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Abstract

The predictive representations hypothesis is that represeng the state of the

world in terms of predictions about the future will result in good general-
ization. In this thesis, good generalization is speci cafl quanti ed by good

learning performance in both accuracy and speed when predig future ex-

periences of interest. We test the predictive representatis hypothesis in
di erent scenarios where predictions of interest vary. Welzserve that the pre-
dictive representations hypothesis does hold in speci cestarios. Inspired by
this nding, we propose Predictive State Update(PSU), a state update rule
that incrementally computes the next state from the currenstate, while being
aware of current predictions of interest in addition to next increnent of expe-
riences.Any existing state representation approach can instantiate t/PSU if
it summarizes the past incrementally, updating the next st@ based on the
current state and next increment of experiences. We empiaity demonstrate
that (i) the use of PSU can boost the generalization perfornmae of existing
state representation approaches, such as those based onpsénmecurrent neu-
ral networks, LSTM (Long Short-Term Memory) networks, and G&RU (Gated

Recurrent Units) networks, and (ii) these instantiations ofPSU outperform

approaches which represent states exclusively using predns.
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Chapter 1

Introduction

Predictive knowledge represents information about the wiar by a set of pre-
dictions, the expected outcomes resulting from possiblegénactions. ThePre-
dictive state representationsapproach links predictive knowledge to state rep-
resentations by directly representing the state in terms gfredictions about the
future. In this thesis, we explore the relationship betweepredictive knowledge
and state representations. Our rst contribution is a test & the hypothesis
that predictive states are useful for acquiring predictivi&knowledge in the en-
vironment. Our second contribution is a novel approach uiiing predictions
to boost the performance of a broad class of existing statepresentations

approaches which seeks to acquire predictive knowledge.

1.1 Predictions as knowledge

Humans accumulate knowledge about the world through intertions with the
environment. For example, when it comes to the question of \aha ballpoint
pen is, one may recall several manipulations and outcomes ilghinteracting
with it. From these experiences, one might have expectatisnor predictions,
about what the outcomes of these manipulations might be, ande ne a ball-
point pen in terms of them. If | trace a ballpoint pen on a piecef paper,

there could be a mark left on the paper. If | release the ballpd pen from



my hand, the pen could drop on the oor. This knowledge represtation
is referred to aspredictive knowledgeand is described by a set of expected

outcomes resulting from possible interactions.

1.2 State Representations

In reinforcement learning, we typically formalize an agef# interactions with
an environment in a way that, at each time step, the agent is inomeenviron-
ment state Given this state, the agent takes araction and ends up in a new
environment state. In many real-world cases, the agent oftecan only acquire
an observationcontaining partial information of the environment state ateach
step. Take an example of a mouse exploring a maze: only basedts current
sense of surrounding obstacles, the mouse doesn't know fertain its exact
location in the maze, and whether the path ahead can lead to axit. If it
could keep track of where it has previously been in the maze,would have
a better idea of where it is and where it should go next. This werstanding
of where one is in an environment can be formalized astate representation
which summarizes past experiences in a way that contains scient informa-
tion for an agent to base its decisions on. Instead of takingvehole trajectory
of the past experiences as inputs, state representationgesf summarize the
past incrementally, updating the next state based on the current state and
next increment of experiences. State representations algfer to agent states
which can be informally understood as an agent's subjectiaproximation
of the environment state. Unlike the environment state whicthas complete
information for predicting anything about the environment, the agent state is

only required to containsu cient information for an agent's purpose.



1.3 Predictive Representations of State

The predictive state representationsapproach links predictive knowledge to
state representations by directly representing the statef ¢the environment in

terms of predictions about the future. In this work, we focusn the problem

of using state representations to acquire predictive knoedge of interest. Note
that predictions making up the state generally can di er fran the predictions

of interest, but here, we only consider using predictions ofterest to form the

state to avoid the problem of discovering which set of predions would be

most useful to include in the state.

The predictive representations hypothesisuggests that representing the
state of the world in terms of predictions about the future wi result in good
generalization. In this thesis,representing the state of the world in terms of
predictions means using predictions explicitly in the state Good generalization
is measured by the learning performance in both accuracy amsgpeed when
making multiple predictions of interest. A good state reprgentation should
not only be able to capture su cient information to compute the next agent
state, which will be used to make the predictions of interesbut also avoid
carrying redundant information that can slow down learning Note that the
use offunction approximators may in uence the generalization performance
when using state representations. This is because functi@pproximators
are commonly used to acquire state representations and mageedictions,
and di erent function approximators may result in entirely di erent learning

performance.

1.4 Contributions

Our rst contribution is to test the predictive representations hypothesis. In

the test, we compare the generalization performance of thegglictive approach
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with that uses hidden states in simple RNNs (Recurrent Neural Networks)
as state representations. Here, simple RNNs are also known asn&h net-
works (Elman, 1990), which are probably the simplest form dRNNs whose
hidden states are fed back into themselves during the nextest of input. Since
many factors may a ect the generalization performance whewusing state rep-
resentations, we develop several strategies to ensure tlg@rfess of the test.
(1) We design four scenarios where the predictions of intstevary, and espe-
cially consider the cases where the predictions making upetlstates is insu -
cient to compute the next agent states. (2) We emphasize thele of the state
representations by performing the test in environments wine the state of the
world is not fully exposed to the agent. (3) We perform the tésising a variety
of function approximators, each of which has di erent capaties. This is to
alleviate the e ect of using function approximators for corputing state rep-
resentations and predictions. We observe that the prediee representations
hypothesis does hold in speci ¢ scenarios.

Our second contribution is a novel state update ruleRredictive State Up-
date (PSU), that incrementally computes the next state from the crrent state,
while being aware of current predictions of interest in addition to next in-
crement of experiences.Any existing state representation approach can in-
stantiate the PSU if it summarizes the past incrementally, pdating the next
state based on the current state and next increment of experices. We em-
pirically demonstrate that (i) the use of PSU can boost the geralization
performance of existing state representation approachesjch as those based
on simple recurrent neural networks, LSTM (Long Short-Term Mmory) net-
works, and GRU (Gated Recurrent Units) networks, and (ii) thee instantia-
tions of PSU outperform approaches which represent statesctusively using

predictions.



1.5 Outline

In Chapter 2, we introduce how to learn multiple predictionausing state rep-
resentations. We then test the predictive representationsypothesis by com-
paring the predictive approach with the approach based onrsple RNNs for
learning predictions of interest in Chapter 3. Based on theesults of the test,
we introduce a novel state update rule PSU that incrementallupdates the
next state from the current state, while being aware of curr¢ predictions,
and demonstrate PSU's learning performance when instanted by state rep-
resentations approaches based on simple RNNs, LSTM networlksyd GRU
networks, and additionally perform an ablation study of thealgorithm in Chap-
ter 4. In Chapter 5, we introduce existing works related to auexploration of
predictive states in this thesis. In Chapter 6, we concludéé contributions of

this thesis.



