
B

ea
m

R
i

A
st

er
o

C
ho

pp
e

A
m

id
ar

B
ow

lin
C

ar
ni

v
N

am
eT

h
P

ho
en

i
Ti

m
eP

i
V

id
eo

P
S

ta
rG

u
B

at
tle

S
ol

ar
i

Za
xx

on
Ja

m
es

b
R

ob
ot

a
Ic

eH
oc

P
riv

at
A

irR
ai

Jo
ur

ne
G

ra
vi

t
W

iz
ar

d
D

ou
bl

e
B

an
kH

e
B

er
ze

r
D

em
on

A
A

tla
nt

C
en

tip
Fr

os
tb

0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
ra

zy
C

K
ru

ll
M

sP
ac

m
U

pN
D

ow
R

iv
er

r
E

nd
ur

o
A

st
er

i
K

un
gF

u
A

lie
n

B
ox

in
g

S
pa

ce
I

H
er

o
Y

ar
sR

e
B

re
ak

o
S

ea
qu

e
P

on
g

Fi
sh

in
Tu

ta
nk

Q
be

rt
A

tla
nt

K
an

ga
r

Fr
ee

w
a

G
op

he
r

Ti
m

eP
i

N
am

eT
h

S
ta

rG
u

B
ea

m
R

i
V

id
eo

P
D

em
on

A
P

oo
ya

n
C

ar
ni

v
Ja

m
es

b
C

ho
pp

e
Za

xx
on

A
st

er
o

A
irR

ai
A

m
id

ar
B

er
ze

r
R

ob
ot

a
P

ho
en

i
C

en
tip

B
at

tle
B

ow
lin

S
ol

ar
i

Jo
ur

ne
G

ra
vi

t
W

iz
ar

d
Ic

eH
oc

P
riv

at
B

an
kH

e
D

ou
bl

e
Fr

os
tb

Environment

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Li
fe

tim
e

er
ro

r r
at

io

Figure 5.4: The lifetime error of TD(λ) with step-size optimization compared
to the lifetime error of TD(λ). In all experiments, TD(λ) with step-size opti-
mization used a meta-step-size of 10−4. Both algorithms used λ = 0.90. In all
comparisons between the two algorithms, αinit was the same as α.

36

C
en

tip
C

ra
zy

C
Fr

os
tb

H
er

o
K

ru
ll

N
am

eT
h

Q
be

rt
Y

ar
sR

e
Fr

ee
w

a
P

on
g

K
an

ga
r

P
oo

ya
n

A
tla

nt
K

un
gF

u
Fi

sh
in

S
ea

qu
e

B
at

tle
Tu

ta
nk

Ti
m

eP
i

Ic
eH

oc
R

ob
ot

a
B

er
ze

r
S

ta
rG

u
B

ow
lin

S
pa

ce
I

C
ar

ni
v

A
m

id
ar

W
iz

ar
d

Za
xx

on
R

iv
er

r
D

em
on

A
A

irR
ai

A
st

er
o

U
pN

D
ow

Ja
m

es
b

G
op

he
r

G
ra

vi
t

B
ea

m
R

i
A

st
er

i
E

nd
ur

o
C

ho
pp

e
V

id
eo

P
M

sP
ac

m
P

ho
en

i
B

re
ak

o
A

lie
n

Jo
ur

ne
P

riv
at

B
ox

in
g

S
ol

ar
i

B
an

kH
e

D
ou

bl
e0.0

0.2
0.4
0.6
0.8
1.0
1.2

C
en

tip
C

ra
zy

C
Fr

os
tb

H
er

o
K

ru
ll

Q
be

rt
K

un
gF

u
Fr

ee
w

a
P

on
g

K
an

ga
r

P
oo

ya
n

Fi
sh

in
E

nd
ur

o
A

lie
n

G
op

he
r

M
sP

ac
m

S
ea

qu
e

B
ox

in
g

S
pa

ce
I

Y
ar

sR
e

B
ow

lin
A

tla
nt

Tu
ta

nk
B

ea
m

R
i

A
m

id
ar

B
at

tle
R

iv
er

r
R

ob
ot

a
C

ar
ni

v
A

st
er

o
Ja

m
es

b
Ic

eH
oc

B
re

ak
o

S
ol

ar
i

Ti
m

eP
i

Za
xx

on
G

ra
vi

t
B

er
ze

r
A

irR
ai

W
iz

ar
d

P
ho

en
i

C
ho

pp
e

P
riv

at
S

ta
rG

u
V

id
eo

P
D

em
on

A
D

ou
bl

e
B

an
kH

e
A

st
er

i
U

pN
D

ow
Jo

ur
ne

N
am

eT
h0.0

0.2
0.4
0.6
0.8
1.0
1.2

C
en

tip
C

ho
pp

e
C

ra
zy

C
Fi

sh
in

Fr
os

tb
H

er
o

K
ru

ll
Y

ar
sR

e
K

un
gF

u
M

sP
ac

m
Fr

ee
w

a
P

on
g

B
ox

in
g

K
an

ga
r

E
nd

ur
o

S
pa

ce
I

A
lie

n
S

ea
qu

e
B

re
ak

o
P

oo
ya

n
G

op
he

r
Q

be
rt

Tu
ta

nk
R

iv
er

r
B

ow
lin

A
st

er
i

B
ea

m
R

i
U

pN
D

ow
P

ho
en

i
A

m
id

ar
A

st
er

o
C

ar
ni

v
A

tla
nt

S
ol

ar
i

Ti
m

eP
i

B
at

tle
R

ob
ot

a
Za

xx
on

Ja
m

es
b

V
id

eo
P

S
ta

rG
u

Ic
eH

oc
A

irR
ai

P
riv

at
B

er
ze

r
Jo

ur
ne

G
ra

vi
t

D
em

on
A

D
ou

bl
e

B
an

kH
e

W
iz

ar
d

N
am

eT
h0.0

0.2
0.4
0.6
0.8
1.0
1.2

C
en

tip
C

ho
pp

e
C

ra
zy

C
Fi

sh
in

Fr
os

tb
H

er
o

K
ru

ll
M

sP
ac

m
K

un
gF

u
U

pN
D

ow
E

nd
ur

o
R

iv
er

r
S

pa
ce

I
Fr

ee
w

a
B

ox
in

g
A

lie
n

S
ea

qu
e

A
st

er
i

P
on

g
B

re
ak

o
K

an
ga

r
Tu

ta
nk

Y
ar

sR
e

A
tla

nt
G

op
he

r
Q

be
rt

P
oo

ya
n

Ti
m

eP
i

B
ea

m
R

i
S

ta
rG

u
P

ho
en

i
C

ar
ni

v
V

id
eo

P
B

ow
lin

Ja
m

es
b

A
st

er
o

A
m

id
ar

D
em

on
A

Za
xx

on
R

ob
ot

a
A

irR
ai

B
at

tle
B

er
ze

r
N

am
eT

h
S

ol
ar

i
Jo

ur
ne

Ic
eH

oc
G

ra
vi

t
P

riv
at

B
an

kH
e

D
ou

bl
e

W
iz

ar
d

Environment

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Li
fe

tim
e

er
ro

r r
at

io

Figure 5.5: The lifetime error of TD(λ) with step-size optimization compared
to the lifetime error of TD(λ). In all experiments, TD(λ) with step-size op-
timization used a meta-step-size of 10−3. Both algorithms used λ = 0.90. In
all comparisons between the two algorithms, αinit was the same as α. The red
labels show games on which TD(λ) with step-size optimization diverged.

37

0
.0

1

0
.0

2
0

.0
2

0
.0

2

0
.0

3

0
.0

3

0
.0

4

0
.0

4

0.04

0.05

0.05

0.05

0.0101

0.0142

0.0183

0.0224

0.0265

0.0306

0.0347

0.0388

0.0429

0.0470

Life
tim

e
 Erro

r

Meta-step-size parameter

S
te

p
-s

iz
e

 p
ar

am
e

te
rs

 a
t

In
it

ia
liz

at
io

n

Figure 5.6: Lifetime error of TD(λ) with step-size optimization for a wide range
of αinit and θ on Pong. The diagonal lines are hyperparameter configurations
for which the algorithm diverged.

To better understand the sensitivity of TD(λ) with step-size optimization

to θ and αinit, I ran it for fifty-five values of αinit and θ on the game Pong.

For both parameters, I used values from the set {0.7x|x ∈ {0, 1, · · · , 54}} for

a total of 3025 experiments.

I plot all results in Figure 5.6, where the x-axis is the meta-step-size pa-

rameter and the y-axis is αinit. The lifetime error is shown with a color scale

that has purple at one end (low error) and pink at the other end (high er-

ror). For some hyperparameter combinations, the lifetime error was higher

than the highest value of the scale. All those values are shown as pink as well.

Hyperparameters for which the agent diverged are shown by diagonal lines.

The performance of TD(λ) with step-size optimization improved on Pong

as the meta-step-size parameter increased from 10−8 up to 10−2. It diverged

when the meta-step-size went over 10−2. This trend held for αinit in the range

10−8 to 10−5. The algorithm also diverged for αinit larger than 10−4

The main conclusions from the sensitivity analysis is that step-size opti-

mization improves performane for some values of the hyperparameters, and it

hurts for some values.

38

5.5 True Online TD(λ) with Step-size Opti-

mization

Algorithm 8: True Online TD(λ) with Step-size Optimization

Hyperparameters: αinit, λ, θ
Initializations: (w,hold,htemp, zδ,p,h, z, z̄)← (0, · · · ,0), (vδ, vold) =
(0, 0),β ← ln(αinit) ∈ Rn

while alive do
Receive ϕ, γ, and r
v ←

∑
i|ϕ[i]̸=0 w[i]ϕ[i]

δ′ ← r + γv − vold

for i | z[i] ̸= 0 do
δw[i]← δ′z[i]− zδ[i]vδ

w[i]← w[i] + δw[i]

β[i]← β[i] + θ
eβ[i]

(δ′ − vδ)p[i]

hold[i]← h[i]
h[i]← htemp[i] + δ′z̄[i]− zδ[i]vδ

zδ[i] = 0
(z[i], p[i], z̄[i])← (γλz[i], γλp[i], γλz̄[i])

vδ ← 0
b←

∑
i|ϕ[i]̸=0 z[i]ϕ[i]

for i | ϕ[i] ̸= 0 do
vδ ← vδ + δw[i]ϕ[i]

zδ[i]← eβ[i]ϕ[i]
z[i]← z[i] + zδ[i](1− b)
p[i]← p[i] + ϕ[i]hold[i]
z̄[i]← z̄[i] + zδ[i] (1− b− ϕ[i]z̄[i])
htemp[i]← h[i]− zδ[i]ϕ[i]h[i]− hold[i]ϕ[i](z[i]− zδ[i])

vold ← v

True Online TD(λ) with step-size optimization uses δ′t, the modified TD

error, defined as:

δ′t = rt + γtvt−1,t − vt−2,t−1. (5.18)

It updates the ith weight parameter as:

wt[i] = wt−1[i] + δ′tzt−1[i]− eβt−1[i](vt−1,t−1 − vt−2,t−1)ϕt−1[i], (5.19)

and estimates zt−1[i] as:

zt−1[i] = γt−1λzt−2[i] + eβ[i]ϕt−1[i]− eβ[i]ϕt−1[i]bt−1, (5.20)

39

where bt−1 is:

bt−1 = γt−1λ
n∑

i=1

zt−2[i]ϕt−1[i]. (5.21)

Let ∂wt−1[i]
∂β[i]

be ht−1[i]. Then, we can approximate ht−1[i] incrementally as:

ht−1[i] =
∂wt−1[i]

∂β[i]

=
∂wt−2[i]

∂β[i]
+

∂(δ′t−1zt−2[i])

∂β[i]
− ϕt−2[i]

∂
(
eβ[i](vt−2,t−2 − vt−3,t−2)

)
∂β[i]

= ht−2[i] + zt−2[i]
∂δ′t−1

∂β[i]
+ δ′t−1

∂zt−2[i]

∂β[i]
− ϕt−2[i]e

β[i]∂(vt−2,t−2 − vt−3,t−2)

∂β[i]

− ϕt−2[i](vt−2,t−2 − vt−3,t−2)e
β[i].

(5.22)

Using a similar approximation of the meta-gradient as done by IDBD, we

simply the above equation as:

ht−1[i] ≈ ht−2[i] + zt−2[i]
∂δ′t−1

∂β[i]
+ δ′t−1

∂zt−2[i]

∂β[i]
− ϕt−2[i]e

β[i](ht−2[i]ϕt−2[i]− ht−3[i]ϕt−2[i])

− ϕt−2[i](vt−2,t−2 − vt−3,t−2)e
β[i].

(5.23)

The gradient ∂δ′t−1

∂β[i]
is approximated as:

∂δ′t−1

∂β[i]
=

∂(rt−1 + γt−1

∑n
j=1 wt−2[j]ϕt−1[j]−

∑n
j=1 wt−3[j]ϕt−2[j])

∂β[i]

≈ −ht−3[i]ϕt−2[i].

(5.24)

Finally, if z̄t−2[i] is
∂zt−2[i]
∂β[i]

, then it can be recursively approximated as:

z̄t−2[i] =
∂

∂β[i]

(
γtλzt−3 + eβ[i]ϕt−2[i]− eβ[i]ϕt−2[i]bt−2

)
= γt−2λz̄t−3[i] + eβ[i]ϕt−2[i]− eβ[i]ϕt−2[i]bt−2 − eβ[i]ϕt−2[i]

∂bt−2

∂β[i]

≈ γt−2λz̄t−3[i] + eβ[i]ϕt−2[i]− eβ[i]ϕt−2[i]bt−2 − γt−2λe
β[i]ϕt−2[i]

2z̄t−3[i]

= γt−2λz̄t−3[i] + eβ[i]ϕt−2[i] (1− bt−2 − γt−2λϕt−2[i]z̄t−3[i]) .
(5.25)

40

Combining the above equations, ht−1[i] is approximated as:

ht−1[i] ≈ht−2[i] + zt−2[i] (−ht−3[i]ϕt−2[i])

+ δ′t−1z̄t−2[i]− ϕt−2[i]e
β[i](ht−2[i]ϕt−2[i]− ht−3[i]ϕt−2[i])

− ϕt−2[i](vt−2,t−2 − vt−3,t−2)e
β[i]

=ht−2[i] + zt−2[i] (−ht−3[i]ϕt−2[i])

+ δ′t−1z̄t−2[i]− ϕt−2[i]
2eβ[i](ht−2[i]− ht−3[i])

− ϕt−2[i](vt−2,t−2 − vt−3,t−2)e
β[i]

=ht−2[i]− ht−3[i]ϕt−2[i]
(
zt−2[i]− eβ[i]ϕt−2[i]

)
+ δ′t−1z̄t−2[i]− ϕt−2[i]e

β[i]ht−2[i]ϕt−2[i]

− ϕt−2[i](vt−2,t−2 − vt−3,t−2)e
β[i]

=ht−2[i]− ht−3[i]ϕt−2[i]
(
zt−2[i]− eβ[i]ϕt−2[i]

)
+ δ′t−1z̄t−2[i]− ϕt−2[i]e

β[i](ht−2[i]ϕt−2[i]

+ (vt−2,t−2 − vt−3,t−2)).

(5.26)

The rest of the derivation is the same as TD(λ) with step-size optimiza-

tion. The pseudocode for True Online TD(λ) with step-size optimization is

Algorithm 8.

5.6 Experiments: True Online TD(λ) with Step-

size Optimization on APB

Similar to earlier experiments, I evaluated the performance of True Online

TD(λ) with step-size optimization on the Atari Prediction Benchmark.

Figure 5.7 and Figure 5.8 show the performance of True Online TD(λ) with

step-size optimization compared to True Online TD(λ) for different values of

the meta-step-size parameter and the initial step-size parameter. The initial

step-size parameter in all comparisons is the same as the step-size parameter of

the baseline. The results are similar to the results of TD(λ) with step-size opti-

mization. The performance of True Online TD(λ) with step-size optimization

improved on a majority of the games. It diverged on some games.

Figure 5.9 is the hyperparameter sensitivity analysis of True Online TD(λ)

41

C
ra

zy
C

Fr
os

tb
H

er
o

K
ru

ll
Fi

sh
in

A
tla

nt
Fr

ee
w

a
K

an
ga

r
S

ea
qu

e
P

on
g

S
ta

rG
u

C
ho

pp
e

D
em

on
A

N
am

eT
h

B
er

ze
r

S
pa

ce
I

R
iv

er
r

K
un

gF
u

P
oo

ya
n

B
at

tle
U

pN
D

ow
C

ar
ni

v
A

st
er

o
A

st
er

i
Tu

ta
nk

A
m

id
ar

Ti
m

eP
i

R
ob

ot
a

G
op

he
r

Za
xx

on
V

id
eo

P
M

sP
ac

m
B

ea
m

R
i

Ja
m

es
b

A
irR

ai
A

lie
n

Q
be

rt
E

nd
ur

o
Ic

eH
oc

C
en

tip
W

iz
ar

d
G

ra
vi

t
B

re
ak

o
P

ho
en

i
B

ow
lin

Jo
ur

ne
B

ox
in

g
P

riv
at

S
ol

ar
i

B
an

kH
e

D
ou

bl
e

Y
ar

sR
e0.0

0.2
0.4
0.6
0.8
1.0
1.2

C
ra

zy
C

Fr
os

tb
H

er
o

K
ru

ll
K

un
gF

u
Fi

sh
in

P
on

g
Fr

ee
w

a
K

an
ga

r
A

lie
n

M
sP

ac
m

E
nd

ur
o

G
op

he
r

B
ox

in
g

Q
be

rt
P

oo
ya

n
Y

ar
sR

e
S

pa
ce

I
C

ho
pp

e
S

ea
qu

e
B

ea
m

R
i

B
ow

lin
B

at
tle

Tu
ta

nk
R

iv
er

r
A

m
id

ar
A

tla
nt

B
re

ak
o

A
st

er
o

C
ar

ni
v

R
ob

ot
a

N
am

eT
h

Ti
m

eP
i

B
er

ze
r

Za
xx

on
S

ol
ar

i
Ic

eH
oc

Ja
m

es
b

A
irR

ai
G

ra
vi

t
W

iz
ar

d
S

ta
rG

u
D

em
on

A
A

st
er

i
P

riv
at

U
pN

D
ow

D
ou

bl
e

B
an

kH
e

Jo
ur

ne
V

id
eo

P
C

en
tip

P
ho

en
i0.0

0.2
0.4
0.6
0.8
1.0
1.2

C
ra

zy
C

Fr
os

tb
H

er
o

K
ru

ll
Q

be
rt

M
sP

ac
m

K
un

gF
u

B
ox

in
g

A
lie

n
Fi

sh
in

P
on

g
E

nd
ur

o
S

pa
ce

I
K

an
ga

r
Y

ar
sR

e
Fr

ee
w

a
B

re
ak

o
G

op
he

r
S

ea
qu

e
A

st
er

i
P

oo
ya

n
R

iv
er

r
U

pN
D

ow
Tu

ta
nk

B
ea

m
R

i
A

st
er

o
C

ho
pp

e
A

m
id

ar
B

ow
lin

C
ar

ni
v

N
am

eT
h

P
ho

en
i

Ti
m

eP
i

V
id

eo
P

S
ta

rG
u

B
at

tle
S

ol
ar

i
Za

xx
on

Ja
m

es
b

R
ob

ot
a

Ic
eH

oc
P

riv
at

A
irR

ai
Jo

ur
ne

G
ra

vi
t

W
iz

ar
d

D
ou

bl
e

B
an

kH
e

B
er

ze
r

D
em

on
A

A
tla

nt
C

en
tip

0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
ra

zy
C

Fr
os

tb
H

er
o

K
ru

ll
Q

be
rt

M
sP

ac
m

U
pN

D
ow

R
iv

er
r

E
nd

ur
o

A
st

er
i

K
un

gF
u

A
lie

n
B

ox
in

g
S

pa
ce

I
Y

ar
sR

e
B

re
ak

o
S

ea
qu

e
P

on
g

Fi
sh

in
Tu

ta
nk

A
tla

nt
K

an
ga

r
Fr

ee
w

a
G

op
he

r
Ti

m
eP

i
N

am
eT

h
S

ta
rG

u
B

ea
m

R
i

V
id

eo
P

D
em

on
A

P
oo

ya
n

C
ar

ni
v

Ja
m

es
b

C
ho

pp
e

Za
xx

on
A

st
er

o
A

irR
ai

A
m

id
ar

B
er

ze
r

R
ob

ot
a

P
ho

en
i

C
en

tip
B

at
tle

B
ow

lin
S

ol
ar

i
Jo

ur
ne

G
ra

vi
t

W
iz

ar
d

Ic
eH

oc
P

riv
at

B
an

kH
e

D
ou

bl
e

Environment

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Li
fe

tim
e

er
ro

r r
at

io

Figure 5.7: The lifetime error of True Online TD(λ) with step-size optimization
compared to the lifetime error of True Online TD(λ). In all experiments, True
Online TD(λ) with step-size optimization used a meta-step-size of 10−4. In
all comparisons between the two algorithms, αinit was the same as α. The red
labels show games on which True Online TD(λ) with step-size optimization
diverged.

