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Abstract

In this dissertation, I motivate the need for real-time learning and propose
algorithms that can learn in real time. I argue that such algorithms are needed
for achieving goals in large and partially observable environments—big worlds.
I then present my algorithms, developed in collaboration with others, in two
parts.

In Part I, T present algorithms that can learn quickly and reliably in the
linear function approximation setting. I introduce an algorithm for learn-
ing temporal predictions—SwiftTD—and use it to develop an algorithm for
decision-making—SwiftSarsa. The key property of these algorithms is that
they can learn with large step-size parameters online without the instability
associated with quick online learning.

In Part II, I present algorithms for learning non-linear recurrent features
efficiently. I introduce the idea of continual imprinting for generating useful
candidate features, and I present an algorithm for efficiently computing the

gradients of recurrent features online.
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Chapter 5, 6, and 7 are based on the paper:

e Javed, K., Sharifnassab, A., and Sutton, R. S. (2024). SwiftTD: Fast and
Robust Temporal Difference Learning. Reinforcement Learning Journal,

which won the outstanding paper award at the reinforcement learning confer-
ence. Chapter 4 is based on a public seminar and a workshop paper. The
workshop paper is:

e Javed, K., and Sutton, R. S. (2023). The Big World Hypothesis and its
Ramifications for Artificial Intelligence. Finding the Frame Workshop,
RLC 2024,

which was selected for an oral presentation, and the public seminar is:

e The Big World Hypothesis and its Ramifications, Al Seminar, University
of Alberta, March 2023 (link).

Chapter 10 is based on the paper:

e Javed, K., Shah, H., Sutton, R. S. , White, M. (2023). Scalable Real-
Time Recurrent Learning Using Columnar-Constructive Networks. Jour-
nal of Machine Learning Research,

which was published in JMLR and presented at ICML 2024 at its journal to
conference track. Chapter 8 is based on work that is in progress, and Chapter
9 is based on two public talks that are:

e Real-time Online Learning by Imprinting at the Time of Low Plasticity,
Al Seminar, Uniwersity of Alberta, October 2023, and

e Real-time Reinforcement Learning using Dynamic Networks, Cohere for
Al May 2024 (link).
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Chapter 1

Learning by Interacting with
the World

Learning by interacting with the world is a powerful paradigm for building
general-purpose autonomous systems. An agent can sense its environment
through sensors, such as cameras and microphones, and take actions to influ-
ence its environment. It receives feedback from the environment—information
about the influences of its actions—and can use this feedback to adapt its
behavior. In the simplest case, the feedback can tell the agent how good the
outcome of an action was. It is natural for the agent to adapt to repeat ac-
tions that led to good outcomes and avoid those that led to poor outcomes.
More often the feedback is more nuanced: perhaps it tells the agent that the
outcome of a sequence of actions was better than what the agent anticipated.
Regardless of how clear the feedback is, as long as certain sequences of sensory
inputs and actions are consistently correlated with good or bad outcomes, it
can be used to adapt the future behavior of the agent. In other words, it can
be used to learn.

It is easy to introspect and realize that we, humans, learn by interacting
with the world. We are worse at a new video game or sport the first time we
try it and get better over time, often without any explicit coaching. Navigating
to an address for the first time is more effortful than navigating to the same
address the second time. Navigating to an address we frequent requires almost
no mental effort.

It is also evident that we learn immediately and continually. If we meet

1



someone new and see them again in an hour, we remember their face; miss-
ing a stop sign obstructed by trees once is sufficient to make us wary of the
obstruction the next time we drive the same route. Learning is ingrained in
our everyday lives, and we cannot switch off our ability to learn at will. An
inability to learn in a person is considered a disability due to its debilitating
effects on their everyday life.

Saying learning is continual is not the same as saying learning is permanent.
A bounded learner can only learn so much before it has to discard some infor-
mation. We, humans, forget information that is not reinforced or rehearsed.
We don’t remember our old addresses, phone numbers, email addresses, and
license plate numbers. There is no simple rule that dictates when and what
we forget. We don’t remember many aspects of our lives for more than a day,
and we remember many aspects for years. For example, most of us would be
hard-pressed if asked to remember what we had for lunch two days ago and
hardly any of us would remember our lunch from a week ago. At the same
time, we would have no problem recalling the last concert or conference we
attended, even if we attended it months ago.

The exact mechanisms of learning and forgetting in humans are unclear,
but there is little doubt that we learn continually, and we forget gracefully. The
holy grail of artificial intelligence researchers, in my view, should be algorithms
that can enable agents to learn continually and forget gracefully.

Is it always essential to learn immediately and continually? In other words,
are there problems for which agents can discover the optimal behavior once
and remain unchanged for the rest of their lives? In certain problems, learning
immediately and continually is not essential. A system that can play Chess or
Go at a superhuman level does not need to continue to adapt to play against
humans. The rules of these games are fixed and adaptation is not needed
once an unbeatable policy has been discovered. In other problems learning
continually and immediately is a necessity. These problems exist in large, ever-
changing, and partially observable environments. I call these environments big
worlds and hypothesize that many real-world problems involve achieving goals

in big worlds—the big world hypothesis.
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An agent living in a big world encounters new situations throughout its
lifetime. To such an agent the world appears non-stationary and even pre-
viously seen situations can require adaptation. Any amount of experience is
insufficient for all future predictions and continual learning is necessary for
strong performance. Learning immediately is also advantageous in big worlds
to minimize repeating poor behavior.

How close are we to building systems that can learn immediately and con-
tinually? We have made significant progress towards building algorithms that
can learn complex behaviors from interaction by combining principles from
the fields of deep learning and reinforcement learning. The resulting algo-
rithms are collectively referred to as deep RL. Deep RL, while quite capable
of learning sophisticated behavior for complex tasks, is ineffective for learning
continually and immediately. It uses deep neural networks for learning which
do not forget gracefully in supervised learning settings (French, 1999) and re-
inforcement learning settings (Kirkpatrick et al., 2017). Deep neural networks
also lose the ability to learn over time (Dohare et al., 2024). Moreover, they
rely on large amounts of computational resources only available in a special
training phase and missing for the majority of the lifetime of the agents (e.g.,
see the difference in resources used for training vs inference in works by Vinyals
et al., 2019 and Berner et al., 2019).

In this dissertation, I propose several algorithms for learning in big worlds.
My algorithms, developed in collaboration with others, can learn quickly and
continually while only using resources available to the agent throughout its
lifetime. They can be grouped into two categories: 1) algorithms for quick
and robust linear learning, and 2) algorithms for learning non-linear recurrent
features.

For quick and robust linear learning, I augment TD learning with three
ideas that are 1) step-size optimization, 2) a bound to prevent updates that
are too large, and 3) a mechanism to reduce step-size parameters when they
are too large. I combine the three ideas into a single algorithm called SwiftTD.
I then combine the same three ideas with Sarsa to get Swift-Sarsa.

For learning non-linear recurrent features I propose two ideas. First, I

3



show that by initializing recurrent features using experience, as opposed to
initializing them with random weights, we can find useful recurrent features.
Second, I show that by constraining the architecture of a recurrent network

we can achieve unbiased and efficient gradient-based recurrent learning.



Chapter 2

Background

The solution methods introduced in this dissertation build upon earlier work on
temporal-difference (TD) learning, step-size optimization, real-time recurrent

learning (RTRL), and generate-and-test algorithms.

2.1 Notation

I use bold lowercase letters for real-valued vectors, for example, & € R" is a
vector with n components, and I use square brackets to refer to a component
of a vector; for example, z[i] € R is the ith component of the vector .
I use subscripts to show time steps for time-dependent vectors and scalars,
for example, x;, x4[i], and oy. In some places, I use a list in the subscript for

elements that are a function of variables from different time steps, for example,

Ytits = Tty T Ty

2.2 Temporal Difference Learning

TD learning (Sutton, 1988) is an online and scalable mechanism for learn-
ing predictive knowledge. It is a crucial building block of many reinforce-
ment learning algorithms, such as Sarsa(\) (Rummery & Niranjan, 1994), Q-
learning (Watkins & Dayan, 1992), PPO (Schulman et al., 2017), Actor-Critic
(Konda & Tsitsiklis, 2000), etc.

The key idea of TD learning is to learn from bootstrapped targets that

are a combination of partial feedback and the difference between the agent’s



Algorithm 1: TD(0) with linear function approximation

Hyperparameters: «
Initializations: w < 0 € R", ¢ppg =0 € R", v =0 € R
while alive do
Receive ¢,y and r
v e Y ufiloli
§ <1+ v — o
for i € {0,1,--- ,n} do
| wli]  w[i] + adp[i]

ql)old Y ¢
vl S wli|pli]

subjective values of different situations. Using bootstrapped targets allows
TD algorithms to learn online and incrementally without storing experience.
One of the simplest algorithms for temporal difference learning is TD(0) with
linear function approximation.

TD(0) with linear function approximation learns to predict the discounted
sum of future values of a cumulant, r, by linearly combining a feature vector,
¢, with a learnable weight parameter vector, w. The sum of future values of
r are discounted by the discount factor, ~.

Let w1 € R", ¢, € R", v and r; be the weight parameter vector, the
feature vector, the discount factor, and the cumulant at the start of time step

t, respectively. The prediction made by TD(0) at time step ¢ is

I Zwt_l[i]gbt[i]. (2.1)

The bootstrapped target for learning is r; + yv;—1,, which depends on the
weight parameter vector. TD(0) ignores the impact of changing the weight
parameter vector on the target in its learning update—the semi-gradient as-
sumption. It learns by updating the prediction for the feature vector from one
step ago to match the bootstrapped target. The prediction associated with

the feature vector from one time step ago is:

Vp_141 = Z wy_1[i)pp1d], (2.2)
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Algorithm 2: TD())
Hyperparameters: a and A
Initializations: w «+ 0 € R”, z < 0 € R", and v = 0
while alive do

Receive ¢, v, and r

v wlieli]

§ 1 4 yv — vod

for i € {0,1,--- ,n} do

wli] < wli] + adz]i]
zli] = yAzi] + ¢ld]
end

v S wli|old]

end

and the TD error is

O = T4 + YV—14 — Vg1 4-1- (2.3)

TD(0) learns by minimizing the squared error between the prediction and the

target and updates the ith parameter as:
Wt [Z] = UJt_l[i] + CK(St¢t_1[i], (24)

where « is the step-size parameter. The pseudocode of TD(0) with linear
function approximation is Algorithm 1.

Bootstrapped targets that only use one step of feedback are not always
ideal. For many real-world problems, it is better to use targets that incorporate
feedback from multiple time steps. Two examples of bootstrapped targets that
use multiple time steps of feedback are n-step returns and A-returns (Sutton

& Barto, 2018).

2.3 n-step Return, A\-return and TD()\)

The n-step return is defined as:

Gritn =Tes1 + T2+ + 9" g + V" V1,44, (2.5)

where v4,_1 44+, 1S the agent’s prediction at time ¢ + n using the weight pa-

rameter vector at the end of time ¢t +n — 1.
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Bootstrapped targets can be constructed by combining multiple bootstrapped
targets to form compound returns. The A-return is a special form of a com-
pound return that combines n-step returns for all n weighted by a geometric

series. For A € [0,1) it is defined as:

o0

Gr=(1=X)> N"'Crpn. (2.6)

n=1
A-returns are unique because the prediction error with respect to the A-return

can be written as a sum of td errors as

o

G? — UVg—14 = Z (7)\)i7t71(5¢. (27)

i=t+1
TD(A) (Sutton, 1988)—Algorithm 2—exploits the identity in Equation 2.7 to
achieve online and incremental learning from A-returns using an eligibility trace
vector with the same number of components as the weight parameter vector.

It updates the ¢th component of the eligibility trace vector as
z[i] = YAz [i] + ¢eli], (2.8)
which is used to update the ith component of the weight parameter vector as
wy[i] = w1 [1] + adpze_q[i]. (2.9)

TD(A) was used by Tesauro (1995) to develop TD-Gammon, a program that
learned to play backgammon well using reinforcement learning. Learning from
A-returns also provably improves convergence under the right conditions (Tsit-
siklis & Van Roy, 1996).

The weight updates performed by TD(A), however, are not identical to an
algorithm learning directly from A-returns. The identity in Equation 2.7 only
holds when the weight parameter vector does not change over time. TD() is
a good approximation to learning from A-returns when the step-size parameter
is small.

TD(\) uses a constant step-size parameter. A simple change gives us TD(\)
with time-dependent step-size parameter. Instead of using the step-size param-

eter in the weight update, TD()) with a time-dependent step-size parameter
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Algorithm 3: TD()\) with time-dependent step-size parameter

Hyperparameters: A
Initializations: w < 0 € R", z + 0 € R", and v°'¢ = 0
while alive do
Receive a, ¢, v, and reward r
v e Y, wfilgld
§ <1+ yv — o
for i € {0,1,--- ,n} do
L wli] <= wli] + 6z[i]
z
[

i] «— yAz[i] + aoli]
v e 3T wlileli]

scales the update to the eligibility trace vector with the step-size parameter.
Let «; be the step-size parameter at time ¢. Then TD(A) with time-dependent
step-size parameter updates the ith component of the eligibility trace vector

as:

2e|t] = ze1[i] + aupe[d], (2.10)

and updates the ith component of the weight parameter vector as
wt[z] = wt,l[i] -+ 5152,5,1[2‘]. (211)

The pseudocode for TD(A) with time-dependent step-size parameter is in Al-
gorithm 3.

Algorithm 2 and 3 iterate over all components of the feature vector and the
eligibility trace vector at every time step. If the feature vector or the eligibility
trace vector are sparse, resources can be saved by skipping some computation.
Some operations on TD(A) can be skipped for zero components of the feature
vector and some can be skipped for zero components of the eligibility trace
vector. I call the algorithm that takes advantage of sparse feature vectors and
eligibility trace vectors T'D(X\) with sparse computation.

Algorithm 4 implements TD(\) with sparse computation. It replaces the
single loop over all components of vectors with two loops, one over non-zero
components of the eligibility trace vector and one over non-zero components

of the feature vector.



Algorithm 4: TD()\) with time-dependent step-size parameter and
sparse computation

Hyperparameters: A
Initializations: w + 0 € R”, z < 0 € R”, and v°¢ = 0
while alive do
Receive a, ¢, 7, and r
1’€_§:uﬂﬂ¢ouﬂﬂ¢ﬁ]
§ 1+ v — v
for i | z[i] # 0 do
wli] <= wli] + 0z[i] // Update weight
L z[i] = yAz[i] // Decay eligibility trace
for i | ¢[i] #0 do
| zli] < z[i] + agli] // Update eligibility of the weight

|0 Do IO

2.4 True Online TD()\)

TD(A) approximates the algorithm that learns from A-returns. When the step-
size parameter is small, it is a good approximation. When it is large, the error
in the approximation can be significant. Van Seijen et al. (2016) proposed
True Online TD(A) to address the approximation error of TD(A). True Online
TD()) performs the same updates as the Online A-return algorithm (Sutton
& Barto, 2018).

True Online TD(\) updates the ith component of the eligibility trace vector

2i[t] = YAz [i] + agy[i](1 — by), (2.12)
where:
=Xy Y zlilgli]. (2.13)
ilpli]#0

It does not use the standard TD error, 9, but a slightly different term,
52 =T¢ —+ YUt—1,t — Vt—24¢—1, (214)

in its updates. The difference between ¢ and ¢ is in the time indices of the

prediction term.
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Algorithm 5: True Online TD()\) with time-dependent step-size pa-
rameter by Van siejen et al. (2016)

Hyperparameters: o and A
Initializations: (w, »°¢, z) < (0,0,0), and v°'¢ = 0
while alive do
Receive ¢,v, and r
v = 2 wlile?d]
v = 0 wli]¢fi]
& 1+ v — v
forie {1,2,--- ,n} do
2[i] = yAz[i] + ag??[i](1 — v\ (2T ))
L wli] < wli] + &' z[i] — ag??[i](v — v°'d)
¢4 ¢ ¢

ol p

It updates the ith components of the weight parameter vector as:

wt[z} = wt_l[i] + 5£Zt_1[’i] — a¢t_1[i] (Ut—l,t—l — Ut_gﬂg_l). (215)

It can be extended to use time-dependent step-size parameters. Algorithm 5 is
the pseudocode of True Online TD(\) with time-dependent step-size parame-
ters and is the same as by Van Seijen et al. (2016) (See Algorithm 4 in their
paper). Similar to TD(A), True Online TD(A) can be implemented by only
iterating over non-zero components of the feature vectors and eligibility trace
vectors. Algorithm 6 is True Online TD(A) with sparse computation.
Mapping Algorithm 6 to Algorithm 5 takes some effort. The scalar v in
Algorithm 6 is the same as the scalar (v —v°?) in Algorithm 5. The scalar b in
Algorithm 6 is the same as YA(27¢). The term ) is missing when estimating
b because, by the time b is estimated, the eligibility vector has already been

multiplied by yA.

