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Abstract

The predictive representations hypothesis is that representing the state of the

world in terms of predictions about the future will result in good general-

ization. In this thesis, good generalization is speci�cally quanti�ed by good

learning performance in both accuracy and speed when predicting future ex-

periences of interest. We test the predictive representations hypothesis in

di�erent scenarios where predictions of interest vary. We observe that the pre-

dictive representations hypothesis does hold in speci�c scenarios. Inspired by

this �nding, we propose Predictive State Update(PSU), a state update rule

that incrementally computes the next state from the currentstate, while being

aware of current predictions of interest in addition to next increment of expe-

riences.Any existing state representation approach can instantiate the PSU if

it summarizes the past incrementally, updating the next state based on the

current state and next increment of experiences. We empirically demonstrate

that (i) the use of PSU can boost the generalization performance of existing

state representation approaches, such as those based on simple recurrent neu-

ral networks, LSTM (Long Short-Term Memory) networks, and GRU (Gated

Recurrent Units) networks, and (ii) these instantiations ofPSU outperform

approaches which represent states exclusively using predictions.
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Chapter 1

Introduction

Predictive knowledge represents information about the world by a set of pre-

dictions, the expected outcomes resulting from possible interactions. ThePre-

dictive state representationsapproach links predictive knowledge to state rep-

resentations by directly representing the state in terms ofpredictions about the

future. In this thesis, we explore the relationship betweenpredictive knowledge

and state representations. Our �rst contribution is a test of the hypothesis

that predictive states are useful for acquiring predictiveknowledge in the en-

vironment. Our second contribution is a novel approach utilizing predictions

to boost the performance of a broad class of existing state representations

approaches which seeks to acquire predictive knowledge.

1.1 Predictions as knowledge

Humans accumulate knowledge about the world through interactions with the

environment. For example, when it comes to the question of what a ballpoint

pen is, one may recall several manipulations and outcomes while interacting

with it. From these experiences, one might have expectations, or predictions,

about what the outcomes of these manipulations might be, andde�ne a ball-

point pen in terms of them. If I trace a ballpoint pen on a pieceof paper,

there could be a mark left on the paper. If I release the ballpoint pen from
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my hand, the pen could drop on the 
oor. This knowledge representation

is referred to aspredictive knowledge, and is described by a set of expected

outcomes resulting from possible interactions.

1.2 State Representations

In reinforcement learning, we typically formalize an agent's interactions with

an environment in a way that, at each time step, the agent is insomeenviron-

ment state. Given this state, the agent takes anaction and ends up in a new

environment state. In many real-world cases, the agent often can only acquire

an observationcontaining partial information of the environment state ateach

step. Take an example of a mouse exploring a maze: only based on its current

sense of surrounding obstacles, the mouse doesn't know for certain its exact

location in the maze, and whether the path ahead can lead to anexit. If it

could keep track of where it has previously been in the maze, it would have

a better idea of where it is and where it should go next. This understanding

of where one is in an environment can be formalized as astate representation,

which summarizes past experiences in a way that contains su�cient informa-

tion for an agent to base its decisions on. Instead of taking awhole trajectory

of the past experiences as inputs, state representations often summarize the

past incrementally, updating the next state based on the current state and

next increment of experiences. State representations alsorefer to agent states,

which can be informally understood as an agent's subjectiveapproximation

of the environment state. Unlike the environment state whichhas complete

information for predicting anything about the environment, the agent state is

only required to containsu�cient information for an agent's purpose.
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1.3 Predictive Representations of State

The predictive state representationsapproach links predictive knowledge to

state representations by directly representing the state of the environment in

terms of predictions about the future. In this work, we focuson the problem

of using state representations to acquire predictive knowledge of interest. Note

that predictions making up the state generally can di�er from the predictions

of interest, but here, we only consider using predictions ofinterest to form the

state to avoid the problem of discovering which set of predictions would be

most useful to include in the state.

The predictive representations hypothesissuggests that representing the

state of the world in terms of predictions about the future will result in good

generalization. In this thesis,representing the state of the world in terms of

predictions means using predictions explicitly in the state.Good generalization

is measured by the learning performance in both accuracy andspeed when

making multiple predictions of interest. A good state representation should

not only be able to capture su�cient information to compute the next agent

state, which will be used to make the predictions of interest, but also avoid

carrying redundant information that can slow down learning. Note that the

use of function approximators may in
uence the generalization performance

when using state representations. This is because functionapproximators

are commonly used to acquire state representations and makepredictions,

and di�erent function approximators may result in entirely di�erent learning

performance.

1.4 Contributions

Our �rst contribution is to test the predictive representations hypothesis. In

the test, we compare the generalization performance of the predictive approach
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with that uses hidden states in simple RNNs (Recurrent Neural Networks)

as state representations. Here, simple RNNs are also known as Elman net-

works (Elman, 1990), which are probably the simplest form ofRNNs whose

hidden states are fed back into themselves during the next step of input. Since

many factors may a�ect the generalization performance whenusing state rep-

resentations, we develop several strategies to ensure the fairness of the test.

(1) We design four scenarios where the predictions of interest vary, and espe-

cially consider the cases where the predictions making up the states is insu�-

cient to compute the next agent states. (2) We emphasize the role of the state

representations by performing the test in environments where the state of the

world is not fully exposed to the agent. (3) We perform the test using a variety

of function approximators, each of which has di�erent capacities. This is to

alleviate the e�ect of using function approximators for computing state rep-

resentations and predictions. We observe that the predictive representations

hypothesis does hold in speci�c scenarios.

Our second contribution is a novel state update rule,Predictive State Up-

date (PSU), that incrementally computes the next state from the current state,

while being aware of current predictions of interest in addition to next in-

crement of experiences.Any existing state representation approach can in-

stantiate the PSU if it summarizes the past incrementally, updating the next

state based on the current state and next increment of experiences. We em-

pirically demonstrate that (i) the use of PSU can boost the generalization

performance of existing state representation approaches,such as those based

on simple recurrent neural networks, LSTM (Long Short-Term Memory) net-

works, and GRU (Gated Recurrent Units) networks, and (ii) these instantia-

tions of PSU outperform approaches which represent states exclusively using

predictions.
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1.5 Outline

In Chapter 2, we introduce how to learn multiple predictionsusing state rep-

resentations. We then test the predictive representationshypothesis by com-

paring the predictive approach with the approach based on simple RNNs for

learning predictions of interest in Chapter 3. Based on the results of the test,

we introduce a novel state update rule PSU that incrementally updates the

next state from the current state, while being aware of current predictions,

and demonstrate PSU's learning performance when instantiated by state rep-

resentations approaches based on simple RNNs, LSTM networks,and GRU

networks, and additionally perform an ablation study of thealgorithm in Chap-

ter 4. In Chapter 5, we introduce existing works related to our exploration of

predictive states in this thesis. In Chapter 6, we conclude the contributions of

this thesis.
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Chapter 2

Background

This chapter introduces the preliminary knowledge for the following chapters.