42

A
tla

nt
C

en
tip

C
ho

pp
e

C
ra

zy
C

Fi
sh

in
Fr

os
tb

H
er

o
K

ru
ll

M
sP

ac
m

N
am

eT
h

Q
be

rt
Y

ar
sR

e
Fr

ee
w

a
P

on
g

K
an

ga
r

P
oo

ya
n

K
un

gF
u

S
ea

qu
e

B
at

tle
R

ob
ot

a
Ic

eH
oc

Ti
m

eP
i

B
er

ze
r

B
ow

lin
Tu

ta
nk

S
ta

rG
u

A
m

id
ar

C
ar

ni
v

S
pa

ce
I

W
iz

ar
d

Za
xx

on
R

iv
er

r
D

em
on

A
Ja

m
es

b
A

st
er

o
G

op
he

r
A

irR
ai

U
pN

D
ow

G
ra

vi
t

B
ea

m
R

i
A

st
er

i
E

nd
ur

o
V

id
eo

P
P

ho
en

i
A

lie
n

P
riv

at
Jo

ur
ne

B
re

ak
o

B
ox

in
g

S
ol

ar
i

B
an

kH
e

D
ou

bl
e0.0

0.2
0.4
0.6
0.8
1.0
1.2

C
en

tip
C

ho
pp

e
C

ra
zy

C
Fi

sh
in

Fr
os

tb
H

er
o

K
ru

ll
M

sP
ac

m
N

am
eT

h
Q

be
rt

Y
ar

sR
e

K
un

gF
u

Fr
ee

w
a

P
on

g
K

an
ga

r
P

oo
ya

n
E

nd
ur

o
A

lie
n

G
op

he
r

S
ea

qu
e

B
ox

in
g

S
pa

ce
I

B
ow

lin
A

tla
nt

Tu
ta

nk
B

ea
m

R
i

A
m

id
ar

B
at

tle
R

iv
er

r
R

ob
ot

a
C

ar
ni

v
A

st
er

o
B

re
ak

o
Ja

m
es

b
Ic

eH
oc

S
ol

ar
i

Ti
m

eP
i

Za
xx

on
G

ra
vi

t
B

er
ze

r
A

irR
ai

W
iz

ar
d

P
ho

en
i

P
riv

at
S

ta
rG

u
V

id
eo

P
D

em
on

A
D

ou
bl

e
B

an
kH

e
Jo

ur
ne

A
st

er
i

U
pN

D
ow

0.0
0.2
0.4
0.6
0.8
1.0
1.2

C
en

tip
C

ho
pp

e
Fi

sh
in

Fr
os

tb
H

er
o

K
ru

ll
M

sP
ac

m
Q

be
rt

K
un

gF
u

Fr
ee

w
a

P
on

g
B

ox
in

g
K

an
ga

r
E

nd
ur

o
S

pa
ce

I
A

lie
n

S
ea

qu
e

B
re

ak
o

P
oo

ya
n

G
op

he
r

Tu
ta

nk
R

iv
er

r
B

ow
lin

A
st

er
i

B
ea

m
R

i
U

pN
D

ow
P

ho
en

i
A

m
id

ar
A

st
er

o
C

ar
ni

v
A

tla
nt

S
ol

ar
i

Ti
m

eP
i

B
at

tle
R

ob
ot

a
Za

xx
on

Ja
m

es
b

V
id

eo
P

S
ta

rG
u

Ic
eH

oc
A

irR
ai

P
riv

at
B

er
ze

r
Jo

ur
ne

G
ra

vi
t

D
ou

bl
e

D
em

on
A

B
an

kH
e

W
iz

ar
d

N
am

eT
h0.0

0.2
0.4
0.6
0.8
1.0
1.2

C
en

tip
C

ho
pp

e
C

ra
zy

C
E

nd
ur

o
Fi

sh
in

Fr
os

tb
H

er
o

K
ru

ll
M

sP
ac

m
N

am
eT

h
Q

be
rt

Y
ar

sR
e

K
un

gF
u

U
pN

D
ow

R
iv

er
r

S
pa

ce
I

Fr
ee

w
a

B
ox

in
g

A
lie

n
S

ea
qu

e
A

st
er

i
P

on
g

B
re

ak
o

K
an

ga
r

Tu
ta

nk
A

tla
nt

G
op

he
r

P
oo

ya
n

Ti
m

eP
i

B
ea

m
R

i
S

ta
rG

u
P

ho
en

i
C

ar
ni

v
V

id
eo

P
B

ow
lin

Ja
m

es
b

A
m

id
ar

A
st

er
o

Za
xx

on
D

em
on

A
R

ob
ot

a
A

irR
ai

B
at

tle
B

er
ze

r
S

ol
ar

i
Jo

ur
ne

Ic
eH

oc
G

ra
vi

t
P

riv
at

B
an

kH
e

D
ou

bl
e

W
iz

ar
d

Environment

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Li
fe

tim
e

er
ro

r r
at

io

Figure 5.8: The lifetime error of True Online TD(λ) with step-size optimization
compared to the lifetime error of True Online TD(λ). In all experiments, True
Online TD(λ) with step-size optimization used a meta-step-size of 10−3. In
all comparisons between the two algorithms, αinit was the same as α. The red
labels show games on which True Online TD(λ) with step-size optimization
diverged.

43

Meta-step-size parameter

S
te

p
-s

iz
e

 p
ar

am
e

te
rs

 a
t

In
it

ia
liz

at
io

n

0
.0

1

0
.0

20
.0

2
0

.0
2

0
.0

3

0
.0

3

0
.0

4

0.04

0
.0

4

0.05

0.0101

0.0142

0.0183

0.0224

0.0265

0.0306

0.0347

0.0388

0.0429

0.0470

Life
tim

e
 Erro

r

Figure 5.9: Lifetime error of True Online TD(λ) with step-size optimization
for a wide range of αinit and θ on Pong. The diagonal lines are hyperparameter
configurations for which the algorithm diverged.

with step-size optimization on Pong. The performance of the algorithm im-

proved as the meta-step-size parameter increased from 10−8 up to 10−2. It

diverged when the meta-step-size went over 10−2. This trend held for αinit in

the range 10−8 to 10−5. The results are similar to the results of TD(λ) with

step-size optimization.

Comparing TD(λ) with Step-size Optimization and True
Online TD(λ) with Step-size Optimization

I compared the performance of TD(λ) with step-size optimization and True

Online TD(λ) with step-size optimization on three games—Bowling, Atlantis,

and Seaquest—and plot their performance as a function of the meta-step-

size parameter and the initial step-size parameter in Figure 5.10. The best

performance of both algorithms was comparable, and they both diverged for

similar values of their hyperparameters.

The results on APB show that step-size optimization can improve perfor-

mance of TD learning algorithms for some values of their hyperparameters.

The results do not show any advantage of True Online TD(λ) over TD(λ)

when they are combined with step-size optimization. In the next chapter, I

44

Bowling

S
te

p
-s

iz
e

 p
ar

am
e

te
rs

 in
it

ia
liz

at
io

n

Step-size Optimization

0
.0

2

0
.0

2

0
.0

2

0.0
2

0
.0

3

0.03

0
.0

4

0.04

0
.0

4

0.04

0
.0

5

0.05

0
.0

5

0.05

0
.0

6

0.06

0
.0

7

0.07

0
.0

7

0.07

0
.0

8

0.08

Step-size Optimization

0
.0

2

0
.0

2

0
.0

2

0.02

0
.0

3

0.03

0
.0

4

0.04

0
.0

4

0.04

0
.0

5

0.05

0
.0

5

0.05

0
.0

6

0.06

0
.0

7
0

.0
7

0
.0

8

0.01625

0.02300

0.02975

0.03650

0.04325

0.05000

0.05675

0.06350

0.07025

0.07700

Atlantis

S
te

p
-s

iz
e

 p
ar

am
e

te
rs

 in
it

ia
liz

at
io

n

0
.12

0
.12

0
.16

0.16

0.16

0
.20

0.20

0
.24

0.24

0
.28

0.28

0
.32

0.32

0
.36

0.36

0
.4

0

0.40

0
.4

4

0.44

0
.4

8

0.48

0
.12

0
.16

0.16

0.16

0
.20

0.20

0
.24 0.24

0
.28

0.28

0
.32

0.32
0.32

0.32

0
.36

0.36

0.36

0.36

0
.4

0

0.40

0
.4

4

0.44

0
.4

8

0.48

0.1005

0.1425

0.1845

0.2265

0.2685

0.3105

0.3525

0.3945

0.4365

0.4785

Seaquest

Meta-step-size parameter

S
te

p
-s

iz
e

 p
ar

am
e

te
rs

 in
it

ia
liz

at
io

n

0
.20

0
.20

0
.25

0.25

0
.30

0.30

0.30

0
.35

0.35

0.35
0

.4
0

0.40

0
.4

5

0.45

0
.5

0

0.50

0
.5

5

0.55
0

.6
0

0.60

0
.6

5

0.65

0
.70

0.70

0
.75

0.75

Meta-step-size parameter

0
.20

0.20

0
.25

0.25

0
.30

0.30

0.30

0
.35

0.35

0.35

0
.4

0

0.40
0.40

0.40

0
.4

5

0.45

0.45

0.45

0
.5

0

0.50

0
.5

5

0.55

0
.6

0

0.60

0
.6

5

0.65

0
.70

0.70

0
.75

0.75

0.155

0.220

0.285

0.350

0.415

0.480

0.545

0.610

0.675

0.740

Lifetim
e

 e
rro

r

Figure 5.10: The performance of TD(λ) with step-size optimization (first col-
umn) and True Online TD(λ) with step-size optimization (second column) for
a wide range of meta-step-size parameters and initial step-size parameters. The
rows are results on different games. The diagonal lines are hyperparameters
for which the algorithms diverged. The best performance of both algorithms
was comparable, and they both diverged for similar values of their hyperpa-
rameters. The added complexity of True Online TD(λ) did not provide any
advantage over TD(λ) when they were combined with step-size optimization.

45

present an algorithm that fixes the issue of divergence of True Online TD(λ)

and True Online TD(λ) with step-size optimzation.

46

Chapter 6

Temporal Difference Learning
with the Overshoot Bound

In the last chapter I showed that per-feature step-size parameters and step-

size optimization can be combined with TD(λ) and True Online TD(λ) to

improve their performance. Step-size optimization works well if the initial

value of the step-size parameters and the meta-step-size parameter are tuned

properly. Otherwise, it can cause algorithms to diverge. In this chapter I

develop a bound on the update to the weight parameters that fixes the issue

of divergence. The idea behind the bound is to limit the magnitude of the

update such that the update never makes the error on a sample worse than it

was before the update. At the same time, the bound is not too conservative,

and it does not hinder quick learning.

6.1 Correction Ratio of a Learning Update

I define the correction ratio of a learning update as the fraction of the predic-

tion error reduced after the update on the sample used in the update. Let y∗t

be the target of a learning system at time step t. y∗t could be a ground-truth

target, as in supervised learning, or a bootstrapped target, such as a λ-return.

If ϕt and wt−1 are the feature vector and the weight parameter vector at time

step t, then the prediction error before the update is:

lt = y∗t −
n∑

i=1

wt−1[i]ϕt[i], (6.1)

47

and the prediction error after the update is:

l′t = y∗t −
n∑

i=1

wt[i]ϕt[i]. (6.2)

The correction ratio, τt, for this update is defined as:

τt
.
=

lt − l′t
lt

. (6.3)

We can develop some intuition about the correction ratio with some examples.

Consider the case when the target is y∗t and the prediction is 0.5y∗t before the

update. If the prediction after the update is 0.75y∗t—the prediction error is

half of what it was before—the correction ratio would be 0.5. If the prediction

after the update is 1.25y∗t—the error is half in magnitude but opposite in

sign—the correction ratio would be 1.5. A correction ratio of 1 would make

the prediction perfectly match the target after the update. A correction ratio

larger than 2 or less 0 would increase the error after the update, for example,

a correction ratio of three or negative one would mean that the magnitude of

the error after the update is twice as large as before.

If we know the update rule for the weight parameters, then we can derive a

simpler expression for τt. Consider the case when the weights are updated using

stochastic gradient descent, and the gradient is computed w.r.t the squared

prediction error. Let αt be the step-size parameter vector. The update rule

for the ith weight parameter for this learning system is:

wt[i] = wt−1[i] + αt[i]ϕt[i]lt, (6.4)

48

and the correction ratio is:

τt =
(y∗t −

∑n
i=1 wt[i]ϕt[i])− (y∗t −

∑n
i=1 wt+1[i]ϕt[i])

(y∗t −
∑n

i=1 wt[i]ϕt[i])

=⇒ τtlt = (y∗t −
n∑

i=1

wt[i]ϕt[i])− (y∗t −
n∑

i=1

wt+1[i]ϕt[i])

τtlt = −
n∑

i=1

wt[i]ϕt[i] +
n∑

i=1

(wt[i] + αt[i]ltϕ[i])ϕt[i]

τtlt =
n∑

i=1

αt[i]ltϕ[i]
2

τtlt = lt

n∑
i=1

αt[i]ϕ[i]
2

τt =
n∑

i=1

αt[i]ϕ[i]
2.

(6.5)

The correction ratio is a function of the step-size parameter vector and the

feature vector. In the linear case the feature vector cannot be changed by

the agent, and the only way to control the correction ratio is to adjust the

step-size parameter vector. A bound can be designed that adapts the step-size

parameter vector to ensure that the correction ratio of every update reduces

the prediction error. I call this bound the overshoot bound.

6.2 Overshoot Bound for Linear Regression

If the ground-truth target for a given sample is y∗ and the agent’s prediction

is 0.5y∗, then the overshoot bound guarantees that the prediction after the

update is between 0.5y∗ and y∗. 1

We can formalize this intuition with an inequality for prediction error on

a sample before and after the update. If

Case 1: y∗t −
n∑

i=1

wt[i]ϕt[i] ≥ 0 and y∗t −
n∑

i=1

wt−1[i]ϕt[i] ≥ 0, (6.6)

1A more general constraint is that the prediction after the update should be between
0.5y∗ and 1.5y∗ but overshooting the ground-truth target makes little sense to me, even if
the prediction error is reduced.

49

then:

y∗t −
n∑

i=1

wt−1[i]ϕt[i] ≥ y∗t −
n∑

i=1

wt[i]ϕt[i] ≥ 0

=⇒
n∑

i=1

wt−1[i]ϕt[i] ≤
n∑

i=1

wt[i]ϕt[i] ≤ y

=⇒
n∑

i=1

wt−1[i]ϕt[i] ≤
n∑

i=1

(wt−1[i] + αt[i]ϕt[i]l)ϕt[i] ≤ y

=⇒ 0 ≤
n∑

i=1

(
αt[i]ϕt[i]

2l
)
≤ y −

n∑
i=1

wt−1[i]ϕt[i]

=⇒ 0 ≤ l

n∑
i=1

αt[i]ϕt[i]
2 ≤ l

=⇒ 0 ≤
n∑

i=1

αt[i]ϕt[i]
2 ≤ 1.

(6.7)

Similarly, if:

Case 2: y∗t −
n∑

i=1

wt[i]ϕt[i] ≤ 0 and y∗t −
n∑

i=1

wt−1[i]ϕt[i] ≤ 0, (6.8)

then:

0 ≤ −y∗t +
n∑

i=1

wt−1[i]ϕt[i] ≤ −y∗t +
n∑

i=1

wt[i]ϕt[i]

=⇒ 0 ≤
n∑

i=1

αt[i]ϕt[i]
2 ≤ 1.

(6.9)

If y∗t −
∑n

i=1 wt−1[i]ϕt[i] and y∗t −
∑n

i=1 wt[i]ϕt[i] have opposite signs, then the

prediction overshoots the target after the update. We can ignore this case

because it is not desirable.

Forcing 0 ≤ τ ≤ 1 for every update guarantees that learning updates do

not increase prediction errors on samples used to perform the updates, and

the predictions after the updates do not overshoot the ground-truth targets.

The overshoot bound can be implemented without introducing new hyper-

parameters by setting the step-size parameter at every step to min(αt[i]∑n
i=1 αt[i]tϕt[i]2

, αt[i]).

Algorithm 9 implements the bound for linear regression.

The overshoot bound for linear regression is not new. AutoStep (Mahmood,

2012) used a similar bound to make linear regression robust. I extend it to

TD learning.

50

Algorithm 9: Linear Regression with the Overshoot Bound

Initializations: w ← 0 ∈ Rn

while alive do
Receive ϕ, α, and y∗

l ← y∗ −
∑n

i=1 w[i]ϕ[i]
τt ←

∑n
i=1 αt[i]ϕ[i]

2

for i | ϕ[i] ̸= 0 do
w[i]← w[i] + min(1, 1

τt
)αt[i]ϕ[i]l

6.3 Overshoot Bound for TD Learning

Extending the overshoot bound to TD learning poses two challenges. The

bootstrapped targets used in TD learning depend on the weight paramaters,

and the targets in TD learning can be delayed by many steps.