Chapter 2

Background

This chapter introduces the preliminary knowledge for thedilowing chapters.
In Section 2.1, we de ne prediction and explain how to learnrpdictions by
temporal di erence (TD) methods if environment states are ailable. In Sec-
tion 2.2, we introduce the concept of interrelated prediatins with an example
and introduce how to represent and learn several interreked predictions using
TD networks and its extension, TD networks with options. In 8ction 2.3, we
introduce how to construct the state through interactions uth an environ-

ment if environment states are not accessible. In Sectiord2we present how
to learn interrelated predictions while constructing sta¢ representations from

interactions with an environment.

2.1 Learning Predictions by TD methods

We formalize the interaction between the agent and the endnment as a
discrete dynamical system (DDS). At time steft, the agent instate S; 2 S
takes anaction A; from action spaceA according to policy :S A! [0;1].
At the next time step, the agent transits to the next stateS;.; according to a
transition probability p: S A S'! [0; 1] of the environment and receives an
observationO; 2 O according to an observation functiorz : S A O! [0; 1]

of the environment. The state in DDS is also referred to as thenvironment



state Note that the algorithms, such as temporal-di erence methds and
temporal di erence networks with options, for learning prdictions in RL are
introduced in the case assuming the agent has access to theiemment state.
However, in many real-world cases, the environment state i®navailable to
the agent. We will discuss this case in Section 2.3 and Seatid.4.

An agent expresses the prediction as discounted cumulativensory signals
following a policy. Here, we useumulant C; 2 R as general form of obser-
vations. The prediction is accordingly de ned as thegeneral value function
(GVF), " ”

: b3 YK
Vic (5)= E C+1 (S) St = s; A1 ;

k=t i=t+l

where :S ! [0;1] is a generalized form of discounting, which determines
the horizon of the summation (Suttonet al., 2011).

Temporal-di erence (TD) method is a widely-used method todarn the
prediction in a bootstrap way | the estimates are updated bad on other es-
timates, without waiting until the nal outcome (Sutton and Barto, 2018). We
can approximate the predictionv(s) by parametrizing it as ¥ (s) and learning

using the temporal di erence update rule,
+ [Ze 0 (S)Ir (0 (S)); (2.1)

where

Zt = Ct+1 + (St+1 )0 (St+1):

Here, the step size is denoted by, and Z; is the target for the state value
¥ (S).
2.2 Learning Interrelated Predictions by TDO

Temporal di erence networks with options (TDO) extend TD mehods by con-

sidering the interrelationship among a set of predictionsather than treating
7
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Figure 2.1: The question networks for the example of basketball game. Each
circular node indicates one prediction. The square node indicates the cu-
mulant, which is scoring a basket in this case. The directed edge indicates
the compositionality conditional on a course of actions extending over several
steps. The first prediction is based on the cumulant of scoring a basket if
I shoot the ball. The second prediction is based on the first prediction if I
dribble the ball up the court. The third prediction is based on the cumulant
of scoring a basket if I shoot the ball.

each prediction independently (Rafols et al., 2006). In this chapter, we firstly
informally describe TDO with an example. Then we explain the formalization
of TD networks, which is the precursor of TDO. Finally, we introduce how to
use TDO to represent and learn multiple interrelated predictions.

Example Take an example (Rafols, 2006) from a basketball game. The

predictive knowledge consists of three predictive questions as follows.
e If I shoot the ball, could I score a basket?
e If I dribble the ball up the court and then shoot it, could I score a basket?
e [f I pass the ball, could I score a basket?

The second prediction is equivalent to if I dribble the ball up the court, what
would the value of the first prediction be. That is, the prediction of the second
question is based on the first prediction if I dribble the ball up the court. We
term this relationship as compositionality. Note that compositionality can be
extended to the cumulant. For example, the first prediction is based on the

cumulant of scoring a basket if I shoot the ball.

8



Temporal di erence networks with options (TDO) represent he interrela-
tionship among the predictions usingjuestion networks(Rafols et al., 2006).
We illustrate the question networks for the example of the Isketball game
in Figure 2.1. Each circular node indicates one predictionircular node one,
two, and three correspond to the rst, second, and third preidtion, respec-
tively. The square node indicates the cumulant, which is sdog a basket in
this case. The directed edge indicates the compositionglitonditional on a
course of actions extending over several steps. The rst mhetion is based
on the cumulant of scoring a basket if | shoot the ball. The send prediction
is based on the rst prediction if I dribble the ball up the cout. The third
prediction is based on the cumulant of scoring a basket if | ebt the ball. It
is obvious that the rst and third prediction can be learned tirough temporal
di erence methods. The second prediction can be learned byDD in the way
of treating the rst prediction as the cumulant in the TD method.

TD Networks  TD networks (Tanner and Sutton, 2005) is the precursor of
TDO. TD networks represent the relationship of multiple prélictions in ques-
tion networks Each circular node in question networks denotes a predioti
and therefore the whole network represent multiple intertated predictions.

When it comes to learning these interrelated predictions, TDetworks use
a TD update rule (2.1) with the target de ned by the question retworks,
whereas TD methods use the value of the next state as the tatgeSuppose
there arek interrelated predictions represented in the question netwk, we
can approximate thei-th prediction of a state s by parametrizing it as y*(s).

The target to approximate thei-th prediction is
Z{ = (O $4(Sts1): 9%(Sta )i 1159 (Se )

whereu' : O RX ! R denes how thei-th prediction related to the ob-

servation and multiple predictions. Note that this interrehtionship among
9



predictions is represented in question networks. The ageiatlows abehaviour
policy :S A [0;1]. The update is only performed when the current
action matches the conditional action of the prediction. Wean learn using

the temporal di erence update rule as follow,

+ cl(A)IZy 9 (SAIr (§'(SO);

wherec : A! [0;1] determines whether the-th prediction is consistent with
the agent's action, is the step size, andZ| is the target for the prediction
¥ (S)-

TD Networks with Options TD networks with options (TDO) extend
TD networks in a way that each prediction is de ned as the expzed target
conditioning on a course of actions rather than only one actio The option
framework (Sutton et al., 1999) provides a way to represent a course of actions
extending over several steps, which is a generalized formtbé action. The
option framework assumes the agent has access to the envinemt state from
the state spaceS. The option consists of three components: a set of initiato
statesl 2 S , which speci es the states where the option is available, aopcy

:S Al [0;1], by which the agent will follow when the agent is in the
option, and a termination condition :S'! [0; 1], which determines whether
the agent will exit the current option and start to select a ne/ option. Note
that the primitive action is a special case of the option wher the initiation
set is the whole state space, the policy is the primitive acth for each state,
and the termination condition is always 1.

When it comes to learning these interrelated predictions, TO use TD
update rule (2.1) with the target de ned by the question netwrks. As a
contrast, TD methods use the value of the next state as the tget. Suppose
there arek interrelated predictions represented in question netwosk we can

approximate thei-th prediction of a state s by parametrizing it asy*(s). The
10



target Z! to approximate thei-th prediction is as follows:
Z{= "(Ou1;SOU +[1 '(Our; S (Stn); (2.2)

where
U = U' (Ot i 9 (Sten ) 9(Stea )i 59 (St ) (2:3)
Here, similarly to TD networks,u' : O R¥! R de nes how thei-th predic-
tion related to the observation and multiple predictions. Nee that this inter-
relationship among predictions is represented in questioretworks. Whether
the option is terminated at time stept + 1 is indicated by '(Ow1;S). If
'(Ow1;S) = 1, then the target is U/ that is related to the observation and
multiple predictions. This relationship is speci ed in thequestion network. If
'(Ow1;S) = 0, then the target is the prediction itself at the next step The
agent follows abehaviour policy :S A! [0;1]. The update is only per-
formed when the current action matches the option's policyfahe prediction.

