358 Neural-Networks Models of Cognition
J.W. Donahoe and V. Packard Dorsel (Editors)
© 1997 Elsevier Science B.V. All rights reserved.

CHAPTER 19

REINFORCEMENT LEARNING IN ARTIFICIAL INTELLIGENCE

Andrew G. Barto and Richard S. Sutton
Department of Computer Science
University of Massachusetts, Amherst

ABSTRACT

This chapter provides an overview of an approach to the study of learning
that, in broad terms, has developed as a part of the field of Artificial Intel-
ligence (AI), where it is called reinforcement learning due to its roots in rein-
forcement theories of animal learning. We introduce the field from the perspec-
tive of Al and engineering, describing some of its key features, providing a
formal model of the reinforcement-learning problem, and defining basic
concepts that are exploited by solution methods, Detailed discussion of solution
methods themselves and their history are very broad topics that we do not
attempt to cover here,

Introduction

This chapter describes an approach to the study of learning that has devel-
oped largely as a part of the field of Artificial Intelligence (Al), where it is
called reinforcement learning due to its roots in reinforcement theories that
arose during the first half of this century. Reinforcement learning in AI con-
sists of a collection of computational methods that, although inspired by ani-
mal-learning principles, are primarily motivated by their potential for solving
practical problems.

Although the ideas of reinforcement learning have been present in Al since
its earliest days (e.g., Minsky, 1954, 1961; Samuel, 1959), several factors
limited their influence, Chief among them is that AT rvesearch in the 1960s
followed the allied areas of psychology in shifting from approaches based in
animal behavior toward more cognitive approaches. This shift left little room
for reinforcement theories. Although critics have argued convincingly that one
cannot understand or generate all intelligent behavior on the basis of rein-
forcement principles alone, reinforcement-learning theorists believe that Al
systems and cognitive theories that steer clear of these basic learning principles
are handicapped as well.

A related factor that limited the influence of reinforcement~learning princi-
ples in Al is the belief that they were too computationally weak to be of much
use. However, there is now ample evidence that reinforcement learning can be
very powerful. Some of the most impressive accomplishments of artificial

Reinforcement Learning in Artificial Intelligence 359

learning systems have been achieved using reinforcement learning. For exam-

ple, Tesauro (1994, 1995) designed a System that used reinforcement learning

to learn how to play backgammon at a very strong masters level; Zhang and

Dietterich (1995) used reinforcement learning to improve over the state of the

art in a job-shop scheduling problem; and Crites and Barto (1996) obtained

strong results on the problem of dispatching elevators in a multi-story building
with the aim of minimizing a measure of passenger waiting time. These are all

very large-scale problems that present formidable difficulties for conventional

solution methods, '

In addition to these successes, the growing interest in reinforcement learn-
ing among current Al researchers is fueled by the challenge of designing intel-
ligent systems that must operate in dynamic real-world environments. For
example, making robots, or robotic "agents,” more autonomous (that is, less
reliant on carefully controlled, tully anticipated conditions) requires decision-
making methods that are effective in the presence of uncertainty and that can
meet time constraints, Under these conditions, learning seems essential for
achieving skilled behavior, and it is under these conditions that reinforcement
learning can have significant advantages over other types of learning.

Despite much recent progress in machine learning, including new learning
methods for artificial neural networks, most machine-learning research has
focused on learning under the tutelage of a knowledgeable "teacher” that can
explicitly tell the system how it should respond to a set of training examples.
Although supervised learning, or learning from examples, as this type of learn-
ing is called, is an important component of more complete systems, it is not by
itself adequate for the kind of learning that an autonomous agent must accom-
plish. It is often very costly, or even impossible, to obtain instructions that are
both correct and representative of the situations in which the agent will have to
act. In uncharted territory—where one would expect learning to be most bene-
ficial-—an agent has to learn from its own experiences rather than from a
knowledgeable teacher. The primary source of information and feedback in
reinforcement learning is this interaction with an environment, Of course, an
agent should also be able to take advantage of the knowledge and experience of
other agents to the extent that it can, but it should not subordinate its own
intrinsic goals, determined by its definition of what events are intrinsically
reinforcing, to the more superficial goal of meeting the specifications set of
another, possibly fallible, agent.