In Section 2.1, we de�ne prediction and explain how to learn predictions by

temporal di�erence (TD) methods if environment states are available. In Sec-

tion 2.2, we introduce the concept of interrelated predictions with an example

and introduce how to represent and learn several interrelated predictions using

TD networks and its extension, TD networks with options. In Section 2.3, we

introduce how to construct the state through interactions with an environ-

ment if environment states are not accessible. In Section 2.4, we present how

to learn interrelated predictions while constructing state representations from

interactions with an environment.

2.1 Learning Predictions by TD methods

We formalize the interaction between the agent and the environment as a

discrete dynamical system (DDS). At time stept, the agent in state St 2 S

takes anaction A t from action spaceA according to policy� : S � A ! [0; 1].

At the next time step, the agent transits to the next stateSt+1 according to a

transition probability p : S �A�S ! [0; 1] of the environment and receives an

observationOt 2 O according to an observation functionz : S �A�O ! [0; 1]

of the environment. The state in DDS is also referred to as theenvironment
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state. Note that the algorithms, such as temporal-di�erence methods and

temporal di�erence networks with options, for learning predictions in RL are

introduced in the case assuming the agent has access to the environment state.

However, in many real-world cases, the environment state is not available to

the agent. We will discuss this case in Section 2.3 and Section 2.4.

An agent expresses the prediction as discounted cumulative sensory signals

following a policy. Here, we usecumulant Ct 2 R as general form of obser-

vations. The prediction is accordingly de�ned as thegeneral value function

(GVF),

v�;
;C (s) := E

"
1X

k= t

Ck+1

kY

i = t+1


 (Si )

�
�
�
�
�
St = s; At :1 � �

#

;

where 
 : S ! [0; 1] is a generalized form of discounting, which determines

the horizon of the summation (Suttonet al., 2011).

Temporal-di�erence (TD) method is a widely-used method to learn the

prediction in a bootstrap way | the estimates are updated based on other es-

timates, without waiting until the �nal outcome (Sutton and Barto, 2018). We

can approximate the predictionv(s) by parametrizing it as v̂� (s) and learning

� using the temporal di�erence update rule,

�  � + � [Z t � v̂� (St )]r � (v̂� (St )) ; (2.1)

where

Z t = Ct+1 + 
 (St+1 )v̂� (St+1 ):

Here, the step size is denoted by� , and Z t is the target for the state value

v̂� (St ).

2.2 Learning Interrelated Predictions by TDO

Temporal di�erence networks with options (TDO) extend TD methods by con-

sidering the interrelationship among a set of predictions,rather than treating
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Temporal di�erence networks with options (TDO) represent the interrela-

tionship among the predictions usingquestion networks(Rafols et al., 2006).

We illustrate the question networks for the example of the basketball game

in Figure 2.1. Each circular node indicates one prediction: circular node one,

two, and three correspond to the �rst, second, and third prediction, respec-

tively. The square node indicates the cumulant, which is scoring a basket in

this case. The directed edge indicates the compositionality conditional on a

course of actions extending over several steps. The �rst prediction is based

on the cumulant of scoring a basket if I shoot the ball. The second prediction

is based on the �rst prediction if I dribble the ball up the court. The third

prediction is based on the cumulant of scoring a basket if I shoot the ball. It

is obvious that the �rst and third prediction can be learned through temporal

di�erence methods. The second prediction can be learned by TDO in the way

of treating the �rst prediction as the cumulant in the TD method.

TD Networks TD networks (Tanner and Sutton, 2005) is the precursor of

TDO. TD networks represent the relationship of multiple predictions in ques-

tion networks. Each circular node in question networks denotes a prediction

and therefore the whole network represent multiple interrelated predictions.

When it comes to learning these interrelated predictions, TDnetworks use

a TD update rule (2.1) with the target de�ned by the question networks,

whereas TD methods use the value of the next state as the target. Suppose

there are k interrelated predictions represented in the question network, we

can approximate thei -th prediction of a state s by parametrizing it as ŷi
� (s).

The target to approximate the i -th prediction is

Z i
t = ui (Ot+1 ; ŷ1

� (St+1 ); ŷ2
� (St+1 ); :::; ŷk

� (St+1 )) ;

where ui : O � Rk ! R de�nes how the i -th prediction related to the ob-

servation and multiple predictions. Note that this interrelationship among

9



predictions is represented in question networks. The agentfollows abehaviour

policy � : S � A ! [0; 1]. The update is only performed when the current

action matches the conditional action of the prediction. Wecan learn� using

the temporal di�erence update rule as follow,

�  � + �c i (A t )[Z i
t � ŷi

� (St )]r � (ŷi
� (St )) ;

whereci : A ! [0; 1] determines whether thei -th prediction is consistent with

the agent's action,� is the step size, andZ i
t is the target for the prediction

ŷi
� (St ).

TD Networks with Options TD networks with options (TDO) extend

TD networks in a way that each prediction is de�ned as the expected target

conditioning on a course of actions rather than only one action. The option

framework (Sutton et al., 1999) provides a way to represent a course of actions

extending over several steps, which is a generalized form ofthe action. The

option framework assumes the agent has access to the environment state from

the state spaceS. The option consists of three components: a set of initiation

statesI 2 S , which speci�es the states where the option is available, a policy

� : S � A ! [0; 1], by which the agent will follow when the agent is in the

option, and a termination condition � : S ! [0; 1], which determines whether

the agent will exit the current option and start to select a new option. Note

that the primitive action is a special case of the option where the initiation

set is the whole state space, the policy is the primitive action for each state,

and the termination condition is always 1.

When it comes to learning these interrelated predictions, TDO use TD

update rule (2.1) with the target de�ned by the question networks. As a

contrast, TD methods use the value of the next state as the target. Suppose

there arek interrelated predictions represented in question networks, we can

approximate the i -th prediction of a state s by parametrizing it as ŷi
� (s). The

10



target Z i
t to approximate the i -th prediction is as follows:

Z i
t = � i (Ot+1 ; St )U i

t + [1 � � i (Ot+1 ; St )]ŷi
� (St+1 ); (2.2)

where

U i
t = ui (Ot+1 ; ŷ1

� (St+1 ); ŷ2
� (St+1 ); :::; ŷk

� (St+1 )) : (2.3)

Here, similarly to TD networks, ui : O � Rk ! R de�nes how thei -th predic-

tion related to the observation and multiple predictions. Note that this inter-

relationship among predictions is represented in questionnetworks. Whether

the option is terminated at time step t + 1 is indicated by � i (Ot+1 ; St ). If

� i (Ot+1 ; St ) = 1, then the target is U i
t that is related to the observation and

multiple predictions. This relationship is speci�ed in thequestion network. If

� i (Ot+1 ; St ) = 0, then the target is the prediction itself at the next step. The

agent follows abehaviour policy� : S � A ! [0; 1]. The update is only per-

formed when the current action matches the option's policy of the prediction.

We can learn� using the temporal di�erence update rule as follow,

�  � + �� i (A t ; St )[Z i
t � ŷi

� (St )]r � (ŷi
� (St )) ;

where � i
t : A � S ! [0; 1] determines whether the option of the predictionyi

t

is being followed (that is, whether the option's policy is consistent with the

current action), the step size is� , and Z i
t is the target for the predictionŷi

� (St ).