We can learn using the temporal di erence update rule as follow,
+ AGSIIZE (S (9(S);

where | :A S! [0;1] determines whether the option of the predictiory!
is being followed (that is, whether the option's policy is ausistent with the

current action), the step size is , and Z| is the target for the predictiony*(S;).

2.3 State Representations

From preceding discussions, we introduced how to learn intelated predic-
tions by temporal di erence networks with options in the case assuming the
environment state is available to the agent. Speci cally,le learned approxi-
mate value functions are written as functions of the enviranent state. In this
section, we will rstly explain the concept of Markov statesand environment

states. We then describe the general form of state represatbns, which can
11



be used as the environment states when they are not availakie an agent.
Finally, we introduce two state representation approacheshe predictive rep-
resentations of state approach, and the approach based omple recurrent
neural networks.

In many real-world cases, an agent often can only acquire abservation
containing partial information of the environment state ateach step. As a
result, an agent will only experience a stream of interleagteactions and ob-
servations,Ag; O1; Aq; O,; .. Take an example of a mouse exploring a maze:
only based on its current sense of surrounding obstaclesetmouse doesn't
know for certain its exact location in the maze, and whethere path ahead
can lead to an exit.

The Markov stateis a summary of the past experiences that contains su -
cient information to predict anything about the environmen. We will formally
explain the concept of the Markov state as follow. Th@ast experiencess a

trajectory of interleaving actions and observations de né as history,
Ht = Ao; O1;A1; Og; i Ar 1; O

The Markov state summarizesthe past experiences as a function of history
S; = f(Hy). To contain su cient information to predict anything about the
environment means any two historiesh and h° that are mapped to the same
state with the function f, will have the same probability of arbitrary future

experiences given the same sequence of actions as follow

f(h)= f(h9 =)
Yk
PrfO; = ajH: = h;A; = &; 01 = O A 1= & 10
i=t+1 (2-4)
ﬁ(k

= PrfO

i=t+l

ojH; = h%A; = &; 01 = Ou1:n A 1= & 10

In contrast with the Markov state, the environment state notonly contains

su cient information to predict anything about the environ ment, but also can
12



contain more information other than a summary of history.

In the example of a mouse exploring a maze, if the mouse couldintain a
summary of past observations as it rolls forward in time, thias, incrementally
update the current summary of past based on the previous sunmany and
previous observations, it would have a better idea of whereis, and where
it should go next. This understanding of where one is in an emgnment can
be formalized as astate representation which summarizes past experiences
incrementally in a way that contains su cient information for an agent to
base its decisions on. More speci cally, state represeni@is incrementally
summarize the past in the way of updating the current summargf the past
based on the previous summary of the past, the previous aatioand the

current observation, as in

St = u(S 1A 1, 0); (2.5)

where the functionu is called the state-updatefunction. Note that a state
update function is a speciaf way of representing the state as a summary of
history S; = f (H;). In this case, we can simplify (2.4) into one step future

experience,
f(h)=f(h9)=)
(2.6)
PrfOu1 = 01 jH = h;A; = &g =PrfOu1 = 01 jH: = h® A, = a0
This can be proved by rolling out through future experiencewhile repeatedly
applying (2.6) and (2.5). State representations are oftereferred to asagent

states which can be informally understood as an agent's subjectivapprox-

imation of the Markov state. Unlike the Markov state which hascomplete

1For example, in an environment where the agent can only sense three obsations
denoted 1,2,and 3. In the case representing the state as a summary of hisy wheref (11) =
f(12) and f (113) 6 f (123), one can not represent it using a state-update function. This
is because state-update function has a limitation the the next state epresentation must be
the same if the current state representation and the next incremehof experiences are the
same. In contrast, representing states with history does not has sticlimitation.

13



information for predicting anything about the environment, the agent state is
only required to containsu cient information for an agent's purpose.

The predictive state representationsapproach directly represents the state
of the environment in terms of predictions about the future. The idea of
representing the state with predictions is based on the hygeesis that states
with the same predictions about the future will be the same (ttman and
Sutton, 2002). In this work, predictions making up the stateare de ned as
interrelated general value functions in TDO, and we focus otie problem of
using state representation to predict future experiences mterest. Note that
predictions making up the state can generally di er from thepredictions of
interest, but here, we only consider using predictions ofterest to form the
state to avoid the problem of discovering which set of predions would be
most useful to include in the state. As illustrated in Figure 2a, predictive
state S; ; is represented by a concatenation d&f predictions of interestsy! ,
as follows:

St 1=V uW syl
The initial state Sy is set to a vector of zeros. The stat§; is a mapping of the
previous stateS; ;, previous actionA; i, and current observationO; with the
function f. Note that the state update proceeds simultaneously with makg

predictionsy; as follows:
y{ = fi(St 1A 1;0):

Alternatively, the hidden states in simple RNNs (Recurrent Neural net-
works) can be used as state representations. Here, simple RNKsaso known
as Elman networks (Elman, 1990), which are probably the singst form of
RNNs whose hidden states are fed back into themselves duringethext step of
input. In the typical sequence modeling scenario, the hiddestates in RNNs

are often used to summarize history by minimizing the predion error for
14






we introduced how to represent the state when the environmestate is not
fully exposed to an agent. In this section, we put these two ¢ether and il-
lustrate how to learn interrelated predictions of interestwith the use of state
representations. We can approximate the next state by parametrizing it as
f (& 1;a& 1;0), and approximate each predictiory' (s) by parametrizing it as
9il(s). Accordingly, TDO learns interrelated predictions by rephcing the en-

vironment state in (2.3) and (2.2) with the approximated st&e representation

as follows:
Uf = U'(Oper s 9 (801 ) 92 (Bren ) 25 9% (801));
Zi= (Out;®)U +[1  '(Ou1; 819, (8n); (2.7)
ot (AG)IZE 9L L (8)): (2.8)
2 2+ (Ac®)ZE YL (&) L(8): (2.9)
Here,u', i, and ' are de ned in the same way as in Section 2.2. We illustrate

the pseudo-codes in Algorithm 1.

Note that we need to compute gradientr ,(%;) in a recursive way, be-
cause state update is performed recursively assp=f ,(8 1;& 1;0). There
are two major methods for revolving this issue. (1) Backpr@mation through
time (BPTT) directly computes gradient tracing back through time (Rumel-
hart et al., 1985). The time complexity of BPTT is O(n), if it is performed
n steps backward through time. Additionally, performing BPTT along a long
history is di cult (Bengio et al.,, 1994). An approximate solution is to trun-
cate the computing of the gradient intok time steps back in history, namely
k BPTT. (2) Real-time recurrent learning (RTRL) is proposed b compute
the gradient without tracing backward through history (Williams and Zipser,
1989). However, RTRL has a space complexity @(n) and time complexity
of O(n?), where n is the number of weights needed to compute the gradient.