The naive way to extend it for TD learning is to repeat the analysis we did

for linear regression for TD(λ). The ith weight parameter in TD(λ) is updated

as:

wt[i] = wt−1[i] + αt[i]zt−1[i]δt, (6.10)

where zt−1 is the eligibility trace vector whose components are updated as:

zt[i] = γλzt−1[i] + ϕt[i]. (6.11)

The target used in a single update is the TD error:

Gt:t+1 = rt+1 + γ
n∑

i=1

wt[i]ϕt+1[i], (6.12)

which depends on the weight parameter vector. Let G′
t:t+1 be the target with

the updated weight parameter vector, that is,

G′
t:t+1 = rt+1 + γ

n∑
i=1

wt+1[i]ϕt+1[i]

= rt+1 + γ
n∑

i=1

(wt[i] + αt[i]zt[i]δt)ϕt+1[i]

= rt+1 + γ

n∑
i=1

wt[i]ϕt+1[i] + γ

n∑
i=1

αt[i]zt[i]δtϕt+1[i]

= Gt:t+1 + γδt

n∑
i=1

αt[i]zt[i]ϕt+1[i].

(6.13)

51

Using the TD error as the prediction error, and the one-step bootstrapped

return as the target, we get the following expression of the correction ratio:

τt =
(Gt:t+1 −

∑n
i=1 wt[i]ϕt[i])−

(
G′

t:t+1 −
∑n

i=1 wt+1[i]ϕt[i]
)

δt

=⇒ τtδt = (Gt:t+1 −
n∑

i=1

wt[i]ϕt[i])− (G′
t:t+1 −

n∑
i=1

wt+1[i]ϕt[i])

τtδt = −
n∑

i=1

wt[i]ϕt[i] +
n∑

i=1

(wt[i] + αt[i]δtzt[i])ϕt[i]− γαt[i]δt

n∑
i=1

zt[i]ϕt+1[i]

τtδt =
n∑

i=1

αt[i]δtzt[i]ϕt[i]− γαt[i]δt

n∑
i=1

zt[i]ϕt+1[i]

τtδt = δt

n∑
i=1

αt[i]zt[i](ϕt[i]− γϕt+1[i])

τt =
n∑

i=1

αt[i]zt[i](ϕt[i]− γϕt+1[i]).

(6.14)

We can repeat the analysis with inequalities we used for linear regression to

get an overshoot bound for TD learning. The bound is:

0 ≤
n∑

i=1

αt[i]zt[i](ϕt[i]− γϕt+1[i]) ≤ 1. (6.15)

Equation 6.15 was first derived by Dabney & Barto (2012). We can use it as

an overshoot bound for TD learning. Let’s call the algorithm that uses this

overshoot bound TD(λ) with α-bound (see Algorithm 18 for the pseudocode).

TD(λ) with α-bound is naive in two ways. First, it uses the one-step

return as the target when estimating the prediction error instead of the λ-

return target. The one-step target is not the objective of TD(λ). Second, it

takes into account the change in the target after the update when TD learning

ignores the influence of the weight parameters on the target.

Taking into account the influence of the update on the target can make the

bound too lenient. Consider the case when the feature vectors for time step t

and t+ 1 are identical, and γ = 1. Then τt is

n∑
i=1

αt[i]zt[i](ϕt[i]− γϕt+1[i]) = 0. (6.16)

52

For this case, α-bound is satisfied for any values of the step-size parameters

and any change in the weight parameter vector, irrespective of the magnitude.

A better way to define the correction ratio for TD learning is to use the

λ-return as the target and assume that the target stays the same after the

update. Consider a hypothetical learner that updates its ith weight parameter

as:

wt[i] = wt−1[i] + αt[i]ϕt−1

(
Gλ

t −
n∑

i=1

wt−1[i]ϕt−1[i]

)
. (6.17)

If we ignore the influence of the update on the target, then the correction ratio

of the above update is:

τt =

(
Gλ

t −
∑n

i=1 wt[i]ϕt[i]
)
−
(
Gλ

t −
∑n

i=1 wt+1[i]ϕt[i]
)(

Gλ
t −

∑n
i=1 wt[i]ϕt[i]

)
τt =

n∑
i=1

αt[i]ϕt[i]
2,

(6.18)

which is the same as the correction ratio for linear regression. The overshoot

bound for this hypothetical learner is:

0 ≤
n∑

i=1

αt[i]ϕt[i]
2 ≤ 1. (6.19)

Using the bound in Equation 6.19 is not straightforward because no prac-

tical algorithm uses Equation 6.17 as its update rule.

We know that the weight updates done by True Online TD(λ) eventu-

ally add up to the update in Equation 6.17 after many steps. Fortunately,

True Online TD(λ) with time-dependent step-size parameter, an algorithm we

discussed in Chapter 2, provides a practical way to implement the bound in

Equation 6.19. It updates the components of its eligibility trace vector as:

zt[i] = γλzt−1[i] + α[i]ϕt[i](1− b), (6.20)

where b is:

b = λγt

n∑
i=1

αt[i]ϕt[i]zt−1[i]. (6.21)

A modified update to the eligibility trace vector of True Online TD(λ) can

incorporate the overshoot bound. This update is:

zt[i] = γλzt−1[i] + min

(
1,

1

τt

)
α[i]ϕt[i]. (6.22)

53

Algorithm 10: True Online TD(λ) with the Overshoot Bound

Hyperparameters: α, λ
Initializations: w, zδ, z ← 0 ∈ Rn; (vδ, vold) = (0, 0)
while alive do

Receive ϕ, γ, and r
v ←

∑
ϕ[i]̸=0 w[i]ϕ[i]

δ′ ← r + γv − vold

for i | z[i] ̸= 0 do
δw[i]← δ′z[i]− zδ[i]vδ

w[i]← w[i] + δw[i] zδ[i] = 0
z[i]← γλz[i]

vδ ← 0

τt ←
∑n

i=0 αt[i]ϕ[i]
2

b←
∑

ϕ[i]̸=0 z[i]ϕ[i]

for i | ϕ[i] ̸= 0 do
vδ ← vδ + δw[i]ϕ[i]
zδ[i]← min(1, 1

τt
)αt[i]ϕ[i]

z[i]← z[i] + zδ[i](1− b)

vold ← v

I call the algorithm that uses this modified update rule True Online TD(λ)

with the overshoot bound (see Algorithm 10 for the pseudocode).

We can derive an analogous algorithm for TD(λ). The updates done by

TD(λ) do not add up to the update in Equation 6.17. We can still apply a

similar modification to the update rule of the eligibility trace vector of TD(λ)

by changing:

zt[i] = γλzt−1[i] + α[i]ϕt[i], (6.23)

to:

zt[i] = γλzt−1[i] + min(1,
1

τt
)α[i]ϕt[i]. (6.24)

I call the algorithm that uses this modified update rule TD(λ) with the over-

shoot bound (see Algorithm 11 for the pseudocode). Note that TD(λ) with the

overshoot bound only approximately satisfies the bound in Equation 6.19.

54

Algorithm 11: TD(λ) with the Overshoot Bound

Hyperparameters: α, λ
Initializations: w ← 0 ∈ Rn, z ← 0 ∈ Rn, (vold = 0
while alive do

Receive ϕ, γ, and r
v ←

∑
ϕ[i]̸=0 w[i]ϕ[i]

δ ← r + γv − vold

for i | zi ̸= 0 do
w[i]← w[i] + δz[i]; z[i]← γλz[i];

τt ←
∑

ϕ[i]̸=0 αt[i]ϕ[i]
2

for i | ϕi ̸= 0 do
z[i]← z[i] + min(αt[i],

1
τt
)ϕ[i]

vold ←
∑

ϕ[i]̸=0 w[i]ϕ[i]

6.4 Experiments: TD learning with the Over-

shoot Bound on APB

I empirically compare TD(λ) with the overshoot bound to True Online TD(λ)

with the overshoot bound by running both algorithms on the Atari Prediction

Benchmark for a wide range of step-size parameter vectors. All components

of the step-size parameter vector are set to the same value.

Ideally, we should expect the performance of the algorithms to improve

as the step-size parameters increase. Eventually, the performance might get

worse if the step-size parameter is too large. Once the bound is triggered, any

further increase in the step-size parameters should not impact performance.

Figure 6.1, 6.2, and 6.3 plot the results on all games. TD(λ) with the

overshoot bound diverged in some games for large step-size parameters. In

some games, it did not diverge but had very high lifetime error. The bound,

when applied to TD(λ), did not solve the instability of learning with large

step-size parameters. The results for True Online TD(λ) with the bound tell

a different story. In all games the bound fixed the instability of learning with

large step-size parameters.

55

0.2

0.4

Gopher

0

1

2

1e30 Enduro

0.04

0.06

Bowling

0.002

0.004

DoubleDunk

1

2

StarGunner

0.5

1.0

Zaxxon

0

1

2

1e14 MsPacman

0

2

BankHeist

0.025

0.050

0.075

JourneyEscape

0.5

1.0

Asteroids

0.01

0.02

Pitfall

5

10

15

CrazyClimber

0.1

0.2

Phoenix

1

2

3

Riverraid

5

10

15

YarsRevenge

2

4

NameThisGame

2

4

Asterix

0.5

1.0

AirRaid

0.2

0.4

Tutankham

1

2

3
SpaceInvaders

True Online TD(λ) with the overshoot bound TD(λ) with the overshoot bound

Lifetime
error

Figure 6.1: Comparing TD(λ) with the overshoot bound and True Online
TD(λ) with the overshoot bound. The latter fixes the instability of learning
with large step-size parameters, and the former does not.

6.5 Overshoot Bound for True Online TD(λ)

with Step-size Optimization

Similar to True Online TD(λ), True Online TD(λ) with step-size optimization

can be modified to incorporate the overshoot bound to get True Online TD(λ)

with step-size optimization and the overshoot bound (See Algorithm 10 for the

pseudocode). Note that in the pseudocode, the traces of the meta-gradients

are reset whenever the bound is triggered. This is because the hard scaling of

the step-size parameters when applying the bound is not differentiable, and

the meta-gradients are not well-defined. Setting the meta-gradients to zero is

a naive way to handle this issue.

I compare this new algorithm with True Online TD(λ) with step-size op-

timization on the game of Pong. The results are in Figure 6.4. The overshoot

bound fixed the instability of learning with large step-size parameters, and t

algorithm with the bound did not diverge for any values of the meta-step-size

parameter and initial step-size parameter. Moreover, the performance of the

algorithm with the bound did not change for hyperparameters for which the

algorithm without the bound did not diverge. This highlights that the bound

is not overly conservative, and it only plays a role when needed.

56

2

4

6

FishingDerby

0.2

0.3

KungFuMaster

1

2

3
ChopperCommand

0.0

2.5

5.0

1e23 Breakout

0

1

2

1e10 Solaris

0.0

0.5

1.0

1e14
DemonAttack

0

5000

10000
PrivateEye

0.08

0.10

Freeway

0.0

2.5

5.0

1e8 WizardOfWor

0

1

2

1e13 Kangaroo

0.1

0.2

0.3
IceHockey

0.05

0.10

Robotank

0

5

1e11 VideoPinball

0.1

0.2

Pooyan

0

50000

100000

Frostbite

0

20000

Atlantis

0.25

0.50

Carnival

0.0

0.5

1.0

1e14 BattleZone

0.25

0.50

0.75
Amidar

1

2

UpNDown

True Online TD(λ) with the overshoot bound TD(λ) with the overshoot bound

Lifetime
error

Figure 6.2: Comparing TD(λ) with the overshoot bound and True Online
TD(λ) with the overshoot bound. The latter fixes the instability of learning
with large step-size parameters, and the former does not.

0.2

0.3

BeamRider

0

1

1e25 Pong

0

5000

Jamesbond

0.5

1.0

Berzerk

0

2
1e28 TimePilot

0

5

1e6 Alien

2

4

Centipede

0

1

1e13 Krull

0.5

1.0

1.5

Seaquest

7.5

10.0

Hero

1

2
Boxing

0

2

1e23 Qbert

0.1

0.2
Gravitar

True Online TD(λ) with the overshoot bound TD(λ) with the overshoot bound

Lifetime
error

Figure 6.3: Comparing TD(λ) with the overshoot bound and True Online
TD(λ) with the overshoot bound. The latter fixes the instability of learning
with large step-size parameters, and the former does not.

57

S
te

p
-s

iz
e

 p
ar

m
ae

te
rs

 a
t

In
it

ia
liz

at
io

n

True Online TD(λ) with
Step-size Optimization

0
.0

2

0
.0

3

0
.0

4

0.0
5

0.06
0.07

0.08 0.08

0.08

0.090.10

0
.0

2

0
.0

3

0
.0

4

0.05

0.06
0.07

0.08 0.08

0
.0

9

01.0

0.10

0
.11

0
.11

0
.11

0.0072

0.0186

0.0300

0.0414

0.0528

0.0642

0.0756

0.0870

0.0984

0.1098

10-8 10-6 10-4 10-2 1
10-8

10-6

10-4

10-2

1

True Online TD(λ) with Step-size
Optimization and Overshoot Bound

Life
tim

e
 e

rro
r

Meta-step-size parameter

Figure 6.4: True Online TD(λ) with step-size optimization compared to True
Online TD(λ) with step-size optimization and the overshoot bound on the
game of Freeway. The latter does not diverge for any values of the meta-step-
size parameter and initial step-size parameter, showing the effectiveness of the
bound.

The overshoot bound, when applied to True Online TD(λ) with step-size

optimization, can prevent divergence for large step-size parameters and meta-

step-size parameters. Still, the performance for large step-size parameters and

meta-step-size parameters is not good. In the next chapter, I introduce a

mechanism for reducing the step-size parameters when they are too large.

58

Algorithm 12: True Online TD(λ) with Step-size Optimization and
Overshoot Bound
Hyperparameters: αinit, λ, θ
Initializations: w,hold,htemp, zδ,p,h, z, z̄ ← 0 ∈ Rn; (vδ, vold) =
(0, 0); β[i]← αinit ∀ i
while alive do

Perceive ϕ, γ and r
v ←

∑
ϕ[i]̸=0 w[i]ϕ[i]

δ′ ← r + γv − vold

for i | z[i] ̸= 0 do
δw[i]← δ′z[i]− zδ[i]vδ

w[i]← w[i] + δw[i]

β[i]← β[i] + θ
eβ[i]

(δ′ − vδ)p[i]

hold[i]← h[i]
h[i]← htemp[i] + δ′z̄[i]− zδ[i]vδ

zδ[i] = 0
(z[i], p[i], z̄[i])← (γλz[i], γλp[i], γλz̄[i])

vδ ← 0

τt ←
∑

i|ϕ[i]̸=0 e
β[i]ϕ[i]2

b←
∑

ϕ[i]̸=0 z[i]ϕ[i]

for i | ϕ[i] ̸= 0 do
vδ ← vδ + δw[i]ϕ[i]

zδ[i]← min
(
1, 1

τt

)
eβ[i]ϕ[i] // Overshoot bound

z[i]← z[i] + zδ[i](1− b)
p[i]← p[i] + ϕ[i]hold[i]
z̄[i]← z̄[i] + zδ[i] (1− b− ϕ[i]z̄[i])
htemp[i]← h[i]− zδ[i]ϕ[i]h[i]− hold[i]ϕ[i](z[i]− zδ[i])
if τ > 1 then

(htemp[i], h[i], z̄[i]) = (0, 0, 0)

vold ← v

59

Chapter 7

SwiftTD: Fast and Robust
Temporal Difference Learning

In the last two chapters, I showed that step-size optimization improved the

performance of TD learning, and the overshoot bound made TD learning ro-

bust to poorly chosen step-size parameters and meta-step-size parameters. In

this chapter, I introduce SwiftTD, a TD learning algorithm that combines the

ideas of step-size optimization and η-bound (a generalization of the overshoot

bound) with a third idea called step-size decay.

7.1 True Online TD(λ) with the η-bound

The overshoot bound is a powerful idea that prevents divergence in TD learn-

ing by scaling updates just enough so that the updated predictions do not

overshoot the targets. Whenever the bound is triggered, the predictions are

updated to exactly match the targets. If the observations or targets in a prob-

lem are noisy, matching the targets can be too large of an update, and it can

be beneficial to be more restrictive. The η-bound provides a way to be more

restrictive.

It generalizes the overshoot bound by restricting the overcorrection ratios

of updates to be below η, a hyperparameter that is between 0 and 1. Recall

that the overcorrection ratio for True Online TD(λ) using α as the step-size

parameter vector is:

τt =
n∑

i=1

ϕt[i]αt[i]
2, (7.1)

60

and the eligibility trace vector is updated as:

zt[i] = λγtzt−1[i] + αt[i]ϕt[i](1− b), (7.2)

where b is:

b = λγt

n∑
i=1

zt−1[i]ϕt[i]. (7.3)

True Online TD(λ) with η-bound updates its eligibility trace vector as:

zt[i] = min(1,
η

τt
)αt[i]ϕt[i]. (7.4)

Note that η = 1 makes the η-bound identical to the overshoot bound.

7.2 Step-size Decay

The η-bound scales down the step-size parameters temporarily and has no

lasting impact on the values of the step-size parameters. Step-size optimization

can reduce the step-size parameters if they are too large, but only if the update

rule is differentiable. The η-bound, when used, makes the learning update non-

differentiable, and step-size optimization can no longer effectively reduce the

step-size parameters. The idea behind step-size decay is simple: if the η-

bound is triggered, then we reduce the step-size parameters by a small value.

Reducing them is sensible because the bound is only triggered when they are

too large.

Mechanistically step-size decay is simple to implement. Let αt be the step-

size parameter vector at time step t. At every step for which the η-bound is

triggered, the ith step-size parameter is updated as:

αt+1[i] = αt[i]ϵ
ϕt[i]2 , (7.5)

where ϵ is a hyperparameter called the decay rate. A reasonable choice for ϵ is

a value close to one, such as 0.99 or 0.999. Pseudocode for True Online TD(λ)

with step-size decay is Algorithm 13.

Related work

The idea of step-size decay is similar in spirit to the step-size ratchet algorithm

by Ghiassian (2022). It differs from step-size ratchet in three important ways.

61

Algorithm 13: True Online TD(λ) with Step-size Decay

Hyperparameters: η = 0.5, αinit = 10−7, ϵ = 0.99, λ, γ, θ
Initializations: w, zδ, z ← 0 ∈ Rn; (vδ, vold) = (0, 0)
while alive do

Receive ϕ, γ, and r
v ←

∑
i|ϕ[i]̸=0 w[i]ϕ[i]

δ′ ← r + γv − vold

for i | z[i] ̸= 0 do
δw[i]← δ′z[i]− zδ[i]vδ

w[i]← w[i] + δw[i] zδ[i] = 0
z[i]← γλz[i]

vδ ← 0

τ ←
∑

i|ϕ[i]̸=0 α[i]ϕ[i]
2

b←
∑

i|ϕ[i]̸=0 z[i]ϕ[i]

for i | ϕ[i] ̸= 0 do
vδ ← vδ + δw[i]ϕ[i]
zδ[i]← min(1, η

τ
)αϕ[i]

z[i]← z[i] + zδ[i](1− b)
if τ > η then

α[i]← α[i]ϵϕ[i]
2

vold ← v

First, step-size ratchet decays the step-size parameters abruptly to satisfy its

bound as opposed to decaying them slowly. Second, it uses the one-step boot-

strapped target as opposed to the λ-return for computing the overcorrection

ratio. Finally, unlike step-size decay, it does not decay step-size parameters

proportional to their contribution to the overcorrection ratio. Instead, step-

size parameters of all features, even if the features are zero, are reduced.