2.5 Step-size Optimization

The step-size parameter is an important hyperparameter of a learning algo-
rithm. If it is too small, learning can be slow. If it is too large, learning can
be unstable, and it can diverge. The optimal value of the step-size parameter

is problem-dependent and can change over time.
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Algorithm 6: True Online TD()\) with time-dependent step-size pa-
rameter and sparse computation

Hyperparameters: o and A
Initializations: (w, 2%, z) < (0,0,0), and (v°,v°'?) = (0, 0)
while alive do
Receive ¢, 7, and r
U= Zi|¢[i];ﬁ0 wli]¢|d]
§ 1+ v — v
for i | z[i] # 0 do
6v[i] + 0'2[i] — 2°[i]v?
wli] < wli] + 6*[d]

2°li] =0
z[i] < yAz[i]
02+ 0

b+ Zi\¢[z‘]7ﬁo z[i] B[]
for i | ¢[i] # 0 do
v v® + §*[i]¢]i]
2°[i] 4 agli]
2[i] < z[i] + 2°[i](1 — b)

ol

Using a scalar step-size parameter for updating all components of the
weight parameter vector can be limiting. Some features are more important for
learning than others, and it can be beneficial to update the weight parameters
associated with them with larger step-size parameters. On the other hand,
weight parameters associated with some features don’t have to change once
learned, and it can be beneficial to reduce the step-size parameters in their
updates over time. The degree of noise can also vary across features requiring
different step-size parameters when updating different weight parameters.

IDBD (Sutton, 1992) is a supervised learning algorithm that uses a step-
size parameter vector to overcome the limitations of sharing a scalar step-size
parameter, and it automatically finds a good value of the step-size parameter
vector by meta-learning. It uses gradient-based meta-learning and incremen-
tally approximates the gradients of the step-size parameters using forward-view
differentiation (Williams & Zipser, 1989). Intuitively, IDBD increases step-size

parameters associated with features that generalize well to future examples.
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Let w be the weight parameter vector and 3 be the step-size parameter
vector of IDBD. To update the ith component of the weight parameter vector,
IDBD uses e’ll instead of a. If ¢, € R™ is the feature vector at time ¢ and
Yi,1 1s the target associated with this feature vector, then the prediction made

by IDBD is
Yt = Zqﬁt[i]wt[i], (2.16)
i=1

and the ith component of the step-size parameter vector is updated as

5t+1[i] = 5t+1[i] +6 (Z/;Ll - ?Jt) ¢t[i]ht[i]> (2-17>

where 6 is the meta-step-size parameter. hli] is initialized to be zero and hy|i]

is estimated as

huld] = hea[i] (1 = Py [i?) + ™ (g7 = yer) G li]: (2.18)

Owi 1]
A1)
the assumption that S[i] is not updated during learning. However, IDBD

Sutton (1992) showed that h.[i] approximates the meta-gradient under
updates ([i] using Equation 2.17. The updates to S[i] introduce further ap-
proximation error to an already approximate estimate of the meta-gradient.

IDBD updates the 7th component of the weight parameter vector as

wt+1[i] = wtm + el (y:ﬂ - yt) ¢t[l] (2'19>

IDBD is fundamentally different from popular adaptive step-size algorithms
such as RMSProp (Tieleman & Hinton, 2012) and Adam (Kingma & Ba, 2015).
Degris, Javed, Sharifnassab, Liu, & Sutton (2024) argued that IDBD is do-
ing step-size optimization when adapting the step-size parameters as opposed
to RMSProp (Tieleman & Hinton, 2012), which is doing step-size normaliza-
tion. They articulated the difference using a simple problem for which they
analytically computed the step-size parameter vector that achieved the best
performance. They showed that updates done by IDBD moved the step-size
parameter vector towards the optimal step-size parameter vector whereas step-

size normalization, as done by RMSProp, did not.
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2.6 Feature Generation in Deep Learning

Using observational data linearly is rarely sufficient for learning complex pre-
dictions and behaviors. To do well in general problems it can be necessary to
have features that are complex functions of the history of the agent’s observa-
tions.

The dominant paradigm for learning complex features is deep learning (Le-
cun, Bengio, & Hinton, 2015). Deep learning is a collection of ideas for train-
ing artificial neural networks with many layers to perform well on supervised
learning problems. In deep learning, features are generated in three distinct
stages.

In the first stage, the functional form of the features is designed by hu-
man experts. The design incorporates prior knowledge, for example, trans-
lation invariance of convolutional neural networks (Lecun et al., 1988); ease
of optimization, for example, skip connections (He et al., 2016) and batch-
normalization (Santurkar et al., 2018); and hardware constraints, for example,
transformers designed to be parallelizable (Vaswani et al., 2017). All functional
forms have some parameters that can be learned.

In the second stage, the learnable parameters are initialized by sampling
them from some distribution. Generally, the parameters are initialized to small
values, and special care is taken to ensure that the scales of gradients of the
parameters are similar in different layers.

In the third and final step, the learnable parameters are updated using gra-
dient descent. The gradients are computed using back-propagation (Rumel-
hart et al., 1986) for feedforward networks and using back-propagation through
time (BPTT) (Werbos, 1988 and Robinson & Fallside, 1987) for recurrent net-
works. Some form of gradient normalization, such as RMSProp (Tieleman &
Hinton, 2012) or Adam (Kingma & Ba, 2015), is used to make the scale of the

updates to parameters in different layers comparable.
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2.7 Feature Removal in Deep Learning

Feature removal is the idea of measuring the importance of features for the
predictions and behaviors learned by the agent and removing those that are
not useful. Most existing works do not look at feature removal as a continual
process. The common paradigm is to train a large model and remove the
useless features and parameters after training has finished. An important
question for feature removal is to decide how to measure the usefulness of
different features.

Neural network researchers have proposed multiple algorithms for esti-
mating the importance of features or parameters for predictions and behav-
iors (for a detailed overview see Blalock et al., 2020). For example, Han et
al. (2015) proposed pruning the parameters with the smallest magnitudes, and
LeCun (1989) proposed approximating the impact of different parameters on
predictions and pruning the features with the smallest impact. The general
idea of these methods is to rank the parameters or features of a deep network
and discard the least useful ones to get a smaller network that can be deployed
more efficiently.

A handful of papers have explored the idea of online and continual pruning
to improve performance. One family of works is called dynamic sparse train-
ing (DST) (see work by Mocanu et al., 2018 and Evci et al., 2020). In DST,
features are pruned based on the magnitude of their outgoing weights and re-
placed with new features with randomly initialized weights. An independently
evolving body of work under the umbrella term Generate & Test (G&T) al-
gorithms has also looked at continual feature replacement as a mechanism for
learning (Mahmood, 2017; Mahmood & Sutton, 2013). Both DST and G&T
algorithms improve performance on supervised learning tasks. More recent
work has discovered that deep neural networks lose their ability to learn over
time (Dohare et al., 2024). They call this phenomenon the loss of plastic-
ity and showed that continually replacing useless features with new random

features mitigates the loss of plasticity.
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Chapter 3

Problem Formulations

The goal of an agent learning from an online stream of data for predicting
or controlling the future can be formalized as the lifetime performance of the

agent on the prediction or the control problem.

3.1 The Prediction Problem

The prediction problem consists of observations and predictions. The agent
receives an observation vector x; € R™ and a discount factor +; at time step ¢
and makes a scalar prediction v; € R. The target for evaluating the prediction
is computed by summing the future values of a scalar called the cumulant
discounted by the discount factors. The cumulant can be any component of
the observation vector with a fixed index. A common choice for the cumulant
is the reward signal.

Performance on our prediction problem is measured by the lifetime error.
Let r;, a component of x;, be the cumulant at time step t. The lifetime error

is defined as:

T T 2
1 .
Lifetime error(7T) = T E (vt — E 7§_t_lrj) , (3.1)

t=1 j=t+1
where T is the lifetime parameter of the agent and is part of the problem. The
lifetime error captures not only the quality of the solution discovered by the
agent at the end of learning but also how quickly the agent finds the solution.

The lifetime error metric differs from the popular paradigm of splitting the

data into a disjoint train set and test set. Splitting the data is important in
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offline learning settings where the learner has access to the complete data set.
It is unnecessary in online learning settings where the agent is evaluated on

predictions made before getting the ground truth.

3.2 The Control Problem

The control problem consists of observations and actions. The agent perceives
an observation vector x; € R" at time step t. It outputs an action vector
a, € R?. A special component of the observation vector is the reward, ;. The
index of the component that is the reward is fixed throughout the lifetime of
the agent. Performance on a control problem is measured using the lifetime

T

In a control problem, the actions chosen by the agent control what observations
the agent perceives in the future, and the agent seeks to maximize its lifetime

reward by controlling its future.
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Chapter 4

The Big World Hypothesis and
its Ramifications

The big world hypothesis says that in many decision-making problems the
agent is orders of magnitude smaller than the environment. It can neither
fully perceive the state of the world nor can it represent the value or optimal
action for every state. Instead, it must learn to make sound decisions using
its limited understanding of the environment. The key research challenge
for achieving goals in big worlds is to come up with solution methods that
efficiently use the limited resources of the agent.

An opposing view to the big world hypothesis is that real-world decision-
making problems have simple solutions. The agent is not only capable of
representing the simple solution but also has additional capacity that can be
used to search for the solution more efficiently—it is over-parameterized. The
key research challenge for achieving goals with over-parameterized agents is to
find solutions that enable optimal decision-making in perpetuity.

There are many problems that satisfy the big world hypothesis and many
that do not. The problem of finding roots of a second-degree polynomial
admits a simple solution that always works. Representing the value function
of the game of Go for all states does not have a simple solution. The big world
hypothesis is more a statement about the class of problems we should care
about than a fact about all decision-making problems. It can be made true or
false by exercising control over the design of the environment and the agent

(e.g., when developing benchmarks).
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Developing algorithms for big worlds poses unique challenges. The best
algorithms for big worlds might prefer fast approximate solutions over slow
exact ones. They might learn incorrect simplistic models that are sufficient
for achieving the agent’s goals over causally correct complex models (e.g.,
Newtonian physics as opposed to quantum mechanics). They might forgo
knowledge that is not frequently used by the agent to make room for knowledge
used more often. Such trade-offs do not exist for over-parameterized agents.

The big world hypothesis is not a novel proposition. Over the past few
years, several independent works have entertained the idea of small-bounded
agents learning in large unbounded environments. Sutton (2020) argued that
the world is large and complex and an agent cannot learn everything there is
to learn exactly. He proposed embracing function approximation for learning
values, policies, models, and states. Dong et al. (2022) theoretically studied
the performance of a reinforcement learning algorithm without making sim-
plifying assumptions about the environment. Their work shifts the focus from
making assumptions about the environment to making assumptions about the
capabilities of the agent. Javed et al. (2023) empirically studied the perfor-
mance of small agents in large environments. They found that approximate
algorithms that use less computation can outperform exact algorithms that
use more computation in big worlds. Kumar et al. (2023) showed that contin-
ual learning is a necessary element of reinforcement learning when the agent
is computationally constrained.

Is the big world hypothesis a temporary artifact of the limitations of our
current computers? Or would it have relevance even as computational re-
sources grow? In the next section, I argue that the big world hypothesis is

here to stay irrespective of the rate at which computational resources grow.

4.1 The Big World Hypothesis and Exponen-
tially Growing Computation

Historically access to computation has increased exponentially. With contin-

uing growth computers of the future could be sufficiently powerful to solve all
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problems we care about using over-parameterized agents. I see two problems
with this view.

First, it is not just our agents that are constrained by compute. The sensors
used by our agents are also constrained by compute. A rise in computation
makes it possible to sense the world with more precision and at a higher
frequency. For example, within the last decade the camera sensors in our
phones have gone from sensing 640 x 420 pixels at 30 fps—around 7 million
pixels per second—to sensing in 4k at 60 fps—around 500 million pixels per
second. To put these numbers in perspective, a modern smartphone camera
sensor in 2024 can generate more data in a week than that used to train GPT-3
(Brown et al., 2020). Even with these massive increases in the ability to sense
the world, our agents are not even close to sensing the world at its full scale.
I speculate that as computational resources grow so would the appetite to
sense the world at higher fidelity, making the decision-making problem more
challenging.

The second problem with waiting for compute to grow is that as compute
becomes more readily available, the world itself becomes more complex. From
the perspective of an agent, the world consists of everything outside of itself.
This includes other equally complex agents and computers. An agent that
interacts with multiple other agents of similar capabilities would be unable to
model the world exactly regardless of the rate at which computation grows.

A concrete example of the world getting more complex as computation
grows is that of an agent playing the game of Go against an opponent. If the
opponent picks moves randomly, then it is fairly simple for the agent to model
the environment exactly. The dynamics of the environment can be simulated
with a short program. However, if the opponent is more complex, such as an
AlphaZero (Silver et al., 2015) agent, then the only way to model the dynamics
of the environment correctly is to be able to represent the policy of the large

AlphaZero agent accurately.

20



As computational resources increase so does the complexity of the world.
The big world hypothesis is not a temporary artifact of the limitations
of our current computers. For many problems, the world will always be
much larger than any single agent.

4.2 Evidence Consistent with the Big World
Hypothesis

There is some indirect evidence that the behavior of our learning algorithms
on large problems is consistent with the big world hypothesis.

Silver et al. (2017) trained a large neural network to learn the value func-
tion for the game of Go. They found that even after extensive training the
performance of the system could be improved if the decisions were taken by
combining the value function with a planner.

If the neural network had the capacity to represent the optimal value func-
tion of Go, and it had been trained for a sufficiently long time, then decision-
time planning should not have improved performance. Perhaps the neural
network did not have sufficient capacity to represent the value function cor-
rectly for all states and the planner was able to fill in the gaps.

The second and more direct evidence comes from the work of Brown et
al. (2020). They showed a clear trend between the model size and performance
of neural networks when fitting large language datasets. They found that the
train error and validation error on the dataset could be reduced by increasing
the number of parameters in the network. Their findings make little sense if
the neural networks were over-parameterized.

Neither of the two papers directly set out to test the big world hypothesis
and their results have other explanations. However, they don’t contradict it

and provide circumstantial evidence for its relevance.
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4.3 Ramifications of the Big World Hypothe-
sis

The big world hypothesis is only worth discussing if accepting it would directly
impact how we do research in Al. In the next subsections, I discuss three ways

accepting the hypothesis can influence research today.

Online continual learning for achieving goals in big worlds

The need for online continual learning in big worlds is intuitive—if the agent
does not have the resources to learn and retain everything important about the
world simultaneously, then it can learn aspects that are important for decision-
making at the current time and discard them when they are no longer. In the
over-parameterized setting, on the other hand, there is no need for online
continual learning. Once the agent has found the underlying optimal solution
it can use it forever without changing.

Learning things when they are needed and discarding them when they are
not is sometimes called tracking. Tracking has been empirically demonstrated
to be superior to fixed solutions in partially observable environments by Sut-
ton, Koop, & Silver (2007) and Silver, Sutton, & Miiller (2008).

A key requirement for tracking to be effective is temporal coherence. Tem-
poral coherence means that parts of the world the agent experiences from one
step to the next are correlated. An agent learning online can exploit the tem-
poral coherence to direct its resources to learn about the states of the world
that are temporally close at the expense of those that are far away. Tracking

can be a powerful solution method in temporally coherent big worlds.

Humans extensively rely on tracking in everyday life

Humans are continually learning agents. We extensively rely on tracking
to achieve our goals. An intuitive example is that of exams. Given the
choice between taking exams of different subjects on different days or
taking them all on the same day, most of us would pick the former.
Intuitively, it feels easier to have to only have to learn and remember
the material for one exam at a time. This is exactly the behavior we
should expect from a tracking agent in a big world.
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An analogy of a tracking system is the cache used by a CPU. The cache is
much smaller than the memory and can only store a small fraction of instruc-
tions and data used by a program. However, by retaining the right pieces of
information and discarding the least useful ones, a small cache can have a high
hit ratio. A high hit ratio is only possible when a program accesses memory
predictably, akin to having temporal coherence in big worlds.

If we are to accept the hypothesis then we have to develop algorithms
that can learn online and continually. This is a significant departure from the

current practice of training agents offline and then deploying them.

Need for Computationally Efficient Learning Algorithms

In big worlds, increasing the size of the agent can improve performance. This
raises an important trade-off between the complexity of the learning algorithm
and the size of the agent. A trivial example is the mini-batch size of a deep RL
algorithm, such as DQN (Mnih et al. 2015). For a fixed amount of resources,
an agent can double the number of parameters by halving the mini-batch size.

Javed, Shah, Sutton, & White (2023) empirically demonstrated that ap-
proximate but efficient learning algorithms can outperform computationally
expensive exact algorithms in big worlds. In their experiments, they evaluated
tiny recurrent networks on the Arcade Learning Environment (Bellemare et
al., 2013). They constrained all algorithms to use the same amount of per-step
computation and found that a simple algorithm that used less computation
was able to outperform a more complex algorithm by repurposing the saved

computation to increase the size of the network.

Accepting the big world hypothesis means we should actively look for
more efficient learning algorithms.

Benchmarking in Big Worlds

A common way to evaluate algorithms is to run them on a standardized
benchmark. A good benchmark is an accurate proxy for the problem we

care about and allows us to do careful experiments. Designing a benchmark

23



for big worlds requires a different approach than designing a benchmark for
over-parameterized agents.