2.3 State Representations

From preceding discussions, we introduced how to learn interrelated predic-

tions by temporal di�erence networks with options in the case assuming the

environment state is available to the agent. Speci�cally, the learned approxi-

mate value functions are written as functions of the environment state. In this

section, we will �rstly explain the concept of Markov statesand environment

states. We then describe the general form of state representations, which can

11



be used as the environment states when they are not availableto an agent.

Finally, we introduce two state representation approaches,the predictive rep-

resentations of state approach, and the approach based on simple recurrent

neural networks.

In many real-world cases, an agent often can only acquire anobservation

containing partial information of the environment state at each step. As a

result, an agent will only experience a stream of interleaved actions and ob-

servations,A0; O1; A1; O2; :::. Take an example of a mouse exploring a maze:

only based on its current sense of surrounding obstacles, the mouse doesn't

know for certain its exact location in the maze, and whether the path ahead

can lead to an exit.

The Markov stateis a summary of the past experiences that contains su�-

cient information to predict anything about the environment. We will formally

explain the concept of the Markov state as follow. Thepast experiencesis a

trajectory of interleaving actions and observations de�ned as history,

H t = A0; O1; A1; O2; :::; At � 1; Ot :

The Markov state summarizesthe past experiences as a function of history

St = f (H t ). To contain su�cient information to predict anything about the

environment means any two historiesh and h0, that are mapped to the same

state with the function f , will have the same probability of arbitrary future

experiences given the same sequence of actions as follow

f (h) = f (h0) =)
t+ kY

i = t+1

Prf Oi = oi jH t = h; A t = at ; Ot+1 = ot+1 ; :::; Ai � 1 = ai � 1g

=
t+ kY

i = t+1

Prf Oi = oi jH t = h0; A t = at ; Ot+1 = ot+1 ; :::; Ai � 1 = ai � 1g:

(2.4)

In contrast with the Markov state, the environment state notonly contains

su�cient information to predict anything about the environ ment, but also can

12



contain more information other than a summary of history.

In the example of a mouse exploring a maze, if the mouse could maintain a

summary of past observations as it rolls forward in time, that is, incrementally

update the current summary of past based on the previous summary and

previous observations, it would have a better idea of where it is, and where

it should go next. This understanding of where one is in an environment can

be formalized as astate representation, which summarizes past experiences

incrementally in a way that contains su�cient information f or an agent to

base its decisions on. More speci�cally, state representations incrementally

summarize the past in the way of updating the current summaryof the past

based on the previous summary of the past, the previous action, and the

current observation, as in

St = u(St � 1; A t � 1; Ot ); (2.5)

where the function u is called the state-updatefunction. Note that a state

update function is a special1 way of representing the state as a summary of

history St = f (H t ). In this case, we can simplify (2.4) into one step future

experience,

f (h) = f (h0) =)

Prf Ot+1 = ot+1 jH t = h; A t = atg = Pr f Ot+1 = ot+1 jH t = h0; A t = atg:
(2.6)

This can be proved by rolling out through future experienceswhile repeatedly

applying (2.6) and (2.5). State representations are often referred to asagent

states, which can be informally understood as an agent's subjective approx-

imation of the Markov state. Unlike the Markov state which hascomplete

1For example, in an environment where the agent can only sense three observations
denoted 1,2,and 3. In the case representing the state as a summary of history where f (11) =
f (12) and f (113) 6= f (123), one can not represent it using a state-update function. This
is because state-update function has a limitation the the next state representation must be
the same if the current state representation and the next increment of experiences are the
same. In contrast, representing states with history does not has such limitation.

13



information for predicting anything about the environment, the agent state is

only required to containsu�cient information for an agent's purpose.

The predictive state representationsapproach directly represents the state

of the environment in terms of predictions about the future. The idea of

representing the state with predictions is based on the hypothesis that states

with the same predictions about the future will be the same (Littman and

Sutton, 2002). In this work, predictions making up the stateare de�ned as

interrelated general value functions in TDO, and we focus onthe problem of

using state representation to predict future experiences of interest. Note that

predictions making up the state can generally di�er from thepredictions of

interest, but here, we only consider using predictions of interest to form the

state to avoid the problem of discovering which set of predictions would be

most useful to include in the state. As illustrated in Figure 2.2a, predictive

state St � 1 is represented by a concatenation ofk predictions of interestsyi
t � 1

as follows:

St � 1 = [ y1
t � 1; y2

t � 1; :::; yk
t � 1]:

The initial state S0 is set to a vector of zeros. The stateSt is a mapping of the

previous stateSt � 1, previous actionA t � 1, and current observationOt with the

function f . Note that the state update proceeds simultaneously with making

predictions yi
t as follows:

yi
t = f i (St � 1; A t � 1; Ot ):

Alternatively, the hidden states in simple RNNs (Recurrent Neural net-

works) can be used as state representations. Here, simple RNNs are also known

as Elman networks (Elman, 1990), which are probably the simplest form of

RNNs whose hidden states are fed back into themselves during the next step of

input. In the typical sequence modeling scenario, the hidden states in RNNs

are often used to summarize history by minimizing the prediction error for

14





we introduced how to represent the state when the environment state is not

fully exposed to an agent. In this section, we put these two together and il-

lustrate how to learn interrelated predictions of interestwith the use of state

representations. We can approximate the next statest by parametrizing it as

f � 2 (ŝt � 1; at � 1; ot ), and approximate each predictionyi (s) by parametrizing it as

ŷi
� 1

(s). Accordingly, TDO learns interrelated predictions by replacing the en-

vironment state in (2.3) and (2.2) with the approximated state representation

as follows:

U i
t = ui (Ot+1 ; ŷ1

� 1
(ŝt+1 ); ŷ2

� 1
(ŝt+1 ); :::; ŷk

� 1
(ŝt+1 )) ;

Z i
t = � i (Ot+1 ; ŝt )U i

t + [1 � � i (Ot+1 ; ŝt )]ŷi
� 1

(ŝt+1 ); (2.7)

� 1  � 1 + �� i (A t ; ŝt )[Z i
t � ŷi

� 1
(ŝt )]r � 1 (ŷi

� 1
(ŝt )) ; (2.8)

� 2  � 2 + �� i (A t ; ŝt )[Z i
t � ŷi

� 1
(ŝt )]ŷi

� 1
(ŝt )r � 2 (ŝt ): (2.9)

Here,ui , � i , and � i are de�ned in the same way as in Section 2.2. We illustrate

the pseudo-codes in Algorithm 1.

Note that we need to compute gradientr � 2 (ŝt ) in a recursive way, be-

cause state update is performed recursively as in ^st = f � 2 (ŝt � 1; at � 1; ot ). There

are two major methods for revolving this issue. (1) Backpropagation through

time (BPTT) directly computes gradient tracing back through time (Rumel-

hart et al., 1985). The time complexity of BPTT is O(n), if it is performed

n steps backward through time. Additionally, performing BPTT along a long

history is di�cult (Bengio et al., 1994). An approximate solution is to trun-

cate the computing of the gradient intok time steps back in history, namely

k� BPTT. (2) Real-time recurrent learning (RTRL) is proposed to compute

the gradient without tracing backward through history (Will iams and Zipser,

1989). However, RTRL has a space complexity ofO(n) and time complexity

of O(n2), where n is the number of weights needed to compute the gradient.