In the work, we focus on the problem of learning prediction im time and
16



Algorithm 1 Learning interrelated predictions with state representabns

1: Initial state sp andt =1
2: Take action from behaviour policy,ag and receive observatiom, from
environment
for each time stept =1; ;T do
Estimate current state,s; = f (St 1;& 1;0)
Compute predictions,yi = y'(s;)
Take action from behaviour policya; , and receive observatiom. 1
from environment
Estimate next state s;+1 = f (St; & O+1)
Compute predictionsy+1 = Y(St+1)
o: Compute termination function 1, = '(0u1;%)
10: Compute target z! according to (2.7).
11: Perform update on ;; , according to (2.8) and (2.9).
12: & 1 &, 0 O+
13: end for
14.

©

space e cient way. Therefore, we compute the gradient using-BPTT that

truncates the computing of the gradient into one time step ek in history.

17



Chapter 3

Test of Predictive
Representations Hypothesis

One of the main contributions of this thesis tests theredictive representa-
tions hypothesisthat representing the state of the world in terms of predic-
tions about the future will result in good generalization. Gapter 2 provides
the preliminary knowledge for this chapter: it introduces tle concept of in-
terrelated predictions and how to learn these predictionsithh the use of state
representations.

In Section 3.1, we elaborate on the predictive representatis hypothesis
and introduce strategies to ensure a fair test of the hypotkes. In Section 3.2,
we describe four scenarios in which we perform the test. Incdien 3.3, we
de ne the metric for good generalization as it relates to thdéypothesis. In
Section 3.4 and Section 3.5, we explain the experiment désaand analyze
the results of the test. In Section 3.6, we study how the chacof hyper-
parameters in uences the generalization performance of éhapproach that

represents states explicitly with predictions.

3.1 Predictive Representations Hypothesis

The predictive representations hypothesisuggests that representing the state

of the world in terms of predictions about the future will reslt in good gen-
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eralization. In this chapter, representing the state of the world in terms of
predictions means using predictions explicitly in the state.Good generaliza-
tion is measured by the learning performance in both accuracy asdeed when
making multiple predictions of interest. A good state reprgentation should
not only be able to capture su cient information to compute the next agent
state, which will be used to make the predictions of interesbut also avoid
carrying redundant information that can slow down learning Note that the
use offunction approximators may in uence the generalization performance
when using state representations. This is because functiapproximators are
commonly used to acquire state representations and make gigtions, and
di erent function approximators may result in entirely di erent learning per-
formance.

In the test, we compare the generalization performance ofeéhpredictive
approach with that uses hidden states in simple RNNs (RecurremNeural
Networks) as state representations. We name this the statepesentation
approach based on simple RNNs. Here, simple RNNs are also known &s E
man networks (Elman, 1990), which are probably the simple$brm of RNNs
whose hidden states are fed back into themselves during thexh step of in-
put. Since many factors may a ect the generalization perfonance when using
state representations, we develop several strategies tsare the fairness of the
test. (1) We design four scenarios where the predictions oiterest vary, and
especially consider the cases where the predictions makigthe states is in-
su cient to compute the next agent states. (2) We emphasizehe role of the
state representations by performing the test in environmés where the state
of the world is not fully exposed to the agent. (3) We performhe test using
a variety of function approximators, each of which have di eent capacities.
This is to alleviate the e ect of using function approximatas for computing

state representations and predictions.

19









vector indicating the cell color in front of it. There are sixcolors in total:
red, green, blue, magenta, yellow, and white, as shown in Figu3.2a. In the
C-9 scenario, we design the goal for an agent as making nine prins in
the Compass World environment, and these predictions may nbe su cient
to compute the next agent state. We illustrate these nine pdictions as nine
nodes in question networks shown in Figure 3.2b. Node 1, 2, andRdict
the expected observation when taking a primitive action lefforward, or right.
Node 4 estimates the expected outcome if the agent follows thehavior policy
and terminates when a wall is sensed or spontaneously withopability 0.5.
Node 5 estimates the expected outcome if the agent takeseap during which
it continuously takes action forward until a wall is sensedNode 6, 7, 8, and
9 predict the expected outcome as the agent follows the segue of actions
left-leap, leap-left-leap, right-leap, and leap-rightdap, respectively. In theC-
5 scenario, we design the goal for an agent as making ve pretins in the
environment of Compass World, and expect these predictioase su cient to
compute the next agent state. We illustrate these predictits as ve nodes
in question networks shown in Figure 3.2c. We keep the predizh nodes of
5,6,7,8, and 9 in the scenario d@-5 and replace the green cells of the wall by

blue ones.

3.3 Error Metric

The generalization performance of a state representatiopgroach is measured
in terms of the learning performance in both accuracy and sp& when making
interrelated predictions of interest. The quality of estinated predictions is
measured in comparison with the ground truth from an oracleAt each time

step t, we compute Root Mean Square Error (RMSE) between the ground
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truth and the estimated one as follows,
S

1 X .
errory = m (Y{ y{rue;t )2;

i
wherey; ., is the ground true for each predictiory; and m is the number of
interrelated predictions. We illustrate the performance blearning predictions

in the aspects of mean and standard error as follow,

1 X ’
¢= =  error
n k=1
S
rl
1 o (errork )2
t — p — ’
n n 1

wheren is the number of repeats of the experiment.

3.4 Experiment Details

In the test, we compare the generalization performance ofdhpredictive ap-
proach with the approach based on simple RNNs. We sweep over @lient
combinations of step size and function approximator capdgi and we then
select the one with the best performance for each algorithngpeci cally, we
rst compute the area under each learning curve by averagirtpe RMSE every
one thousand time steps. Then we select the hyper-parameteith the lowest
area under the learning curve. As shown in Figure 2.2a, the maipg f is a
two-layer fully connected neural networks with a sigmoid diwation function,
which is also applied to the outputs layer. As shown in Figure 2b, the map-
ping g¥;g@; are two separate single-layer fully connected neural netvks
followed by a sigmoid activation function. Note that the dimasion of the hid-
den layer inf and the dimension of hidden states in simple RNNs will in uence
the capacity of function approximators. For convenience, evrefer to this as
the dimension of the approximator Table 3.1 summarizes the combinations of

the dimension of the approximator and step size used for thedt in di erent
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Scenario Step Size Dims of Approximators

Predictive, R-2  (0.01 0.1 1.010.0) (6 2039 65 96 135 230 350)
Simple RNNs, R-2  (0.01 0.1 1.00.0) (5 10 15 2®5 30 40 50)
Predictive, R-6  (0.01 0.1 1.010.0) (5 12 23 37 7325 145 187 262)
Simple RNNs, R-6 (0.01 0.1 1.00.0) (5 10 15 20 3@0 50 60)
Predictive, C-5 (0.01 0.1 1.010.0) (7 18 32 50 71 95 18813)

Simple RNNs, C-5 (0.01 0.1..0 10.0) (0 10 20 30 40 50 63D 120)
Predictive, C-9 (0.01 0.11.0 10.0) (6 15 25 38 52 69 108 1330)
Simple RNNs, C-9  (0.01 0.1..0 10.0) (0 10 20 30 40 50 60 80 100 )20

Table 3.1: A summary of hyper-parameters used for learningqaictions with

the predictive approach and the approach based on simple RNNBhe under-
line indicates the hyper-parameter setting with the best pégormance for each
algorithm.

scenarios. The underline indicates the hyper-parametertseg with the best
performance for each algorithm.