One way to evaluate algorithms for big worlds is to test them on complex
environments so that even our largest agents on the latest hardware are not
over-parameterized. While this approach has merit, it makes it difficult to do
careful and reproducible experiments.

The alternative is to restrict the computational capabilities of the agents
instead of making the environments larger. The primary limitation of restrict-
ing agents is that we might miss out on emergent properties of large agents.
However, a small agent learning in a non-trivial environment is still a better
proxy for learning in big worlds than a large over-parameterized agent learning

in the same environment.

Example: A typical DQN agent for Atari users orders of mag-
nitude more computation than the environment.

Arcade learning environment (Bellemare et al., 2013) is a popular bench-
mark for reinforcement learning. A typical game in the benchmark can
run at around 7000 frames per second on a modern CPU core. A DQN
agent (Mnih et al., 2014), on the other hand, runs at 300 frames per
second on a modern GPU. While it is hard to directly compare different
implementations of the agent and the environment running on differ-
ent hardware, it is clear that the agent uses orders of magnitude more
computation than the environment in this case.

Restricting the computational capabilities of the agents is not trivial. There
is no consensus on what aspects of the agents should be restricted. We could
restrict the number of operations, the amount of memory, the amount of mem-
ory bandwidth, or the amount of energy the agent can use. The choice of
constraints can have a significant impact on algorithms that win.

One option is to match the constraints on the agent with the constraints
imposed by current computers. For example, if memory is cheaper than CPU
cycles, then we might want to restrict the CPU cycles. Alternatively, if access-
ing the memory is a bottleneck, then we might want to restrict the memory
bandwidth.

A second option is to limit energy usage. Energy is a universal constraint
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that can take into account the evolution of hardware over time and can even
drive research for designing better hardware for our agents. The downside of
using energy as a constraint is that it is difficult to measure. Normally the
computer running the agent is also running the environment, an operating
system, and other unrelated processes, and isolating the energy used by the
agent from background tasks is challenging.

The big world hypothesis has direct implications on what we choose to
study and how we evaluate our algorithms. It is not a temporary artifact of
the current limitations of our computers. It is imperative that we develop
algorithms that can allow agents to achieve goals in big worlds. This requires
developing computationally efficient algorithms for learning continually and

rethinking the way we benchmark our algorithms.
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Part 1

Fast and Robust Linear
Learning
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Chapter 5

Temporal Difference Learning
with Step-size Optimization

Existing algorithms for TD learning can be ineffective for learning incremen-
tally and quickly. They force us to make one of the following three unsat-
isfactory choices. First, we could use them to learn with a small step-size
parameter over a long period. This results in stable but slow learning. Sec-
ond, we could attempt to learn with them using a large step-size parameter.
Doing so could result in faster learning but risks divergence. Third, we could
use them to learn with a small step-size parameter but use every data point
in multiple updates (e.g., by using a replay buffer). The third choice allows
sample efficient and robust learning and is used by popular Deep RL algo-
rithms (e.g., see Mnih et al., 2015 and Schulman et al., 2017). However, using
every sample in multiple learning updates is computationally wasteful, and it
makes agents less reactive—feedback is not reflected in their predictions and
behaviors immediately.

An alternative and computationally efficient solution is to use a combina-
tion of large and small step-size parameters. Each component of the weight
parameter vector can be updated using its own step-size parameter. If the
agent can set the step-size parameters to small values for features that are
not correlated with the prediction error and to large values for features that
are correlated with the prediction error, it could learn quickly without risking
divergence. The challenge is to find the right step-size parameters for different

features.
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A promising solution for setting different step-size parameters for different
features is to learn them. IDBD (Sutton, 1992) does that for linear regression.
We propose algorithms for learning step-size parameters for TD learning.

Three prior works have extended IDBD to TD learning. Two of them—
by Thill (2015) and Kearney et al. (2018)—incorrectly estimated the meta-
gradient. Thill (2015) made a mistake when deriving the update rule for
the meta-gradient. Kearney et al. (2018) derived the meta-gradient correctly,
but used the TD(0) objective for the meta-gradient even when learning with
TD(A). Young et al. (2019), independently of my work, correctly extended
IDBD to TD()A). The extension of IDBD to TD(A) in this thesis is identical
to that by Young et al. (2019); the extension to True Online TD(\) is novel.

In the following sections I derive the update rules for computing the meta-
gradient of the step-size parameters for TD(A) and compare the resulting
algorithm—TD(\) with step-size optimization—with TD(A) and TIDBD(\)
(Kearney et al., 2018). I then derive the update rules for computing the meta-
gradient for True Online TD(A) and compare the resulting algorithm— True
Online TD(X\) with step-size optimization—with True Online TD()). Finally,
I compare TD(\) with step-size optimization and True Online TD()A) with

step-size optimization.

5.1 TD()\) with Step-size Optimization
TD(A) with step-size optimization uses the A-return as the target defined as:
Gi\ - (1 - )\) Z )\nith;tJrl. (51)
n=1

IDBD parameterizes the step-size parameters with a vector 3, and it updates
the ith weight parameter with the step-size parameter e[, TD(A) with step-
size optimization uses the same parameterization for the step-size parameters.

It predicts the value at time step ¢ as:

V-1, = Zwtfl[i]ﬁbt[i]a (5-2>
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and updates the 1th weight parameter as:

Wt [Z] = wtfl[i] + 6t2t71[l‘], (53)
where:
Ot = T4 + YeVr—1t — Ve—1,4-1, (5.4)
and z[i] is updated as:
2li] = yedzali] + e* M fi]. (5.5)

The step-size parameters are updated to minimize the squared error between
the prediction and the A-return. The meta-gradient of the squared error with
respect to the ith step-size parameter is:

1OL() 9 () —viv)’
2 08li]  9pli] 2

8Ut—l,t

=G ) g

Similar to Sutton (1992), I assume that the indirect impact of 5[i] on w[j] for
j # i is negligible, as changing el will mostly impact the weight parame-
ter w[i]. For a more detailed discussion on this approximation, see work by

Javed et al. (2021). The approximation simplifies Equation 5.6 as:

(Gi‘ — Vi_1t) Z ¢t[]]81§t6—[12}[]] ~ (Gi‘ Vt_1.4)Peli ]825):53[1][2] (5.7)
I define h;_1[i] to be 8“56[1][1] Then:
g 3wt_1[i]
= o
_ 8 (wt_g[i] + 5t—1zt—2[i])
98]
dwnafi] (6120 ]i)) (5:8)
= +
98] 9B[i]
8(515 1 azt 2[]

= hy—o[i] + zolt] o7 + S1o1—F o
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The gradient 2L |

9Bl
091 _ (=25 wi2ljlér-2[7])
opli] 98] (5.9)
R —hy il P12 [1]
Finally, I define z,_[i] as %= ﬁ” Then:
Sl = g (neaheecal] + e61al)

= e-2Az1-sli] + 0y (5.10)
= Zt,Q[Z'].

The final recursive update rule for h;_1[i] is:

hye1[i] = hy—s[i] 4+ ze—ali]hy—2[i] (Ve—101-1[i] — dr—2[i]) + S1—124—2]1]

(5.11)
= hy_s[i] (1 — z—[i]pr—2i]) + dr—12—2[d].

We still need to estimate the error term, G? — V414, in Equation 5.6 incre-

mentally. It can be approximated as the sum of TD errors as:

G —va e > (AT (5.12)

i=t+1
where equality holds if the weight parameters are kept fixed over time. The

final meta-gradient of the squared error w.r.t S[i] is:

o0

oL(t) i
3li] ~ (Z (7iA) > he—1[i] (1]

j=t+1

_ (Z wjmj“htl[ﬂ@[ﬂéj)

j=t+1

= hy_1[] e [i]0ps1 + VN Py1[i] e [i]0eq2 + 7]2)\2ht71[i]¢t (1] 6143 4. ..,
(5.13)

and it is used to update S[i] at time step t as:

Bili] = Beali] + ﬁ&pt—lma (5.14)

where pli] is initialized to 0 and p;[i] updated as:

peli] = AMyepe-li] + ¢eli) e [d]. (5-15)
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The meta-update in Equation 5.14 uses Lm to scale the meta-gradient,

ePr-1
where 6 is a hyperparameter called the meta-step-size, and scaling by m
makes the scale of the meta-gradient invariant to the magnitude of the step-size
parameter.

TD(A) with step-size optimization has two important hyperparameters, the
value of the step-size parameters at initialization (a™") and the meta-step-

size parameter (¢). The pseudocode for TD()A) with step-size optimization is

Algorithm 7.

Algorithm 7: TD(\) with Step-size Optimization
Hyperparameters: o™ X, 0
Initializations: (w,z) < (0,0) € R", 8 = In(a'™®*) € R"
while alive do
Receive ¢, v, and r
O r+7 Zi|¢[i}¢o wli]pfi] — Zi|¢old[i]¢o wli]¢'[i]
for i | z; # 0 do
wli] <= wli] + §z[1]
Bli] + Bli] + fpli]
hold[i] < hli]
h[i] < h'*™P[i] + z[i]6
| (2l pli]) = (yAzldl, vApli])
or i | ¢[i] # 0 do
2[i] + z[i] + e g[i]
ol  pli] + ¢lilh]
htemPli] < h[i|(1 — z[i]¢[d])

i ¢old<_¢

—h

5.2 Comparing TD()\) with TIDBD(\)

Kearney et al. (2018) used a different meta-gradient for learning the step-size
parameters of TD(A). Their meta-gradient is:

0 (Gt:t+1 - Utfl,t)Q
Ali] 2 ’

(5.16)

where Gyqq is:

Gt:t+1 = Ter1 T Ver1Vte41- (5.17)
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Data stream

Figure 5.1: The data stream consists of a single feature that is 1, 0, 0, 1, 0,

-+. 7y is zero when going from C to A and one otherwise. An agent learning
with a simple weight parameter w using TD(\) should converge to w = 1 as
the value of state A is 1 and w has no influence on the predictions in states B
and C. An agent using TD(0), on the other hand, should converge to w = 0.

Using G441 as the target in the meta-gradient is an odd choice because TD(\)
uses A-returns as targets and not the one-step returns. I elucidate the problem
with a simple experiment.

The experiment uses an environment with three states—A, B, and C. The
agent starts in A and deterministically transitions from A to B, B to C, and C
to A. The cycle continues indefinitely. The value of v is 0 when transitioning
from C to A and one everywhere else. The reward is 1 when transitioning
from B to C and 0 everywhere else. Each state has a scalar feature. State A,
B, and C have features 1, 0, and 0, respectively. The environment is shown in
Figure 5.1.

The agent has a scalar weight parameter initialized to zero and a scalar
step-size parameter, [, initialized to —10; A is one.

The problem is constructed such that the weight parameter, w, would
converge to 0 if it is updated using TD(0) and to 1 if it is updated using
TD(A) with A = 1.

Experiment and Results

I used TD(A) with step-size optimization and TIDBD(A) to learn for five
million steps on the above mentioned environment and report the results in
Figure 5.2. TIDBD()) did not increase the step-size parameter and did not
converge to the optimal weight in five million steps. TD(\) with step-size opti-

mization, on the other hand, increased the step-size parameter until w reached
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Figure 5.2: Results of TIDBD(A) and TD(\) with step-size optimization.
TIDBD(A) did not increase the step-size of w and as a result, did not converge
to the optimal weight in five million steps. TD(\) with step-size optimization,
on the other hand, increased the step-size until w reached one. Then it slowly
reduced the step-size, converging to w = 1.

1. Then it slowly reduced the step-size parameter, converging to w = 1.
The failure of TIDBD()) is not surprising. It is computing the meta-
gradient to minimize the error w.r.t the one-step return. Since w = 0 already

minimizes this error, the step-size parameter does not change.

5.3 The Atari Prediction Benchmark (APB)

The Atari Prediction Benchmark (APB) (Javed et al., 2023) is a suite of predic-
tion problems. It is built on the Arcade Learning Environment (ALE) (Belle-
mare et al., 2013), a collection of Atari 2600 games. In each game, a player can
take up to 18 discrete actions with the goal to maximize the score. The Atari
Prediction Benchmark constructs prediction problems from ALE by picking
actions using pre-trained Rainbow-DQN (Hessel et al., 2018) policies taken
from the model zoo of Chainer-RL (Fujita et al., 2021).

To convert the Atari Prediction Benchmark into a set of temporal predic-
tion problems, as defined in Section 3.1, we have to specify the observation
vector, the cumulant, the discount factor 7, and the lifetime of the agent (7')
for each game.

APB constructs the observation vector of the agent by preprocessing the

game frame and turning it into a binary valued vector as explained in the next
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subsection. It constructs the cumulant by preprocessing the reward given by
ALE. A positive reward from ALE sets the cumulant to +1, and a negative
reward sets it to -1. The cumulant is zero otherwise. APB uses v = 0.98 at
all time steps. Finally, it sets the lifetime to 210,000, which is around 1 hour

of gameplay at 60 frames per second.

Constructing the feature vector from the game frame

The Atari game frame is a tensor of dimensions 210 x 160 x 3. Every com-
ponent of this tensor is a scalar in the range [0, 255].

In the preprocessing steps, APB first resizes the frame to 105 x 80 x
3. It converts each of the three channels in the resized frame to a tensor of
dimensions 105 x 80 x 8 by performing a binning process to the value of each
pixel. Pixel values from 0 to 31 set the first channel to one and the remaining
seven to zero, values from 32 to 63 set the second channel to one and the rest
to zero, and so on. Figure 5.3 (a) illustrates the binning process with a simple
example and Figure 5.3 (b) shows the binning process applied to a frame of
the game Freeway.

The binning process gives us three tensors of dimensions 105 x 80 x 8.
APB stacks them to get a tensor of dimensions 105 x 80 x 24 and flattens the
stacked tensor to get a vector with 201,600 binary components. Finally, APB
appends the previous one-hot coded action (a vector with 18 components) and
the cumulant to the 201,600 length vector to get the final feature vector with
201,620 components.

5.4 Experiments: TD()\) with Step-size Opti-
mization on APB

I compared TD(A) with step-size optimization with TD(A) on the 50 games

in the Atari Prediction Benchmark. For each game, I ran both algorithms for

210,000 steps with A = 0.90 and compared the lifetime error—Equation 3.1.
An important caveat of the lifetime error is that it measures the return

error, and in stochastic environments, the return error can be high even when
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3x3image

Channel 1

Channel 2
Binary features | Game frame Binary features after binning

(@ ()

Figure 5.3: (a) A simplified example of the binning step with a 3 x 3 image.
I transform the image into a binary valued tensor by binning the value of the
pixel into two channels. Pixel values from 0 to 127 are binned into the first
channel, and 128 to 255 into the second channel. (b) The binning process
applied to a real frame on the game Freeway. In our experiments, the agent
learns from the binary features generated by the binning process.

the agent is learning well. The magnitute of the lifetime errors themselves are
not meaningful. We can only use them to compare algorithms.

I plot the ratio of the lifetime error of TD(\) with step-size optimization
and the lifetime error of TD(A). A ratio of 1 means both algorithms had the
same lifetime error. A ratio of 0.5 means TD(\) with step-size optimization
had half the lifetime error of TD(A).

I plot one set of results of learning with meta-step-size of 10~* in Figure 5.4.
In all direct comparisons TD(\) with step-size optimization used o that was
init

the same as « used by TD()\). For all values of o™, step-size optimization

helped on a majority of the games. The difference was largest when o were
the smallest.

I ran more experiments with a larger meta-step-size of 1072 and plot the
results in Figure 5.5. Once again, TD()\) with step-size optimization achieved
a lower lifetime error on many games. In some games, it diverged on a number
of environments (labels shown in red). The divergence of TD(\) with step-

size optimization is concerning. If step-size optimization in only useful if the

meta-step-size is carefully tuned, it might not be useful in practice.
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Figure 5.6: Lifetime error of TD(\) with step-size optimization for a wide range
of o™ and 6 on Pong. The diagonal lines are hyperparameter configurations
for which the algorithm diverged.

To better understand the sensitivity of TD(\) with step-size optimization
to 6 and o™, I ran it for fifty-five values of o and 6 on the game Pong.
For both parameters, I used values from the set {0.7%|z € {0,1,---,54}} for
a total of 3025 experiments.

I plot all results in Figure 5.6, where the x-axis is the meta-step-size pa-
rameter and the y-axis is o™, The lifetime error is shown with a color scale
that has purple at one end (low error) and pink at the other end (high er-
ror). For some hyperparameter combinations, the lifetime error was higher
than the highest value of the scale. All those values are shown as pink as well.
Hyperparameters for which the agent diverged are shown by diagonal lines.