7.3 SwiftTD: Fast and Robust TD Learning

SwiftTD combines step-size optimization, the η-bound, step-size decay, and

True Online TD(λ) in a single algorithm. In addition, it clips the step-size

parameters to be in range [eηmin , eη] at every time step, where ηmin is a hyper-

parameter.

The pseudocode for SwiftTD is Algorithm 14. The pink lines implement

62

step-size optimization, the blue lines implement the η-bound, the purple lines

implement step-size decay, and the orange line implements the clipping of the

step-size parameters. The remaining black lines are the same as True Online

TD(λ).

Algorithm 14: SwiftTD

Hyperparameters: ϵ = 0.999, η = 0.1, ηmin = e−15, αinit = 10−7, λ, θ
Initializations: w,hold,htemp, zδ,p,h, z, z̄ ← 0 ∈ Rn; (vδ, vold) =
(0, 0).β ← ln(αinit) ∈ Rn

while alive do
Perceive ϕ and r
v ←

∑
i|ϕ[i]̸=0 w[i]ϕ[i]

δ′ ← r + γv − vold

for i | z[i] ̸= 0 do
δw[i]← δ′z[i]− zδ[i]vδ

w[i]← w[i] + δw[i]

β[i]← β[i] + θ
eβ[i]

(δ′ − vδ)p[i]

β[i]← clip (β[i], ln(ηmin), ln(η))
hold[i]← h[i]
h[i]← htemp[i] + δ′z̄[i]− zδ[i]vδ

zδ[i] = 0
(z[i], p[i], z̄[i])← (γλz[i], γλp[i], γλz̄[i])

vδ ← 0

τ ←
∑

i|ϕ[i]̸=0 e
β[i]ϕ[i]2

b←
∑

i|ϕ[i]̸=0 z[i]ϕ[i]

for i | ϕ[i] ̸= 0 do
vδ ← vδ + δw[i]ϕ[i]

zδ[i]← min
(
1, η

τ

)
eβ[i]ϕ[i] // The η-bound

z[i]← z[i] + zδ[i](1− b)
p[i]← p[i] + ϕ[i]hold[i]
z̄[i]← z̄[i] + zδ[i] (1− b− ϕ[i]z̄[i])
htemp[i]← h[i]− zδ[i]ϕ[i]h[i]− hold[i]ϕ[i](z[i]− zδ[i])
if τ > η then

β[i] = β[i] + ϕ[i]2ln(ϵ) // Step-size decay

(htemp[i], h[i], z̄[i]) = (0, 0, 0)

vold ← v

Intuitively, SwiftTD increases the step-size parameters of relevant features

and reduces them for irrelevant features. If the step-size parameters become

too large, it uses the η-bound to prevent bad updates while simultaneously

63

reducing them proportional to their contribution to the correction ratios.

7.4 Experiments: SwiftTD on the Atari Pre-

diction Benchmark

To demonstrate the effectiveness of SwiftTD I compare it to True Online TD(λ)

with step-size optimization and True Online TD(λ) with step-size optimization

and the overshoot bound on the game of Pong for a wide range of meta-step-

size parameters and initial step-size parameters.

I plot the results in Figure 7.1. I used η = 0.1 and ϵ = 0.999 for SwifTD.

SwiftTD performed well for almost all combinations of αinit and θ. True Online

TD(λ) with step-size optimization and the overshoot bound, on the other

hand, performed poorly when the initial value of the step-size parameters or

the meta-step-size parameter were too large.

I then compared SwiftTD and True Online TD(λ) on all Atari games. For

both SwiftTD and True Online TD(λ), I swept over all their hyperparameters.

Because SwiftTD has more hyperparameters, I did a coarser search over its

hyperparameters for a fair comparison. The details of the hyperparameter

sweeps are in Appendix B.2.

I tuned all hyperparameters for each Atari game individually and used

the best hyperparameter setting for each game. An alternative choice would

have been to tune the hyperparameters on a subset of the games and use the

same hyperparameters for all games. Both choices have their advantages and

disadvantages. I verified that the results did not change qualitatively with

either choice.

I plot individual learning curves for eight games in Figure 7.3. In each

plot, the y-axis is the lifetime error and the x-axis is the lifetime. In each of

the eight games, SwiftTD had a smaller lifetime error for almost all lifetime

parameters.

I plot the predictions made by both methods in the final 3,000 steps on

four games in Figure 7.2. The gray dotted lines are the return from each time

step. Predictions learned by SwiftTD were significantly more accurate. In

64

S
te

p
-s

iz
e

 p
ar

m
ae

te
rs

 a
t

In
it

ia
liz

at
io

n

True Online TD(λ) with
Step-size Optimization

0
.0

2

0
.0

3

0
.0

4

0.0
5

0.06
0.07

0.08 0.08

0.08

0.090.10

Meta-step-size parameter

0
.0

2

0
.0

3

0
.0

4

0.05

0.06
0.07

0.08 0.08

0
.0

9

01.0

0.10

0
.11

0
.11

0
.11

SwiftTD

0.01

0.01
0.02

2
0.

0

0.03

0.0
3

3
0.

0

0
.0

3

0.030.04

0.04

0
.0

4

0.05

0.05

0.06

0
.0

6

0.06

0.0072

0.0186

0.0300

0.0414

0.0528

0.0642

0.0756

0.0870

0.0984

0.1098

10-8 10-6 10-4 10-2 1
10-8

10-6

10-4

10-2

1

Life
tim

e
 e

rro
r

True Online TD(λ) with Step-size
Optimization and the Overshoot Bound

Figure 7.1: Parameter sensitivity study of SwiftTD and baselines. I ran
SwiftTD, True Online TD(λ) with step-size optimization, and SwiftTD with-
out step-size decay of 55 values of αinit and meta-step-size parameter for a
total of 3025 experiments each. I then plot the prediction error

some games—Altantis, Pooyan—True Online TD(λ) completely failed for all

hyperparameter settings whereas SwiftTD learned accurate predictions.

I also compared the performance of SwiftTD with fixed hyperparameters

of η = 0.1, ϵ = 0.999, θ = 3−3 and αinit = 10−6 to True Online TD(λ) with

different values of α. The results are in Figure 7.4. SwiftTD performed as well

or better on all games using the same hyperparameters.

7.5 Experiments: Hyperparameter Sensitiv-

ity Study of SwiftTD

In another set of experiments I studied the sensitivity of SwiftTD to its hy-

perparameters ϵ, η, θ, and αinit. I ran SwiftTD on three games: Altantis,

SpaceInvaders, and Sequest for 25 values of αinit and θ, four values of ϵ, and

four values of η for a total of 10,000 experiments on each game. I plot the

results in Figures 7.5, 7.6, and 7.7.

In all three games, step-size decay improved performance for large meta-

step-size parameters and large initial step-size parameters. A value of 0.999

performed well, whereas a smaller value of 0.9 degraded performance. The

η-bound also improved performance, with η = 0.03 performing better than

η = 0.3 on all three games. η = 0.01 performed slightly worse than η = 0.03.

The hyperparameter sensitivity provides evidence that the best hyperpa-

rameters do not vary widely across games and can be set reliably. Step-size

65

Pooyan

SpaceInvaders

Pong

Atlantis

Time step

SwiftTD True Online TD(λ)

Prediction

Prediction 0.0

0.4

0.8

2.0

0.0

1.0

2.0

0.0

1.0

1.0

0.2

0.6

-0.2
t t + 3000

Prediction

Time step
t t + 3000

Ground truth

Ground truth

Figure 7.2: Predictions made by True Online TD(λ) and SwiftTD after learn-
ing for two hours of gameplay on Atari games. The gray dotted lines show
the ground-truth returns. SwiftTD learned significantly more accurate predic-
tions than True Online TD(λ). In some games—Pong, Pooyan—the predic-
tions were near perfect. Even in more difficult games, like SpaceInvaders, the
predictions anticipated the onset rewards.

Hero

SwiftTD

True Online TD(λ)

MsPacman

True Online TD(λ)

SpaceInvaders

True Online TD(λ)

Pong

SwiftTD

True Online TD(λ)

Seaquest

SwiftTD

True Online TD(λ)

Atlantis

SwiftTD

True Online TD(λ)

Freeway

SwiftTD

True Online TD(λ)

Pooyan

0 200100 0 200100 0 200100 0 200100

Lifetime (in thousands)

20

60

40

0.6

1.0

0.8

0.2

0.3

0.4

0.05

0.03

0.01

0.07

0.0

0.1

0.2

0.1

0.0

0.1

0.2

0.3

0.2
SwiftTD

SwiftTD

True Online TD(λ)

SwiftTD

Lifetime
error

Figure 7.3: Learning curves for eight games. The y-axis is L(time step). In
all games, SwiftTD reduced error faster than True Online TD(λ). Note that
because we are plotting the return error, the minimum achievable error would
not be zero in stochastic environments such as Atari. The minimum error
cannot be estimated from experience. Consequently, the y-axis should only be
used to compare algorithms and not to measure absolute performance.

66

K
ru

ll
M

sP
ac

m
K

un
gF

u
R

iv
er

r
S

pa
ce

I
U

pN
D

ow
S

ea
qu

e
A

st
er

i
E

nd
ur

o
Fr

ee
w

a
A

lie
n

A
tla

nt
K

an
ga

r
C

ra
zy

C
P

on
g

Y
ar

sR
e

Tu
ta

nk
B

ox
in

g
S

ta
rG

u
B

re
ak

o
P

oo
ya

n
D

em
on

A
N

am
eT

h
Ti

m
eP

i
B

ea
m

R
i

Q
be

rt
V

id
eo

P
G

op
he

r
C

ar
ni

v
Ja

m
es

b
H

er
o

Fr
os

tb
B

er
ze

r
Za

xx
on

R
ob

ot
a

A
irR

ai
Fi

sh
in

A
m

id
ar

B
at

tle
A

st
er

o
B

ow
lin

C
en

tip
P

ho
en

i
S

ol
ar

i
C

ho
pp

e
P

riv
at

Jo
ur

ne
G

ra
vi

t
Ic

eH
oc

W
iz

ar
d

B
an

kH
e

D
ou

bl
e0.0

0.5

1.0
True Online TD() with = 10 9.0

SwiftTD

K
ru

ll
K

un
gF

u
M

sP
ac

m
Fr

ee
w

a
E

nd
ur

o
R

iv
er

r
U

pN
D

ow
S

pa
ce

I
C

ra
zy

C
S

ea
qu

e
P

on
g

K
an

ga
r

A
lie

n
B

ox
in

g
A

st
er

i
B

re
ak

o
Y

ar
sR

e
Tu

ta
nk

P
oo

ya
n

A
tla

nt
G

op
he

r
H

er
o

Ti
m

eP
i

Fi
sh

in
Q

be
rt

B
ea

m
R

i
R

ob
ot

a
S

ta
rG

u
C

ar
ni

v
B

ow
lin

A
m

id
ar

P
ho

en
i

Ja
m

es
b

Fr
os

tb
Za

xx
on

A
st

er
o

V
id

eo
P

A
irR

ai
D

em
on

A
B

at
tle

S
ol

ar
i

N
am

eT
h

B
er

ze
r

P
riv

at
Jo

ur
ne

Ic
eH

oc
G

ra
vi

t
W

iz
ar

d
B

an
kH

e
D

ou
bl

e
C

ho
pp

e
C

en
tip

0.0

0.5

1.0
True Online TD() with = 10 8.0

K
un

gF
u

Fr
ee

w
a

M
sP

ac
m

P
on

g
K

an
ga

r
C

ra
zy

C
K

ru
ll

B
ox

in
g

E
nd

ur
o

S
pa

ce
I

A
lie

n
S

ea
qu

e
P

oo
ya

n
Y

ar
sR

e
G

op
he

r
B

re
ak

o
Fi

sh
in

Tu
ta

nk
R

iv
er

r
H

er
o

B
ow

lin
Q

be
rt

B
ea

m
R

i
A

m
id

ar
A

st
er

i
P

ho
en

i
C

ar
ni

v
A

st
er

o
U

pN
D

ow
A

tla
nt

R
ob

ot
a

S
ol

ar
i

Ti
m

eP
i

B
at

tle
Fr

os
tb

P
riv

at
Ja

m
es

b
Za

xx
on

V
id

eo
P

Ic
eH

oc
A

irR
ai

S
ta

rG
u

B
er

ze
r

Jo
ur

ne
G

ra
vi

t
D

em
on

A
W

iz
ar

d
B

an
kH

e
D

ou
bl

e
N

am
eT

h
C

ho
pp

e
C

en
tip

0.0

0.5

1.0
True Online TD() with = 10 7.0

K
un

gF
u

Fr
ee

w
a

P
on

g
K

an
ga

r
P

oo
ya

n
E

nd
ur

o
C

ra
zy

C
A

lie
n

G
op

he
r

S
ea

qu
e

Fi
sh

in
S

pa
ce

I
B

ox
in

g
Y

ar
sR

e
M

sP
ac

m
B

ow
lin

A
tla

nt
Tu

ta
nk

B
ea

m
R

i
A

m
id

ar
K

ru
ll

R
iv

er
r

B
at

tle
R

ob
ot

a
Q

be
rt

C
ar

ni
v

A
st

er
o

Ja
m

es
b

Ic
eH

oc
S

ol
ar

i
Ti

m
eP

i
Za

xx
on

B
re

ak
o

G
ra

vi
t

B
er

ze
r

A
irR

ai
W

iz
ar

d
P

ho
en

i
P

riv
at

S
ta

rG
u

V
id

eo
P

D
em

on
A

D
ou

bl
e

Fr
os

tb
B

an
kH

e
H

er
o

Jo
ur

ne
U

pN
D

ow
A

st
er

i
C

ho
pp

e
N

am
eT

h
C

en
tip

0.0

0.5

1.0
True Online TD() with = 10 6.0

Fr
ee

w
a

P
on

g
K

an
ga

r
P

oo
ya

n
A

tla
nt

K
un

gF
u

B
ow

lin
B

at
tle

S
ea

qu
e

Ic
eH

oc
R

ob
ot

a
W

iz
ar

d
Ti

m
eP

i
Fi

sh
in

B
er

ze
r

P
riv

at
Tu

ta
nk

S
ta

rG
u

G
ra

vi
t

A
m

id
ar

Za
xx

on
C

ar
ni

v
D

em
on

A
R

iv
er

r
A

st
er

o
U

pN
D

ow
A

irR
ai

S
pa

ce
I

G
op

he
r

Ja
m

es
b

B
ea

m
R

i
B

an
kH

e
D

ou
bl

e
E

nd
ur

o
Jo

ur
ne

P
ho

en
i

V
id

eo
P

S
ol

ar
i

A
st

er
i

N
am

eT
h

A
lie

n
B

re
ak

o
C

ho
pp

e
M

sP
ac

m
Y

ar
sR

e
B

ox
in

g
Fr

os
tb

K
ru

ll
C

en
tip

C
ra

zy
C

Q
be

rt
H

er
o0.0

0.5

1.0
True Online TD() with = 10 5.0

Tu
ta

nk
P

on
g

Fr
ee

w
a

R
ob

ot
a

K
an

ga
r

P
oo

ya
n

U
pN

D
ow

B
an

kH
e

B
at

tle
A

tla
nt

A
irR

ai
S

ta
rG

u
B

ow
lin

Ic
eH

oc
W

iz
ar

d
Ti

m
eP

i
S

ea
qu

e
Za

xx
on

G
ra

vi
t

Fi
sh

in
K

un
gF

u
B

er
ze

r
B

ea
m

R
i

D
em

on
A

P
riv

at
S

pa
ce

I
R

iv
er

r
Ja

m
es

b
A

m
id

ar
C

ar
ni

v
A

st
er

o
G

op
he

r
P

ho
en

i
Jo

ur
ne

V
id

eo
P

D
ou

bl
e

A
st

er
i

B
re

ak
o

S
ol

ar
i

N
am

eT
h

E
nd

ur
o

A
lie

n
M

sP
ac

m
C

ho
pp

e
B

ox
in

g
Y

ar
sR

e
Fr

os
tb

K
ru

ll
C

en
tip

Q
be

rt
H

er
o

C
ra

zy
C

0.0

0.5

1.0
True Online TD() with = 10 4.0

Li
fe

tim
e

er
ro

r r
at

io

Environment

Figure 7.4: SwiftTD with fixed hyperparameters compared to True Online
TD(λ) with different values of the step-size parameter. For all values of α,
SwiftTD achieved a lower lifetime error than True Online TD(λ) on a majority
of the games.

67

0.16

0.16
0.16 0

.16

0.17

0
.15

0.16

0.16

0.17 0.18
0.180.19 0.20

21.0

0.15

0.18

0.20
0.23

52.0

0.28
0.30

21.0
51.0

0.18

0.20
0.23

0.25

0.28

0.30

0.10

0.11
0.12

21
.00

.13

0
.13

0.14

0.14

0.15

0.15

0.15

0.16

0.16

61
.0

0.08

0.10
0.12

0.12

0
.14

0
.14

0.16

0.16 0
.16

0.18

0
.18

0.18

0.09
0.12 0

.12

0
.15

0
.15

0.18

0
.18

0.21

0
.21

0.24

0.24

0.27

0.27

0.27

0
.3

0

0.30

0
.30

0.09
0.12

0
.15

0
.15

0.18

81
.0

0.21

0.21

0.24

0
.2

4

0.27

0.27

0.30

0.30

0.10
0.10

0.11

0.11

0.12
0.12

0.12

0.12

0
.13

0
.13

0.13

0
.13

0
.14

0.14

0
.14

0.14

0.14

0.15

0.16

0.16

0.07

0.09

0.09

0
.0

9

0.10

0.12

0
.12

0
.14

0.140.15

0.15

0.15

0.15

0.16 0.16

0.18
0.20

0.09

0.12

0
.12

0.15 0
.15

0.18
0.18

0.21

0.21

0.24

0.24

0.24

0.27

0
.27

0
.2

70.27

0.30

0.3
0

0
.3

0
0.09

0.12
0.15

51.0

0
.15

0.18

0
.18

0.21

0.
21

0.24

0
.24

0.27

0.
27

0.30

0.30

0.10

0.12

0.12

0.12

0.12

0.14

0.14

0.16

0.16

0.16
0.18

0.20
0.22

0.22

0.07

0.09

0.10

0.10

0.12

0
.12

0.12

0.12

0
.14

0.14

0.14

0.15

0.15
0.16

0.18

0.09

0
.12

0.12

0.15

0.15

0.18

0.18

0
.18

0.21

0.210.24

0.24

0.2
7

0.30

0
.30

0.09

0.12
0.15

0.15

0.18

0.18

0.21

0.21
12.0

0.24

0.2
4

0.27

0
.27

0.30 0
.30

0.30

0.065

0.090

0.115

0.140

0.165

0.190

0.215

0.240

0.265

0.290

SwiftTD on Atlantis

Meta-step-size parameter

S
te

p
-s

iz
e

 p
ar

am
e

te
r

at
 In

it
ia

liz
at

io
n

Life
tim

e
 e

rro
r

Figure 7.5: Hyperparameter sensitivity study of SwiftTD on the game Atlantis.
Comparing the plots for ϵ = 1 and ϵ = 0.999, we see that step-size decay
improved the performance for large meta-step-size and large initializations
of the step-size parameters. Using a more restrictive bound also improved
performance as η = 0.03 performed better than η = 0.3.