In the ring world environment, the input observation for theagent at each
time step is a two-dimensional one hot vecto®1 or 10, and the action is a
two-dimensional one-hot vector, which indicatesmext and previous The in-
terrelated predictions are learned in an o -policy manner Wwere the policy
associated with the predictions is not consistent with the gent's behavior
policy. The agent follows a random behavior policy with equal action prob-
abilities for the actions next and previous. We perform thexperiments under
one million time steps of interaction with the environment.Each experiment
is repeated 30 times.

In the compass world environment, the input observation fothe agent at
each time step is a 6-dimensional one hot vector indicatingksolors as shown
in Figure 3.2a, and the action is a 3-dimensional one hot vectavhich indicates
forward, left andright. The interrelated predictions are learned in an o -policy
manner where the policy associated with the predictions i®hconsistent with
the agent's behavior policy. The agent follows a random bebar policy

with action probabilities of 0.5, 0.25, and 0.25 for the aains forward, left,
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than those of the hidden states in simple RNNs. If one learns mhetions in a
tabular form, creating a table, each item of which correspais to a cluster of
state representations, the predictive approach can learadter as it maintains
a smaller table than the approach based on simple RNNs. Why aredite fewer
clusters of the predictive states? Suppose one groups thevieonment states
by their predictions of interest. For each group of environent states, the
predictive states are the same, whereas the hidden statessimple RNNs can
carry extra information and thus can be completely di erent In addition, any
two predictive states for two di erent groups of environmehstates must be
di erent. This also applies to the hidden states in simple RNNs

In the R-2 and C-9 scenarios, we observe that the predictivepresentation
hypothesis does not hold anymore, as shown in Figure 3.3. Theegictions
making up the predictive state can not capture su cient infamation to com-
pute the next agent state, whereas the hidden states in singpRNNs can adjust
its space to obtain extra information to overcome this proleim. For example in
the R-2 scenario, if the predictions are learned correctlthe predictive states
for the environment state C and D are the same. Here, states A, &, D,
and E are ve environment states in the Ring World environmet) as shown
in Figure 3.1a. After taking one step, clockwise, states C and &nd up with
states D and E, respectively. The predictions of interest fdhe state D and
E di er. However, if one performs state update based on the pilective states
and the action of one step clockwise, the updated predictiaate of the states
C and D are the same. In the C-9 scenario, if the Wander predioh is per-
fectly learned, predictive states do contain su cient infemation for updating
the next state. However, the estimate of the Wander predictiotends to have
high variance and thus is not suitable to form the state.

We further analyze the learning performance averaged oversaibset of

predictions which share similar learning performance, mfed to here as the
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individual performance We omit the individual results, which are consistent
with the ones averaged over all predictions. In Figure 3.4, wBustrate in-
dividual performance for the C-9 scenario in three groupssroup One Step
Group With Leap, and Wander. (1) Group One Step averages result over one-
step predictions, each of which predicts the expected obsgation when taking
a primitive action left, forward, and right, respectively. (2) Group With Leap
averages results over predictions with the leap, each of whipredicts the ex-
pected outcome as the agent follows either the sequence didarts left-leap,
leap-left-leap, right-leap, or leap-right-leap. (3) Wandr is the result only for
the option of Wander. It is no surprise that the approach bagskon simple
RNNs generalizes better in one step predictions as its hiddetates can ad-
just freely to carry extra information. In fact, predictions in the C-5 scenario
share similar predictions as of Group With Leap in C-9. When coparing the
individual performance of Group With Leap in the C-9 scenaricas shown in
Figure 3.4b, with the overall performance in C-5, as shown in ¢rire 3.3d, the
predictive approach's generalization performance is alsiothe same in these
two scenarios, whereas the approach based on simple RNNs galim#s much
better in the C-9 scenario. Because more predictions in C-@rcadd strong
supervision on the hidden states in simple RNNs and thus helpgbnverge to

decent state space.

3.6 Parameter Study

Hyper-parameters include combinations of step size and fuimn approxima-
tor capacity. Here the capacity of the function approximatoiis determined by
the dimension of the approximator, which refers to the dimesion of the hidden
layer in the predictive approach and dimension of the hiddestates in simple
RNNs as described in Section 3.4. To visualize the generalipat performance

over di erent hyper-parameter settings, we roughly measerthe learning per-
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formance of speed and accuracy as the averaged RMSE during ttst and last

time period, respectively. More speci cally, the rst tenth and the last tenth
of the period are selected for the ring world environment, veneas the rst
three tenths and the last tenth are chosen for the compass wbenvironment.
Since the predictive approach and the approach based on siemRNNs are
using completely di erent function approximators, we sumrarize their perfor-
mance along with the total number of weights of the approxintars. The total

number of weights for these two approaches is computed as,
I\IsimpIeRNNs :(h+ i +1) h+(h+1) n

Npredictive :(n+i+1) h+(h+1) n

wheren is number of predictions of interesth is the dimension of approxima-
tors, andi is the dimension of the inputs, which includes one step actiand
observation.

We rst study how the capacity of function approximators in uences the
generalization performance of the predictive approach anlde approach based
on simple RNNs while step size is optimal. As shown in Figure 3.hd pre-
dictive approach achieves decent generalization perfornee with less number
of weights in function approximators. We also observe thathe approach
based on simple RNNs is less sensitive to the number of weightsfunction
approximators. We then investigate how the step size a ectthe general-
ization performance of the predictive approach and the appach based on
simple RNNs while the capacity of function approximators varyAs shown in
Figure 3.7i and Figure 3.8, we observe that the predictive appach and the

approach based on simple RNNs are comparably sensitive to thegssize.
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Chapter 4

Predictive State Update

This chapter introducespredictive state update(PSU), a novel approach that
utilizes predictions to boost the performance of a broad da of existing state
representations that seeks to acquire predictive knowleelg PSU is one main
contribution of this thesis. The idea of PSU comes from the sealts of testing
the predictive representations hypothesis as discussedGhmapter 3.

In Section 4.1, we introduce PSU and how to use PSU to consttustate
representations for making predictions. In Section 4.2, wexplain the exper-
iment details when testing the generalization performancef the use of PSU.
In Section 4.3, we analyze the generalization performanceusing PSU with
existing state representations approaches and additiolacompare them with
the predictive approach. In Section 4.4, we study how the clue of hyper-
parameters in uences the generalization performance ofdhuse of PSU. In
Section 4.5, we perform an ablation study of PSU through an gaimical study

of an alternative approach combining predictions with sta representations.