The performance of TD(A) with step-size optimization improved on Pong
as the meta-step-size parameter increased from 1078 up to 1072. It diverged
when the meta-step-size went over 1072, This trend held for o™ in the range
1078 to 107°. The algorithm also diverged for o™ larger than 10~

The main conclusions from the sensitivity analysis is that step-size opti-

mization improves performane for some values of the hyperparameters, and it

hurts for some values.
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5.5 True Online TD()\) with Step-size Opti-
mization

Algorithm 8: True Online TD()) with Step-size Optimization
Hyperparameters: a;,;;, A, 0
Initializations: (w, R ht™P 2% p h,z,z) < (0,---,0), (v°,v7?) =
(0,0), 8 < In(anit) € R™
while alive do
Receive ¢, 7, and r
Chh zi|¢[z’]7é0 wli]¢li]
§ 1+ v —
for i | z[i] # 0 do
6v[i] + 0'2[i] — 2°[i]v?
wli] = wli] + 5”[']
Bli] « Bli] + A (6" — v*)pld]
hold[i] < hli }
h[i] < htmP[i] + &'z[i] — 2°[i]v°
29[ =0
L (zli], pld], z[i]) < (vAz[i], yAp[i], yAZ[d])
v 0
b= 3 10 2Li] 0]
for i | ¢[i] # 0 do
00— 00 4 §[i]¢li]
2li] 66”]925[’]

2i] + z[i] + 2°[i)(1 — b)

plil < plil + o 1 he i)

2li] = 2[i] + 2°fi] (1 = b — @lilz]i])

WemPli] < hli } 2[ilglilhli] — he'[illi] (z[i] — 2°[i])

ol

True Online TD(A) with step-size optimization uses ¢y, the modified TD
error, defined as:

5/15 =17+ YtUt—1t — Vg—2¢—1- (518)

It updates the ith weight parameter as:

Wy [Z] = wt—l[i] + 5/t2’t—1[i] — Pl (Ut—l,t—l - Ut—2,t—1)¢t—1[i]a (5-19)

and estimates z;_1[i] as:

Zt— 1[ ] Vi1 A2 2[ ] + 6’8[1']@71[@'] - emi]@q[i]btq, (5-20)
39



where b,_; is:

bio1 = N-1A Y zoli]dialil. (5.21)
i=1
Let &"atﬂ—*[il}[i] be h;_1[i]. Then, we can approximate h; 1[i] incrementally as:
. 3w _1[i]
- 25

O (P (vy—24—2 — V1_34-2))

_ Owifi] | 98" 12-2]i])

oo T ogn Ol o811
= hyoi] + Zt—2[i]6;6—t[;]l + 5,1:_18;6;[22.][2] - ¢t—2[i]eﬁ[i] a@t—?vt—gﬂ_[i]vt—&t—?)
— Gra[i](vi242 — Ut73,t—2)€ﬁ[i].
(5.22)

Using a similar approximation of the meta-gradient as done by IDBD, we

simply the above equation as:

hiali] & hy—oli] + Zt2[i]%t[;]l + 5’151(9;6;[22.52'] — rali]e” (hy_a[i] dy—a[i] — hu—3[i]dr—li])
- ¢t—2[i] (Ut—2,t—2 - Ut—3,t—2)€’8[i].
(5.23)

96t

The gradient = Eo

is approximated as:

001 O+ Y1 25—y wi—a[floe1 (5] — 205, we—s[j]de—2])

9Bl X (5.24)
~ —hy_s[i|_ai].

82,5_2 [Z]

Finally, if z;_5[7] is RO then it can be recursively approximated as:

5t—2[i] = %[Z] (’Yt)\zt—:s + eﬁ[i] ¢t—2[i] - €B[i]¢t—2[i]bt—2)
Ob;_o

= Yo AZ_3[i] + €B[i]¢t—2[i] - 65[i]¢t—2[i]bt—2 — €B[i]¢t—2[i] REID
R Yi—oAZ_si] + el Gr—oli] — eﬁ[l](ﬁth[i]bth — %72)\65[%] ¢t72[i]25t73[i]

= Yo AZ_3li] + eﬁ[i]¢t—2[i] (1 = bi—g — Ve—2APr—2i] Z—3]i]) -

(5.25)
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Combining the above equations, h;_1[i] is approximated as:

hu1[i] mhy—s[i] + z-2[i] (—u—s[i]Pe—2]i])
+ 6112 0[i] — duali)” (heailprs[i] — hu—s[ildyali])
— G [i] (V202 — vy g4-0)e
=hy—[i] + zi-2[t] (—hu—3i]dr2]i])
+ 8" 17 0[] = dra[i]P e (hyo[i] — hus[i])
— Gra[i] (V202 — Vi3 4-2)e
=hyo[i] — hislilduali] (2-a[i] — "My [i])

+ 011 Z20i] — ¢t—2[i]€5m hy—ai]y—ai]
Bli]

(5.26)

— Gro[t)(Vr-24—2 — vi-34-2)e
=hy_o[i] — he_s[i] 2] (z—2[i] — e"Pgy_[i])
+ 61120 0li] — dualile? (hysli] 6y o[d]

+ (V4—24-2 — Vi—34-2)).

The rest of the derivation is the same as TD()A) with step-size optimiza-
tion. The pseudocode for True Online TD(\) with step-size optimization is

Algorithm 8.

5.6 Experiments: True Online TD(\) with Step-
size Optimization on APB

Similar to earlier experiments, I evaluated the performance of True Online
TD(A) with step-size optimization on the Atari Prediction Benchmark.

Figure 5.7 and Figure 5.8 show the performance of True Online TD()) with
step-size optimization compared to True Online TD(\) for different values of
the meta-step-size parameter and the initial step-size parameter. The initial
step-size parameter in all comparisons is the same as the step-size parameter of
the baseline. The results are similar to the results of TD(\) with step-size opti-
mization. The performance of True Online TD(\) with step-size optimization
improved on a majority of the games. It diverged on some games.

Figure 5.9 is the hyperparameter sensitivity analysis of True Online TD(\)
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Figure 5.9: Lifetime error of True Online TD()) with step-size optimization
for a wide range of o™ and # on Pong. The diagonal lines are hyperparameter
configurations for which the algorithm diverged.

with step-size optimization on Pong. The performance of the algorithm im-
proved as the meta-step-size parameter increased from 10=% up to 1072, It
diverged when the meta-step-size went over 1072, This trend held for o™ in
the range 107® to 107°. The results are similar to the results of TD()) with

step-size optimization.

Comparing TD()\) with Step-size Optimization and True
Online TD()\) with Step-size Optimization

I compared the performance of TD(A) with step-size optimization and True
Online TD(\) with step-size optimization on three games—Bowling, Atlantis,
and Seaquest—and plot their performance as a function of the meta-step-
size parameter and the initial step-size parameter in Figure 5.10. The best
performance of both algorithms was comparable, and they both diverged for
similar values of their hyperparameters.

The results on APB show that step-size optimization can improve perfor-
mance of TD learning algorithms for some values of their hyperparameters.
The results do not show any advantage of True Online TD(\) over TD(\)

when they are combined with step-size optimization. In the next chapter, I
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Figure 5.10: The performance of TD(\) with step-size optimization (first col-
umn) and True Online TD(\) with step-size optimization (second column) for
a wide range of meta-step-size parameters and initial step-size parameters. The
rows are results on different games. The diagonal lines are hyperparameters
for which the algorithms diverged. The best performance of both algorithms
was comparable, and they both diverged for similar values of their hyperpa-
rameters. The added complexity of True Online TD()) did not provide any
advantage over TD(A) when they were combined with step-size optimization.
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present an algorithm that fixes the issue of divergence of True Online TD(\)
and True Online TD(\) with step-size optimzation.
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Chapter 6

Temporal Difference Learning
with the Overshoot Bound

In the last chapter I showed that per-feature step-size parameters and step-
size optimization can be combined with TD(A) and True Online TD()) to
improve their performance. Step-size optimization works well if the initial
value of the step-size parameters and the meta-step-size parameter are tuned
properly. Otherwise, it can cause algorithms to diverge. In this chapter I
develop a bound on the update to the weight parameters that fixes the issue
of divergence. The idea behind the bound is to limit the magnitude of the
update such that the update never makes the error on a sample worse than it
was before the update. At the same time, the bound is not too conservative,

and it does not hinder quick learning.

6.1 Correction Ratio of a Learning Update

I define the correction ratio of a learning update as the fraction of the predic-
tion error reduced after the update on the sample used in the update. Let y;
be the target of a learning system at time step ¢. y; could be a ground-truth
target, as in supervised learning, or a bootstrapped target, such as a A-return.
If ¢, and w;_; are the feature vector and the weight parameter vector at time

step t, then the prediction error before the update is:
L=y, — Zwt_di]d)t[i], (6.1)
i=1
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and the prediction error after the update is:

ly=y; — Z w[i] g i]. (6.2)

The correction ratio, 7, for this update is defined as:

I, —1
Tti—tl t.
t

(6.3)

We can develop some intuition about the correction ratio with some examples.
Consider the case when the target is y; and the prediction is 0.5y; before the
update. If the prediction after the update is 0.75y;—the prediction error is
half of what it was before—the correction ratio would be 0.5. If the prediction
after the update is 1.25y;—the error is half in magnitude but opposite in
sign—the correction ratio would be 1.5. A correction ratio of 1 would make
the prediction perfectly match the target after the update. A correction ratio
larger than 2 or less 0 would increase the error after the update, for example,
a correction ratio of three or negative one would mean that the magnitude of
the error after the update is twice as large as before.

If we know the update rule for the weight parameters, then we can derive a
simpler expression for 7;. Consider the case when the weights are updated using
stochastic gradient descent, and the gradient is computed w.r.t the squared
prediction error. Let a; be the step-size parameter vector. The update rule

for the ith weight parameter for this learning system is:

wili] = we_a[i] + ali)eli)ls, (6.4)
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and the correction ratio is:

~ = S wli)nld) — (g — 300, win[ilold])
t (7 = iy wili]eldl)

— Tl = (y{ — Zwt[ﬁ]@[@]) — (v — Zwm[i]@[ﬂ)

n

Ty = — Z wy i)y [a] + Z(wt [i] + au[il i) eli]

. (6.5)
Tily = Z at[i]lt¢[i]2

Ty =1, Z at[i](b[i]z
T = Z@t[zmm?.

The correction ratio is a function of the step-size parameter vector and the
feature vector. In the linear case the feature vector cannot be changed by
the agent, and the only way to control the correction ratio is to adjust the
step-size parameter vector. A bound can be designed that adapts the step-size
parameter vector to ensure that the correction ratio of every update reduces

the prediction error. I call this bound the overshoot bound.

6.2 Overshoot Bound for Linear Regression

If the ground-truth target for a given sample is y* and the agent’s prediction
is 0.5y*, then the overshoot bound guarantees that the prediction after the
update is between 0.5y* and y*. !

We can formalize this intuition with an inequality for prediction error on

a sample before and after the update. If

Case 1: y; — > wilile[i] > 0 and yf — Y " wy1[i]éli] > 0, (6.6)
=1

=1

LA more general constraint is that the prediction after the update should be between
0.5y* and 1.5y* but overshooting the ground-truth target makes little sense to me, even if
the prediction error is reduced.
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then:

Zwt 1[4 deli] > Zwt ]
— Zwt,l[z-]mz’] < Zwtmw <y

= Zwt—l[i]@[i] < Z (wi—1[i] + cu[i]e[i]l) Guli] <y

) ) (6.7)
= 0 <> (aliloliPl) <y = wealilonfi
i=1 i=1
0 <I alilgli? <
i=1
— <Y afilali? <1
i=1
Similarly, if:
Case 2: y; — Zwt[z’]gbt[i] <0 and y; — Zwt_l[i]qbt[z'] <0, (6.8)
i=1 i=
then: N n
0< =y + > walilili] < —y; + > wilileyli]
i=1 =1 (6.9)

— 0 < iat[z‘]qﬁt[if <1

If yf — >0 wi[i]de[id] and y; — > | we[i]¢e[i] have opposite signs, then the
prediction overshoots the target after the update. We can ignore this case
because it is not desirable.

Forcing 0 < 7 < 1 for every update guarantees that learning updates do
not increase prediction errors on samples used to perform the updates, and
the predictions after the updates do not overshoot the ground-truth targets.

The overshoot bound can be implemented without introducing new hyper-
parameters by setting the step-size parameter at every step to min(ﬁm, ayli]).
Algorithm 9 implements the bound for linear regression.

The overshoot bound for linear regression is not new. AutoStep (Mahmood,

2012) used a similar bound to make linear regression robust. I extend it to

TD learning.
50



Algorithm 9: Linear Regression with the Overshoot Bound

Initializations: w < 0 € R”
while alive do
Receive ¢, a, and y*
ey =y, wlileli
- S a0l
for i | ¢[i] # 0 do
L wli] <= wli] + min(1, 2)ay[i]p[i]l

6.3 Overshoot Bound for TD Learning

Extending the overshoot bound to TD learning poses two challenges. The
bootstrapped targets used in TD learning depend on the weight paramaters,
and the targets in TD learning can be delayed by many steps.

The naive way to extend it for TD learning is to repeat the analysis we did
for linear regression for TD(A). The ith weight parameter in TD()) is updated
as:

wili] = we_1[1] + ayli]ze—1]d] 0, (6.10)

where z;_; is the eligibility trace vector whose components are updated as:
2i[t] = YAz 1] + oeld]. (6.11)

The target used in a single update is the TD error:

Grip1 = i1+ Z wy 2] pry1[d], (6.12)

i=1
which depends on the weight parameter vector. Let G}, be the target with

the updated weight parameter vector, that is,

Glpr1 = Ter1 T Z Wes1[1)Pe1 [1]
=1
=11+ Y (wili] + il zi[i]6) dia[i]
=l (6.13)

=T+ Z Wy @] ey (7] + Z ove[1]24[d) 61 pr 1 [4]

= Gu1 + 70 Z 0y [i]ze (1) fesa [i]-

i=1
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Using the TD error as the prediction error, and the one-step bootstrapped

return as the target, we get the following expression of the correction ratio:

(Grapr — iy weli i) — (Ghipn — 2oy wera [1)ui])
O

= T0; = (Gt:t—H - Zwt[2]¢t[l]) - (G2;t+1 - Z wt+1[i]¢t[i])

T =

n

T = — Z wy[i]e[i] + Z(wt (i) + ulilezii)) duli] — vaulildn D zililduiai]

=1

Ty = Z v [i]0s 2]y [i] — you[i]0; Z 2[1)pr s [1]

76 = 0 Y eulilzii)(ili] — yraai))
i=1
Tt = Zat[i]zt[i](qﬁt[i] — YPr1a[i]).
i=1
(6.14)
We can repeat the analysis with inequalities we used for linear regression to

get an overshoot bound for TD learning. The bound is:
0 <Y auli)zili)(ili] — yoraali]) < 1. (6.15)
i=1

Equation 6.15 was first derived by Dabney & Barto (2012). We can use it as
an overshoot bound for TD learning. Let’s call the algorithm that uses this
overshoot bound T'D(\) with a-bound (see Algorithm 18 for the pseudocode).

TD(A) with a-bound is naive in two ways. First, it uses the one-step
return as the target when estimating the prediction error instead of the A-
return target. The one-step target is not the objective of TD(\). Second, it
takes into account the change in the target after the update when TD learning
ignores the influence of the weight parameters on the target.

Taking into account the influence of the update on the target can make the
bound too lenient. Consider the case when the feature vectors for time step ¢
and t + 1 are identical, and v = 1. Then 7 is

n

Z a[i] 2 [d] (e[i] — yPriai]) = 0. (6.16)

=1
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For this case, a-bound is satisfied for any values of the step-size parameters
and any change in the weight parameter vector, irrespective of the magnitude.

A better way to define the correction ratio for TD learning is to use the
A-return as the target and assume that the target stays the same after the
update. Consider a hypothetical learner that updates its ith weight parameter

as:
wﬁ]ZUMJM%(%M¢F1<Gf—§:whﬂwmqﬁo. (6.17)

i=1
If we ignore the influence of the update on the target, then the correction ratio

of the above update is:

(G} = Y wlilduli]) — (G} = 20, wen[i]u[i])
(G = 22y weli]e[i])

n (6.18)
Ty = Z Oét[i]¢t[i]2>

which is the same as the correction ratio for linear regression. The overshoot

bound for this hypothetical learner is:
0<> ayfi]eni]” < 1. (6.19)
i=1

Using the bound in Equation 6.19 is not straightforward because no prac-
tical algorithm uses Equation 6.17 as its update rule.

We know that the weight updates done by True Online TD(\) eventu-
ally add up to the update in Equation 6.17 after many steps. Fortunately,
True Online TD(\) with time-dependent step-size parameter, an algorithm we
discussed in Chapter 2, provides a practical way to implement the bound in

Equation 6.19. It updates the components of its eligibility trace vector as:

2] = YAz [i] + alilgfi] (1 - b), (6.20)
where b is: .
b=\, Z v [i) e [i] 21 [1]. (6.21)

A modified update to the eligibility trace vector of True Online TD(A) can

incorporate the overshoot bound. This update is:

2ali] = yAz1[i] + min (1, Tlt) afil il (6.22)
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Algorithm 10: True Online TD(\) with the Overshoot Bound

Hyperparameters: a, A

Initializations: w, 2%, z < 0 € R™; (v, v°4) = (0, 0)

while alive do

Receive ¢, 7, and r

Cl Z¢[i]¢o wli)¢li]

§ 1+ yv — vl

for i | z[i{] # 0 do
6Ui] < &'z[i] — 20w
wli] < wli] + §“[i] 2°
z[i] = yAz[i]

0
[i]=0
v 0
Ti 4 D g [7‘}("“]2
b = D g0 2Lil0L]
for i | ¢[i] #0 do
V0 00+ §U[i]@li]
2%[i] + min(1, %)at [i]o[i]
2[i] < z[i] + 2°[i](1 — b)

vold

I call the algorithm that uses this modified update rule True Online TD(\)
with the overshoot bound (see Algorithm 10 for the pseudocode).