In the work, we focus on the problem of learning prediction ina time and
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Algorithm 1 Learning interrelated predictions with state representations

1: Initial state s0 and t = 1
2: Take action from behaviour policy,a0 � � and receive observationo1 from

environment
3: for each time stept = 1; � � � ; T do
4: Estimate current state, st = f (st � 1; at � 1; ot )
5: Compute predictions,yi

t = yi (st )
6: Take action from behaviour policyat � � , and receive observationot+1

from environment
7: Estimate next state st+1 = f (st ; at ; ot+1 )
8: Compute predictionsyt+1 = y(st+1 )
9: Compute termination function � i

t+1 = � i (ot+1 ; st )
10: Compute target zi

t according to (2.7).
11: Perform update on� 1; � 2 according to (2.8) and (2.9).
12: at � 1  at , ot  ot+1

13: end for
14:

space e�cient way. Therefore, we compute the gradient using1-BPTT that

truncates the computing of the gradient into one time step back in history.
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Chapter 3

Test of Predictive
Representations Hypothesis

One of the main contributions of this thesis tests thepredictive representa-

tions hypothesisthat representing the state of the world in terms of predic-

tions about the future will result in good generalization. Chapter 2 provides

the preliminary knowledge for this chapter: it introduces the concept of in-

terrelated predictions and how to learn these predictions with the use of state

representations.

In Section 3.1, we elaborate on the predictive representations hypothesis

and introduce strategies to ensure a fair test of the hypothesis. In Section 3.2,

we describe four scenarios in which we perform the test. In Section 3.3, we

de�ne the metric for good generalization as it relates to thehypothesis. In

Section 3.4 and Section 3.5, we explain the experiment details and analyze

the results of the test. In Section 3.6, we study how the choice of hyper-

parameters in
uences the generalization performance of the approach that

represents states explicitly with predictions.

3.1 Predictive Representations Hypothesis

The predictive representations hypothesissuggests that representing the state

of the world in terms of predictions about the future will result in good gen-
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eralization. In this chapter, representing the state of the world in terms of

predictions means using predictions explicitly in the state.Good generaliza-

tion is measured by the learning performance in both accuracy andspeed when

making multiple predictions of interest. A good state representation should

not only be able to capture su�cient information to compute the next agent

state, which will be used to make the predictions of interest, but also avoid

carrying redundant information that can slow down learning. Note that the

use of function approximators may in
uence the generalization performance

when using state representations. This is because functionapproximators are

commonly used to acquire state representations and make predictions, and

di�erent function approximators may result in entirely di� erent learning per-

formance.

In the test, we compare the generalization performance of the predictive

approach with that uses hidden states in simple RNNs (Recurrent Neural

Networks) as state representations. We name this the state representation

approach based on simple RNNs. Here, simple RNNs are also known as El-

man networks (Elman, 1990), which are probably the simplestform of RNNs

whose hidden states are fed back into themselves during the next step of in-

put. Since many factors may a�ect the generalization performance when using

state representations, we develop several strategies to ensure the fairness of the

test. (1) We design four scenarios where the predictions of interest vary, and

especially consider the cases where the predictions makingup the states is in-

su�cient to compute the next agent states. (2) We emphasize the role of the

state representations by performing the test in environments where the state

of the world is not fully exposed to the agent. (3) We perform the test using

a variety of function approximators, each of which have di�erent capacities.

This is to alleviate the e�ect of using function approximators for computing

state representations and predictions.
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vector indicating the cell color in front of it. There are sixcolors in total:

red, green, blue, magenta, yellow, and white, as shown in Figure 3.2a. In the

C-9 scenario, we design the goal for an agent as making nine predictions in

the Compass World environment, and these predictions may not be su�cient

to compute the next agent state. We illustrate these nine predictions as nine

nodes in question networks shown in Figure 3.2b. Node 1, 2, and 3predict

the expected observation when taking a primitive action left, forward, or right.

Node 4 estimates the expected outcome if the agent follows thebehavior policy

and terminates when a wall is sensed or spontaneously with probability 0.5.

Node 5 estimates the expected outcome if the agent takes aleap, during which

it continuously takes action forward until a wall is sensed.Node 6, 7, 8, and

9 predict the expected outcome as the agent follows the sequence of actions

left-leap, leap-left-leap, right-leap, and leap-right-leap, respectively. In theC-

5 scenario, we design the goal for an agent as making �ve predictions in the

environment of Compass World, and expect these predictionsare su�cient to

compute the next agent state. We illustrate these predictions as �ve nodes

in question networks shown in Figure 3.2c. We keep the prediction nodes of

5,6,7,8, and 9 in the scenario ofC-5 and replace the green cells of the wall by

blue ones.

3.3 Error Metric

The generalization performance of a state representation approach is measured

in terms of the learning performance in both accuracy and speed when making

interrelated predictions of interest. The quality of estimated predictions is

measured in comparison with the ground truth from an oracle.At each time

step t, we compute Root Mean Square Error (RMSE) between the ground
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truth and the estimated one as follows,

error t =

s
1
m

X

i

(yi
t � yi

true;t )2;

whereyi
true;t is the ground true for each predictionyi

t and m is the number of

interrelated predictions. We illustrate the performance of learning predictions

in the aspects of mean and standard error as follow,

� t =
1
n

nX

k=1

error k
t

� t =
1

p
n

s P n
k=1 (error k

t � � t )2

n � 1
;

wheren is the number of repeats of the experiment.

3.4 Experiment Details

In the test, we compare the generalization performance of the predictive ap-

proach with the approach based on simple RNNs. We sweep over di�erent

combinations of step size and function approximator capacity, and we then

select the one with the best performance for each algorithm.Speci�cally, we

�rst compute the area under each learning curve by averagingthe RMSE every

one thousand time steps. Then we select the hyper-parameterwith the lowest

area under the learning curve. As shown in Figure 2.2a, the mapping f is a

two-layer fully connected neural networks with a sigmoid activation function,

which is also applied to the outputs layer. As shown in Figure 2.2b, the map-

ping g(1) ; g(2) ; are two separate single-layer fully connected neural networks

followed by a sigmoid activation function. Note that the dimension of the hid-

den layer inf and the dimension of hidden states in simple RNNs will in
uence

the capacity of function approximators. For convenience, we refer to this as

the dimension of the approximator. Table 3.1 summarizes the combinations of

the dimension of the approximator and step size used for the test in di�erent
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Scenario Step Size Dims of Approximators

Predictive, R-2 (0.01 0.1 1.010.0) (6 2039 65 96 135 230 350)
Simple RNNs, R-2 (0.01 0.1 1.010.0) (5 10 15 2025 30 40 50)
Predictive, R-6 (0.01 0.1 1.010.0) (5 12 23 37 75125 145 187 262)
Simple RNNs, R-6 (0.01 0.1 1.010.0) (5 10 15 20 3040 50 60)
Predictive, C-5 (0.01 0.1 1.010.0) (7 18 32 50 71 95 189313)
Simple RNNs, C-5 (0.01 0.11.0 10.0) (0 10 20 30 40 50 6090 120)
Predictive, C-9 (0.01 0.11.0 10.0) (6 15 25 38 52 69 108 155210)
Simple RNNs, C-9 (0.01 0.11.0 10.0) (0 10 20 30 40 50 60 80 100 120)

Table 3.1: A summary of hyper-parameters used for learning predictions with
the predictive approach and the approach based on simple RNNs.The under-
line indicates the hyper-parameter setting with the best performance for each
algorithm.

scenarios. The underline indicates the hyper-parameter setting with the best

performance for each algorithm.