68

0.32
0.34 0.36

0.38

0.400.42
0.44

0.24

0.27
0.30

0.30

0.33
0.360.39

0.42

0.24

72.0

0.30

0.30

0.33

0.33

0.36

0.36

0.39
0.390.420.45

0.24

0.32

0.32

0.40

0.400.48

0.56

0.24

0.27

0.30

0.
30

0.30

0.33

0.
33

0.360.39
0.42

0.45

0.20

0.25 0.
25

0.30 0.
30

0.
30

0.35

0.400.45

0.24

0.
24

0.30

0.30

0.
30

0.36

0.
36

0.42

0.42

0.20

0.30

0.30

0.30

0.40

0.40

0.40

0.
50

0.
60

0.
70

0.80

0.
90

0.24

0.27

0.27 0.27

0.30

0.
30

0.30

0.33

0.33

0.33

0.36

0.36

0.39
0.42

0.45

0.21

0.24 0.
24

0.27

0.27

0.30

0.
300.33

0.33

0.33

0.36

0.36

0.36

0.39
0.42

0.45

0.20

0.30

0.30

0.30

0.40

0.40

0.50

0.50
0.50

0.60

0.
60 0.

60

0.20

0.30

0.30

0.30

0.40

0.40

0.40

0.
50

0.
60

0.7
0

0.80

0.90

0.24

0.32

0.32 23
.0

0.32

0.40

0.40
0.480.56

0.64
0.72

0.80

0.88

0.20

0.25

0.25

0.25

0.30 0.30

0.30

0.30

0.35

0.35

0.35

0.40

0.40

0.45

0.45

0.50 0.55

0.20

0.30

0.30

0.30

0.
300.40

0.
40

0.50

0.600.70

0.
70

0.
20

0.30

0.30

03.0

0.40

0.40

04
.0

0.50

0.60

0.
70

0.
80

0.90

0.184

0.264

0.344

0.424

0.504

0.584

0.664

0.744

0.824

0.904

Meta-step-size parameter

S
te

p
-s

iz
e

 p
ar

am
e

te
r

at
 In

it
ia

liz
at

io
n

Life
tim

e
 e

rro
r

SwiftTD on SpaceInvaders

Figure 7.6: Hyperparameter sensitivity study of SwiftTD on the game SpaceIn-
vaders. Comparing the plots for ϵ = 1 and ϵ = 0.999, we see that step-size
decay improved the performance for large meta-step-size and large initializa-
tions of the step-size parameters. Using a more restrictive bound also improved
performance as η = 0.03 performed better than η = 0.3.

69

0.29
0.30 0.30

0.31

0.320.33
0.34

0.22

0.2
4

0
.26

0
.27

0.28

0.28

0.30

0
.30

0
.3

00.32
0.33

81.0

0.21

0
.24

0.27

0.30

0.30

0.33

0.33 0.36

0
.39

0.39

81.0

0.24

0.30

0.30

0.36
0.42

0.48

0
.5

4

0
.6

0

66
.0

0.20

0.22

0.24

0
.24

0.26

0.26

0.26

0.28

0
.2

8

0.2
8

0.30
0.32

0.34

0.18

0.18

0
.18

0.20

0.23

0.23

0.25

0
.2

5

0.28

0.28
0.28

0.30 0.30

0.3
0

0.30

0.33 0.33

0.15
0.20

0.20

0.25

0
.2

5

0.30

0.30

0
.3

0
53.0

0.40

0
.40

0.4
5

0.45

0.16

0.24

42
.0

0.32

0.32

0
.3

2

0.40

0.40

0.
48

0
.5

6

0.64

0.20

0.24

0.24
0

.24

0.24

0.28

0.28

0.32

0.32
0.36

0.40

0.44

0.18

0.21

0
.2

1

0.21

0.24

0
.24

0.24

0.27
0.27

0.27

0.30

0.30

0.30

0.33

0.16

0.24

0.24

0.32

0.32

23.0 0.40

0.48

0.48

0.48

0.56

0.56

0.64

0.16

0.24

0
.2

4

0.32

0.32

0
.3

2

0.40

0.40

0
.4

8

0.56

0
.6

4

0.24

0.24

0.24

0.30

0.30
0.360.42 0.48

0.54

0.60

0.66

0.18

0.24

0
.2

4

0.24

0.30

0.30

0.36

0.42

0.480.54

0.60

0.66

0.16

0.24

0.24

0.32

0.32

0.32

0.32

0.32

0.
32

0.4
0

0.40

0.4
0

0.48

0
.48

0.56

0.16

0.24

0.24

0.32

0.32

0.32

0.40

0
.4

0

0.4
8

0
.5

6

0.64

0.138

0.198

0.258

0.318

0.378

0.438

0.498

0.558

0.618

0.678

Meta-step-size parameter

S
te

p
-s

iz
e

 p
ar

am
e

te
r

at
 In

it
ia

liz
at

io
n

Life
tim

e
 e

rro
r

SwiftTD on Seaquest

Figure 7.7: Hyperparameter sensitivity study of SwiftTD on the game Sequest.
Comparing the plots for ϵ = 1 and ϵ = 0.999, we see that step-size decay
improved the performance for large meta-step-size and large initializations
of the step-size parameters. Using a more restrictive bound also improved
performance as η = 0.03 performed better than η = 0.3.

70

Fr
e

ew
ay

P
o

n
g

P
o

oy
an

Ka
n

g
ar

o
o

Ku
n

g
Fu

M
as

te
r

P
ri

va
te

Ey
e

Fi
sh

in
g

D
e

rb
y

At
la

nt
is

S
ea

q
u

e
st

R
iv

e
rr

ai
d

B
o

w
lin

g

Kr
ul

l

Ja
m

e
sb

o
n

d

Tu
ta

n
kh

am

A
m

id
ar

A
st

e
ri

x

C
e

nt
ip

e
d

e

S
p

ac
e

In
va

d
e

rs

En
d

u
ro

A
lie

n

Ya
rs

R
e

ve
n

g
e

M
sP

ac
m

an

Q
b

e
rt

N
am

eT
hi

sG
am

e

B
re

am
R

id
e

r

C
ar

ni
va

l

H
e

ro

B
at

tl
e

Zo
n

e

C
h

o
p

p
e

rC
o

m
m

an
d

A
st

e
ro

id
s

B
ox

in
g

A
ir

R
ai

d

S
o

la
ri

s

C
ra

zy
C

lim
b

e
r

R
o

b
o

ta
n

k

Ti
m

e
P

ilo
t

Ic
e

H
o

ck
ey

Za
xx

o
n

U
p

N
D

o
w

n

P
h

o
e

ni
x

B
e

rz
e

rk

D
e

m
o

n
At

ta
ck

S
ta

rG
u

n
n

e
r

V
id

e
o

P
in

b
al

l

W
iz

ar
d

O
fW

o
r

Jo
u

rn
ey

Es
ca

p
e

G
ra

vi
ta

r

D
o

u
b

le
D

u
n

k

B
re

ak
o

u
t

Fr
p

st
b

it
e

B
an

kH
ei

st

G
o

p
h

e
r

1.0

0.0

0.2

0.4

0.6

0.8
Conv net + SwiftTD

Conv net + True Online TD(λ)

Lifetime
error
ratio

Figure 7.8: Comparing performance of convolutional networks on the Atari
Prediction Benchmark. SwiftTD significantly outperformed True Online
TD(λ) even when combined with neural networks. The confidence intervals
are +− two standard error around the mean computed over fifteen runs.

decay of 0.999 and η = 0.1 or 0.03 are reasonable default values.

7.6 Experiments: SwiftTD with Convolutional

Neural Networks

So far I have compared all methods with linear learners. In this section, I

share one way SwiftTD can be combined with neural networks.

Instead of using the preprocessing described in Chapter 5, I used SwiftTD

with a one-layer convolutional neural network. I applied a convolutional layer

on the 105 × 80 × 24 tensor I got after stacking the three tensors given by

the binning process described in Section 5.3. The convolutional layer had 25

kernels of size 3 × 3 × 24 each. The weights of the kernels were initialized by

sampling from U(−1, 1).

I applied all the kernels to the input tensor with a stride of 2. The output

of the convolutional layer was a 52 x 40 x 25 tensor, and it is passed through

the ReLU activation function (Fukushima, 1969) and flattened to get a feature

vector with 52,000 components. A weight parameter vector is used to make

linear predictions from the feature vector. The main challenge in applying

SwiftTD to neural networks was that SwiftTD was developed for linear learn-

ers. I got past this limitation by applying SwiftTD to only the last layer of

the network and updated the weights of the kernels using TD(λ), similar to

Tesauro (1995). For the baseline, I used True Online TD(λ) in the last layer.

71

SpaceInvadersPong Seaquest Freeway
4

0

2

Figure 7.9: Visualizing the amount of credit assigned to each pixel by SwiftTD
over the lifetime of the agent. The color map is in the log space. We see that
SwiftTD assigned credit to meaningful aspects of the game. For example,
in Pong, it assigned credit to the trajectories of the ball. In MsPacman, it
assigned credit to the dots and the enemies. In SpaceInvaders, it assigned
credit to the locations of enemies, bullets, and the UFO that passes at the
top.

I tuned the step-size parameter of weights in the kernels independently of the

hyperparameters of the learners in the last layer.

The results of convolutional networks with SwiftTD and True Online TD(λ)

are in Figure 7.8. Similar to the linear case, SwiftTD helped in almost all

games. Results with convolutional neural networks highlight that simply using

SwiftTD for the weights in the last layer of existing Deep RL systems could

improve their performance.

7.7 Experiments: Credit Assignment by SwiftTD

The motivation behind step-size optimization was to selectively increase the

step-size parameters of features that are predictive of the return. We can visu-

alize how well SwiftTD achieved this goal by initializing step-size parameters

to small values and visualizing the amount of credit assigned to each pixel of

the game frames over the lifetime of the agent.

On any given step, I define the credit assigned to the ith feature by SwiftTD

as the quantity added to its eligibility trace, that is,

min(1,
η

τt
)eβt[i]ϕt[i]

2. (7.6)

The average credit assigned to the ith feature over the lifetime of the agent is:

CreditT [i] =
1

T

T∑
t=1

min(1,
η

τt
)eβt[i]ϕt[i]

2. (7.7)

72

If we run an experiment where the initial value of the step-size parameters is

very small, then CreditT [i] measures the learned importance of the ith feature

by SwiftTD.

I ran SwiftTD on eight games with an initial step-size parameter of 10−8

and measured CreditT at the end of learning. Recall that our APB learners

have 201,619 features. The last 19 features encode the actions and the cu-

mulant, and the remaining 201,600 features are the binned pixels of the game

frame. CreditT is a vector with 201,619 components, one for each feature.

I reshaped the first 201,600 components of CreditT to a 105 × 80 × 24

tensor, where the 24 channels are the credit assigned to the binned values of

the RGB channels of the game frame. I then summed over the 24 channels to

get a 105 × 80 matrix. I visualize this matrix for each game in Figure 7.9 as

an imperfect way of visualizing the credit assigned to each pixel location.

Figure 7.9 shows that SwiftTD assigned credit to meaningful aspects of

the game that are predictive of rewards and returns. For example, in Pong,

it assigned credit to the trajectories of the ball. In MsPacman, it assigned

credit to the dots and the enemies. In SpaceInvaders, it assigned credit to the

locations of enemies, bullets, and the UFO that passes at the top. The visual-

ization serves as a qualitative validation of the credit assignment mechanism

in SwiftTD.

73

Chapter 8

Swift-Sarsa: Extending SwiftTD
to Control

SwiftTD can learn predictions more accurately than prior TD learning algo-

rithms. The ideas that enable it to learn better predictions can be applied to

control algorithms as well. The most straightforward way of applying insights

from SwiftTD to control problems is to combine its key ideas with True Online

Sarsa(λ) (Van Seijen et al., 2016) to develop Swift-Sarsa.

8.1 Swift-Sarsa: Fast and Robust Linear Con-

trol

In the control problem outlined in Chapter 3, the output of the agent at every

time step is a vector with d components. Swift-Sarsa is limited to problems

with a discrete number of actions. If each component of the action vector can

only have a finite number of values, then we can represent the problem as

having a discrete set of actions.

Swift-Sarsa uses SwiftTD to learn a value function for each of its m discrete

actions. At every time step, it computes the value of each action and stacks

them to get an action-value vector. A policy function π : Rm → {1, · · · ,m}

takes as input the action-value vector and returns a discrete action. The value

of the action chosen at the current time step is used in the bootstrapped

target, and the value of the action chosen at the previous step is used as a

prediction when estimating the TD error. The eligibility trace vector of the

74

value function of only the chosen action is incremented.

We can make the description of the algorithm more concrete with some

notation. Let wi
t be the weight parameter vector for the value function for

action i at time step t, and let ϕt be the feature vector at time step t. The

value of the jth action is:

vjt−1,t =
n∑

i=1

wj
t−1[i]ϕt[i]. (8.1)

The values associated with all actions are stacked to form the action-value

vector vt−1,t ∈ Rm where

vt−1,t[j] = vjt−1,t for j ∈ {1, · · · ,m}. (8.2)

Let at and at−1 be the actions chosen at time step t and t − 1, respectively.

The TD error in Swift-Sarsa is

δ′t = rt + γvt−1,t[at]− vt−2,t−1[at−1]. (8.3)

The eligibility vector for the value function of action j is zj. If the action

chosen at time step t is j then zj is decayed by λγ and incremented using

the same update as True Online TD(λ). If the action chosen is different from

j, then the components of zj are decayed by λγ but not incremented. Other

than these changes, Swift-Sarsa is the same as SwiftTD. Algorithm 15 is the

pseudocode of Swift-Sarsa.

The policy π can be any function. Usually, it is chosen such that actions

with high values are more likely to be picked than actions with low values. Two

popular choices of policies are the ϵ-greedy policy and the softmax policy.

The ϵ-greedy policy picks the action with the highest value with probability

1 − ϵ and a random action with probability ϵ. The softmax policy turns the

values into a discrete probability distribution. The probability of taking the

ith action is
e

vt[i]

τ ′∑m
j=1 e

vt[j]

τ ′
, (8.4)

where τ ′ ∈ (0,∞) is the temperature parameter. Changing the temperature

parameter does not change the relative order of likelihood of actions. For a

75

fixed action-value vector, a high value of the temperature parameter makes the

policy closer to a uniform policy, and a low value of the temperature parameter

makes the policy closer to the greedy policy. In the limit when τ ′ → ∞, the

probability of every action is the same, and when τ ′ → 0, the probability of

action with the highest value is one.

8.2 The Operant Conditioning Benchmark

I designed a test bed called the operant conditioning benchmark for evaluating

the performance of Swift-Sarsa. The benchmark defines a set of control prob-

lems that do not need sophisticated strategies for exploration, and a random

policy picks the best actions occasionally. The optimal policy for problems

from the benchmark can be represented by a linear learner.

The inspiration for the operant conditioning benchmark is the animal learn-

ing benchmark by Rafiee et al. (2023). The animal learning benchmark is in-

spired by classical conditioning experiments done by behaviorists on animals,

and the operant conditioning benchmark is inspired by operant conditioning

experiments. The key difference between them is that in operant conditioning

experiments, the actions chosen by the animals influence the rates of the re-

wards. In classical conditioning experiments the animals have no control over

the rates of rewards and simply learn to predict the upcoming rewards (e.g .,

Pavlov’s dog).

The observation vectors in problems in the benchmark have n binary com-

ponents, and the action-vectors have d binary components. Both n and d are

hyperparameters, and any combination of them for which n > d defines a valid

control problem.

At some special time steps, exactly one of the first m components of the

observation vector is one. They are zero on all other time steps. On time steps

when the ith component of the first m components is one, the agent gets a

delayed reward for picking an action-vector whose ith component is one and

other components are zero. The reward is delayed by k1 steps, where k1 is

a variable that is uniformly sampled from (ISI1, ISI2) every time the agent

76

picks the rewarding action. On all other time steps, the reward is zero.

One randomly chosen component from the first m components of the ob-

servation vector are one every k2 time steps, where k2 is a variable that is

uniformly sampled from (ITI1, IT I2)

At every step, each of the remaining n−m components of the observation

vector is one with probability µt. µ1 = 0.05, and it is recursively updated as

µt =


µt−1+ if 0.01 ≤ µt−1 + nt ≤ 0.1

0.01 if µt−1 + nt < 0.01

0.1 if µt−1 + nt > 0.1,

(8.5)

where nt ∼ N (0, 10−8).

Intuitively µ is the value of a random walk that starts at 0.05, and it is

updated by adding a sample from N (0, 10−8) at every time step. µ is forced

to stay in the range [0.01, 0.1].

The last n−m components of the observation vector are a source of noise

with a time-dependent distribution. Control problems whose observations have

many noisy components (n−m is large) are challenging.

8.3 Experiments: Swift-Sarsa on the Operant

Conditioning Benchmark

I ran experiments with Swift-Sarsa on the operant conditioning benchmark for

different values of n. I set m = 2 in all experiments. (ISI1, ISI2) was (4, 6),

and (ITI1, IT I2) was (50, 70). The lifetime of the agent was 300,000. The

policy was softmax with a temperature parameter of 0.1. The action-vector is

mapped to a discrete set. Actions (0, 0), (0, 1), (1, 0), and (1, 1) are mapped

to discrete actions 1, 2, 3, and 4, respectively.

Figure 8.1 plots the average reward for different values of the meta-step-size

parameter and the initial value of the step-size parameters for two different

values of n. Similar to the performance of SwiftTD, the performance of Swift-

Sarsa improved as the meta-step-size parameter increased showing the benefit

of step-size optimization. For a wide range of its parameters, Swift-Sarsa

achieved a lifetime reward that was close to the optimal lifetime reward of

77

n = 60,000 n = 30,000

Lifetim
e rew

ard

Figure 8.1: Performance of Swift-Sarsa as a function of the meta-step-size
parameter and the initial values of step-size parameters on the operant con-
ditioning benchmark. Experiments in the left figure had n = 60, 000 and the
right figure had n = 30, 000. For both set of experiments η was 1.0, m was 2,
and ϵ was 0.9999.