We can derive an analogous algorithm for TD(\). The updates done by
TD(A) do not add up to the update in Equation 6.17. We can still apply a
similar modification to the update rule of the eligibility trace vector of TD(\)
by changing:

zilt] = YAz [i] + afi]oeli], (6.23)
to:
z|t] = yAzi1[i] + min(1, Tlt)(x[i]gbt[i]. (6.24)

I call the algorithm that uses this modified update rule TD(\) with the over-
shoot bound (see Algorithm 11 for the pseudocode). Note that T'D(\) with the

overshoot bound only approximately satisfies the bound in Equation 6.19.
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Algorithm 11: TD(\) with the Overshoot Bound

Hyperparameters: o, A
Initializations: w <~ 0 € R*, z < 0 € R", (v?? =0
while alive do
Receive ¢, 7, and r
Cl Z¢[i]¢o wli)¢li]
§ 1 4 yv — v
for i | z; # 0 do
| wli] <= wli] + 6z[i]; z[i] <= yAz][i];

T < D gl oy [i]@li)”
for ¢ ’ ¢; # 0 do
| 2[i] = =[] + min(a[d], 2)¢li]

v qu[i];éo wli)¢li]

6.4 Experiments: TD learning with the Over-
shoot Bound on APB

I empirically compare TD(A) with the overshoot bound to True Online TD(\)
with the overshoot bound by running both algorithms on the Atari Prediction
Benchmark for a wide range of step-size parameter vectors. All components
of the step-size parameter vector are set to the same value.

Ideally, we should expect the performance of the algorithms to improve
as the step-size parameters increase. Eventually, the performance might get
worse if the step-size parameter is too large. Once the bound is triggered, any
further increase in the step-size parameters should not impact performance.

Figure 6.1, 6.2, and 6.3 plot the results on all games. TD(\) with the
overshoot bound diverged in some games for large step-size parameters. In
some games, it did not diverge but had very high lifetime error. The bound,
when applied to TD()), did not solve the instability of learning with large
step-size parameters. The results for True Online TD(A) with the bound tell
a different story. In all games the bound fixed the instability of learning with

large step-size parameters.
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Figure 6.1: Comparing TD(A) with the overshoot bound and True Online
TD(A) with the overshoot bound. The latter fixes the instability of learning
with large step-size parameters, and the former does not.

6.5 Overshoot Bound for True Online TD()\)
with Step-size Optimization

Similar to True Online TD(A), True Online TD()) with step-size optimization
can be modified to incorporate the overshoot bound to get True Online TD(X)
with step-size optimization and the overshoot bound (See Algorithm 10 for the
pseudocode). Note that in the pseudocode, the traces of the meta-gradients
are reset whenever the bound is triggered. This is because the hard scaling of
the step-size parameters when applying the bound is not differentiable, and
the meta-gradients are not well-defined. Setting the meta-gradients to zero is
a naive way to handle this issue.

I compare this new algorithm with True Online TD(\) with step-size op-
timization on the game of Pong. The results are in Figure 6.4. The overshoot
bound fixed the instability of learning with large step-size parameters, and t
algorithm with the bound did not diverge for any values of the meta-step-size
parameter and initial step-size parameter. Moreover, the performance of the
algorithm with the bound did not change for hyperparameters for which the
algorithm without the bound did not diverge. This highlights that the bound

is not overly conservative, and it only plays a role when needed.
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Figure 6.4: True Online TD()) with step-size optimization compared to True
Online TD(A) with step-size optimization and the overshoot bound on the
game of Freeway. The latter does not diverge for any values of the meta-step-
size parameter and initial step-size parameter, showing the effectiveness of the
bound.

The overshoot bound, when applied to True Online TD(X) with step-size
optimization, can prevent divergence for large step-size parameters and meta-
step-size parameters. Still, the performance for large step-size parameters and
meta-step-size parameters is not good. In the next chapter, I introduce a

mechanism for reducing the step-size parameters when they are too large.

o8



Algorithm 12: True Online TD(X) with Step-size Optimization and

Overshoot Bound

Hyperparameters: o™ ), 0
Initializations:
(0,0); Bli] « ™tV ¢
while alive do
Perceive ¢,y and r
Gl Z(b[i#o wli]¢|d]
§ 1+ v — o
for i | z[i] # 0 do

wli) <= wli] +6*4]
Bli) < Bl + 3
hotfi)  Rli]

2] =0
v‘?<—0
Tt %Z‘o?#()( HOH
b« ZW#)Z[ i @ld]

for i | ¢[i] # 0 do
00— v + 6] @[d]

§U[i] = 8'z[i] — 2°[i]v

h[ ] = hfmPli] + 6'2[i] —

29[i] < min (1 il) Bl gi]

2l (1 =b—

z[i] = z[i] + 2°[i] (1 - b)
pli] < pli] + Hh(”dH
fHT z[e] +
if 7 > 1 then

| (Rfe2[i], pla), 2[i]) =

old — v

(0 — )]
29[i]v?

(Z[i],p[ih 2ld]) = (yAzld], yAplil, v Az

0ED)
e ] +- Bl — 2P [olinE] - A6l el — 1)

(0,0,0)

w, h°'d htemP 29 p h,z, z + 0 € R"; (v°,0°1) =

// Overshoot bound
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Chapter 7

Swift TD: Fast and Robust
Temporal Difference Learning

In the last two chapters, I showed that step-size optimization improved the
performance of TD learning, and the overshoot bound made TD learning ro-
bust to poorly chosen step-size parameters and meta-step-size parameters. In
this chapter, I introduce Swift TD, a TD learning algorithm that combines the
ideas of step-size optimization and n-bound (a generalization of the overshoot

bound) with a third idea called step-size decay.

7.1 True Online TD()\) with the n-bound

The overshoot bound is a powerful idea that prevents divergence in TD learn-
ing by scaling updates just enough so that the updated predictions do not
overshoot the targets. Whenever the bound is triggered, the predictions are
updated to exactly match the targets. If the observations or targets in a prob-
lem are noisy, matching the targets can be too large of an update, and it can
be beneficial to be more restrictive. The n-bound provides a way to be more
restrictive.

It generalizes the overshoot bound by restricting the overcorrection ratios
of updates to be below 7, a hyperparameter that is between 0 and 1. Recall
that the overcorrection ratio for True Online TD(\) using « as the step-size

parameter vector is:
Tt = Z qﬁt[ﬂat[i]Q, (7-1>
i=1
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and the eligibility trace vector is updated as:

2i[i] = Muze_a[i] + apfi]ée[i] (1 — b), (7.2)
where b is: .
b=\, Z ze_1 [1] i) (7.3)

True Online TD(\) with n-bound updates its eligibility trace vector as:

2] = min(1, L) [ilgili]. (7.4)

Tt

Note that n = 1 makes the n-bound identical to the overshoot bound.

7.2 Step-size Decay

The n-bound scales down the step-size parameters temporarily and has no
lasting impact on the values of the step-size parameters. Step-size optimization
can reduce the step-size parameters if they are too large, but only if the update
rule is differentiable. The n-bound, when used, makes the learning update non-
differentiable, and step-size optimization can no longer effectively reduce the
step-size parameters. The idea behind step-size decay is simple: if the 7-
bound is triggered, then we reduce the step-size parameters by a small value.
Reducing them is sensible because the bound is only triggered when they are
too large.

Mechanistically step-size decay is simple to implement. Let a; be the step-
size parameter vector at time step t. At every step for which the n-bound is

triggered, the ith step-size parameter is updated as:
. . I3 2
1 [i] = i) (7.5)

where € is a hyperparameter called the decay rate. A reasonable choice for € is
a value close to one, such as 0.99 or 0.999. Pseudocode for True Online TD())
with step-size decay is Algorithm 13.

Related work

The idea of step-size decay is similar in spirit to the step-size ratchet algorithm

by Ghiassian (2022). It differs from step-size ratchet in three important ways.
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Algorithm 13: True Online TD(\) with Step-size Decay

Hyperparameters: 77 =0.5,a™" =107, ¢ = 0.99, \, 7,0
Initializations: w, 2%, z < 0 € R"; (v, v"ld) (0,0)
while alive do

Receive ¢, v, and r

Cl Z¢|¢[i]¢o wli]¢li]

8 1+ v — v

for i | z[i{] # 0 do

§Ui] < &'z[i] — 2[i]v°
wli] = wli] +0*[i] 2°[i] =
z[i] = yAz[i]
v 0

T Z/\o[z#o (*[i]C)[j}2
b+ Zi\qs[i];éo z[1]¢li]
for i | ¢[i] # 0 do

V0 00 + 6U[i]¢]i]
5[ /| < min(1, g)oz [4]
z[i] = 2[i] + 2°[i](1 = D)
if 7 > // then
L |+ afi]e?ld®
old — v

First, step-size ratchet decays the step-size parameters abruptly to satisfy its
bound as opposed to decaying them slowly. Second, it uses the one-step boot-
strapped target as opposed to the A-return for computing the overcorrection
ratio. Finally, unlike step-size decay, it does not decay step-size parameters
proportional to their contribution to the overcorrection ratio. Instead, step-

size parameters of all features, even if the features are zero, are reduced.

7.3 SwiftTD: Fast and Robust TD Learning

SwiftTD combines step-size optimization, the n-bound, step-size decay, and
True Online TD(A) in a single algorithm. In addition, it clips the step-size
parameters to be in range [e"min €] at every time step, where 7,,;, is a hyper-
parameter.

The pseudocode for SwiftTD is Algorithm 14. The pink lines implement
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step-size optimization, the blue lines implement the n-bound, the purple lines
implement step-size decay, and the orange line implements the clipping of the

step-size parameters. The remaining black lines are the same as True Online

TD(\).

Algorithm 14: SwiftTD
Hyperparameters: € = 0.999,n = 0.1, ™" = =15 o = 1077, \, 0
Initializations: w, h?!d h'¢™P 2% p h, z z < 0 € R™; (v°,0°4) =
(0,0).8 < In(a™*) € R"
while alive do
Perceive ¢ and r
Ch Zi|¢;[i];ﬁ0 wli]¢li]
§ 1+ v — ol
for i | z[i] # 0 do
6vi] + &'z[i] — 2°[i]v°
wli] < wli] + 5”[']
A B+ (@~ o

3
3[i] < clip [ ], In(n™"™), In(n))
]01(1[ ] Y h[ }
h[ | < htemP[i] + §'z]i] — 2°[i]°

2’li] =0
(el pll =) < (sl Apli AT
v0 <0
T < Zi\a‘)m;&o @"mc‘)[i}z
b= 2itgfino 2119l
for i | ¢[i] # 0 do
00— v + 5[] @[d]
2%[i] + min (1, 1) Pl i) // The n-bound
2[i] < 2[i] + 2°[i](1 — b)
pli] = pli] + Hh‘)ldH
=(] ¢ =0l + 2 (1 — b 912l

h'emPli] < hli } 2[i@lilhli] — h[i]i] (=[d] — 2°[d])

if 7 > 1 then

L Bli] = B[] + ¢[i]*In(e) // Step-size decay
(R'mP[d], A1), 2[i]) = (0,0,0)

vold o

Intuitively, SwiftTD increases the step-size parameters of relevant features
and reduces them for irrelevant features. If the step-size parameters become

too large, it uses the n-bound to prevent bad updates while simultaneously
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reducing them proportional to their contribution to the correction ratios.

7.4 Experiments: SwiftTD on the Atari Pre-
diction Benchmark

To demonstrate the effectiveness of SwiftTD I compare it to True Online TD(\)
with step-size optimization and True Online TD(\) with step-size optimization
and the overshoot bound on the game of Pong for a wide range of meta-step-
size parameters and initial step-size parameters.

I plot the results in Figure 7.1. T used n = 0.1 and € = 0.999 for SwifTD.
Swift TD performed well for almost all combinations of o and #. True Online
TD(\) with step-size optimization and the overshoot bound, on the other
hand, performed poorly when the initial value of the step-size parameters or
the meta-step-size parameter were too large.

I then compared SwiftTD and True Online TD(A) on all Atari games. For
both SwiftTD and True Online TD(A), I swept over all their hyperparameters.
Because SwiftTD has more hyperparameters, I did a coarser search over its
hyperparameters for a fair comparison. The details of the hyperparameter
sweeps are in Appendix B.2.

I tuned all hyperparameters for each Atari game individually and used
the best hyperparameter setting for each game. An alternative choice would
have been to tune the hyperparameters on a subset of the games and use the
same hyperparameters for all games. Both choices have their advantages and
disadvantages. I verified that the results did not change qualitatively with
either choice.

I plot individual learning curves for eight games in Figure 7.3. In each
plot, the y-axis is the lifetime error and the x-axis is the lifetime. In each of
the eight games, SwiftTD had a smaller lifetime error for almost all lifetime
parameters.

I plot the predictions made by both methods in the final 3,000 steps on
four games in Figure 7.2. The gray dotted lines are the return from each time

step. Predictions learned by SwiftTD were significantly more accurate. In
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Figure 7.1: Parameter sensitivity study of SwiftTD and baselines. I ran
Swift TD, True Online TD(A) with step-size optimization, and SwiftTD with-
out step-size decay of 55 values of «;,; and meta-step-size parameter for a
total of 3025 experiments each. I then plot the prediction error

some games—Altantis, Pooyan—True Online TD(A) completely failed for all
hyperparameter settings whereas SwiftTD learned accurate predictions.

I also compared the performance of SwiftTD with fixed hyperparameters
of p = 0.1, € = 0.999, § = 373 and o™ = 1075 to True Online TD()\) with
different values of a. The results are in Figure 7.4. SwiftTD performed as well

or better on all games using the same hyperparameters.

7.5 Experiments: Hyperparameter Sensitiv-
ity Study of SwiftTD

In another set of experiments I studied the sensitivity of SwiftTD to its hy-

perparameters €,7,6, and . 1 ran SwiftTD on three games: Altantis,

Spacelnvaders, and Sequest for 25 values of o™ and 6, four values of €, and
four values of n for a total of 10,000 experiments on each game. I plot the
results in Figures 7.5, 7.6, and 7.7.

In all three games, step-size decay improved performance for large meta-
step-size parameters and large initial step-size parameters. A value of 0.999
performed well, whereas a smaller value of 0.9 degraded performance. The
n-bound also improved performance, with n = 0.03 performing better than
7 = 0.3 on all three games. n = 0.01 performed slightly worse than n = 0.03.

The hyperparameter sensitivity provides evidence that the best hyperpa-

rameters do not vary widely across games and can be set reliably. Step-size
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Figure 7.2: Predictions made by True Online TD(A) and SwiftTD after learn-
ing for two hours of gameplay on Atari games. The gray dotted lines show
the ground-truth returns. SwiftTD learned significantly more accurate predic-
tions than True Online TD(A). In some games—Pong, Pooyan—the predic-
tions were near perfect. Even in more difficult games, like Spacelnvaders, the
predictions anticipated the onset rewards.
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Figure 7.3: Learning curves for eight games. The y-axis is £(time step). In
all games, SwiftTD reduced error faster than True Online TD(A). Note that
because we are plotting the return error, the minimum achievable error would
not be zero in stochastic environments such as Atari. The minimum error
cannot be estimated from experience. Consequently, the y-axis should only be
used to compare algorithms and not to measure absolute performance.
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SwiftTD on Atlantis
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Figure 7.5: Hyperparameter sensitivity study of SwiftTD on the game Atlantis.
Comparing the plots for ¢ = 1 and ¢ = 0.999, we see that step-size decay
improved the performance for large meta-step-size and large initializations
of the step-size parameters. Using a more restrictive bound also improved
performance as 1 = 0.03 performed better than n = 0.3.
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SwiftTD on Spacelnvaders
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Figure 7.6: Hyperparameter sensitivity study of SwiftTD on the game Spaceln-
vaders. Comparing the plots for ¢ = 1 and € = 0.999, we see that step-size
decay improved the performance for large meta-step-size and large initializa-
tions of the step-size parameters. Using a more restrictive bound also improved
performance as n = 0.03 performed better than n = 0.3.
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Figure 7.7: Hyperparameter sensitivity study of SwiftTD on the game Sequest.
Comparing the plots for ¢ = 1 and ¢ = 0.999, we see that step-size decay
improved the performance for large meta-step-size and large initializations

of the step-size parameters.

Using a more restrictive bound also improved

performance as n = 0.03 performed better than n = 0.3.
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In this section, I

The main challenge in applying

SwiftTD significantly outperformed True Online
71

Neural Networks

TD(A) even when combined with neural networks. The confidence intervals

7.6 Experiments: SwiftTD with Convolutional
Instead of using the preprocessing described in Chapter 5, I used SwiftTD
I applied all the kernels to the input tensor with a stride of 2. The output

Figure 7.8: Comparing performance of convolutional networks on the Atari
are +— two standard error around the mean computed over fifteen runs.