In the ring world environment, the input observation for theagent at each

time step is a two-dimensional one hot vector01 or 10, and the action is a

two-dimensional one-hot vector, which indicatesnext and previous. The in-

terrelated predictions are learned in an o�-policy manner where the policy

associated with the predictions is not consistent with the agent's behavior

policy. The agent follows a random behavior policy� with equal action prob-

abilities for the actions next and previous. We perform the experiments under

one million time steps of interaction with the environment.Each experiment

is repeated 30 times.

In the compass world environment, the input observation forthe agent at

each time step is a 6-dimensional one hot vector indicating six colors as shown

in Figure 3.2a, and the action is a 3-dimensional one hot vector, which indicates

forward, left and right. The interrelated predictions are learned in an o�-policy

manner where the policy associated with the predictions is not consistent with

the agent's behavior policy. The agent follows a random behavior policy �

with action probabilities of 0.5, 0.25, and 0.25 for the actions forward, left,
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than those of the hidden states in simple RNNs. If one learns predictions in a

tabular form, creating a table, each item of which corresponds to a cluster of

state representations, the predictive approach can learn faster as it maintains

a smaller table than the approach based on simple RNNs. Why are there fewer

clusters of the predictive states? Suppose one groups the environment states

by their predictions of interest. For each group of environment states, the

predictive states are the same, whereas the hidden states insimple RNNs can

carry extra information and thus can be completely di�erent. In addition, any

two predictive states for two di�erent groups of environment states must be

di�erent. This also applies to the hidden states in simple RNNs.

In the R-2 and C-9 scenarios, we observe that the predictive representation

hypothesis does not hold anymore, as shown in Figure 3.3. The predictions

making up the predictive state can not capture su�cient information to com-

pute the next agent state, whereas the hidden states in simple RNNs can adjust

its space to obtain extra information to overcome this problem. For example in

the R-2 scenario, if the predictions are learned correctly,the predictive states

for the environment state C and D are the same. Here, states A, B,C, D,

and E are �ve environment states in the Ring World environment, as shown

in Figure 3.1a. After taking one step, clockwise, states C and Dend up with

states D and E, respectively. The predictions of interest for the state D and

E di�er. However, if one performs state update based on the predictive states

and the action of one step clockwise, the updated predictivestate of the states

C and D are the same. In the C-9 scenario, if the Wander prediction is per-

fectly learned, predictive states do contain su�cient information for updating

the next state. However, the estimate of the Wander prediction tends to have

high variance and thus is not suitable to form the state.

We further analyze the learning performance averaged over asubset of

predictions which share similar learning performance, referred to here as the
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individual performance. We omit the individual results, which are consistent

with the ones averaged over all predictions. In Figure 3.4, weillustrate in-

dividual performance for the C-9 scenario in three groups:Group One Step,

Group With Leap, and Wander. (1) Group One Step averages result over one-

step predictions, each of which predicts the expected observation when taking

a primitive action left, forward, and right, respectively. (2) Group With Leap

averages results over predictions with the leap, each of which predicts the ex-

pected outcome as the agent follows either the sequence of actions left-leap,

leap-left-leap, right-leap, or leap-right-leap. (3) Wander is the result only for

the option of Wander. It is no surprise that the approach based on simple

RNNs generalizes better in one step predictions as its hidden states can ad-

just freely to carry extra information. In fact, predictions in the C-5 scenario

share similar predictions as of Group With Leap in C-9. When comparing the

individual performance of Group With Leap in the C-9 scenario, as shown in

Figure 3.4b, with the overall performance in C-5, as shown in Figure 3.3d, the

predictive approach's generalization performance is almost the same in these

two scenarios, whereas the approach based on simple RNNs generalizes much

better in the C-9 scenario. Because more predictions in C-9 can add strong

supervision on the hidden states in simple RNNs and thus help itconverge to

decent state space.

3.6 Parameter Study

Hyper-parameters include combinations of step size and function approxima-

tor capacity. Here the capacity of the function approximatoris determined by

the dimension of the approximator, which refers to the dimension of the hidden

layer in the predictive approach and dimension of the hiddenstates in simple

RNNs as described in Section 3.4. To visualize the generalization performance

over di�erent hyper-parameter settings, we roughly measure the learning per-
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formance of speed and accuracy as the averaged RMSE during the �rst and last

time period, respectively. More speci�cally, the �rst tenth and the last tenth

of the period are selected for the ring world environment, whereas the �rst

three tenths and the last tenth are chosen for the compass world environment.

Since the predictive approach and the approach based on simple RNNs are

using completely di�erent function approximators, we summarize their perfor-

mance along with the total number of weights of the approximators. The total

number of weights for these two approaches is computed as,

NsimpleRNNs = ( h + i + 1) � h + ( h + 1) � n

Npredictive = ( n + i + 1) � h + ( h + 1) � n

wheren is number of predictions of interest,h is the dimension of approxima-

tors, and i is the dimension of the inputs, which includes one step action and

observation.

We �rst study how the capacity of function approximators in
uences the

generalization performance of the predictive approach andthe approach based

on simple RNNs while step size is optimal. As shown in Figure 3.6, the pre-

dictive approach achieves decent generalization performance with less number

of weights in function approximators. We also observe that the approach

based on simple RNNs is less sensitive to the number of weights in function

approximators. We then investigate how the step size a�ectsthe general-

ization performance of the predictive approach and the approach based on

simple RNNs while the capacity of function approximators vary. As shown in

Figure 3.7i and Figure 3.8, we observe that the predictive approach and the

approach based on simple RNNs are comparably sensitive to the step size.
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Chapter 4

Predictive State Update

This chapter introducespredictive state update(PSU), a novel approach that

utilizes predictions to boost the performance of a broad class of existing state

representations that seeks to acquire predictive knowledge. PSU is one main

contribution of this thesis. The idea of PSU comes from the results of testing

the predictive representations hypothesis as discussed inChapter 3.

In Section 4.1, we introduce PSU and how to use PSU to construct state

representations for making predictions. In Section 4.2, weexplain the exper-

iment details when testing the generalization performanceof the use of PSU.

In Section 4.3, we analyze the generalization performance of using PSU with

existing state representations approaches and additionally compare them with

the predictive approach. In Section 4.4, we study how the choice of hyper-

parameters in
uences the generalization performance of the use of PSU. In

Section 4.5, we perform an ablation study of PSU through an empirical study

of an alternative approach combining predictions with state representations.

4.1 Predictive State Update

Inspired by the results that predictive representations hypothesis does hold

in speci�c scenarios, we introduce a novel state update rule, Predictive State

Update (PSU), that incrementally compute the next state from the current
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state, while beingaware of current predictions of interest in addition to the

next increment of experiences (the current action and the next observation).