Reinforcement learning has developed into an unusually multidisciplinary
research area. Researchers from Al, artificial neural networks, robotics, con-
trol theory, operations research, and psychology are actively involved. In this
chapter we introduce the field largely from the perspective of Al and engineer-
ing. We describe some of the key features of reinforcement learning, provide a
formal model of the reinforcement-learning problem, and define basic concepts

360 A.G. Barto and R.S. Sutton

that are exploited by solution methods. Reinforcement-learning methods
themselves and their histories are very broad topics that we do not attempt to
cover here. The reader should consult Barto (1992); Barto, Bradtke, & Singh
(1995); Kaelbling (1993); and Sutton (1992) for some of these details and
extensive bibliographies. We also do not discuss how this model of reinforce-
meni learning relates to details of animal-learning theory or to neuroscience.
The reader should consult Barto (1992, 1994) for some references to this litera-
ture,

Some Key Features

A good way to introduce some of the key features of reinforcement learning
is to consider a few of the examples and possible applications that have moti-
vated and guided its development:

(1) A master chess player makes a move. The choice is informed both by
planning—anticipating possible replies and counter-replies—and by immediate,
intuitive judgments of the desirability of particular positions and moves.

(2) An adaptive controller adjusts parameters of a petroleum refinery's
operation in real time. The controller optimizes the yield/cost/quality tradeoff
based on specified marginal costs without sticking strictly to the set points
originally suggested by human engineers.

(3) Phil prepares his breakfast. When closely examined, even this apparent-
ly mundane activity reveals itself as a complex web of conditional behavior and
interlocking goal-subgoal relationships: Walking to the cupboard, opening it,
selecting a cereal box, then reaching for, grasping, and retrieving it. Other
complex, tuned, interactive sequences of behavior are required to obtain a
bowl, spoon, and milk jug. Each step involves a series of eye movéments to
obtain information and to guide reaching and locomotion. Rapid judgments are
continually made about how to carry the objects or whether it is better to ferry
some of them to the dining table before obtaining others. Each step is guided
by goals, such as grasping a spoon, or getting to the refrigerator, and is in
service of other goals, such as having the spoon to eat with once the cereal is
prepared and of ultimately obtaining nourishment.

(4) A mobile robot decides whether it should enter a new room in search of
more trash to collect or start trying to find its way back to its battery-recharg-
ing station. It makes its decision based on how quickly and easily it has been
able to find the recharger in the past.

These examples share features that are so basic that they are often over-
looked. All involve an interaction between an active decision-making agent and
its environment in which the agent seeks to achieve a goal despite variations or
uncertainties in the environment. The agent's actions are permitted to affect
the future state of the environment (e.g., the next chess position, the level of
reservoirs of the refinery, the next location of the robot), thereby affecting the
options and opportunities available to the agent at later times. Correct choice

Reinforcement Learning in Artificial Intelligence 361

requires taking into account indirect, delayed consequences of action, and thus
may require foresight or planning. At the same time, the effects of actions
cannot be fully predicted, so the agent must frequently monitor its environment
and react appropriately. These three features—interactivity, uncertainty, and
explicit goals—are key features of problems requiring intelligent adaptive
behavior. Reinforcement learning is centered on such problems.

Another key feature of the reinforcement-learning approach is that it explic-
itly considers the whole problem of a goal-directed agent interacting with an
uncertain environment. This is in contrast to many approaches that address a
putative subproblem without addressing how it fits within a larger picture. We
have already mentioned, for example, that much of machine-learning research
is concerned with supervised learning without explicitly specifying how such
an ability would finally be useful. Other Al researchers have developed theo-
ries of planning without considering its role in real-time decision making or the
question of where the predictive models necessary for planning would come
from. Whether or not these approaches are yielding useful results, it is clear
that their focus on isolated subproblems has now become an important limita-
tion.

Reinforcement learning takes the opposite tack by starting with a complete,
interactive, goal-seeking system. All reinforcement-learning systems have an
explicit goal, can sense aspects of their environments, and can choose actions
to influence their environments and goals. Goals that involve planning address
its interplay with real-time action selection and the question of how environ-
mental models are acquired. Goals that involve supervised learning do so
informed by a very specific role that specifies which capabilities and features
are crifical, and which are not.

Being complete in this sense does not, of course, mean that the reinforce-
ment-learning approach currently fills in all the details, or even suggests how
they should be filled in. Reinforcement learning is developing in an abstract
framework that, while very broad in scope, requires imposing additional struc-
ture to address certain kinds of questions. There are many directions in Which
the reinforcement-learning model we describe here can be profitably specnal—
ized and extended.

An Example

The familiar children's game of naughts and crosses (Tic-Tac-Toe) provides
a very simple example of reinforcement learning. Two players take turns
playing on a three-by-three board. One player plays crosses (X's) and the other
naughts (O's) until one player wins by placing three marks in a row—horizon-
taily, vertically, or diagonally—as the "X" player has in Figure 1.