Prediction Benchmark.
decay of 0.999 and n = 0.1 or 0.03 are reasonable default values.

share one way SwiftTD can be combined with neural networks.

So far I have compared all methods with linear learners.
with a one-layer convolutional neural network. I applied a convolutional layer

on the 105 x 80 x 24 tensor I got after stacking the three tensors given by

the binning process described in Section 5.3. The convolutional layer had 25
kernels of size 3 x 3 x 24 each. The weights of the kernels were initialized by
of the convolutional layer was a 52 x 40 x 25 tensor, and it is passed through
the ReLU activation function (Fukushima, 1969) and flattened to get a feature
vector with 52,000 components. A weight parameter vector is used to make
Swift TD to neural networks was that Swift TD was developed for linear learn-
ers. [ got past this limitation by applying SwiftTD to only the last layer of
the network and updated the weights of the kernels using TD(\), similar to
Tesauro (1995). For the baseline, I used True Online TD(\) in the last layer.

linear predictions from the feature vector.

sampling from U(—1,1).



Spacelnvaders Seaquest Freeway

=

Figure 7.9: Visualizing the amount of credit assigned to each pixel by SwiftTD
over the lifetime of the agent. The color map is in the log space. We see that
SwiftTD assigned credit to meaningful aspects of the game. For example,
in Pong, it assigned credit to the trajectories of the ball. In MsPacman, it
assigned credit to the dots and the enemies. In Spacelnvaders, it assigned
credit to the locations of enemies, bullets, and the UFO that passes at the
top.

I tuned the step-size parameter of weights in the kernels independently of the
hyperparameters of the learners in the last layer.

The results of convolutional networks with Swift TD and True Online TD(\)
are in Figure 7.8. Similar to the linear case, SwiftTD helped in almost all
games. Results with convolutional neural networks highlight that simply using
SwiftTD for the weights in the last layer of existing Deep RL systems could

improve their performance.

7.7 Experiments: Credit Assignment by SwiftTD

The motivation behind step-size optimization was to selectively increase the
step-size parameters of features that are predictive of the return. We can visu-
alize how well SwiftTD achieved this goal by initializing step-size parameters
to small values and visualizing the amount of credit assigned to each pixel of
the game frames over the lifetime of the agent.

On any given step, I define the credit assigned to the ith feature by SwiftTD

as the quantity added to its eligibility trace, that is,
min(1, -L)e g, [i]2. (7.6)
T

The average credit assigned to the ith feature over the lifetime of the agent is:

T
Credit”[i] = % > “min(1, %)eﬂt[ﬂ oufi]?. (7.7)
t=1
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If we run an experiment where the initial value of the step-size parameters is
very small, then Credit”[i] measures the learned importance of the ith feature
by SwiftTD.

I ran SwiftTD on eight games with an initial step-size parameter of 10~8
and measured Credit” at the end of learning. Recall that our APB learners
have 201,619 features. The last 19 features encode the actions and the cu-
mulant, and the remaining 201,600 features are the binned pixels of the game
frame. Credit? is a vector with 201,619 components, one for each feature.

I reshaped the first 201,600 components of Credit” to a 105 x 80 x 24
tensor, where the 24 channels are the credit assigned to the binned values of
the RGB channels of the game frame. I then summed over the 24 channels to
get a 105 x 80 matrix. I visualize this matrix for each game in Figure 7.9 as
an imperfect way of visualizing the credit assigned to each pixel location.

Figure 7.9 shows that SwiftTD assigned credit to meaningful aspects of
the game that are predictive of rewards and returns. For example, in Pong,
it assigned credit to the trajectories of the ball. In MsPacman, it assigned
credit to the dots and the enemies. In Spacelnvaders, it assigned credit to the
locations of enemies, bullets, and the UFO that passes at the top. The visual-
ization serves as a qualitative validation of the credit assignment mechanism

in SwiftTD.
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Chapter 8

Swift-Sarsa: Extending SwiftTD
to Control

SwiftTD can learn predictions more accurately than prior TD learning algo-
rithms. The ideas that enable it to learn better predictions can be applied to
control algorithms as well. The most straightforward way of applying insights
from SwiftTD to control problems is to combine its key ideas with True Online

Sarsa(A) (Van Seijen et al., 2016) to develop Swift-Sarsa.

8.1 Swift-Sarsa: Fast and Robust Linear Con-
trol

In the control problem outlined in Chapter 3, the output of the agent at every
time step is a vector with d components. Swift-Sarsa is limited to problems
with a discrete number of actions. If each component of the action vector can
only have a finite number of values, then we can represent the problem as
having a discrete set of actions.

Swift-Sarsa uses Swift TD to learn a value function for each of its m discrete
actions. At every time step, it computes the value of each action and stacks
them to get an action-value vector. A policy function 7 : R™ — {1,--- ;m}
takes as input the action-value vector and returns a discrete action. The value
of the action chosen at the current time step is used in the bootstrapped
target, and the value of the action chosen at the previous step is used as a

prediction when estimating the TD error. The eligibility trace vector of the
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value function of only the chosen action is incremented.

We can make the description of the algorithm more concrete with some
notation. Let w?; be the weight parameter vector for the value function for
action 7 at time step t, and let ¢; be the feature vector at time step ¢t. The

value of the jth action is:
szl,t = ngfl[l]ﬁbt[@] (8.1)
i=1

The values associated with all actions are stacked to form the action-value

vector v;_1¢ € R™ where
v_1elg] = Uz—u for j € {1,--- ,m}. (8.2)

Let a; and a;_; be the actions chosen at time step ¢ and ¢ — 1, respectively.

The TD error in Swift-Sarsa is

52 =1+ YV 14]ad] — vi—og1[aia]. (8.3)

The eligibility vector for the value function of action j is z/. If the action
chosen at time step ¢ is j then 27 is decayed by Ay and incremented using
the same update as True Online TD(A). If the action chosen is different from
j, then the components of z/ are decayed by Ay but not incremented. Other
than these changes, Swift-Sarsa is the same as SwiftTD. Algorithm 15 is the
pseudocode of Swift-Sarsa.

The policy 7 can be any function. Usually, it is chosen such that actions
with high values are more likely to be picked than actions with low values. Two
popular choices of policies are the e-greedy policy and the softmax policy.

The e-greedy policy picks the action with the highest value with probability
1 — € and a random action with probability e. The softmax policy turns the
values into a discrete probability distribution. The probability of taking the

ith action is ‘
e Ui[/l]

- (8.4)

m vlg
Zj:l er

where 7" € (0,00) is the temperature parameter. Changing the temperature

~

parameter does not change the relative order of likelihood of actions. For a
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fixed action-value vector, a high value of the temperature parameter makes the
policy closer to a uniform policy, and a low value of the temperature parameter
makes the policy closer to the greedy policy. In the limit when 77 — oo, the
probability of every action is the same, and when 7/ — 0, the probability of

action with the highest value is one.

8.2 The Operant Conditioning Benchmark

I designed a test bed called the operant conditioning benchmark for evaluating
the performance of Swift-Sarsa. The benchmark defines a set of control prob-
lems that do not need sophisticated strategies for exploration, and a random
policy picks the best actions occasionally. The optimal policy for problems
from the benchmark can be represented by a linear learner.

The inspiration for the operant conditioning benchmark is the animal learn-
ing benchmark by Rafiee et al. (2023). The animal learning benchmark is in-
spired by classical conditioning experiments done by behaviorists on animals,
and the operant conditioning benchmark is inspired by operant conditioning
experiments. The key difference between them is that in operant conditioning
experiments, the actions chosen by the animals influence the rates of the re-
wards. In classical conditioning experiments the animals have no control over
the rates of rewards and simply learn to predict the upcoming rewards (e.g.,
Pavlov’s dog).

The observation vectors in problems in the benchmark have n binary com-
ponents, and the action-vectors have d binary components. Both n and d are
hyperparameters, and any combination of them for which n > d defines a valid
control problem.

At some special time steps, exactly one of the first m components of the
observation vector is one. They are zero on all other time steps. On time steps
when the ith component of the first m components is one, the agent gets a
delayed reward for picking an action-vector whose 7th component is one and
other components are zero. The reward is delayed by k; steps, where £ is

a variable that is uniformly sampled from (IS1,151,) every time the agent
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picks the rewarding action. On all other time steps, the reward is zero.

One randomly chosen component from the first m components of the ob-
servation vector are one every ko time steps, where ky is a variable that is
uniformly sampled from (IT1,IT15)

At every step, each of the remaining n — m components of the observation

vector is one with probability p;. p; = 0.05, and it is recursively updated as

pre—1+ if 0.01 < py—q +ny <0.1
01 lf /,Lt,1—|—nt > 01,

where n; ~ N(0,1078).

Intuitively p is the value of a random walk that starts at 0.05, and it is
updated by adding a sample from N(0,107%) at every time step. p is forced
to stay in the range [0.01,0.1].

The last n — m components of the observation vector are a source of noise
with a time-dependent distribution. Control problems whose observations have

many noisy components (n —m is large) are challenging.

8.3 Experiments: Swift-Sarsa on the Operant
Conditioning Benchmark

[ ran experiments with Swift-Sarsa on the operant conditioning benchmark for
different values of n. I set m = 2 in all experiments. (1.SI;,1515) was (4,6),
and (ITI,ITI5) was (50, 70). The lifetime of the agent was 300,000. The
policy was softmax with a temperature parameter of 0.1. The action-vector is
mapped to a discrete set. Actions (0, 0), (0, 1), (1, 0), and (1, 1) are mapped
to discrete actions 1, 2, 3, and 4, respectively.

Figure 8.1 plots the average reward for different values of the meta-step-size
parameter and the initial value of the step-size parameters for two different
values of n. Similar to the performance of SwiftTD, the performance of Swift-
Sarsa improved as the meta-step-size parameter increased showing the benefit
of step-size optimization. For a wide range of its parameters, Swift-Sarsa

achieved a lifetime reward that was close to the optimal lifetime reward of
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Figure 8.1: Performance of Swift-Sarsa as a function of the meta-step-size
parameter and the initial values of step-size parameters on the operant con-
ditioning benchmark. Experiments in the left figure had n = 60,000 and the
right figure had n = 30,000. For both set of experiments n was 1.0, m was 2,
and € was 0.9999.
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Figure 8.2: Impact of step-size decay on the performance of Swift-Sarsa as
a function of the meta-step-size parameter and the initial values of step-size
parameters on the operant conditioning benchmark. Experiments in the left
panel did not use step-size decay whereas experiments in the right panel used a
step-size decay with decay parameter set to 0.999. Comparing the two results
we see that step-size decay improves performance when the initial value of the
step-size parameters is too large. For both sets of experiments, 1 was one and
m was two.
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~ (0.014. Increasing the number of distractors made the problem more chal-
lenging, and the performance of Swift-Sarsa decreased.

In a second set of experiments, I compared the impact of step-size decay
on the performance of Swift-Sarsa. The results are in Figure 8.2. Similar to its
impact on SwiftTD, step-size decay improved the performance of Swift-Sarsa
when the initial value of the step-size parameters was too large.

Swift-Sarsa is a simple way of transferring the improvements made by
SwiftTD to control problems. A more thorough evaluation of Swift-Sarsa on a
wider range of control problems is needed to understand its full potential. It
is possible that Swift-Sarsa when combined with more powerful preprocessing,
such as tile coding (Sutton & Barto, 2018), can perform similarly to deep RL

algorithms on more complex problems, such as Atari games.
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Algorithm 15: Swift-Sarsa

Hyperparameters: € = 0.999,n = 0.1,7™" = e~ 15 o™ = 10777, \, 0

Initializations: w, R ht™P 2% p h 2z z + 0 € R"; (v°,v°) =
(0,0); B + In(a™?) € R™

while alive do

Perceive ¢ and r

forv€0,--- ,mdo

L o] + Zj|¢>[j];é0 w' (5]l
k < m(v)
§ 1+ yu[k] — vold
for i | 27[i] # 0 Vi, j do
0 [i] = 027 [i] — 2 [i]v°
w[i] < w[i] —1—5“”[1]
Bli) = L] + 5 (8" — ) i)
BI[i] <+ clip (57 } In(n™m), In(n))
hO (] < RhI[i]
hi[i] < h“fmpj[ |+ 8" 2] — 2% [i]v°
2] =
ey [i]ﬁj [i]) <= (YA [i], v AP’ [i], v A2 [d])
10 0
T Cigtro € Dol
b= Dgpipo 2 (1011
for i | ¢[i] # 0 do
00— v 4 5" [i] i)
#"[i] < min (1,2) P i) // n-bound

i) = 2F[i] + 2 k['](l - b)

P00 = L+ 0
M) = 2] + 2] (1 - b~ o[i)Z*[1))
R i) = BR[E) = 2% [i]@lalhF[i] — h (][] (=F 3] — = [i])
if 7 > n then
L B*[i] = B*i] + ¢[i]*In(e) // Step-size decay
(hteme™[i], h¥[i], 2*[i]) = (0,0,0)
vl v[k]
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Part 11

Fast Non-linear Recurrent
Feature Discovery
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Chapter 9

Feature Generation by
Continual Imprinting

In Part 1 of the dissertation I presented algorithms that can learn from a given
set of features. 1 did not answer the question of how to get the features. In this
chapter, I propose algorithms for finding useful features from observations.
The chapter is organized as follows: first I outline a general architecture of
a learning system that continually generates new features, continually removes
useless features, and continually learns predictions from the features. I then
explain the idea of feature generation by imprinting and present two algorithms
for generating features. Finally, I conclude by evaluating the proposed learning
system on a new prediction benchmark that uses real-world audio data as

observations.

9.1 Learning by Feature Generation and Fea-
ture Removal

The learning system that continually generates and removes features is called
the imprinting learner, and it has three parts: a feature generator, a prediction
learner, and a feature remover. Let x; and ¢; be the observation vector and

state-feature vector at time step t. Then ¢, is computed as:

¢t = U(Pt—1, 1), (9.1)

where x; € {0,1}" is a binary-valued observation vector and U is the state

update function. Unlike agents in Part I of the dissertation that learn from
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feature vectors with a constant length, the agents in Part II have feature
vectors that can grow and shrink over time. At time step ¢ the feature vector
has n; components.

At time step ¢, the imprinting learner computes its feature vector ¢, and

uses it to make a prediction:

. iwtl[z]¢t[¢1, 02)

where w;_1 is the weight parameter vector. Every feature has an associated
weight parameter, a step-size parameter, and an eligibility trace parameter
that are all updated by SwiftTD.

Features have one of the three status, tenure-track, tenured, and idle. They
also have two hyperparameters associated with them, tenure-threshold and
tenure-track-threshold. Any feature whose magnitude of the weight parameter
(i.e., the parameter used to make predictions) is larger than or equal to the
tenure-threshold parameter has the tenured status. Any feature whose weight
parameter is larger than or equal to the tenure-track-threshold parameter and
less than the tenure-threshold parameter has the tenure-track status. Lastly,
any feature whose weight parameter is less than the tenure-track-threshold
parameter has the idle status. The status of a feature can change over time as
its weight parameter changes. The values of the threshold parameters can be
different for different features.

In addition to having a status, each feature has a type. It can be an o0b-
servation feature, a pattern feature, or a memory feature. Observation features
are present at initialization and never removed. Pattern features and mem-
ory features are generated from experience and can be removed. All types of
features are binary-valued (0 or 1).

At initialization, the agent has n observation features. These features
have the same values as the observation vector @ at every step. Their weight
parameters are initialized to zero and their step-size parameters are initialized

to o™ where o™ is a hyperparameter of SwiftTD.
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Feature Generation

The imprinting learner generates up to k new features at every time step where
k is a hyperparameter. Recall that Swift TD has a parameter 7 that limits the
increment to its eligibility trace vector. New features are generated at time
step t as long as the value of 7; is less than 7. The value of 7, for a learner

with binary features is:

n= Y €. (9.3)

il [i]=1
If 7; is less than n + o™ and ¢_, has active tenured features, then a new
feature is generated. If the new feature is not identical to any of the existing
features, then it is added to the learner. Its weight parameter and the step-size
init

parameter are initialized to 0 and o™, respectively. Lastly, if the new feature

has a value of one at the current time step, then 7; is updated as:
=1 +a"" (9.4)

If at any point during feature generation, no more unique feature can be gen-
erated, k features have been generated, or 7, + o™ is greater than 7, then
feature generation stops.

Feature generation adds up to k features but only if the feature vector on
the previous time step had active tenured features, and 7 after all the features

have been added does not exceed 7.

Feature Removal

Swift TD (Algorithm 14) decays the ith component of the eligibility trace pa-
rameter as:

z[i] = yAz[d]. (9.5)

After the decay, if the value of z[i] is less than e’[i]e* and the status of the
feature ¢[i] is idle, then the imprinting learner removes ¢[i| and replaces it by
the last component of the feature vector. Here €* is a hyperparameter which
can be set to a small value, such as 0.01. Once the feature is removed the

length of the feature vector is reduced by one. The observation features are
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Figure 9.1: Generating a new feature at time step ¢t 4+ 1 by imprinting on the
values of the tenured features at time step t. The solid-colored features are
one (active) and the striped ones are zero (not active). Here ¢} is the vector
of tenured features at time step ¢. The new feature is connected to ¢'[2], ¢'[4]
and ¢'[7] and is active at time step j if ¢} ,[2] + ¢} ,[4] + ¢}_,[7] is greater
than or equal to 2.7 (90% of 3.0), which only happens when all three of the
input features are active.

never removed because their tenure-track threshold is zero and they never have
the idle status.