4.1 Predictive State Update

Inspired by the results that predictive representations hyothesis does hold
in speci ¢ scenarios, we introduce a novel state update rulredictive State

Update (PSU), that incrementally compute the next state from the curent
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state, while beingaware of current predictions of interest in addition to the
next increment of experiences (the current action and the reobservation).

Conventionally, past experiences are only interleaved aohs and observations,
as in Hy = Ag;O1;A1; 0y A 1; 0. State representations incrementally
summarize the past with a state update rule that computes th@ext state

based on the current state, the current action, and the nexthbservation, as
in Sgr1 = Uu(S; Ag; O ). In contrast, PSU constructs the next state while
being aware of the current predictiony; in addition to the next increment of

experiencesA; and O, ), as in Sii1 = Z(S;; At; Oe1 s Vi)-

Why does one need to be aware of predictions as part of histonfarma-
tion to construct state representations? When state represetions are used
for making predictions of interest, current predictions ointerest are computed
from current state representations with a mapping function Therefore, cur-
rent predictions can be used together with current states téorm the next
states. On the other hand, when analyzing why predictive repsentations
hypothesis does hold, we observe that for the same envirommstates, their
predictions of interest must be the same, whereas their seatrepresentations
can be completely di erent. Explicitly including current predictions to form
next states introduces the interesting phenomenon that ifrpdictions of inter-
est are the same then the states are possibly to be the sameretieough the
state representations di er.

We illustrate how to use PSU to construct state representains and make
predictions of interest, as shown in Figure 4.1a. We rstly aacatenate k

predictions of interestsy! , as in the predictive approach,
o= IYE oY oY ol

We then form the current stateS; 2 R" by a mapping of previous predictions

p: 1, previous stateS; ;, previous actionA; ;, and current observationO;
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the next observation). In the case where we instantiate PSUith the pre-
dictive state approach, if we use current predictions of ierest to form the
predictive state in the next step, then this instantiation d PSU degenerates
to the predictive approach. In this thesis, we focus on instéiating PSU with
three commonly used state representation approaches thatadased on simple
recurrent neural networks, LSTMs (Long Short-Term Memory atworks), and
GRUs (Gated Recurrent Units networks). We name these instamtiions as
PSU-SRNN, PSU-LSTM, and PSU-GRU. Here, LSTMs and GRUs are vari-
ants of RNNs that adopt di erent gating mechanisms to force thegradient
directly ow over time and thus improve simple RNNSs' ability to capture tem-

poral information (Hochreiter and Schmidhubeet al., 1997; Choet al., 2014).

4.2 Experiment Details

We study how the use of PSU a ects the generalization perforamce of ap-
proaches based on simple RNNs, LSTMs, and GRUs in the R-2, R-6,5C-
and C-9 scenarios, as described in Section 3.2. We addititp&ompare these
instantiations of PSU with the predictive approach. We swegeover di erent
combinations of step size and function approximator capdgi and we then
select the one with the best performance for each algorithngpeci cally, we
rst compute the area under each learning curve by averagintpe RMSE ev-
ery one thousand time steps. Then we select the hyper-paramewith the
lowest area under the learning curve. As shown in Figure 4.1det mappings
of g is one single-layer fully connected neural networks with agsnoid acti-
vation function, and the mappingz is replaced by the update function used
in the existing state representation approach. Note that thelimension of the
hidden states in these existing state representations amaches and their in-
stantiations of PSU will in uence the capacity of the functon approximator.

For convenience, we call this thalimension of the approximator. Table 4.1
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Scenario Step Size Dims of Approximators

R-2 (0.01 0.1 1.0 10.0 100.0) (5 10 15 20 25 30 40 50)

R-6 (0.01 0.1 1.0 10.0 100.0) (2 5 10 15 20 30 40 50 60)

C-5 (0.01 0.1 1.0 10.0 100.0) (10 20 30 40 50 60 90 120)

C-9 (0.01 0.1 1.0 10.0 100.0) (10 20 30 40 50 60 80 100 120)

Table 4.1: A summary of hyper-parameters used for learninggictions with
approaches based on simple RNNs, LSTMs, GRUSs, and their instartt@ns of
PSU in di erent scenarios.

Scenario PSU-SRNN LSTM  PSU-LSTM GRU PSU-GRU
R-2 (1.0 30) (1.0 15) (1.0 30) (0.120) (0.1 15)
R-6 (1.0 15) (1.0 30) (1.0 40) (0.110) (0.1 15)
C-5 (0.1 60) (0.190) (0.1120)  (0.1120) (0.1 90)
C-9 (0.1120) (0.1 120) (0.1120)  (0.01 120) (0.01 100)

Table 4.2: A summary of the hyper-parameter setting with thebest perfor-
mance for each algorithm in each scenario.

summarizes the combinations of the dimension of the appraxator and step
size used for learning predictions with approaches based simple RNNs,
LSTMs, GRUSs, and their instantiations of PSU in di erent scemrios. Ta-
ble 4.2 summarizes the hyper-parameter setting with the btgserformance for
each algorithm. Other experiment details are exactly the sa as described

in Section 3.4.

4.3 Results

As shown in Figure 4.2, we observe that the use of PSU can boosgtheneral-
ization performance of approaches based on simple RNNs, LSTMad GRUSs.
Firstly, this result supports the intuition that current pre dictions of interest
can be used as part of the history to form the next states. Seudly, this
result implies that being aware of predictions can help theitiden states not
be too exible and thus leads to faster learning, as explidit including current

predictions to form next states introduces the interestingphenomenon that
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if predictions of interest are the same then the states are ggibly to be the
same even though the state representations di er. We also sdrve that PSU-
SRNN, PSU-LSTM, and PSU-GRU outperform the predictive approachThis
is because the hidden state of these instantiations is capalof nding another

state space, and thus they generalize better than the pretiiee approach.

4.4 Parameter Study

We study how the use of PSU a ects the hyper-parameter sensiity of ap-

proaches based on simple RNNs, LSTMs, and GRUSs, through visuzalion.

Hyper-parameters are combinations of step size and functi@pproximator
capacity. Here the capacity of the function approximator is etermined by
the dimension of the approximator, which refers to as the diemsion of the
hidden states in these existing state representations agaches and their in-
stantiations of PSU. To visualize the generalization perfarance over di erent
hyper-parameter settings, we roughly measure the generaltion performance
for each setting as the averaged RMSE during the rst and lagime period,

respectively. More speci cally, the rst tenth and the lasttenth of the period
are selected for the ring world environment, whereas the tshree tenths and
the last tenth are chosen for the compass world environmengince di erent

state representation approaches are using di erent funcn approximators, we
summarize their performance along with the total number of gights in the
approximators. The total number of weights for PSU-SRNN, LSTMPSU-
LSTM, GRU, and PSU-GRU are computed as following,

Npsu senn =(h+i+n+1) h+(h+1) n

Nistw =4 h (i+h+1)+(h+1) n
Npsu tsty =4 h (i+h+1+n)+(h+1) n
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Nery =3 h (i+h+1)+(h+1) n
Npsu cru =3 h (i+h+1+ n)+(h+1) n,

where n is number of predictions of interest,h is the dimension of the ap-
proximator, and i is the dimension of the inputs, which includes action and
observation at each time step. Note that the number of weighter approaches
based on simple RNNs, LSTMs, and GRUs ©(h (i+ h+ n)), and the num-
ber of weights only increase®(h n) when instantiating PSU with these state
representations approaches.