SwiftSarsa without step-size decay SwiftSarsa with step-size decay

Lifetim
e rew

ard

Figure 8.2: Impact of step-size decay on the performance of Swift-Sarsa as
a function of the meta-step-size parameter and the initial values of step-size
parameters on the operant conditioning benchmark. Experiments in the left
panel did not use step-size decay whereas experiments in the right panel used a
step-size decay with decay parameter set to 0.999. Comparing the two results
we see that step-size decay improves performance when the initial value of the
step-size parameters is too large. For both sets of experiments, η was one and
m was two.

78

≈ 0.014. Increasing the number of distractors made the problem more chal-

lenging, and the performance of Swift-Sarsa decreased.

In a second set of experiments, I compared the impact of step-size decay

on the performance of Swift-Sarsa. The results are in Figure 8.2. Similar to its

impact on SwiftTD, step-size decay improved the performance of Swift-Sarsa

when the initial value of the step-size parameters was too large.

Swift-Sarsa is a simple way of transferring the improvements made by

SwiftTD to control problems. A more thorough evaluation of Swift-Sarsa on a

wider range of control problems is needed to understand its full potential. It

is possible that Swift-Sarsa when combined with more powerful preprocessing,

such as tile coding (Sutton & Barto, 2018), can perform similarly to deep RL

algorithms on more complex problems, such as Atari games.

79

Algorithm 15: Swift-Sarsa

Hyperparameters: ϵ = 0.999, η = 0.1, ηmin = e−15, αinit = 10−7, γ, λ, θ
Initializations: w,hold,htemp, zδ,p,h, z, z̄ ← 0 ∈ Rn; (vδ, vold) =
(0, 0);β ← ln(αinit) ∈ Rn

while alive do
Perceive ϕ and r
for i ∈ 0, · · · ,m do

v[i]←
∑

j|ϕ[j]̸=0 w
i[j]ϕ[j]

k ← π(v)
δ′ ← r + γv[k]− vold

for i | zj[i] ̸= 0 ∀i, j do

δw
j
[i]← δ′zj[i]− zδ

j
[i]vδ

wj[i]← wj[i] + δw
j
[i]

βj[i]← βj[i] + θ

eβ
j [i]

(δ′ − vδ)pj[i]

βj[i]← clip (βj[i], ln(ηmin), ln(η))

holdj [i]← hj[i]

hj[i]← htempj [i] + δ′z̄j[i]− zδ
j
[i]vδ

zδ
j
[i] = 0

(zj[i], pj[i], z̄j[i])← (γλzj[i], γλpj[i], γλz̄j[i])

vδ ← 0

τ ←
∑

i|ϕ[i]̸=0 e
βk[i]ϕ[i]2

b←
∑

i|ϕ[i]̸=0 z
k[i]ϕ[i]

for i | ϕ[i] ̸= 0 do

vδ ← vδ + δw
k
[i]ϕ[i]

zδ
k
[i]← min

(
1, η

τ

)
eβ

k[i]ϕ[i] // η-bound

zk[i]← zk[i] + zδ
k
[i](1− b)

pk[i]← pk[i] + ϕ[i]holdk [i]

z̄k[i]← z̄k[i] + zδ
k
[i]
(
1− b− ϕ[i]z̄k[i]

)
htempk [i]← hk[i]− zδ

k
[i]ϕ[i]hk[i]− holdk [i]ϕ[i](zk[i]− zδ

k
[i])

if τ > η then
βk[i] = βk[i] + ϕ[i]2ln(ϵ) // Step-size decay

(htempk [i], hk[i], z̄k[i]) = (0, 0, 0)

vold ← v[k]

80

Part II

Fast Non-linear Recurrent
Feature Discovery

81

Chapter 9

Feature Generation by
Continual Imprinting

In Part 1 of the dissertation I presented algorithms that can learn from a given

set of features. I did not answer the question of how to get the features. In this

chapter, I propose algorithms for finding useful features from observations.

The chapter is organized as follows: first I outline a general architecture of

a learning system that continually generates new features, continually removes

useless features, and continually learns predictions from the features. I then

explain the idea of feature generation by imprinting and present two algorithms

for generating features. Finally, I conclude by evaluating the proposed learning

system on a new prediction benchmark that uses real-world audio data as

observations.

9.1 Learning by Feature Generation and Fea-

ture Removal

The learning system that continually generates and removes features is called

the imprinting learner, and it has three parts: a feature generator, a prediction

learner, and a feature remover. Let xt and ϕt be the observation vector and

state-feature vector at time step t. Then ϕt is computed as:

ϕt = U(ϕt−1,xt), (9.1)

where xt ∈ {0, 1}n is a binary-valued observation vector and U is the state

update function. Unlike agents in Part I of the dissertation that learn from

82

feature vectors with a constant length, the agents in Part II have feature

vectors that can grow and shrink over time. At time step t the feature vector

has nt components.

At time step t, the imprinting learner computes its feature vector ϕt and

uses it to make a prediction:

vt−1,t =
nt∑
i=1

wt−1[i]ϕt[i], (9.2)

where wt−1 is the weight parameter vector. Every feature has an associated

weight parameter, a step-size parameter, and an eligibility trace parameter

that are all updated by SwiftTD.

Features have one of the three status, tenure-track, tenured, and idle. They

also have two hyperparameters associated with them, tenure-threshold and

tenure-track-threshold. Any feature whose magnitude of the weight parameter

(i.e., the parameter used to make predictions) is larger than or equal to the

tenure-threshold parameter has the tenured status. Any feature whose weight

parameter is larger than or equal to the tenure-track-threshold parameter and

less than the tenure-threshold parameter has the tenure-track status. Lastly,

any feature whose weight parameter is less than the tenure-track-threshold

parameter has the idle status. The status of a feature can change over time as

its weight parameter changes. The values of the threshold parameters can be

different for different features.

In addition to having a status, each feature has a type. It can be an ob-

servation feature, a pattern feature, or a memory feature. Observation features

are present at initialization and never removed. Pattern features and mem-

ory features are generated from experience and can be removed. All types of

features are binary-valued (0 or 1).

At initialization, the agent has n observation features. These features

have the same values as the observation vector x at every step. Their weight

parameters are initialized to zero and their step-size parameters are initialized

to αinit, where αinit is a hyperparameter of SwiftTD.

83

Feature Generation

The imprinting learner generates up to k new features at every time step where

k is a hyperparameter. Recall that SwiftTD has a parameter η that limits the

increment to its eligibility trace vector. New features are generated at time

step t as long as the value of τt is less than η. The value of τt for a learner

with binary features is:

τt =
∑

i|ϕt[i]=1

eβ[i]. (9.3)

If τt is less than η + αinit and ϕt−1 has active tenured features, then a new

feature is generated. If the new feature is not identical to any of the existing

features, then it is added to the learner. Its weight parameter and the step-size

parameter are initialized to 0 and αinit, respectively. Lastly, if the new feature

has a value of one at the current time step, then τt is updated as:

τt = τt + αinit. (9.4)

If at any point during feature generation, no more unique feature can be gen-

erated, k features have been generated, or τt + αinit is greater than η, then

feature generation stops.

Feature generation adds up to k features but only if the feature vector on

the previous time step had active tenured features, and τ after all the features

have been added does not exceed η.

Feature Removal

SwiftTD (Algorithm 14) decays the ith component of the eligibility trace pa-

rameter as:

z[i]← γλz[i]. (9.5)

After the decay, if the value of z[i] is less than eβ[i]ϵz and the status of the

feature ϕ[i] is idle, then the imprinting learner removes ϕ[i] and replaces it by

the last component of the feature vector. Here ϵz is a hyperparameter which

can be set to a small value, such as 0.01. Once the feature is removed the

length of the feature vector is reduced by one. The observation features are

84

New pattern
feature with

k = 90%

Tenured
observation

features

Tenured
imprinted
features

φ’[1] φ’[2] φ’[3] φ’[4] φ’[5] φ’[6] φ’[7]

t-1

t

t+1

t+2

t+3

φ’t[2]

φ[m]

φ’t[4] φ’t[7]

t+4

Time step

Figure 9.1: Generating a new feature at time step t + 1 by imprinting on the
values of the tenured features at time step t. The solid-colored features are
one (active) and the striped ones are zero (not active). Here ϕ′

t is the vector
of tenured features at time step t. The new feature is connected to ϕ′[2], ϕ′[4]
and ϕ′[7] and is active at time step j if ϕ′

j−1[2] + ϕ′
j−1[4] + ϕ′

j−1[7] is greater
than or equal to 2.7 (90% of 3.0), which only happens when all three of the
input features are active.

never removed because their tenure-track threshold is zero and they never have

the idle status.

A subtle but important point is that features removed from the feature

vector can have outgoing connections to other features in the feature vector,

and they may still be required to update the feature vector. These ghost

features do not have direct connections to predictions but are still part of the

state update function. The state update function can become more complex

as the number of ghost features increases without increasing the size of the

feature vector.

9.2 Feature Generation by Imprinting

The idea of imprinting is to generate features at time step t that are immedi-

ately triggered by their inputs. Making features that are immediately triggered

has two benefits. First, the usefulness of these features can be tested immedi-

ately, and second, restricting the learner to only generate these features culls

85

the search space of the features. In this chapter, I look at two mechanisms

of generating features by imprinting. The first mechanism generates features

that recognize the pattern of the feature vector that they imprint on. They

are called pattern features. The second mechanism generates features that

remember the past. These are called memory features.

Generating Pattern Features by Imprinting

Pattern features are generated to recognize the current configurations of the

tenured features. The idea is visually shown in Figure 9.1. A new pattern

feature is constructed by connecting it to non-zero tenured features such that

the new feature is one when at least k0 percent of the same tenured features

are one, where k0 is a hyperparameter of the generator. A pattern feature is

always active the first time step it is created.

Generating Memory Features by Imprinting

Memory features are generated to remember and relay information from the

past to the future. The idea is visually shown in Figure 9.2. A new memory

feature is constructed by connecting it to a single tenured feature. When the

tenured feature is one, the memory feature is one for k1 time steps after a

delay of k2 time steps, where k1 and k2 are hyperparameters of the generator.

It is zero otherwise. A memory feature is always triggered the first time step

it is created but is not active until the delay has passed.

9.3 The Audio Prediction Benchmark

The audio prediction benchmark uses audio recorded from a microphone as

the data stream. It consists of sounds, such as words, that are followed by

scalar rewards after a short delay. An example of the data stream with labels

is in Figure 9.3. Every experiment has three sounds. One is followed by a +1

reward, one is followed by a -1 reward and one is not followed by any rewards.

The sounds differ for different instantiations of prediction problems. Some

examples of the sounds are spoken words and notes produced from different

86

New
memory
features

Tenured
feature

t-1 t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12t

Time step

φ’[o]

φ’[n]

Figure 9.2: Generating three memory, ϕ[m], ϕ[n], and ϕ[o], from the tenured
feature ϕ′[1]. The three features are triggered by ϕ′

t[1] and ϕ′
t+8[1]. When

triggered, ϕ[m] is active for two time steps with a delay of two time steps, ϕ[n]
is active for three time steps with a delay of one time step, and ϕ[o] is active
for one time steps with a delay of three time steps.

musical instruments.

Learning accurate predictions on the audio prediction benchmark requires

non-linear features that differentiate between sounds. Some sounds are delib-

erately chosen to be similar, such as the same chord played on two different

instruments. The delay between the sound and the reward signal is wider

than the duration of the sound. This means that to make accurate predictions

an agent must remember information from its past observations. The bench-

mark is designed to test the ability of a learner to generate features that can

recognize patterns and retain information from the past.

Preprocessing to get binary observations

The audio for the benchmark was sampled at a rate of 16,384 Hz for one

hour. At every environment step it progresses by 640 samples or roughly 40

milliseconds. The samples are transformed into the frequency domain using

the fast fourier transform (FFT) algorithm, which is applied to the last 1024

samples (640 from the current time step and 384 from the previous time step;

there is a small overlap between every two time steps because most FFT

implementations like to work in powers of two).

The output of FFT is a vector with 512 components. The ith component

is the magnitude of the signal of frequency i. This vector is further processed

to get a binary observation vector.

87

Audio
amplitude

Reward

Return

-1.0

1.0

No Yes

Best learnable
prediction

Time

Figure 9.3: Visualizing experience from the audio prediction benchmark. The
sound of the word no is followed by a reward of -1 after a delay of 3 to 5
seconds, and the sound of the word yes is followed by a reward of +1 after
a similar delay. The delay between the sounds of the two words is 15 to 30
seconds. The return cannot be perfectly predicted from the audio signal, and
the best learnable prediction starts after the sound is audible.

The output of FFT is plotted on a graph with frequency on the x-axis and

magnitudes of the signal on the y-axis. The range of the x-axis is 1 to 512

and the range of the y-axis is 0 to 50. The plot is divided into a grid of 50 ×

50 equal squares. Each square is a component of the observation vector. It is

one if the frequency plot passes through it and zero otherwise. The output of

the preprocessing is a binary observation vector of size 2500 with exactly 50

components that are one.

Prediction problems in the benchmark

I use three prediction problems in experiments. The problems are identical

to each other in all aspects except the sounds. One uses the sounds of the

word yes (followed by +1 reward), no (followed by -1 reward), and maybe (not

followed by a reward), and the second uses the sound of C chords strummed

on a guitar (followed by +1 reward), the sound of C chord played on a piano

(followed by -1 reward), and the sound of a D chord played on a piano (not

followed by a reward). The third uses the sound of the note C4 played on

88

84000 84500

0.0

0.5

1.0

P
re

d
ic

ti
o

n

Piano/Guitar

84000 84500

0.0

0.5

1.0

Yes/No

84000 84500

0.0

0.5

1.0

C4/E4

90000 90500
−1.0

−0.5

0.0

P
re

d
ic

ti
o

n

90000 90500

Time step

−1.0

−0.5

0.0

90000 90500
−1.0

−0.5

0.0

Return

Prediction

Figure 9.4: Predictions learning by SwiftTD on the three problems from the
Audio Prediction Benchmark. SwiftTD only predicted the return momentarily,
likely when the sound was still audible.

a piano (followed by +1 reward), note E4 played on a piano (followed by -1

reward), and note D4 played on a piano (not followed by a reward). The same

sound signal is never used twice that is, all sounds are unique. I call the three

problems Yes/No, Guitar/Piano, and C4/E4 .

9.4 Experiment: SwiftTD on the Audio Pre-

diction Benchmark

As a sanity check, I first ran SwiftTD on all three problems. The predictions

learned at the end of learning by the best-performing learner are in Figure

9.4. The top row has predictions for positive rewards and the bottom row has

predictions for negative rewards.

SwiftTD did not learn to accurately predict the rewards. In all three prob-

lems, it predicted the return well for a fraction of a second, perhaps at times

when the sound was still audible. The predictions dropped to zero quickly.

This is expected because SwiftTD is predicting directly from observations and

has no way to remember the sounds after they are not audible.

89

84000 84500

0.0

0.5

1.0

P
re

d
ic

ti
o

n

Piano/Guitar

84000 84500
−0.5

0.0

0.5

1.0

Yes/No

84000 84500

0.0

0.5

1.0

C4/E4

90000 90500

−1.0

−0.5

0.0

P
re

d
ic

ti
o

n

90000 90500

Time step

−1.0

−0.5

0.0

90000 90500
−1.0

−0.5

0.0

Return

Prediction

Figure 9.5: Predictions learned by imprinting learner on the three problems
from the Audio Prediction Benchmark. In all three problems, it learned to
predict the onset of rewards, and the predictions are sustained until the reward.

9.5 Experiments: Imprinting Learner on the

Audio Prediction Benchmark

I ran the imprinting learner on the audio prediction benchmark. The agent

generated up to ten memory features and ten pattern features at every time

step. The initial step-size parameter was 3−3, the tenue-track-threshold pa-

rameter was 3−4, and the tenure-threshold parameter was 0.01. The ϵz was

0.01. The agent learned for 96,000 steps, which was roughly 1 hour of audio

data.

The hyperparameters of the memory feature generator, k1, and k2, were

sampled from the range 1 to 3 and 0 to 20, respectively, for every generation,

and the hyperparameter for the pattern feature generator, k0, was sampled

from the set {60, 70, 80, 90} for every generation.

I plot the predictions learned by the agent at the end of learning in Figure

9.5. The agent learned to predict the returns better than the SwiftTD learner.

The predictions were more accurate on the Piano/Guitar and C4/E4 problems

than the predictions on the Yes/No problem.

90

Yes/No C4/E4 Piano/Guitar

Environment

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Li
fe

ti
m

e
 E

rr
o

r

Observation + Generated Features Observation Features

Piano/Guitar

Piano/Guitar Problem

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Li
fe

ti
m

e
 E

rr
o

r

Imprinting on All Features
Imprinting on Tenured Features

Figure 9.6: Performance of imprinting learner on the audio prediction bench-
mark. The bar plots show the mean lifetime error over fifty seeds. The error
bars are +- standard error. In the left panel the imprinting learner is com-
pared to SwiftTD. In the right panel two versions of the imprinting learner are
compared. One imprints on active tenured features, and the other imprints on
all active features.

I repeated the above experiment with fifty different seeds. The results of

the average lifetime error over all seeds are in the left panel of Figure 9.6. The

plots have error bars of ± standard errors. Feature generation by imprinting

resulted in a lower lifetime error on all three problems than a learner that

did not generate features. I repeated the experiments with a version of the

imprinting learner that imprints on all active features and not just the tenured

active features. The results are in the right panel of Figure 9.6. The imprinting

learner that imprinted on all active features performed worse than the one that

imprinted on just the tenured features.

I also looked at the total number of features generated by the learners,

and the total number of features kept by the learners at the end of their life-

time. In the Piano/Guitar problem, the best-learner generated 26,288 features

throughout its lifetime. At the end of learning, it had 2007 tenured features

and 4265 tenure-track features. Of the tenured features, 1828 were memory

features, 115 were pattern features, and 64 were observation features. The

numbers for other problems were qualitatively similar. The imprinting learner

that imprinted on all active features generated 398,328 features and had 7093

tenured and 334,649 tenure-track features at the end.

These numbers are interesting because the imprinting learners were able

91

to search over tens of thousands of features and find an order of magnitude

smaller subset of them that were useful for the prediction task, demonstrating

their effectiveness. The learners that imprinted on all active features were less

efficient in their search and generated an order of magnitudes more features

and still performed worse.

Feature generation by imprinting is a promising solution for quickly gener-

ating features that can recognize patterns and remember the past. It is unlikely

that the one-shot feature generation by imprinting would be capable of learn-

ing nuanced patterns. A more complete algorithm would continually generate

new features and adapt existing features. Gradient-based learning provides

a promising way to adapt features. In the next chapter, I present algorithms

that can adapt recurrent features online in a computationally efficient manner.

92

Chapter 10

Feature Tuning using
Columnar-Constructive
Networks

Algorithms discussed so far do not adapt features over the lifetime of the

agent. In Chapters 5, 6, 7, and 8, the feature vector was given to the agent,

and the agent could not change it. In Chapter 9, the agent could construct

features over time but not adapt them. Once a feature had been constructed

it could only be removed. In most real situations, it is naive to expect that

we can handcraft the features or construct them in one shot. A more powerful

learning system would be one that continually improves existing features using

experience. In this chapter, I present recurrent learning algorithms that can

adapt features over time in a computationally efficient manner.