A subtle but important point is that features removed from the feature
vector can have outgoing connections to other features in the feature vector,
and they may still be required to update the feature vector. These ghost
features do not have direct connections to predictions but are still part of the
state update function. The state update function can become more complex
as the number of ghost features increases without increasing the size of the

feature vector.

9.2 Feature Generation by Imprinting

The idea of imprinting is to generate features at time step ¢ that are immedi-
ately triggered by their inputs. Making features that are immediately triggered
has two benefits. First, the usefulness of these features can be tested immedi-

ately, and second, restricting the learner to only generate these features culls
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the search space of the features. In this chapter, I look at two mechanisms
of generating features by imprinting. The first mechanism generates features
that recognize the pattern of the feature vector that they imprint on. They
are called pattern features. The second mechanism generates features that

remember the past. These are called memory features.

Generating Pattern Features by Imprinting

Pattern features are generated to recognize the current configurations of the
tenured features. The idea is visually shown in Figure 9.1. A new pattern
feature is constructed by connecting it to non-zero tenured features such that
the new feature is one when at least kg percent of the same tenured features
are one, where kq is a hyperparameter of the generator. A pattern feature is

always active the first time step it is created.

Generating Memory Features by Imprinting

Memory features are generated to remember and relay information from the
past to the future. The idea is visually shown in Figure 9.2. A new memory
feature is constructed by connecting it to a single tenured feature. When the
tenured feature is one, the memory feature is one for k; time steps after a
delay of ko time steps, where k; and ks are hyperparameters of the generator.
It is zero otherwise. A memory feature is always triggered the first time step

it is created but is not active until the delay has passed.

9.3 The Audio Prediction Benchmark

The audio prediction benchmark uses audio recorded from a microphone as
the data stream. It consists of sounds, such as words, that are followed by
scalar rewards after a short delay. An example of the data stream with labels
is in Figure 9.3. Every experiment has three sounds. One is followed by a +1
reward, one is followed by a -1 reward and one is not followed by any rewards.
The sounds differ for different instantiations of prediction problems. Some

examples of the sounds are spoken words and notes produced from different

86



U
9ol ;;
New ; 7
memory  ¢'tn] ’ 4% 7% 7 ;/;//;/2/;
features Hor Z ~
olmlii 7 Z
i Z #
Tenured o
feature
t-1 t t+ t+2 t+3 t+4 t+5 t+6 t+7 t+48 t+9 t+10 t+11 t+12

Time step

Figure 9.2: Generating three memory, ¢[m/|, ¢[n|, and ¢[o], from the tenured
feature ¢'[1]. The three features are triggered by ¢;[1] and ¢, ¢[1]. When
triggered, ¢[m] is active for two time steps with a delay of two time steps, ¢[n]
is active for three time steps with a delay of one time step, and ¢[o] is active
for one time steps with a delay of three time steps.

musical instruments.

Learning accurate predictions on the audio prediction benchmark requires
non-linear features that differentiate between sounds. Some sounds are delib-
erately chosen to be similar, such as the same chord played on two different
instruments. The delay between the sound and the reward signal is wider
than the duration of the sound. This means that to make accurate predictions
an agent must remember information from its past observations. The bench-
mark is designed to test the ability of a learner to generate features that can

recognize patterns and retain information from the past.

Preprocessing to get binary observations

The audio for the benchmark was sampled at a rate of 16,384 Hz for one
hour. At every environment step it progresses by 640 samples or roughly 40
milliseconds. The samples are transformed into the frequency domain using
the fast fourier transform (FFT) algorithm, which is applied to the last 1024
samples (640 from the current time step and 384 from the previous time step;
there is a small overlap between every two time steps because most FFT
implementations like to work in powers of two).

The output of FFT is a vector with 512 components. The ith component
is the magnitude of the signal of frequency i. This vector is further processed

to get a binary observation vector.
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Figure 9.3: Visualizing experience from the audio prediction benchmark. The
sound of the word no is followed by a reward of -1 after a delay of 3 to 5
seconds, and the sound of the word yes is followed by a reward of +1 after
a similar delay. The delay between the sounds of the two words is 15 to 30
seconds. The return cannot be perfectly predicted from the audio signal, and
the best learnable prediction starts after the sound is audible.

The output of FFT is plotted on a graph with frequency on the x-axis and
magnitudes of the signal on the y-axis. The range of the x-axis is 1 to 512
and the range of the y-axis is 0 to 50. The plot is divided into a grid of 50 x
50 equal squares. Each square is a component of the observation vector. It is
one if the frequency plot passes through it and zero otherwise. The output of
the preprocessing is a binary observation vector of size 2500 with exactly 50

components that are one.

Prediction problems in the benchmark

I use three prediction problems in experiments. The problems are identical
to each other in all aspects except the sounds. One uses the sounds of the
word yes (followed by +1 reward), no (followed by -1 reward), and maybe (not
followed by a reward), and the second uses the sound of C chords strummed
on a guitar (followed by +1 reward), the sound of C chord played on a piano
(followed by -1 reward), and the sound of a D chord played on a piano (not
followed by a reward). The third uses the sound of the note C4 played on
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Figure 9.4: Predictions learning by SwiftTD on the three problems from the
Audio Prediction Benchmark. SwiftTD only predicted the return momentarily,
likely when the sound was still audible.

a piano (followed by +1 reward), note E4 played on a piano (followed by -1
reward), and note D4 played on a piano (not followed by a reward). The same
sound signal is never used twice that is, all sounds are unique. I call the three

problems Yes/No, Guitar/Piano, and C4/Ej .

9.4 Experiment: SwiftTD on the Audio Pre-
diction Benchmark

As a sanity check, I first ran SwiftTD on all three problems. The predictions
learned at the end of learning by the best-performing learner are in Figure
9.4. The top row has predictions for positive rewards and the bottom row has
predictions for negative rewards.

SwiftTD did not learn to accurately predict the rewards. In all three prob-
lems, it predicted the return well for a fraction of a second, perhaps at times
when the sound was still audible. The predictions dropped to zero quickly.
This is expected because SwiftTD is predicting directly from observations and

has no way to remember the sounds after they are not audible.
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Figure 9.5: Predictions learned by imprinting learner on the three problems
from the Audio Prediction Benchmark. In all three problems, it learned to
predict the onset of rewards, and the predictions are sustained until the reward.

9.5 Experiments: Imprinting Learner on the
Audio Prediction Benchmark

I ran the imprinting learner on the audio prediction benchmark. The agent
generated up to ten memory features and ten pattern features at every time
step. The initial step-size parameter was 372, the tenue-track-threshold pa-
rameter was 374, and the tenure-threshold parameter was 0.01. The €¢* was
0.01. The agent learned for 96,000 steps, which was roughly 1 hour of audio
data.

The hyperparameters of the memory feature generator, ki, and ko, were
sampled from the range 1 to 3 and 0 to 20, respectively, for every generation,
and the hyperparameter for the pattern feature generator, ky, was sampled
from the set {60, 70, 80,90} for every generation.

I plot the predictions learned by the agent at the end of learning in Figure
9.5. The agent learned to predict the returns better than the SwiftTD learner.
The predictions were more accurate on the Piano/Guitar and C4/E4 problems

than the predictions on the Yes/No problem.
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Figure 9.6: Performance of imprinting learner on the audio prediction bench-
mark. The bar plots show the mean lifetime error over fifty seeds. The error
bars are +- standard error. In the left panel the imprinting learner is com-
pared to SwiftTD. In the right panel two versions of the imprinting learner are
compared. One imprints on active tenured features, and the other imprints on
all active features.

I repeated the above experiment with fifty different seeds. The results of
the average lifetime error over all seeds are in the left panel of Figure 9.6. The
plots have error bars of + standard errors. Feature generation by imprinting
resulted in a lower lifetime error on all three problems than a learner that
did not generate features. I repeated the experiments with a version of the
imprinting learner that imprints on all active features and not just the tenured
active features. The results are in the right panel of Figure 9.6. The imprinting
learner that imprinted on all active features performed worse than the one that
imprinted on just the tenured features.

I also looked at the total number of features generated by the learners,
and the total number of features kept by the learners at the end of their life-
time. In the Piano/Guitar problem, the best-learner generated 26,288 features
throughout its lifetime. At the end of learning, it had 2007 tenured features
and 4265 tenure-track features. Of the tenured features, 1828 were memory
features, 115 were pattern features, and 64 were observation features. The
numbers for other problems were qualitatively similar. The imprinting learner
that imprinted on all active features generated 398,328 features and had 7093
tenured and 334,649 tenure-track features at the end.

These numbers are interesting because the imprinting learners were able
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to search over tens of thousands of features and find an order of magnitude
smaller subset of them that were useful for the prediction task, demonstrating
their effectiveness. The learners that imprinted on all active features were less
efficient in their search and generated an order of magnitudes more features
and still performed worse.

Feature generation by imprinting is a promising solution for quickly gener-
ating features that can recognize patterns and remember the past. It is unlikely
that the one-shot feature generation by imprinting would be capable of learn-
ing nuanced patterns. A more complete algorithm would continually generate
new features and adapt existing features. Gradient-based learning provides
a promising way to adapt features. In the next chapter, I present algorithms

that can adapt recurrent features online in a computationally efficient manner.
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Chapter 10

Feature Tuning using
Columnar-Constructive
Networks

Algorithms discussed so far do not adapt features over the lifetime of the
agent. In Chapters 5, 6, 7, and 8, the feature vector was given to the agent,
and the agent could not change it. In Chapter 9, the agent could construct
features over time but not adapt them. Once a feature had been constructed
it could only be removed. In most real situations, it is naive to expect that
we can handcraft the features or construct them in one shot. A more powerful
learning system would be one that continually improves existing features using
experience. In this chapter, I present recurrent learning algorithms that can
adapt features over time in a computationally efficient manner.

Let the agent be a recurrent network that has n features, ¢ € R". At
every time step, it combines the feature vector with a weight vector to make
a scalar prediction. The feature vector is computed by a state update function
U parameterized by a learnable parameter vector 8. The features at time step

t are computed as:

&, = U1, 2:,0), (10.1)
where x; is the observation vector, and ¢;_; is the feature vector at time step
t—1.

The features are linearly combined with a weight parameter vector w;_; €
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R"™ to make a prediction v;_;; as:

Vi = Y wia[i]eyli] (10.2)

A sensible choice of U is a differentiable recurrent neural network. Its
parameters can be updated using gradient-descent as:
O(ve—14 — y*)Q
50 (10.3)
where y; is the target, and « is the step-size parameter. The gradient can be
expanded as:

8(Ut71,t - 97)2 _ a(“tfl,t - yf)Q avtfl,t a¢t
00 11 b, 00

(10.4)

The key question is how to compute %. We can obtain a recursive formula
for this expression, which is used by RTRL (Williams & Zipser, 1989) and by
the algorithms explained in this chapter. RTRL assumes that the parameters
of the recurrent network are kept fixed over time. We make the same assump-
tion, and as a result, € is not indexed by time. When using the algorithms
in experiments, we break our assumption and update the parameters of the
network at every time step using Equation 10.3.

To make it clear how we can use the multivariable chain rule, let us rewrite
the state update function as ¢, = U (¢,_,(0), %, g,(0)) where g,(0) = 6.
Then the multivariable chain rule gives us:

0¢, _ 0,08 09, 06,
90 ~ og, 00 ' 9¢, , 00

(10.5)

where the first term in the sum is the gradient of the state of the network

under the assumption that ¢, ; is not a function of 8, and the second term

takes into account the indirect impact of 8 on ¢, due to its impact on ¢,_;.
This recursive relationship is exploited by two algorithms: BPTT and

RTRL. BPTT stores all past feature vectors and observation vectors and ex-
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pands equation 10.3 as:

8Ut—1,t B aUt—l,t a¢t
00 ~ 0¢, 00
avt—l,t . avt—l,t aﬁbt% avt—l,t 5¢t a051:71
00 — 0¢, 0g, 00 ' 0¢, 0b,_, 00

_ avt—l,t%%_{_avt—l,t 0¢t a¢t—1 agt—l +8Ut—1,t a¢t 8¢t—1 a¢t—2
d¢, 0Og; 00 op, O¢y_y 0g,_ 00 oo, 0, 109, , 00

(10.6)
to compute the gradient. It unrolls the recursive expansion back in time,
computing and accumulating gradient until the start of the recursion at t = 0.
RTRL, on the other hand, computes the Jacobian % incrementally by using
Equation 10.5 at every time step. To get the gradient w.r.t the prediction,
it uses Equation 10.4. Both algorithms compute the same gradient but make
different compromises in terms of computation and memory.

RTRL does not store past feature vectors and observation vectors as it
can update the Jacobian using only information from the current time step.
However, computing the Jacobian using Equation 10.5 requires O(|¢|?|0]) op-
erations and O(|¢||0|) memory. The size of the parameters || in a fully con-
nected RNN is |@|>. RTRL is therefore often said to have quartic complexity
in the size of the feature vector.

BPTT requires O(|@|t) memory and compute, where ¢ is the length of

the sequence. It avoids the bigger memory cost by computing the product

i1t O¢y gy
9¢, Og 00

directly, rather than separately computing the Jacobian and tak-

ing a dot product with avgf;’t. For sequences shorter than |¢|?, BPTT is
t

cheaper than RTRL for fully connected RNNs.

We develop a new approach for recurrent learning called columnar-constructive

networks (CCNs). CCNs leverage two key ideas: First, RTRL is computa-
tionally efficient for modular recurrent networks where each module outputs
a single feature; we call these networks columnar networks. Second, RTRL
is computationally efficient if the recurrent features are learned in stages, as
opposed to simultaneously. We call the incremental learning approach con-
structive networks. Figure 10.1 visualizes the central ideas behind columnar

networks and constructive networks.
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Both columnar networks and constructive networks show promising results
but have limitations. Columnar networks cannot learn hierarchical features,
and constructive networks cannot learn multiple features in parallel. We show
that their weaknesses can be overcome by combining the two ideas to create

columnar-constructive networks.

10.1 Columnar Networks

Columnar networks organize the recurrent network such that each scalar re-
current feature is independent of other recurrent features. Let ¢;[k] be the kth

component of the feature vector ¢,. Then, in columnar networks,

dulk] = fi(da[k], 2, 0%). (10.7)

The function fi updates a recurrent feature and is called a column.! 6 is the
parameter vector of the kth column. For any i # j, the parameter vector '
and 6’ do not share any components. The outputs of all columns at time step ¢
are concatenated to get the n-dimensional feature vector ¢,. Figure 10.1 (left)
shows a graphical representation of a columnar network. Note that changing
¢[1] has no influence on the value of ¢[2] or ¢[3].

Because recurrent features in a columnar network are independent of each
other, we can apply RTRL to each of them individually. To better under-
stand why, let us rederive our recursive formula for the gradient. For 6%, the
parameters for the kth column, we have

avtfl,t . avt 1t8¢t Z Ov,— 1ta¢t 8%&71,1& a¢t[k]

00k  0¢, 06" op,li] 06 okl 06"

All except one term in the summation above are zero because 8* does not influ-

ence ¢,[j| when j # k. Therefore, we only have to compute géLk] with RTRL.

Like before, we can write this recursively using ¢;[k] = f (gzﬁt_l[ |, @, 2:(0 ))
where gt(Hk) = 0", giving
aﬁbt[lff] _ Oy [k] 8g]i i tolonld aﬁbt—lk[k]' (10.8)
00 og: 00 0pi_1lk] 06

!This terminology comes from the connection to structure observed in brains (Mount-
castle, 1957).
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Figure 10.1: Two families of recurrent networks for which gradients can be ef-
ficiently computed without bias or noise. Recurrent networks with a columnar
structure use O(n) operations and memory per step for learning. However,
they do not have hierarchical recurrent features—recurrent features composed
of other recurrent features. Constructive networks introduce hierarchical re-
current features and learn them in stages to keep learning computationally
efficient.

Computing and storing this Jacobian costs O(|6¥|) memory and compute for
each column because |¢[i]] = 1 for a single column. The cost for all the

columns is

o(e']) + 0(16°) +--- + 0(18"]) = 0(16]). (10.9)

Therefore, RTRL for columnar networks scales linearly in the size of the pa-

rameters.

10.2 Constructive Networks

In constructive networks, we learn the recurrent network one feature at a time.
Features learned later can take as input all features learned before them; the
opposite is not allowed— features learned earlier cannot take as input features
that would be learned later. We elucidate the multi-stage learning process in a
small constructive network in Figure 10.1 (right). Dotted lines are parameters
that are being updated at every time step, whereas solid lines are parameters
that are fixed.