Conventionally, past experiences are only interleaved actions and observations,

as in H t = A0; O1; A1; O2; :::; At � 1; Ot . State representations incrementally

summarize the past with a state update rule that computes thenext state

based on the current state, the current action, and the next observation, as

in St+1 = u(St ; A t ; Ot+1 ). In contrast, PSU constructs the next state while

being aware of the current predictionsyt in addition to the next increment of

experiences (A t and Ot+1 ), as in St+1 = z(St ; A t ; Ot+1 ; yt ).

Why does one need to be aware of predictions as part of history informa-

tion to construct state representations? When state representations are used

for making predictions of interest, current predictions ofinterest are computed

from current state representations with a mapping function. Therefore, cur-

rent predictions can be used together with current states toform the next

states. On the other hand, when analyzing why predictive representations

hypothesis does hold, we observe that for the same environment states, their

predictions of interest must be the same, whereas their state representations

can be completely di�erent. Explicitly including current predictions to form

next states introduces the interesting phenomenon that if predictions of inter-

est are the same then the states are possibly to be the same even though the

state representations di�er.

We illustrate how to use PSU to construct state representations and make

predictions of interest, as shown in Figure 4.1a. We �rstly concatenate k

predictions of interestsyi
t � 1 as in the predictive approach,

pt � 1 = [ y1
t � 1; y2

t � 1; :::; yk
t � 1]:

We then form the current stateSt 2 Rn by a mapping of previous predictions

pt � 1, previous stateSt � 1, previous action A t � 1, and current observationOt
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the next observation). In the case where we instantiate PSU with the pre-

dictive state approach, if we use current predictions of interest to form the

predictive state in the next step, then this instantiation of PSU degenerates

to the predictive approach. In this thesis, we focus on instantiating PSU with

three commonly used state representation approaches that are based on simple

recurrent neural networks, LSTMs (Long Short-Term Memory networks), and

GRUs (Gated Recurrent Units networks). We name these instantiations as

PSU-SRNN, PSU-LSTM, and PSU-GRU. Here, LSTMs and GRUs are vari-

ants of RNNs that adopt di�erent gating mechanisms to force thegradient

directly 
ow over time and thus improve simple RNNs' ability to capture tem-

poral information (Hochreiter and Schmidhuberet al., 1997; Choet al., 2014).

4.2 Experiment Details

We study how the use of PSU a�ects the generalization performance of ap-

proaches based on simple RNNs, LSTMs, and GRUs in the R-2, R-6, C-5,

and C-9 scenarios, as described in Section 3.2. We additionally compare these

instantiations of PSU with the predictive approach. We sweep over di�erent

combinations of step size and function approximator capacity, and we then

select the one with the best performance for each algorithm.Speci�cally, we

�rst compute the area under each learning curve by averagingthe RMSE ev-

ery one thousand time steps. Then we select the hyper-parameter with the

lowest area under the learning curve. As shown in Figure 4.1a, the mappings

of g is one single-layer fully connected neural networks with a sigmoid acti-

vation function, and the mappingz is replaced by the update function used

in the existing state representation approach. Note that thedimension of the

hidden states in these existing state representations approaches and their in-

stantiations of PSU will in
uence the capacity of the function approximator.

For convenience, we call this thedimension of the approximator. Table 4.1
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Scenario Step Size Dims of Approximators

R-2 (0.01 0.1 1.0 10.0 100.0) (5 10 15 20 25 30 40 50)
R-6 (0.01 0.1 1.0 10.0 100.0) (2 5 10 15 20 30 40 50 60)
C-5 (0.01 0.1 1.0 10.0 100.0) (10 20 30 40 50 60 90 120)
C-9 (0.01 0.1 1.0 10.0 100.0) (10 20 30 40 50 60 80 100 120)

Table 4.1: A summary of hyper-parameters used for learning predictions with
approaches based on simple RNNs, LSTMs, GRUs, and their instantiations of
PSU in di�erent scenarios.

Scenario PSU-SRNN LSTM PSU-LSTM GRU PSU-GRU

R-2 (1.0 30) (1.0 15) (1.0 30) (0.1 20) (0.1 15)
R-6 (1.0 15) (1.0 30) (1.0 40) (0.1 10) (0.1 15)
C-5 (0.1 60) (0.1 90) (0.1 120) (0.1 120) (0.1 90)
C-9 (0.1 120) (0.1 120) (0.1 120) (0.01 120) (0.01 100)

Table 4.2: A summary of the hyper-parameter setting with thebest perfor-
mance for each algorithm in each scenario.

summarizes the combinations of the dimension of the approximator and step

size used for learning predictions with approaches based onsimple RNNs,

LSTMs, GRUs, and their instantiations of PSU in di�erent scenarios. Ta-

ble 4.2 summarizes the hyper-parameter setting with the best performance for

each algorithm. Other experiment details are exactly the same as described

in Section 3.4.

4.3 Results

As shown in Figure 4.2, we observe that the use of PSU can boost the general-

ization performance of approaches based on simple RNNs, LSTMs, and GRUs.

Firstly, this result supports the intuition that current pre dictions of interest

can be used as part of the history to form the next states. Secondly, this

result implies that being aware of predictions can help the hidden states not

be too 
exible and thus leads to faster learning, as explicitly including current

predictions to form next states introduces the interestingphenomenon that
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if predictions of interest are the same then the states are possibly to be the

same even though the state representations di�er. We also observe that PSU-

SRNN, PSU-LSTM, and PSU-GRU outperform the predictive approach. This

is because the hidden state of these instantiations is capable of �nding another

state space, and thus they generalize better than the predictive approach.

4.4 Parameter Study

We study how the use of PSU a�ects the hyper-parameter sensitivity of ap-

proaches based on simple RNNs, LSTMs, and GRUs, through visualization.

Hyper-parameters are combinations of step size and functionapproximator

capacity. Here the capacity of the function approximator is determined by

the dimension of the approximator, which refers to as the dimension of the

hidden states in these existing state representations approaches and their in-

stantiations of PSU. To visualize the generalization performance over di�erent

hyper-parameter settings, we roughly measure the generalization performance

for each setting as the averaged RMSE during the �rst and lasttime period,

respectively. More speci�cally, the �rst tenth and the last tenth of the period

are selected for the ring world environment, whereas the �rst three tenths and

the last tenth are chosen for the compass world environment.Since di�erent

state representation approaches are using di�erent function approximators, we

summarize their performance along with the total number of weights in the

approximators. The total number of weights for PSU-SRNN, LSTM,PSU-

LSTM, GRU, and PSU-GRU are computed as following,

NP SU� SRNN = ( h + i + n + 1) � h + ( h + 1) � n

NLST M = 4 � h � (i + h + 1) + ( h + 1) � n

NP SU� LST M = 4 � h � (i + h + 1 + n) + ( h + 1) � n
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NGRU = 3 � h � (i + h + 1) + ( h + 1) � n

NP SU� GRU = 3 � h � (i + h + 1 + n) + ( h + 1) � n;

where n is number of predictions of interest,h is the dimension of the ap-

proximator, and i is the dimension of the inputs, which includes action and

observation at each time step. Note that the number of weightsfor approaches

based on simple RNNs, LSTMs, and GRUs isO(h � (i + h+ n)), and the num-

ber of weights only increasesO(h � n) when instantiating PSU with these state

representations approaches.