Let the agent be a recurrent network that has n features, ϕ ∈ Rn. At

every time step, it combines the feature vector with a weight vector to make

a scalar prediction. The feature vector is computed by a state update function

U parameterized by a learnable parameter vector θ. The features at time step

t are computed as:

ϕt = U(ϕt−1,xt,θ), (10.1)

where xt is the observation vector, and ϕt−1 is the feature vector at time step

t− 1.

The features are linearly combined with a weight parameter vector wt−1 ∈

93

Rn to make a prediction vt−1,t as:

vt−1,t =
n∑

k=1

wt−1[i]ϕt[i] (10.2)

A sensible choice of U is a differentiable recurrent neural network. Its

parameters can be updated using gradient-descent as:

θ′ = θ − α
∂(vt−1,t − y∗t)

2

∂θ
, (10.3)

where y∗t is the target, and α is the step-size parameter. The gradient can be

expanded as:

∂(vt−1,t − y∗t)
2

∂θ
=

∂(vt−1,t − y∗t)
2

∂vt−1,1

∂vt−1,t

∂ϕt

∂ϕt

∂θ
. (10.4)

The key question is how to compute ∂ϕt

∂θ
. We can obtain a recursive formula

for this expression, which is used by RTRL (Williams & Zipser, 1989) and by

the algorithms explained in this chapter. RTRL assumes that the parameters

of the recurrent network are kept fixed over time. We make the same assump-

tion, and as a result, θ is not indexed by time. When using the algorithms

in experiments, we break our assumption and update the parameters of the

network at every time step using Equation 10.3.

To make it clear how we can use the multivariable chain rule, let us rewrite

the state update function as ϕt = U
(
ϕt−1(θ),xt, gt(θ)

)
where gt(θ)

.
= θ.

Then the multivariable chain rule gives us:

∂ϕt

∂θ
=

∂ϕt

∂gt

∂gt

∂θ
+

∂ϕt

∂ϕt−1

∂ϕt−1

∂θ
, (10.5)

where the first term in the sum is the gradient of the state of the network

under the assumption that ϕt−1 is not a function of θ, and the second term

takes into account the indirect impact of θ on ϕt due to its impact on ϕt−1.

This recursive relationship is exploited by two algorithms: BPTT and

RTRL. BPTT stores all past feature vectors and observation vectors and ex-

94

pands equation 10.3 as:

∂vt−1,t

∂θ
=

∂vt−1,t

∂ϕt

∂ϕt

∂θ

∂vt−1,t

∂θ
=

∂vt−1,t

∂ϕt

∂ϕt

∂gt

∂gt

∂θ
+

∂vt−1,t

∂ϕt

∂ϕt

∂ϕt−1

∂ϕt−1

∂θ

=
∂vt−1,t

∂ϕt

∂ϕt

∂gt

∂gt

∂θ
+

∂vt−1,t

∂ϕt

∂ϕt

∂ϕt−1

∂ϕt−1

∂gt−1

∂gt−1

∂θ
+

∂vt−1,t

∂ϕt

∂ϕt

∂ϕt−1

∂ϕt−1

∂ϕt−2

∂ϕt−2

∂θ
,

(10.6)

to compute the gradient. It unrolls the recursive expansion back in time,

computing and accumulating gradient until the start of the recursion at t = 0.

RTRL, on the other hand, computes the Jacobian ∂ϕt

∂θ
incrementally by using

Equation 10.5 at every time step. To get the gradient w.r.t the prediction,

it uses Equation 10.4. Both algorithms compute the same gradient but make

different compromises in terms of computation and memory.

RTRL does not store past feature vectors and observation vectors as it

can update the Jacobian using only information from the current time step.

However, computing the Jacobian using Equation 10.5 requires O(|ϕ|2|θ|) op-

erations and O(|ϕ||θ|) memory. The size of the parameters |θ| in a fully con-

nected RNN is |ϕ|2. RTRL is therefore often said to have quartic complexity

in the size of the feature vector.

BPTT requires O(|θ|t) memory and compute, where t is the length of

the sequence. It avoids the bigger memory cost by computing the product
∂vt−1,t

∂ϕt

∂ϕt

∂gt

∂gt

∂θ
directly, rather than separately computing the Jacobian and tak-

ing a dot product with ∂vt−1,t

∂ϕt
. For sequences shorter than |ϕ|2, BPTT is

cheaper than RTRL for fully connected RNNs.

We develop a new approach for recurrent learning called columnar-constructive

networks (CCNs). CCNs leverage two key ideas: First, RTRL is computa-

tionally efficient for modular recurrent networks where each module outputs

a single feature; we call these networks columnar networks. Second, RTRL

is computationally efficient if the recurrent features are learned in stages, as

opposed to simultaneously. We call the incremental learning approach con-

structive networks. Figure 10.1 visualizes the central ideas behind columnar

networks and constructive networks.

95

Both columnar networks and constructive networks show promising results

but have limitations. Columnar networks cannot learn hierarchical features,

and constructive networks cannot learn multiple features in parallel. We show

that their weaknesses can be overcome by combining the two ideas to create

columnar-constructive networks.

10.1 Columnar Networks

Columnar networks organize the recurrent network such that each scalar re-

current feature is independent of other recurrent features. Let ϕt[k] be the kth

component of the feature vector ϕt. Then, in columnar networks,

ϕt[k] = fk(ϕt−1[k],xt,θ
k). (10.7)

The function fk updates a recurrent feature and is called a column.1 θk is the

parameter vector of the kth column. For any i ̸= j, the parameter vector θi

and θj do not share any components. The outputs of all columns at time step t

are concatenated to get the n-dimensional feature vector ϕt. Figure 10.1 (left)

shows a graphical representation of a columnar network. Note that changing

ϕ[1] has no influence on the value of ϕ[2] or ϕ[3].

Because recurrent features in a columnar network are independent of each

other, we can apply RTRL to each of them individually. To better under-

stand why, let us rederive our recursive formula for the gradient. For θk, the

parameters for the kth column, we have

∂vt−1,t

∂θk
=

∂vt−1,t

∂ϕt

∂ϕt

∂θk
=

d∑
j=1

∂vt−1,t

∂ϕt[j]

∂ϕt[j]

∂θk
=

∂vt−1,t

∂ϕt[k]

∂ϕt[k]

∂θk
.

All except one term in the summation above are zero because θk does not influ-

ence ϕt[j] when j ̸= k. Therefore, we only have to compute ∂ϕt[k]

∂θk with RTRL.

Like before, we can write this recursively using ϕt[k] = f
(
ϕt−1[k],xt,gt(θ

k)
)

where gt(θ
k)

.
= θk, giving

∂ϕt[k]

∂θk
=

∂ϕt[k]

∂gt

∂gt

∂θk
+

∂ϕt[k]

∂ϕt−1[k]

∂ϕt−1[k]

∂θk
. (10.8)

1This terminology comes from the connection to structure observed in brains (Mount-
castle, 1957).

96

Stage 1 Stage 2 Stage 3

Columnar Constructive

Figure 10.1: Two families of recurrent networks for which gradients can be ef-
ficiently computed without bias or noise. Recurrent networks with a columnar
structure use O(n) operations and memory per step for learning. However,
they do not have hierarchical recurrent features—recurrent features composed
of other recurrent features. Constructive networks introduce hierarchical re-
current features and learn them in stages to keep learning computationally
efficient.

Computing and storing this Jacobian costs O(|θk|) memory and compute for

each column because |ϕt[i]| = 1 for a single column. The cost for all the

columns is

O(|θ1|) + O(|θ2|) + · · ·+O(|θn|) = O(|θ|). (10.9)

Therefore, RTRL for columnar networks scales linearly in the size of the pa-

rameters.

10.2 Constructive Networks

In constructive networks, we learn the recurrent network one feature at a time.

Features learned later can take as input all features learned before them; the

opposite is not allowed— features learned earlier cannot take as input features

that would be learned later. We elucidate the multi-stage learning process in a

small constructive network in Figure 10.1 (right). Dotted lines are parameters

that are being updated at every time step, whereas solid lines are parameters

that are fixed.

In the first stage, the learner learns the incoming weights of ϕ[1] (i.e., θ1),

which is connected to the observation vector x, but not to ϕ[2] or ϕ[3]. Note

that we are omitting the time index for brevity. Once the incoming and the

recurrent weights of ϕ[1] are learned, the learner freezes them and goes to the

97

next stage. In the 2nd stage, it learns the incoming weights of ϕ[2], which can

use both x and ϕ[1] as its inputs. The outgoing weight of ϕ[1]—w[1]—is not

fixed and continues to be updated. Similarly, in the 3rd stage, both ϕ[1] and

ϕ[2] are frozen and fed to ϕ[3] as input. In each stage, the newly introduced

feature can be connected to all prior features.

In this staged learning approach, the learner never learns more than one

feature at a time. As a result, the effective size of the feature vector that is

being learned is just one, and RTRL can be applied cheaply. In fact, since only

a small subset of the network is being learned at any given time, constructive

networks use even less per-step computation than columnar networks. They

introduce one additional hyperparameter—steps-per-stage—that controls the

number of steps after which the learner moves from one stage to the next.

Constructive networks are similar to recurrent cascade correlation net-

works (Fahlman, 1990). The main differences are that (1) cascade correlation

networks learn new recurrent units by maximizing correlation with the error

whereas constructive networks use the gradient w.r.t the prediction error, and

(2) cascade correlation networks learn on a batch of data, whereas constructive

networks learn from an online stream of data. The two differences are arguably

minor. Rather, the bigger novelty is to combine constructive networks with

columnar networks.

10.3 Columnar-Constructive Networks

Columnar-constructive networks (CCNs), as the name suggests, are a combi-

nation of columnar networks and constructive networks. In CCNs, we keep the

multi-stage approach of the constructive networks; however, instead of learn-

ing a single feature in every stage, the learner learns multiple independent

features.

A two-stage CCN is shown in Figure 10.2. In stage one, the learner learns

the incoming weights of ϕ[1] and ϕ[2]. Since ϕ[1] and ϕ[2] are independent of

each other, they are equivalent to a columnar network with two features and

can be learned efficiently together. In the second stage, the learner freezes

98

Stage 1 Stage 2

Columnar-Constructive Network

Figure 10.2: Columnar-constructive networks (CCNs) combine the ideas from
Columnar and constructive networks. In each stage, they learn multiple fea-
tures that are independent of each other, just like columnar networks. Across
stages, they learn hierarchical features, similar to constructive networks.

the incoming and recurrent weights of ϕ[1] and ϕ[2] and learns the incoming

weights of ϕ[3] and ϕ[4]; the new features take both ϕ[1] and ϕ[2] as inputs.

Once again, ϕ[3] and ϕ[4] are independent of each other and can be learned

efficiently in parallel.

CCNs inherit the hyperparameters from columnar networks and construc-

tive networks. Additionally, they have one new hyperparameter—features-per-

stage—that controls the number of recurrent features learned in each stage.

10.4 The Animal Learning Benchmark

We evaluate the methods on the trace patterning task proposed by (Rafiee et

al., 2022). It is an online prediction task that requires the learner to identify

associations between patterns—conditional stimuli (CS)—that are predictive

of future values of a cumulant—the unconditional stimuli (US). The goal is to

predict the discounted sum of the US. Correct predictions require the ability

to discriminate between patterns that lead to the US from those that do not.

The time delay between the CS and the US necessitates retaining information

from the past for making accurate predictions.

In our instantiation of trace patterning, the delay between the CS and

99

the US is uniformly randomly sampled to be between 24 and 36 steps after

every CS and is called the inter-stimulus interval (ISI). The delay between the

US and the next CS is uniformly randomly sampled to be between 80 and 120

steps after every US and is called the inter-trial interval (ITI). The CS consists

of 6 features. When CS is present, three of the six features in the CS vector

are one. Since
(
6
3

)
is twenty, the CS vector can represent twenty different

patterns. Ten randomly chosen patterns are followed by US=1 after ISI ∼

U[24,36] steps, whereas the remaining ten do not activate the US. Additionally,

the observation vector has five random features that are not predictive of the

US.

ISI ITI

CS

US

Pattern not followed by the USPattern followed
by the US

ISI + ITI

Time

Ground-truth prediction

Figure 10.3: Visualization of the stream of experience for the trace patterning
task. At each step, the learner receives an observation vector of length seven.
The first six values are the CS and the last is the US. CS is either a vector of
zeros or three of the six values are one. It can represent 20 different patterns.
Ten of these patterns activate the US after ISI number of steps, whereas others
do not. The learner has to predict the discounted sum of future values of the
US. The bottom part of the figure shows the ground-truth prediction for the
task.

A visual representation of experience from the trace patterning task with-

out noisy components of the observation vector is shown in Figure 10.3. The

vertical dimension shows the observations, and the horizontal dimension shows

the time steps. At the fourth time step, three of the six features are one. After

100

three more time steps, the US becomes active. Then no components of the

observation vector are active for ITI number of steps. After ITI steps, the CS

again shows a pattern. The second pattern of the CS is not followed by the

US. At the bottom of Figure 10.3, we show the ground truth return.

10.5 Experiments: Columnar-Constructive Net-

works on the Animal Learning Bench-

mark

We compared CCNs to fully connected RNNs learned by T-BPTT, columnar

networks, and constructive networks. All comparisons used the LSTM cell

architecture (Hochreiter & Schmidhuber, 1997) for recurrence. An important

hyperparameter of T-BPTT is the truncation length parameter (k). In our

experiments, all methods used the same amount of per-step computation. To

keep the compute constant for T-BPTT for different values of k, learners using

a larger truncation length parameter had fewer features.

Online Feature Normalization

A key to making our system work is online feature normalization. Unlike dense

recurrent networks, features in our constructive and CCN networks can have

varying numbers of incoming weights. This discrepancy can change the scale

of each feature, making it hard to learn using a uniform step-size parameter.

To address the varying scales, we use a simple form of online feature normal-

ization. Our feature normalization is similar to an online version of batch

normalization (Ioffe & Szegedy, 2015).

To normalize a feature, we maintain an online running estimate of its mean

and variance. We then use the running estimates to normalize the feature to

have zero mean and unit variance. Additionally, if the variance of a feature goes

below a threshold, we set it to a small number ϵ, which is a hyperparameter.

Given the unnormalized feature ϕ[j], the normalized feature ϕ̂[j] is computed

101

0.0 0.2 0.4 0.6 0.8 1.0

Lifetime (in millions)
1e7

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.02

Columnar
networks

Constructive
networks

CCNs

T-BPTT

Lifetime
error

Figure 10.4: Performance of our algorithms and the best performing T-BPTT
on the trace patterning task. All methods learned to make accurate predic-
tions. Both columnar networks and constructive networks learned well, ex-
ceeding and matching the performance of the best T-BPTT. CCNs performed
the best, showing that they combine the strengths of columnar networks and
constructive networks. All plots are averaged over 100 seeds, and the shaded
areas are +- standard error.

as:

ϕ̂t[j] =
ϕt[j]− µt[j]

max(ϵ, σt[j])
(10.10)

where µt[j] = µt−1[j]β + (1− β)ϕt[j]

σ2
t [j] = σ2

t−1[j]β + (1− β)(µt[j]− ϕt[j])(µt−1[j]− ϕt[j]).

We set β = 0.99999 for all our experiments. µ0[i] and σ2
0[i] are initialized to

be 0 and 1 respectively, and ϵ is tuned; the values used for experiments in this

chapter are in Table B.1.

Experimental setup

We used TD(λ) for learning with a per-step compute budget of ≈ 4,000 floating

point operations. A single multiplication, addition, division, or subtraction is

counted as an operation. All methods used λ = 0.99, γ = 0.90, and a lifetime

of 10 million.

For each method, we individually tuned the step-size hyperparameter, ϵ,

the steps-per-stage hyperparameter, the features-per-stage hyperparameter,

102

0.0 0.2 0.4 0.6 0.8 1.0

Lifetime (in millions)
1e7

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

3:10

5:8

8:5

10:5

15:4

20:3

30:2

Number of features Truncation length of T-BPTT

CCNs

Lifetime
error

Figure 10.5: Different versions of T-BPTT on the trace patterning task. Each
curve is denoted by two numbers: a:b. The first number indicates the trun-
cation length parameter of T-BPTT, and the second number indicates the
number of features in the learner. For example, 30:2 means an LSTM with
two features trained with a truncation length parameter of 30. All versions
use roughly the same amount of computation. We see that different values of
truncation length parameters result in different performances. Large networks
trained with small truncation length parameters—3:10 and 5:8—performed
the worst. Smaller networks with larger truncation length parameters—15:4,
30:2, and 20:3—performed better. All lines are averaged over 100 random
seeds.

and the truncation length hyperparameter. We report the results for the best-

performing configuration. Details of hyperparameter tuning are in Appendix

B.1. The columnar networks, constructive networks, and CCNs had 10, 5, and

16 features respectively. The number of features in constructive networks was

dictated by the rate at which features were added. Because we only learned

for 10 million time steps and set the steps-per-stage hyperparameter to 1

million, constructive networks ended up using significantly less compute than

the allocated compute budget. T-BPTT used a truncation length parameter

of 15 and had four features.

Results

We start by looking at the learning curves for all four methods in Figure 10.4.

The three methods introduced by us learned to reduce the prediction error

over time. Among our algorithms, constructive networks performed the worst.

103

0.0 0.2 0.4 0.6 0.8 1.0

Lifetime (in millions)
1e7

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020
1

3

5

8

10

20

CCNs

Lifetime
error

Truncation length of T-BPTT

Figure 10.6: LSTMs with 10 features trained using truncation length parame-
ters of 1, 3, 5, 8, 10, and 20. For each value of the truncation length parameter,
we independently tuned the step-size parameter. As the truncation length in-
creased, the performance improved at the expense of more computation. The
sensitivity of performance to truncation length parameter highlights the im-
pact of bias introduced by truncation. All lines are averaged over 100 random
seeds and the shaded regions correspond to +- standard error.

All three methods outperformed the best T-BPTT, and CCNs performed the

best.

We further investigated the sensitivity of T-BPTT to values of the trunca-

tion length parameter. We first considered the impact of reallocating resources,

allowing T-BPTT to have more features trained with smaller truncation length

parameters and vice-versa. We see from Figure 10.5 that when the truncation

length parameter was much smaller than the longest dependency in the learn-

ing problem—36—the performance dropped significantly. T-BPTT performed

the best when it selected a smaller network (four features) and a larger trun-

cation parameter (k = 15).

We conducted another experiment where we allowed T-BPTT to use more

computation than the allocated budget. We fixed the number of features to

10 and used different truncation length parameters. We report the results in

Figure 10.6. Networks with the largest truncation length parameter—brown

line—performed almost as well as CCNs. However, it used around seven times

more per-step computation than CCNs.

Columnar-constructive networks are a promising solution for tuning recur-

rent features using gradients online. This chapter evaluates their performance

104

on the animal learning benchmark. Javed et al., (2023) evaluated them on

the atari prediction benchmark and showed that they outperformed tuned T-

BPTT baselines. The biggest limitation of CCNs is that they grow indefinitely

and use more and more computation over time. One way to get past this lim-

itation is to augment them with a method for removing features that are not

useful for the task at hand.