In the first stage, the learner learns the incoming weights of ¢[1] (i.e., 61),
which is connected to the observation vector &, but not to ¢[2] or ¢[3]. Note
that we are omitting the time index for brevity. Once the incoming and the

recurrent weights of ¢[1] are learned, the learner freezes them and goes to the
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next stage. In the 2nd stage, it learns the incoming weights of ¢[2], which can
use both @ and ¢[1] as its inputs. The outgoing weight of ¢[1]—w[1]—is not
fixed and continues to be updated. Similarly, in the 3rd stage, both ¢[1] and
¢[2] are frozen and fed to ¢[3] as input. In each stage, the newly introduced
feature can be connected to all prior features.

In this staged learning approach, the learner never learns more than one
feature at a time. As a result, the effective size of the feature vector that is
being learned is just one, and RTRL can be applied cheaply. In fact, since only
a small subset of the network is being learned at any given time, constructive
networks use even less per-step computation than columnar networks. They
introduce one additional hyperparameter—steps-per-stage—that controls the
number of steps after which the learner moves from one stage to the next.

Constructive networks are similar to recurrent cascade correlation net-
works (Fahlman, 1990). The main differences are that (1) cascade correlation
networks learn new recurrent units by maximizing correlation with the error
whereas constructive networks use the gradient w.r.t the prediction error, and
(2) cascade correlation networks learn on a batch of data, whereas constructive
networks learn from an online stream of data. The two differences are arguably
minor. Rather, the bigger novelty is to combine constructive networks with

columnar networks.

10.3 Columnar-Constructive Networks

Columnar-constructive networks (CCNs), as the name suggests, are a combi-
nation of columnar networks and constructive networks. In CCNs, we keep the
multi-stage approach of the constructive networks; however, instead of learn-
ing a single feature in every stage, the learner learns multiple independent
features.

A two-stage CCN is shown in Figure 10.2. In stage one, the learner learns
the incoming weights of ¢[1] and ¢[2]. Since ¢[1] and ¢[2] are independent of
each other, they are equivalent to a columnar network with two features and

can be learned efficiently together. In the second stage, the learner freezes
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Figure 10.2: Columnar-constructive networks (CCNs) combine the ideas from
Columnar and constructive networks. In each stage, they learn multiple fea-
tures that are independent of each other, just like columnar networks. Across
stages, they learn hierarchical features, similar to constructive networks.

the incoming and recurrent weights of ¢[1] and ¢[2] and learns the incoming
weights of ¢[3] and ¢[4]; the new features take both ¢[1] and ¢[2] as inputs.
Once again, ¢[3] and ¢[4] are independent of each other and can be learned
efficiently in parallel.

CCNs inherit the hyperparameters from columnar networks and construc-
tive networks. Additionally, they have one new hyperparameter—features-per-

stage—that controls the number of recurrent features learned in each stage.

10.4 The Animal Learning Benchmark

We evaluate the methods on the trace patterning task proposed by (Rafiee et
al., 2022). It is an online prediction task that requires the learner to identify
associations between patterns—conditional stimuli (CS)—that are predictive
of future values of a cumulant—the unconditional stimuli (US). The goal is to
predict the discounted sum of the US. Correct predictions require the ability
to discriminate between patterns that lead to the US from those that do not.
The time delay between the CS and the US necessitates retaining information
from the past for making accurate predictions.

In our instantiation of trace patterning, the delay between the CS and

99



the US is uniformly randomly sampled to be between 24 and 36 steps after
every CS and is called the inter-stimulus interval (ISI). The delay between the
US and the next CS is uniformly randomly sampled to be between 80 and 120
steps after every US and is called the inter-trial interval (ITI). The CS consists
of 6 features. When CS is present, three of the six features in the CS vector
are one. Since (g) is twenty, the CS vector can represent twenty different
patterns. Ten randomly chosen patterns are followed by US=1 after ISI ~
U24,36) steps, whereas the remaining ten do not activate the US. Additionally,
the observation vector has five random features that are not predictive of the

US.

Pattern followed Pattern not followed by the US
by the US e
‘. ISI ITI 0 IST + ITI
<> = >

CS

us

/ Ground-truth prediction /
|

Time

Figure 10.3: Visualization of the stream of experience for the trace patterning
task. At each step, the learner receives an observation vector of length seven.
The first six values are the CS and the last is the US. CS is either a vector of
zeros or three of the six values are one. It can represent 20 different patterns.
Ten of these patterns activate the US after ISI number of steps, whereas others
do not. The learner has to predict the discounted sum of future values of the
US. The bottom part of the figure shows the ground-truth prediction for the
task.

A visual representation of experience from the trace patterning task with-
out noisy components of the observation vector is shown in Figure 10.3. The
vertical dimension shows the observations, and the horizontal dimension shows

the time steps. At the fourth time step, three of the six features are one. After
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three more time steps, the US becomes active. Then no components of the
observation vector are active for ITI number of steps. After I'TI steps, the CS
again shows a pattern. The second pattern of the CS is not followed by the
US. At the bottom of Figure 10.3, we show the ground truth return.

10.5 Experiments: Columnar-Constructive Net-
works on the Animal Learning Bench-
mark

We compared CCNs to fully connected RNNs learned by T-BPTT, columnar
networks, and constructive networks. All comparisons used the LSTM cell
architecture (Hochreiter & Schmidhuber, 1997) for recurrence. An important
hyperparameter of T-BPTT is the truncation length parameter (k). In our
experiments, all methods used the same amount of per-step computation. To
keep the compute constant for T-BPTT for different values of k, learners using

a larger truncation length parameter had fewer features.

Online Feature Normalization

A key to making our system work is online feature normalization. Unlike dense
recurrent networks, features in our constructive and CCN networks can have
varying numbers of incoming weights. This discrepancy can change the scale
of each feature, making it hard to learn using a uniform step-size parameter.
To address the varying scales, we use a simple form of online feature normal-
ization. Our feature normalization is similar to an online version of batch
normalization (Ioffe & Szegedy, 2015).

To normalize a feature, we maintain an online running estimate of its mean
and variance. We then use the running estimates to normalize the feature to
have zero mean and unit variance. Additionally, if the variance of a feature goes
below a threshold, we set it to a small number €, which is a hyperparameter.

Given the unnormalized feature ¢[j], the normalized feature ¢[j] is computed

101



0.02
0.018

0.016

Lifetime 0.014
error

Columnar

0.012 networks

0.010

0.008

0.006

0.0 0.2 0.4 0.6 0.8 1.0

Lifetime (in millions)

Figure 10.4: Performance of our algorithms and the best performing T-BPTT
on the trace patterning task. All methods learned to make accurate predic-
tions. Both columnar networks and constructive networks learned well, ex-
ceeding and matching the performance of the best T-BPTT. CCNs performed
the best, showing that they combine the strengths of columnar networks and
constructive networks. All plots are averaged over 100 seeds, and the shaded
areas are +- standard error.

2 Glg] = ]

oelj] = m (10.10)
where yu[j] = pu-1[j]8 + (1 = B)¢x[J]

otli] = o711 + (1 = B)(pels] — 4 li]) (1] — L))

We set 8 = 0.99999 for all our experiments. po[i] and oZ[i] are initialized to
be 0 and 1 respectively, and € is tuned; the values used for experiments in this

chapter are in Table B.1.

Experimental setup

We used TD(\) for learning with a per-step compute budget of & 4,000 floating
point operations. A single multiplication, addition, division, or subtraction is
counted as an operation. All methods used A = 0.99, v = 0.90, and a lifetime
of 10 million.

For each method, we individually tuned the step-size hyperparameter, e,

the steps-per-stage hyperparameter, the features-per-stage hyperparameter,
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Figure 10.5: Different versions of T-BPTT on the trace patterning task. Each
curve is denoted by two numbers: a:b. The first number indicates the trun-
cation length parameter of T-BPTT, and the second number indicates the
number of features in the learner. For example, 30:2 means an LSTM with
two features trained with a truncation length parameter of 30. All versions
use roughly the same amount of computation. We see that different values of
truncation length parameters result in different performances. Large networks
trained with small truncation length parameters—3:10 and 5:8—performed
the worst. Smaller networks with larger truncation length parameters—15:4,
30:2, and 20:3—performed better. All lines are averaged over 100 random
seeds.

and the truncation length hyperparameter. We report the results for the best-
performing configuration. Details of hyperparameter tuning are in Appendix
B.1. The columnar networks, constructive networks, and CCNs had 10, 5, and
16 features respectively. The number of features in constructive networks was
dictated by the rate at which features were added. Because we only learned
for 10 million time steps and set the steps-per-stage hyperparameter to 1
million, constructive networks ended up using significantly less compute than
the allocated compute budget. T-BPTT used a truncation length parameter

of 15 and had four features.

Results

We start by looking at the learning curves for all four methods in Figure 10.4.
The three methods introduced by us learned to reduce the prediction error

over time. Among our algorithms, constructive networks performed the worst.
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Figure 10.6: LSTMs with 10 features trained using truncation length parame-
ters of 1, 3, 5, 8, 10, and 20. For each value of the truncation length parameter,
we independently tuned the step-size parameter. As the truncation length in-
creased, the performance improved at the expense of more computation. The
sensitivity of performance to truncation length parameter highlights the im-
pact of bias introduced by truncation. All lines are averaged over 100 random
seeds and the shaded regions correspond to +- standard error.

All three methods outperformed the best T-BPTT, and CCNs performed the
best.

We further investigated the sensitivity of T-BPTT to values of the trunca-
tion length parameter. We first considered the impact of reallocating resources,
allowing T-BPTT to have more features trained with smaller truncation length
parameters and vice-versa. We see from Figure 10.5 that when the truncation
length parameter was much smaller than the longest dependency in the learn-
ing problem—36—the performance dropped significantly. T-BPTT performed
the best when it selected a smaller network (four features) and a larger trun-
cation parameter (k = 15).

We conducted another experiment where we allowed T-BPTT to use more
computation than the allocated budget. We fixed the number of features to
10 and used different truncation length parameters. We report the results in
Figure 10.6. Networks with the largest truncation length parameter—brown
line—performed almost as well as CCNs. However, it used around seven times
more per-step computation than CCNs.

Columnar-constructive networks are a promising solution for tuning recur-

rent features using gradients online. This chapter evaluates their performance
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on the animal learning benchmark. Javed et al., (2023) evaluated them on
the atari prediction benchmark and showed that they outperformed tuned T-
BPTT baselines. The biggest limitation of CCNs is that they grow indefinitely
and use more and more computation over time. One way to get past this lim-
itation is to augment them with a method for removing features that are not

useful for the task at hand.
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Chapter 11

Conclusions and Future Work

In this dissertation, I presented computationally efficient algorithms for fast
learning from online data streams. The motivation for quick and efficient
learning is the big world hypothesis, which states that the world is orders of
magnitude larger than the agent, and online continual learning using compu-
tationally efficient algorithms is necessary for achieving goals in big worlds.

The solution methods presented in earlier chapters are divided in two parts:
fast and robust linear learning, and fast non-linear recurrent feature discovery.
Algorithms proposed in both parts are computationally efficient and scalable
to data streams that consist of large observation vectors.

A promising direction for future work is to combine the algorithms in Part
I and Part II to develop a large scale system that continually generates new
features by imprinting, learns with those features using SwiftTD, and adapts
those features using columnar-constructive networks. It would be interesting
to see its behavior when learning with billions of parameters.

Another interesting direction is to explore the impact of feature generation
by imprinting and step-size optimization on the phenomenon of catastrophic
forgetting. Imprinting provides an easy way to generate sparse features. Spar-
sity can help protect learned knowledge from being overwritten easily (see work
by Liu et al., 2019 and Javed & White, 2019). Step-size optimization provides
another venue for alleviating catastrophic forgetting by reducing the step-size
parameters of some features and preserving knowledge learned with them. In

some preliminary experiments not reported in this dissertation, I found that
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both imprinting and SwiftTD alleviated the problem of catastrophic forget-
ting. A more systematic analysis is needed for a more definitive conclusion.

Some technical directions remain untouched. One direction is to extend
SwiftTD to Actor-Critic algorithms by adding step-size optimization and up-
date bounds to the policy parameters. The key challenge is deriving a bound,
analogous to the n-bound, that restricts how much the policy changes from
a single sample. Another is to develop princinpled algorithms for exploration
in big worlds. Algorithms that aim to systematically explore the state space
are intractable in big worlds. More scalable solutions are needed that use the
feature vector to guide exploration.

Another direction is to design scalable solutions that can deal with cor-
related features. If the feature generation process is not careful, then it can
generate many features that are highly correlated with each other. These
features compete with each other and, even if they are useful, the high corre-
lation makes it difficult for a single feature to get tenured status. In Chapter 9
I sidestepped this problem by limiting the generators to a discrete number of
choices and using a global cache to prevent the generation of identical features.
A more scalable solution is needed that works with generators that create an
unbounded number of features, such as generators for differentiable recurrent

cells.
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Appendix A

Baseline Algorithms

Algorithm 16: TIDBD(\) by Kearney et al. (2018)

Hyperparameters: o, A
Initializations: (w,z) < (0,0) € R", (v°'4,v%) = (0, 0)
while alive do
Receive ¢, 7, and r
V= D g0 Wil @]
§ 1 +yv— o
for z; # 0 do
wli] < wli] + adz[i]
Bli] < Bli) + 06" [i]Ali]
hli] « htemP[q]
h'emP[i] < hli| + z[i]0
2[i] <= yAz[i]
for ¢[i] # 0 do
zli] = z[i] + ¢[i]
¢°'i] < ¢|i]
| PPl < hfemPli] — i) 2] ¢ld]

B v 245[1']7&0 w(i]p[i]
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Algorithm 17: Step-size Optimization for TD(\) proposed by Thill
(2015)

Parameters: o, A
Initialize: (w, z) < (0,0) € R", (v, %) = (0,0)
while alive do
Receive ¢, v, and r
Cha qu[i];ﬁo w(i]o[i]
6+ r+4yv— v
for z; # 0 do
wli] — wli] + adz]i]
Bli] < Bli] + s 02[ilA[i]
hli] < htemP[q]
htemP[i] < h[i] + z[i]0
z[i] = yAz[i]
for ¢[i] # 0 do
zli]  2[i] + oli]
| hfmPli] = hemPli] — hfi]z[i]old]

v qu[z‘];éo wli]¢li]

Algorithm 18: TD(\) with Dabney & Barto’s (2012) bound

Hyperparameters: o, A

Initializations: w <~ 0 € R",z + 0 € R"*, ¢ +— 0 € R", v =0

while alive do

Receive ¢, v, and r

Cha qu[i];éo wli]¢li]

§ 1+ v — o

b Yispaulilzi] (v9li] — ¢°[i])

for z; # 0 do
wli] < wli] + min (1, §) a[i]oz[i];
z[i] <= yAz[i];

for ¢; # 0 do

| 2l « 2[i] + ¢[d]
v qu[i];éo wli]¢li]
¢old — ¢
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Appendix B

Hyperparameters

B.1 Columnar-Constructive Networks

The hyperparameters for columnar networks, constructive networks, columnar-
constructive networks, and T-BPTT learners were tuned independently. For
each hyperparameter configuration, we used five random seeds and looked at
the average performance of all five seeds to pick the best hyperparameters. We
then used the best hyperparameter configuration to run the experiments with

100 seeds. A list of the hyperparameters and their values are in Table B.1.

Hyperparameter Hyperparameter values
Step-size 172,373,173,
374 14 35
Adam parameters 0:0.9999:1¢~8
Discount factor 0.90
Eligibility trace decay rate 0.99
Truncation: Hidden features (T-BPTT) 2:13, 3:10, 5:8, 8:5,
10:5, 15:4, 20:3, 30:2
Features-per-stage (CCN) 4
Steps-per-stage (CCN) 2.5 million
Steps-per-stage (Constructive) 1 million
Total steps 10 million
Seeds for parameter sweep {0,1,2,3,4}
Seeds for best parameter configuration {0,1,---,99}

Min division term (CCNs and Constructive) {0.01,0.001}

Table B.1: Hyperparameter sweeps used for comparing columnar-constructive
networks, columnar networks, constructive networks, and T-BPTT.
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B.2 SwiftTD

For both SwiftTD and True Online TD(\), we swept over their hyperparam-
eters as shown in Table B.2. We used the same hyperparameters for both the
linear learner and the last layer of the neural network learner. The experi-
ments with LFA were deterministic and did not require multiple runs. The
experiments with convolutional networks were stochastic due to the random
initialization of the weights. For statistical significance, we did hyperparameter
sweeps with 5 runs for each configuration. We then picked the best-performing

configuration and did an additional 15 runs.

Symbol Description Algorithm Values
ot Initial step-size parameter Swift TD 0.000001
a Step-size scalar True Online TD(\) 3e7! 1le7! 3e72, 1e72,

3e73,1e73,3e7 4, 1e™*
372, 1e75,3e7 5, 1e7 ¢

O Step-size (kernels) Both le ' 1le72,1e73, 1le %,
0 Meta step-size SwiftTD le 2,173, 1e™*
n Max correction ratio Swift TD 0.3, 0.1
€ Decay factor SwiftTD 0.999, 0.99

Table B.2: Hyper-parameters used in the experiments of SwiftTD. Note that
the number of configurations for SwiftTD and True Online TD(\) are the
same. This is achieved by doing a much more fine-grained search for the step-
size parameter of True Online TD(\).
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