First, as shown in Figure 4.3, 4.4, and 4.5, the use of PSU can kbo
the generalization performance of approaches based on dengNNs, LSTMs,
and GRUs with comparable number of weights in function appramators.
When comparing PSU-SRNN and the predictive approach in Figure 3}. we
observe that PSU-SRNN achieves decent generalization penfiance with
fewer number of weights in function approximators and is merrobust when
this number of weights grows. Secondly, as shown in Figure 4Fgure 3.7i
and Figure 3.8, we observe that the use of PSU does not a ect tlemple
RNNSs' sensitivity to the step size. This conclusion is also teufor LSTM and
GRU. For brevity, we omit the plots studying these algorithmssensitivity to

the step size.

4.5 Ablation Study

One naive solution to combining predictions and state repsentations is to
concatenate predictive states and hidden states in simpleNRIs, and compute
predictions based on this concatenation. We name this metti@Concatenation
of the Predictive approach and Simple RNNs (CPSR). In this sdon, we
empirically demonstrate CPSR is not an e ective solution tavards combining

predictions and state representations.
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As shown in Figure 4.1b, we rstly concatenatek predictions of interests

yi , as in the predictive approach,
o= Ve oY iy ol

We then form the current hidden stateh; 2 R" by a mapping of previous hid-
den stateh, ,, previous actionA; 1, and current observationO; with function

Jday,
he = gy (he 1A 1,00)

The initial state Sy is set to a vector of zeros. Each predictiong is computed
from two parts: one is the mapping of hidden staté,; with function gi(z), and
another is the mapping of previous predictiong; i, previous actionA; ;, and

current observationO; with function f',

yi= (o A 150)+ gy (h));

where is an activation function such as the sigmoid function.

We study CPSR's generalization performance in the R-2, R-&-5, and
C-9 scenarios while comparing with the approach based on gil@ RNNs and
the predictive approach. We sweep over di erent combinatis of step size
and function approximator capacity. As shown in Figure 2.2a,he mapping
f is a two-layer fully connected neural networks with a sigmdiactivation
function, and the mappingg®¥, and g® are two separate single-layer fully
connected neural networks without an activation function.The dimension of
hidden layers in the mapping can be understood as a bottleneck of predictive
state, which controls the amount of predictive informatiorthat can in uence
the next predictions. We call this the dimension of the predtive states.
Analogously, the dimension of hidden states in simple RNNs caaots their
impact on the next predictions. It is obvious that if the dimeasion of one of

these two states equals zero, then CPSR degenerates to amotstate approach.
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Scenario Step Size Dims of Predictive Dims of simple RNNs

R-2 (0.001 0.01 0.1 1.0 10.0) (0 4 16 32 64) (0 5 20 30 40 50)
R-6 (0.001 0.01 0.1 1.0 10.0) (0510 40 75 128) (0 4 16 32 50)

C-5 (0.001 0.01 0.1 1.0 10.0) (0 7 32 95 189) (0 32 60 90 120)
C-9 (0.001 0.01 0.1 1.0 10.0) (0 4 8 32 64 128) (0 20 40 80 120)

Table 4.3: A summary of hyper-parameters swept over when reéng predic-
tions with CPSR.

We summarize the combinations of the dimension of these twates and step
size in di erent scenarios in Table 4.3. Other experiment dails are exactly
the same as described in Section 3.4.

To visualize the performance over a large amount of hyper-@aneter set-
tings, we roughly measure the generalization performancer feach setting as
the averaged RMSE during the initial and last period of timerespectively.
More speci cally, the rst tenth and the last tenth of the period are selected
for the ring world environment, whereas the rst three tentts and the last tenth
are chosen for the compass world environment. Since di etestate represen-
tation approaches are using di erent function approximates, we summarize
their performance along with the total number of weights oftte approximators.

The total number of weights for CPSR is computed as
Ncpsg =(h+i+1) h+(n+i+1) n+(h+1) n

wheren is number of predictions of interesth is the dimension of approxima-
tors, andi is the dimension of the inputs, which includes action and obsvation
at each time step.

We demonstrate CPSR's generalization performance when thapacity of
function approximators varies, but the step size is optimain Figure 4.7. In
the R-2 and C-9 scenarios, the best performance of CPSR is theame as the
simple RNNSs. In the R-6 and C-5 scenarios, the best performanaeCPSR is

the same as the predictive state approach. Thus, we can cambé that, the
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naive concatenation of predictive states and hidden stat@s simple RNNSs is

not an e ective way to combine these two approaches.
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Chapter 5
Related Works

This chapter presents existing works related to our explotian of predictive
representations of state in this thesis. In Section 5.1, watioduce literature
using predictions as knowledge. In Section 5.2, we descridmveral attempts
to learn and discover a set of predictions to form the statenISection 5.3, we
compare our interpretation of predictive representationeypothesis with those
in existing works. In Section 5.4, we brie y summarize the pmcipal works
using recurrent neural networks (RNNs) to represent and learpredictions.
In Section 5.5, we present a survey of works taking advantagé both RNN

based and the predictive state representation approaches.

5.1 Predictions as Knowledge

Humans accumulate knowledge about the world via interacti@with the en-
vironment. Predictive knowledge about the environment isapresented by the
expected outcome (predictions) of possible interaction€unningham (1972),
and Drescher (1991) propose to ground knowledge in experes, which is one
major characteristic of predictive knowledge. Tanner andudton (2005) pro-
pose temporal di erence networks for representing and laang interrelated
predictions. These predictions are also used as state reggptations based on

the intuition that predictions can capture knowledge abouthe environment.
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Sutton et al. (2011) formalize knowledge about the environment as a large
number of general value functions (GVFs), each of which capts a portion
of world knowledge through its own policy, reward functionand termination
function. GVFs can be informally understood as a general fornf predictions.
Predictive knowledge frameworks have demonstrated theideantages in
several real-life applications. In the domain of roboticghousands of predic-
tions about sensory inputs at multiple timescales can be legd in an e ective
and online fashion (Modayilet al., 2014). White (2015) adopt advanced o -
policy method gradient-TD (Sutton et al., 2009) to learn predictions on a robot
in parallel. Edwardset al. (2016) show that GVFs can be used to improve the

control method in the domain of powered prosthetic arms.

5.2 Predictive Representations of State (PRS)

Predictive representations of state (PRS) form the state as vector of predic-
tions about the future - the occurrence of a set of action{olesvation sequences,
termed as tests (Littman and Sutton, 2002). A set of tests thaare su cient
to make any prediction about the future is named asore tests If core tests
are given beforehand, #&arning algorithm is needed to estimate the core tests
through interactions with the environment. Otherwise, theproblem of nding
core tests is referred to adiscovering PRS.