105

Chapter 11

Conclusions and Future Work

In this dissertation, I presented computationally efficient algorithms for fast

learning from online data streams. The motivation for quick and efficient

learning is the big world hypothesis, which states that the world is orders of

magnitude larger than the agent, and online continual learning using compu-

tationally efficient algorithms is necessary for achieving goals in big worlds.

The solution methods presented in earlier chapters are divided in two parts:

fast and robust linear learning, and fast non-linear recurrent feature discovery.

Algorithms proposed in both parts are computationally efficient and scalable

to data streams that consist of large observation vectors.

A promising direction for future work is to combine the algorithms in Part

I and Part II to develop a large scale system that continually generates new

features by imprinting, learns with those features using SwiftTD, and adapts

those features using columnar-constructive networks. It would be interesting

to see its behavior when learning with billions of parameters.

Another interesting direction is to explore the impact of feature generation

by imprinting and step-size optimization on the phenomenon of catastrophic

forgetting. Imprinting provides an easy way to generate sparse features. Spar-

sity can help protect learned knowledge from being overwritten easily (see work

by Liu et al., 2019 and Javed & White, 2019). Step-size optimization provides

another venue for alleviating catastrophic forgetting by reducing the step-size

parameters of some features and preserving knowledge learned with them. In

some preliminary experiments not reported in this dissertation, I found that

106

both imprinting and SwiftTD alleviated the problem of catastrophic forget-

ting. A more systematic analysis is needed for a more definitive conclusion.

Some technical directions remain untouched. One direction is to extend

SwiftTD to Actor-Critic algorithms by adding step-size optimization and up-

date bounds to the policy parameters. The key challenge is deriving a bound,

analogous to the η-bound, that restricts how much the policy changes from

a single sample. Another is to develop princinpled algorithms for exploration

in big worlds. Algorithms that aim to systematically explore the state space

are intractable in big worlds. More scalable solutions are needed that use the

feature vector to guide exploration.

Another direction is to design scalable solutions that can deal with cor-

related features. If the feature generation process is not careful, then it can

generate many features that are highly correlated with each other. These

features compete with each other and, even if they are useful, the high corre-

lation makes it difficult for a single feature to get tenured status. In Chapter 9

I sidestepped this problem by limiting the generators to a discrete number of

choices and using a global cache to prevent the generation of identical features.

A more scalable solution is needed that works with generators that create an

unbounded number of features, such as generators for differentiable recurrent

cells.

107

References

Blalock, D., Gonzalez Ortiz, J. J., Frankle, J., & Guttag, J. (2020). What is
the state of neural network pruning? In Proceedings of Machine Learning
and Systems.

Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013). The arcade
learning environment: An evaluation platform for general agents. Journal
of Artificial Intelligence Research.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C., ...
& Zhang, S. (2019). Dota 2 with large scale deep reinforcement learning.
arXiv preprint arXiv:1912.06680.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ...
& Amodei, D. (2020). Language models are few-shot learners. In Advances
in Neural Information Processing Systems.

Dabney, W., & Barto, A. (2012). Adaptive step-size for online temporal dif-
ference learning. In Proceedings of AAAI Conference on Artificial Intelli-
gence.

Degris, T., Javed, K., Sharifnassab, A., Liu, Y., & Sutton, R. S. (2024). Step-
size optimization for continual learning. arXiv preprint arXiv:2401.17401.

Dohare, S., Hernandez-Garcia, J. F., Lan, Q., Rahman, P., Mahmood, A.
R., & Sutton, R. S. (2024). Loss of plasticity in deep continual learning.
Nature.

Dong, S., Van Roy, B., & Zhou, Z. (2022). Simple agent, complex environment:
Efficient reinforcement learning with agent states. Journal of Machine
Learning Research.

Evci, U., Gale, T., Menick, J., Castro, P. S., & Elsen, E. (2020, November).
Rigging the lottery: Making all tickets winners. In Proceedings of Inter-

108

national Conference on Machine Learning.

Fahlman, S. (1990). The recurrent cascade-correlation architecture. In Ad-
vances in Neural Information Processing Systems.

French, R. M. (1999). Catastrophic forgetting in connectionist networks.
Trends in Cognitive Sciences.

Fukushima, K. (1969). Visual feature extraction by a multilayered network
of analog threshold elements. IEEE Transactions on Systems Science and
Cybernetics.

Fujita, Y., Nagarajan, P., Kataoka, T., & Ishikawa, T. (2021). ChainerRL:
A deep reinforcement learning library. Journal of Machine Learning Re-
search.

Ghiassian, S. (2022). Online Off-policy Prediction [Doctoral dissertation]. De-
partment of Computing Science, University of Alberta, Edmonton.

Han, S., Mao, H., & Dally, W. J. (2015). Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney,
W., ... & Silver, D. (2018). Rainbow: Combining improvements in deep
reinforcement learning. In Proceedings of AAAI Conference on Artificial
Intelligence.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In Proceedings of Inter-
national Conference on Machine Learning.

Javed, K., & White, M. (2019). Meta-learning representations for continual
learning. In Advances in Neural Information Processing Systems.

Javed, K., White, M., & Sutton, R. S. (2021). Scalable online recurrent learn-
ing using columnar neural networks. arXiv preprint arXiv:2103.05787.

Javed, K., Shah, H., Sutton, R. S., & White, M. (2023). Scalable real-time
recurrent learning using columnar-constructive networks. Journal of Ma-

109

chine Learning Research.

Javed, K., Sutton, R. S. (2024). The big world hypothesis and its ramifications
for artificial intelligence. In Finding the Frame Workshop, Reinforcement
Learning Conference.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization.
In Proceedings of International Conference on Learning Representations.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,
A. A., ... & Hadsell, R. (2017). Overcoming catastrophic forgetting in
neural networks. In Proceedings of the National Academy of Sciences.

Kearney, A., Veeriah, V., Travnik, J. B., Sutton, R. S., & Pilarski, P. M.
(2018). Tidbd: Adapting temporal-difference step-sizes through stochastic
meta-descent. arXiv preprint arXiv:1804.03334.

Konda, V., & Tsitsiklis, J. (1999). Actor-critic algorithms. In Advances in
Neural Information Processing Systems.

Kumar, S., Marklund, H., Rao, A., Zhu, Y., Jeon, H. J., Liu, Y., & Van Roy, B.
(2023). Continual learning as computationally constrained reinforcement
learning. arXiv preprint arXiv:2307.04345.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based
learning applied to document recognition. In Proceedings of the IEEE,
86(11), 2278-2324.

Li, Z., Zhou, F., Chen, F., & Li, H. (2017). Meta-SGD: Learning to learn
quickly for few-shot learning. arXiv preprint arXiv:1707.09835.

Liu, V., Kumaraswamy, R., Le, L., & White, M. (2019, July). The utility of
sparse representations for control in reinforcement learning. In Proceedings
of AAAI Conference on Artificial Intelligence.

Mahmood, A. (2017). Incremental Off-policy Reinforcement Learning Algo-
rithms [Doctoral dissertation]. Department of Computing Science, Uni-
versity of Alberta, Edmonton.

Mahmood, A. R., Sutton, R. S., Degris, T., & Pilarski, P. M. (2012). Tuning-
free step-size adaptation. In Proceedings of IEEE International Conference
on Acoustics, Speech and Signal processing.

110

Mahmood, A. R., & Sutton, R. S. (2013). Representation search through gen-
erate and test. InWorkshop at AAAI Conference on Artificial Intelligence.

Menick, J., Elsen, E., Evci, U., Osindero, S., Simonyan, K., & Graves, A.
(2021). A practical sparse approximation for real time recurrent learning.
In Proceedings of International Conference on Learning Representations.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., ..., & Hassabis, D. (2015). Human-level control through deep rein-
forcement learning. Nature.

Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H., Gibescu, M., & Liotta,
A. (2018). Scalable training of artificial neural networks with adaptive
sparse connectivity inspired by network science. Nature Communications.

Mountcastle, V. B. (1957). Modality and topographic properties of single
neurons of cat’s somatic sensory cortex. Journal of Neurophysiology.

Rafiee, B., Abbas, Z., Ghiassian, S., Kumaraswamy, R., Sutton, R. S., Ludvig,
E. A., & White, A. (2023). From eye-blinks to state construction: Diag-
nostic benchmarks for online representation learning. Adaptive Behavior.

Rummery, A., & Niranjan, M. (1994) On-line Q-learning using Connectionist
Systems [Technical Report]. Department of Engineering, University of
Cambridge.

Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch
normalization help optimization? In Advances in Neural Information Pro-
cessing Systems.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017).
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., ...
& Hassabis, D. (2017). Mastering chess and shogi by self-play with a gen-
eral reinforcement learning algorithm. arXiv preprint arXiv:1712.01815.

Silver, D., Sutton, R. S., & Müller, M. (2008). Sample-based learning and
search with permanent and transient memories. In Proceedings of Inter-

111

national Conference on Machine Learning.

Sutton, R.S., Koop, A., & Silver, D. (2007). On the role of tracking in station-
ary environments. In Proceedings of International Conference on Machine
learning.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differ-
ences. Machine Learning.

Sutton, R. S., & Barto, A. (2018). Reinforcement Learning: An Introduction
2nd Edition. MIT Press.

Sutton, R. S. (1992). Adapting bias by gradient descent: An incremental
version of delta-bar-delta. In Proceedings of AAAI Conference on Artificial
Intelligence.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., &
Precup, D. (2011). Horde: A scalable real-time architecture for learning
knowledge from unsupervised sensorimotor interaction. In Proceedings of
International Conference on Autonomous Agents and Multiagent Systems.

Sutton, R. S. (2020). Are You Ready to Fully Embrace Approximation? (June
8, 2020) [Video] (link).

Tesauro, G. (1995). Temporal difference learning and TD-gammon. Commu-
nications of the ACM.

Thill, M. (2015). Temporal Difference Learning Methods with Automatic Step-
size Adaption for Strategic Board Games: Connect-4 and Dots-and-Boxes
[Masters dissertation]. Cologne University of Applied Sciences.

Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop, Coursera: Neural
Networks for Machine Learning [Technical report]. University of Toronto.

Van Hasselt, H., & Sutton, R. S. (2015). Learning to predict independent of
span. arXiv preprint arXiv:1508.04582.

Van Seijen, H., Mahmood, A. R., Pilarski, P. M., Machado, M. C., & Sut-
ton, R. S. (2016). True online temporal-difference learning. Journal of
Machine Learning Research.

112

https://www.youtube.com/watch?v=JjB58InuTqM

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
... & Polosukhin, I. (2017). Attention Is All You Need. In Advances in
Neural Information Processing Systems.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A.,
Chung, J., ... & Silver, D. (2019). Grandmaster level in StarCraft II using
multi-agent reinforcement learning. Nature.

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning.

Williams, R. J., & Zipser, D. (1989). A learning algorithm for continually
running fully recurrent neural networks. Neural Computation.

Young, K., Wang, B., & Taylor, M. E. (2018). Metatrace actor-critic: On-
line step-size tuning by meta-gradient descent for reinforcement learning
control. arXiv preprint arXiv:1805.04514.

113

Appendix A

Baseline Algorithms

Algorithm 16: TIDBD(λ) by Kearney et al. (2018)

Hyperparameters: α, λ
Initializations: (w, z)← (0,0) ∈ Rn, (vold, vδ) = (0, 0)
while alive do

Receive ϕ, γ, and r
v ←

∑
ϕ[i]̸=0 w[i]ϕ[i]

δ ← r + γv − vold

for zi ̸= 0 do
w[i]← w[i] + αδz[i]

β[i]← β[i] + θ
eβ[i]+ϵ

δϕold[i]h[i]

h[i]← htemp[i]
htemp[i]← h[i] + z[i]δ
z[i]← γλz[i]

for ϕ[i] ̸= 0 do
z[i]← z[i] + ϕ[i]
ϕold[i]← ϕ[i]
htemp[i]← htemp[i]− h[i]z[i]ϕ[i]

vold ←
∑

ϕ[i]̸=0 w[i]ϕ[i]

114

Algorithm 17: Step-size Optimization for TD(λ) proposed by Thill
(2015)

Parameters: α, λ
Initialize: (w, z)← (0,0) ∈ Rn, (vold, vδ) = (0, 0)
while alive do

Receive ϕ, γ, and r
v ←

∑
ϕ[i]̸=0 w[i]ϕ[i]

δ ← r + γv − vold

for zi ̸= 0 do
w[i]← w[i] + αδz[i]

β[i]← β[i] + θ
eβ[i]+ϵ

δz[i]h[i]

h[i]← htemp[i]
htemp[i]← h[i] + z[i]δ
z[i]← γλz[i]

for ϕ[i] ̸= 0 do
z[i]← z[i] + ϕ[i]
htemp[i]← htemp[i]− h[i]z[i]ϕ[i]

vold ←
∑

ϕ[i]̸=0 w[i]ϕ[i]

Algorithm 18: TD(λ) with Dabney & Barto’s (2012) bound

Hyperparameters: α, λ
Initializations: w ← 0 ∈ Rn, z ← 0 ∈ Rn,ϕold ← 0 ∈ Rn, vold = 0
while alive do

Receive ϕ, γ, and r
v ←

∑
ϕ[i]̸=0 w[i]ϕ[i]

δ ← r + γv − vold

b←
∑n

i=0 αt[i]z[i]
(
γϕ[i]− ϕold[i]

)
for zi ̸= 0 do

w[i]← w[i] + min
(
1, 1

b

)
αt[i]δz[i];

z[i]← γλz[i];

for ϕi ̸= 0 do
z[i]← z[i] + ϕ[i]

vold ←
∑

ϕ[i]̸=0 w[i]ϕ[i]

ϕold ← ϕ

115

Appendix B

Hyperparameters

B.1 Columnar-Constructive Networks

The hyperparameters for columnar networks, constructive networks, columnar-

constructive networks, and T-BPTT learners were tuned independently. For

each hyperparameter configuration, we used five random seeds and looked at

the average performance of all five seeds to pick the best hyperparameters. We

then used the best hyperparameter configuration to run the experiments with

100 seeds. A list of the hyperparameters and their values are in Table B.1.

Hyperparameter Hyperparameter values

Step-size 1−2, 3−3, 1−3,
3−4,1−4, 3−5

Adam parameters 0:0.9999:1e−8

Discount factor 0.90
Eligibility trace decay rate 0.99
Truncation: Hidden features (T-BPTT) 2:13, 3:10, 5:8, 8:5,

10:5, 15:4, 20:3, 30:2
Features-per-stage (CCN) 4
Steps-per-stage (CCN) 2.5 million
Steps-per-stage (Constructive) 1 million
Total steps 10 million
Seeds for parameter sweep {0, 1, 2, 3, 4}
Seeds for best parameter configuration {0, 1, · · · , 99}
Min division term (CCNs and Constructive) {0.01,0.001}

Table B.1: Hyperparameter sweeps used for comparing columnar-constructive
networks, columnar networks, constructive networks, and T-BPTT.

116

B.2 SwiftTD

For both SwiftTD and True Online TD(λ), we swept over their hyperparam-

eters as shown in Table B.2. We used the same hyperparameters for both the

linear learner and the last layer of the neural network learner. The experi-

ments with LFA were deterministic and did not require multiple runs. The

experiments with convolutional networks were stochastic due to the random

initialization of the weights. For statistical significance, we did hyperparameter

sweeps with 5 runs for each configuration. We then picked the best-performing

configuration and did an additional 15 runs.

Symbol Description Algorithm Values

αinit Initial step-size parameter SwiftTD 0.000001
α Step-size scalar True Online TD(λ) 3e−1, 1e−1, 3e−2, 1e−2,

3e−3, 1e−3, 3e−4, 1e−4

3e−5, 1e−5, 3e−6, 1e−6

αnn Step-size (kernels) Both 1e−1, 1e−2, 1e−3, 1e−4,
θ Meta step-size SwiftTD 1e−2, 1e−3, 1e−4

η Max correction ratio SwiftTD 0.3, 0.1
ϵ Decay factor SwiftTD 0.999, 0.99

Table B.2: Hyper-parameters used in the experiments of SwiftTD. Note that
the number of configurations for SwiftTD and True Online TD(λ) are the
same. This is achieved by doing a much more fine-grained search for the step-
size parameter of True Online TD(λ).

117

	Learning by Interacting with the World
	Background
	Notation
	Temporal Difference Learning
	n-step Return, lambda-return and TD(lambda)
	True Online TD(lambda)
	Step-size Optimization
	Feature Generation in Deep Learning
	Feature Removal in Deep Learning

	Problem Formulations
	The Prediction Problem
	The Control Problem

	The Big World Hypothesis and its Ramifications
	The Big World Hypothesis and Exponentially Growing Computation
	Evidence Consistent with the Big World Hypothesis
	Ramifications of the Big World Hypothesis

	I Fast and Robust Linear Learning
	Temporal Difference Learning with Step-size Optimization
	TD(lambda) with Step-size Optimization
	Comparing TD(lambda) with TIDBD(lambda)
	The Atari Prediction Benchmark (APB)
	Experiments: TD(lambda) with Step-size Optimization on APB
	True Online TD(lambda) with Step-size Optimization
	Experiments: True Online TD(lambda) with Step-size Optimization on APB

	Temporal Difference Learning with the Overshoot Bound
	Correction Ratio of a Learning Update
	Overshoot Bound for Linear Regression
	Overshoot Bound for TD Learning
	Experiments: TD learning with the Overshoot Bound on APB
	Overshoot Bound for True Online TD(lambda) with Step-size Optimization

	SwiftTD: Fast and Robust Temporal Difference Learning
	True Online TD() with the eta-bound
	Step-size Decay
	SwiftTD: Fast and Robust TD Learning
	Experiments: SwiftTD on the Atari Prediction Benchmark
	Experiments: Hyperparameter Sensitivity Study of SwiftTD
	Experiments: SwiftTD with Convolutional Neural Networks
	Experiments: Credit Assignment by SwiftTD

	Swift-Sarsa: Extending SwiftTD to Control
	Swift-Sarsa: Fast and Robust Linear Control
	The Operant Conditioning Benchmark
	Experiments: Swift-Sarsa on the Operant Conditioning Benchmark

	II Fast Non-linear Recurrent Feature Discovery
	Feature Generation by Continual Imprinting
	Learning by Feature Generation and Feature Removal
	Feature Generation by Imprinting
	The Audio Prediction Benchmark
	Experiment: SwiftTD on the Audio Prediction Benchmark
	Experiments: Imprinting Learner on the Audio Prediction Benchmark

	Feature Tuning using Columnar-Constructive Networks
	Columnar Networks
	Constructive Networks
	Columnar-Constructive Networks
	The Animal Learning Benchmark
	Experiments: Columnar-Constructive Networks on the Animal Learning Benchmark

	Conclusions and Future Work
	References
	Baseline Algorithms
	Hyperparameters
	Columnar-Constructive Networks
	SwiftTD