First, as shown in Figure 4.3, 4.4, and 4.5, the use of PSU can boost

the generalization performance of approaches based on simple RNNs, LSTMs,

and GRUs with comparable number of weights in function approximators.

When comparing PSU-SRNN and the predictive approach in Figure 4.3, we

observe that PSU-SRNN achieves decent generalization performance with

fewer number of weights in function approximators and is more robust when

this number of weights grows. Secondly, as shown in Figure 4.6, Figure 3.7i

and Figure 3.8, we observe that the use of PSU does not a�ect thesimple

RNNs' sensitivity to the step size. This conclusion is also true for LSTM and

GRU. For brevity, we omit the plots studying these algorithms' sensitivity to

the step size.

4.5 Ablation Study

One naive solution to combining predictions and state representations is to

concatenate predictive states and hidden states in simple RNNs, and compute

predictions based on this concatenation. We name this method Concatenation

of the Predictive approach and Simple RNNs (CPSR). In this section, we

empirically demonstrate CPSR is not an e�ective solution towards combining

predictions and state representations.
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As shown in Figure 4.1b, we �rstly concatenatek predictions of interests

yi
t � 1 as in the predictive approach,

pt � 1 = [ y1
t � 1; y2

t � 1; :::; yk
t � 1]:

We then form the current hidden stateht 2 Rn by a mapping of previous hid-

den stateht � 1, previous actionA t � 1, and current observationOt with function

g(1) ,

ht = g(1) (ht � 1; A t � 1; Ot )

The initial state S0 is set to a vector of zeros. Each predictionsyi
t is computed

from two parts: one is the mapping of hidden stateht with function gi
(2) , and

another is the mapping of previous predictionsyt � 1, previous actionA t � 1, and

current observationOt with function f i ,

yi
t = � (f i (pt � 1; A t � 1; Ot ) + gi

(2) (ht )) ;

where� is an activation function such as the sigmoid function.

We study CPSR's generalization performance in the R-2, R-6,C-5, and

C-9 scenarios while comparing with the approach based on simple RNNs and

the predictive approach. We sweep over di�erent combinations of step size

and function approximator capacity. As shown in Figure 2.2a, the mapping

f is a two-layer fully connected neural networks with a sigmoid activation

function, and the mapping g(1) , and g(2) are two separate single-layer fully

connected neural networks without an activation function.The dimension of

hidden layers in the mappingf can be understood as a bottleneck of predictive

state, which controls the amount of predictive informationthat can in
uence

the next predictions. We call this the dimension of the predictive states.

Analogously, the dimension of hidden states in simple RNNs controls their

impact on the next predictions. It is obvious that if the dimension of one of

these two states equals zero, then CPSR degenerates to another state approach.
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Scenario Step Size Dims of Predictive Dims of simple RNNs

R-2 (0.001 0.01 0.1 1.0 10.0) (0 4 16 32 64) (0 5 20 30 40 50)
R-6 (0.001 0.01 0.1 1.0 10.0) (0 5 10 40 75 128) (0 4 16 32 50)
C-5 (0.001 0.01 0.1 1.0 10.0) (0 7 32 95 189) (0 32 60 90 120)
C-9 (0.001 0.01 0.1 1.0 10.0) (0 4 8 32 64 128) (0 20 40 80 120)

Table 4.3: A summary of hyper-parameters swept over when learning predic-
tions with CPSR.

We summarize the combinations of the dimension of these two states and step

size in di�erent scenarios in Table 4.3. Other experiment details are exactly

the same as described in Section 3.4.

To visualize the performance over a large amount of hyper-parameter set-

tings, we roughly measure the generalization performance for each setting as

the averaged RMSE during the initial and last period of time,respectively.

More speci�cally, the �rst tenth and the last tenth of the period are selected

for the ring world environment, whereas the �rst three tenths and the last tenth

are chosen for the compass world environment. Since di�erent state represen-

tation approaches are using di�erent function approximators, we summarize

their performance along with the total number of weights of the approximators.

The total number of weights for CPSR is computed as

NCP SR = ( h + i + 1) � h + ( n + i + 1) � n + ( h + 1) � n

wheren is number of predictions of interest,h is the dimension of approxima-

tors, andi is the dimension of the inputs, which includes action and observation

at each time step.

We demonstrate CPSR's generalization performance when thecapacity of

function approximators varies, but the step size is optimalin Figure 4.7. In

the R-2 and C-9 scenarios, the best performance of CPSR is thesame as the

simple RNNs. In the R-6 and C-5 scenarios, the best performanceof CPSR is

the same as the predictive state approach. Thus, we can conclude that, the
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naive concatenation of predictive states and hidden statesin simple RNNs is

not an e�ective way to combine these two approaches.
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Chapter 5

Related Works

This chapter presents existing works related to our exploration of predictive

representations of state in this thesis. In Section 5.1, we introduce literature

using predictions as knowledge. In Section 5.2, we describeseveral attempts

to learn and discover a set of predictions to form the state. In Section 5.3, we

compare our interpretation of predictive representationshypothesis with those

in existing works. In Section 5.4, we brie
y summarize the principal works

using recurrent neural networks (RNNs) to represent and learnpredictions.

In Section 5.5, we present a survey of works taking advantageof both RNN

based and the predictive state representation approaches.

5.1 Predictions as Knowledge

Humans accumulate knowledge about the world via interactions with the en-

vironment. Predictive knowledge about the environment is represented by the

expected outcome (predictions) of possible interactions.Cunningham (1972),

and Drescher (1991) propose to ground knowledge in experiences, which is one

major characteristic of predictive knowledge. Tanner and Sutton (2005) pro-

pose temporal di�erence networks for representing and learning interrelated

predictions. These predictions are also used as state representations based on

the intuition that predictions can capture knowledge aboutthe environment.
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Sutton et al. (2011) formalize knowledge about the environment as a large

number of general value functions (GVFs), each of which captures a portion

of world knowledge through its own policy, reward function,and termination

function. GVFs can be informally understood as a general form of predictions.

Predictive knowledge frameworks have demonstrated their advantages in

several real-life applications. In the domain of robotics,thousands of predic-

tions about sensory inputs at multiple timescales can be learned in an e�ective

and online fashion (Modayilet al., 2014). White (2015) adopt advanced o�-

policy method gradient-TD (Suttonet al., 2009) to learn predictions on a robot

in parallel. Edwardset al. (2016) show that GVFs can be used to improve the

control method in the domain of powered prosthetic arms.

5.2 Predictive Representations of State (PRS)

Predictive representations of state (PRS) form the state asa vector of predic-

tions about the future - the occurrence of a set of action{observation sequences,

termed as tests (Littman and Sutton, 2002). A set of tests that are su�cient

to make any prediction about the future is named ascore tests. If core tests

are given beforehand, alearning algorithm is needed to estimate the core tests

through interactions with the environment. Otherwise, theproblem of �nding

core tests is referred to asdiscoveringPRS.

Several attempts have been made to learn and discover core tests in PRS.