Several attempts have been made to learn and discover corstsein PRS.
Singh et al. (2003) present the rst algorithm to estimate the core testdy
updating one-step extensions of all the core tests and nukdt. Singhet al.
(2004) propose the rst procedure for discovering core testn PRS. They
introduce a system-dynamics matrix whose element indicatle prediction for
a test given a history. The system-dynamics matrix can be estated through
sampling from the environment. The process for discoverirgpre tests is to

gradually increase the length of the test until the rank of te system-dynamics
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matrix does not grow. Instead of measuring the predictiong/lihe Monte Carlo
method, McCracken and Bowling (2017a) present an algoritho estimate
the predictions by gradient descent. This algorithm can besed to learn and
discover PRS in an online fashion. Bowlingt al. (2006) introduce a method
for developing a good explorative policy when estimating edictions by the
Monte Carlo approach.

Spectral learning has recently been exploited for discougg core tests of
PRS in high dimensional environments. Rosencrantzt al. (2004) adopt a
principal-components-based algorithm to learriransformed PRS (a variant
of PRS) from a large set of tests, which contains su cient tes to form the
state. Bootset al. (2011) use a spectral algorithm to learn transformed PRS
in a high-dimensional robot environment and perform poinbased planning in
the learned model. Kuleszat al. (2015) present an algorithm to search for
tests when a large set of tests with su cient statistics is nbavailable.

Value functions can be used as a generalized form of tests. nfiar and
Sutton (2005) and Rafolset al. (2006) extend TD methods to learn interrelated
value functions and use these predictions as state represdions in a partially
observable environment. Makino and Takagi (2008) proposen algorithm
for discovering interrelated predictions in TD networks (&nner and Sutton,
2005) in an online fashion. Suttoret al. (2011) formalize knowledge about
the environment as a large number of general value functio(GVFs), each of
which captures a portion of world knowledge through its own gdicy, reward
function, and termination function. Schlegelet al. (2018) reformulate the
interrelated value functions (Tanner and Sutton, 2005; Rafs et al., 2006) in
the language of GVFs.

In this work, we form the predictive state via a vector of interelated GVFs,

and focus on the problem of learning multiple interrelated @Fs of interest.
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5.3 Predictive Representations Hypothesis

The predictive representations hypothesis suggests thatpresenting the state
of the world in terms of predictions about the future will reslt in good gen-
eralization.

In this thesis, representing the state of the worldneans explicitly using
interrelated GVFs to form the state (Rafolset al., 2005; Tanner and Sutton,
2005; Rafolset al., 2006; Schauet al., 2013; Schlegedt al., 2018). By contrast,
there are several attempts that implicitly utilize predicions to learn state rep-
resentations. Venkatramanet al. (2017) learn state representations through
gradient descent with an objective of predicting the disthution of future ob-
servations. Jaderberget al. (2016) learn a robust state representation through
gradient descent while minimizing multiple predictions abut the environment.
Sun et al. (2016) represent the state using a ltered space of distrilbon of
future observations.

Good generalizationis usually quanti ed by good learning performance
in both accuracy and speed when an agent achieves a goal. Orusgible
goal for an agent is to maximum accumulative rewards while t@racting with
the environment (Rafolset al., 2005; Schaulet al., 2013; Jaderberget al.,
2016). Another goal is to answer several prede ned questioabout future
experiences in the form of GVFs (Tanner and Sutton, 2005; Rafokt al.,
2006; Schlegeet al., 2018). Some works focus on one speci c type of GVFs,
which predict k observations in the future (Sunet al., 2016; Venkatraman
et al., 2017). In this thesis, good generalization is speci calljneasured by
good learning performance in accuracy and speed when leaginterrelated

GVFs of interest.
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5.4 Recurrent Neural Networks (RNNSs)

Instead of explicitly forming states from observations, tb hidden states in
recurrent neural networks (RNNs) can be used as state repratgions. The
hidden states in RNNs summarize the history through gradientescent while
minimizing prediction errors. There is a long history of usig RNNs for se-
guence modeling. Jordan (1997) proposes a recurrent conm@ctfrom predic-
tions back to the hidden state, which is thus able to keep a dgmic memory.
Alternatively, EIman (1990) feeds the hidden state back to gelf in a recurrent
way, which is the precursor to the development of recent RNNSst ik challeng-
ing for the hidden states in RNNs to capture information over @ended time
intervals through gradient descent. Di erent gating mechaisms, which force
the gradient to directly ow over time, are commonly adoptedo alleviate this
problem (Hochreiter and Schmidhubeet al., 1997; Choet al., 2014).

The use of RNNs achieves state-of-art results in sequential deding for
natural language processing (Bengiet al., 2003), speech recognition (Graves
and Jaitly, 2014) and handwriting recognition (Gravest al., 2008). In rein-
forcement learning, RNNs are widely used especially in taskdere environ-
ment states are not accessible to the agent, such as robotantrolling (Duan
et al., 2016), and Atari games(Hausknecht and Stone, 2015).

In this work, we use the hidden states in RNNs to learn interretad GVFs
in an online fashion, whereas existing works usually regeirtrajectories of

history information.

5,5 PRS and RNNs

Several attempts have been made to draw insights from both FRand RNNs
based on the intuition that spectral algorithms for learnigy PRS pose ap-

pealing theoretical support, whereas RNNs have powerful exgasion but lack
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probabilistic interpretation. In this line of works, the state representations are
used for predicting the probability of future occurrencesand learning PRS
requires access to trajectories of history information. Daney et al. (2017b)
introduce a spectral initialization when learning PRS thragh predictive state
inference machines (Surt al., 2016). This method is equivalent to a spe-
cial case of the back-propagation through time algorithm iRNNs. Downey
et al. (2017a) present a new architecture of RNNs that use a bilinearainsfer
function derived from the idea of state updates in PRS.

Predictions can be used as regularizers when learning thelddién states
in RNNs. Venkatraman et al. (2017) add supervision to the hidden states
in RNNs by encoding statistics of future observations into théidden state.
Jaderberget al. (2016) use value functions for auxiliary tasks as regulages to
obtain robust state representations. Speci cally, they larn the hidden states
in RNNs while maximizing the rewards for both the main task anduxiliary
tasks.

In this work, we use predictions learned by TD methods to bobthe gen-
eralization performance of a broad class of state represatibn approaches (in-
cluding but potentially not limited to RNN based approaches)without access

to trajectories of history information.
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Chapter 6

Conclusion

The Predictive state representationsapproach links predictive knowledge to
state representations by directly representing the statefahe environment in
terms of predictions about the future. As our rst contribution in this thesis,
we empirically demonstrate that explicitly using predictons to represent the
state does result in good generalization performance in gpe scenarios. This
inspires us to explore alternative approaches for relatingredictions to state
representations. Our second contribution is a novel statepdate rule, predic-
tive state update (PSU), that computes the next state while bieg aware of
current predictions in addition to current state and next ircrement of experi-
ences. Our experiment shows that (i) the use of PSU can boosiet general-
ization performance of existing state representation appaches, such as those
based on simple recurrent neural networks, LSTM (Long Shofiterm Memory)
networks, and GRU (Gated Recurrent Units) networks, and (iifhese instanti-
ations of PSU outperform approaches which represent statesclusively using
predictions. Our work provides strong evidence supportingpat utilizing pre-

dictions to form state representations will result in good gneralization.
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