Singh et al. (2003) present the �rst algorithm to estimate the core testsby

updating one-step extensions of all the core tests and null test. Singhet al.

(2004) propose the �rst procedure for discovering core tests in PRS. They

introduce a system-dynamics matrix whose element indicatethe prediction for

a test given a history. The system-dynamics matrix can be estimated through

sampling from the environment. The process for discoveringcore tests is to

gradually increase the length of the test until the rank of the system-dynamics

51



matrix does not grow. Instead of measuring the predictions by the Monte Carlo

method, McCracken and Bowling (2017a) present an algorithmto estimate

the predictions by gradient descent. This algorithm can be used to learn and

discover PRS in an online fashion. Bowlinget al. (2006) introduce a method

for developing a good explorative policy when estimating predictions by the

Monte Carlo approach.

Spectral learning has recently been exploited for discovering core tests of

PRS in high dimensional environments. Rosencrantzet al. (2004) adopt a

principal-components-based algorithm to learntransformed PRS (a variant

of PRS) from a large set of tests, which contains su�cient tests to form the

state. Bootset al. (2011) use a spectral algorithm to learn transformed PRS

in a high-dimensional robot environment and perform point-based planning in

the learned model. Kuleszaet al. (2015) present an algorithm to search for

tests when a large set of tests with su�cient statistics is not available.

Value functions can be used as a generalized form of tests. Tanner and

Sutton (2005) and Rafolset al. (2006) extend TD methods to learn interrelated

value functions and use these predictions as state representations in a partially

observable environment. Makino and Takagi (2008) propose an algorithm

for discovering interrelated predictions in TD networks (Tanner and Sutton,

2005) in an online fashion. Suttonet al. (2011) formalize knowledge about

the environment as a large number of general value functions(GVFs), each of

which captures a portion of world knowledge through its own policy, reward

function, and termination function. Schlegelet al. (2018) reformulate the

interrelated value functions (Tanner and Sutton, 2005; Rafols et al., 2006) in

the language of GVFs.

In this work, we form the predictive state via a vector of interrelated GVFs,

and focus on the problem of learning multiple interrelated GVFs of interest.
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5.3 Predictive Representations Hypothesis

The predictive representations hypothesis suggests that representing the state

of the world in terms of predictions about the future will result in good gen-

eralization.

In this thesis, representing the state of the worldmeans explicitly using

interrelated GVFs to form the state (Rafolset al., 2005; Tanner and Sutton,

2005; Rafolset al., 2006; Schaulet al., 2013; Schlegelet al., 2018). By contrast,

there are several attempts that implicitly utilize predictions to learn state rep-

resentations. Venkatramanet al. (2017) learn state representations through

gradient descent with an objective of predicting the distribution of future ob-

servations. Jaderberget al. (2016) learn a robust state representation through

gradient descent while minimizing multiple predictions about the environment.

Sun et al. (2016) represent the state using a �ltered space of distribution of

future observations.

Good generalizationis usually quanti�ed by good learning performance

in both accuracy and speed when an agent achieves a goal. One possible

goal for an agent is to maximum accumulative rewards while interacting with

the environment (Rafols et al., 2005; Schaulet al., 2013; Jaderberget al.,

2016). Another goal is to answer several prede�ned questionsabout future

experiences in the form of GVFs (Tanner and Sutton, 2005; Rafols et al.,

2006; Schlegelet al., 2018). Some works focus on one speci�c type of GVFs,

which predict k observations in the future (Sunet al., 2016; Venkatraman

et al., 2017). In this thesis, good generalization is speci�callymeasured by

good learning performance in accuracy and speed when learning interrelated

GVFs of interest.
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5.4 Recurrent Neural Networks (RNNs)

Instead of explicitly forming states from observations, the hidden states in

recurrent neural networks (RNNs) can be used as state representations. The

hidden states in RNNs summarize the history through gradient descent while

minimizing prediction errors. There is a long history of using RNNs for se-

quence modeling. Jordan (1997) proposes a recurrent connection from predic-

tions back to the hidden state, which is thus able to keep a dynamic memory.

Alternatively, Elman (1990) feeds the hidden state back to itself in a recurrent

way, which is the precursor to the development of recent RNNs. It is challeng-

ing for the hidden states in RNNs to capture information over extended time

intervals through gradient descent. Di�erent gating mechanisms, which force

the gradient to directly 
ow over time, are commonly adoptedto alleviate this

problem (Hochreiter and Schmidhuberet al., 1997; Choet al., 2014).

The use of RNNs achieves state-of-art results in sequential modeling for

natural language processing (Bengioet al., 2003), speech recognition (Graves

and Jaitly, 2014) and handwriting recognition (Graveset al., 2008). In rein-

forcement learning, RNNs are widely used especially in tasks where environ-

ment states are not accessible to the agent, such as robotic controlling (Duan

et al., 2016), and Atari games(Hausknecht and Stone, 2015).

In this work, we use the hidden states in RNNs to learn interrelated GVFs

in an online fashion, whereas existing works usually require trajectories of

history information.

5.5 PRS and RNNs

Several attempts have been made to draw insights from both PRS and RNNs

based on the intuition that spectral algorithms for learning PRS pose ap-

pealing theoretical support, whereas RNNs have powerful expression but lack
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probabilistic interpretation. In this line of works, the state representations are

used for predicting the probability of future occurrences,and learning PRS

requires access to trajectories of history information. Downey et al. (2017b)

introduce a spectral initialization when learning PRS through predictive state

inference machines (Sunet al., 2016). This method is equivalent to a spe-

cial case of the back-propagation through time algorithm inRNNs. Downey

et al. (2017a) present a new architecture of RNNs that use a bilinear transfer

function derived from the idea of state updates in PRS.

Predictions can be used as regularizers when learning the hidden states

in RNNs. Venkatraman et al. (2017) add supervision to the hidden states

in RNNs by encoding statistics of future observations into thehidden state.

Jaderberget al. (2016) use value functions for auxiliary tasks as regularizers to

obtain robust state representations. Speci�cally, they learn the hidden states

in RNNs while maximizing the rewards for both the main task andauxiliary

tasks.

In this work, we use predictions learned by TD methods to boost the gen-

eralization performance of a broad class of state representation approaches (in-

cluding but potentially not limited to RNN based approaches)without access

to trajectories of history information.
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Chapter 6

Conclusion

The Predictive state representationsapproach links predictive knowledge to

state representations by directly representing the state of the environment in

terms of predictions about the future. As our �rst contribution in this thesis,

we empirically demonstrate that explicitly using predictions to represent the

state does result in good generalization performance in speci�c scenarios. This

inspires us to explore alternative approaches for relatingpredictions to state

representations. Our second contribution is a novel state update rule, predic-

tive state update (PSU), that computes the next state while being aware of

current predictions in addition to current state and next increment of experi-

ences. Our experiment shows that (i) the use of PSU can boost the general-

ization performance of existing state representation approaches, such as those

based on simple recurrent neural networks, LSTM (Long Short-Term Memory)

networks, and GRU (Gated Recurrent Units) networks, and (ii)these instanti-

ations of PSU outperform approaches which represent statesexclusively using

predictions. Our work provides strong evidence supportingthat utilizing pre-

dictions to form state representations will result in good generalization.
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