If the board fills up with neither player getting three in a row, the game is a
draw. Because a skitled player can play so as never to lose, let us assume that
we are playing against an imperfect player whose play is sometimes incorrect,

352 A.G. Barto and R.S. Sutton

X10]|0
O XX
X

FIGURE 1. Naughts and Crosses (Tic-Tac-Toe). Two players take turns until one of
them wins by placing three of his marks (X or O) in a row in any direction.

thereby allowing us to win occasionally. How might one construct a player that
will find the imperfections in its opponent's actions and learn to maximize its
chances of winning?

Although this is a very simple problem, it cannot readily be solved in a
fully satisfactory way by classical techniques. For example, the classical
"minimax" solution from game theory is not correct here because it assumes
perfect play by the opponent. A minimax solution would never reach a game
state from which it could lose, even if in fact it always won from that state
because of incorrect play by the opponent. Classical optimization methods for
sequential decision problems, such as dynamic programming (e.g., Bertsekas,
1987), can compute the optimal solution for any opponent, but require a
complete specification of that opponent, including the probabilities with which
the opponent would make each move in each board state. We assume this
information is not available a priori for this problem, as it is not for the vast
majority of problems of practical interest. On the other hand, such information
can be estimated from experience, in this case by playing many games against
the opponent. About the best one can do with classical methods is to first build
from experience a model of the opponent's behavior up to some level of con-
fidence, and then apply dynamic programming to compute an optimal solution
given the approximate opponent model. Functionally, this is not that different
from some reinforcement-learning methods.

Here is how the naughts-and-crosses problem could be solved most easily
using a simple reinforcement-learning approach. First we set up a table of
numbers, one for each possible state of the game—i.e., one for each possible
configuration of X's and O's on the three-by-three board. Each number
provides an estimate of the probability of our winning from that state. Assum-
ing we always play X's, then for all states with three X's in a row the probabil-
ity of winning is 1, because we have already won. Similarly, for all states with

Reinforcement Learning in Artificial Intelligence 363

three O's in a row, the correct probability is O as we cannot win from them.
All the other states, the nonterminals, we set initially to the same value, say
0.5, representing a 50% chance of winning.

Now we play a great many games against the opponent. To select our
moves we examine the states that would result from each of our possible
moves (one for each blank space on the board) and lock up their estimated
probabilities of winning, Most of the time we select as our move the one that
leads to the state with the highest estimated probability of winning. Occasional-
ly, however, we select randomly from one of the other moves instead; these
are called exploratory moves because they cause us to experience states that
might otherwise never occur. A sequence of moves made and considered
during a game can be diagrammed as in Figure 2.

Starting Position

Opponent's Move

CQur Move

Oppenent’s Move

Our Move

Opponent’s Move

Chr Move

FIGURE 2. Moves in Naughts and Crosses. The bold lines represent the moves taken
during a game. The dashed lines represent moves that we (our algorithm) considered
but did not make. Our second move was an exploratory move, meaning that it was
taken even though some other alternative move, that leading to e', was more highly
ranked. Exploratory moves do not result in learning, but each of our other moves does,
causing backups as suggested by the curved arrows and detailed in the text.

Now, while we are playing, we change the probability estimates for the
states in which we find ourselves during the game. We attempt to make them
more accurate estimates of the probabilities of winning from those states.

e —

364 A.G. Barto and R.S. Sutton

Informally, we say that the probability estimate for the state after each regular
move is "backed up” to the estimate for the state after our preceding move, as
suggested by the arrows in Figure 2. More precisely, the probability estimate
for the earlier state is moved a fraction of the way from its current value to the
value of the later state. Letting x, denote the state after our kth move, and let-
ting ¥(x,) denote the estimated probability of winning from that state (the value
of state x,), the update rule can be written:

Vix) := Vix) + ofVix, MER{AIH

where « is a small positive fraction called the step-size parameter.

This update rule performs quite well with this task. For example, if the
step-size parameter is reduced properly over time, this method will converge
for any fixed opponent to the true probabilities of winning from each state
given optimal play by the algorithm (Singh, Jaakkola, & Jordan, 1994). Fur-
thermore, the moves then taken (except on exploratory moves) will, in fact, be
the optimal moves against the opponent. If the step-size parameter is not
reduced to zero over time, then a player using this rule will also play well
against opponents that change their play slowly over time. This update rule is
closely related to the method Samuel used in his 1959 program for learning
how to play the game of checkers (Samuel, 1959). Sutton (1988), who refined
and analyzed algorithms like this, called them temporal-difference methods.

This example is very simple, but it illustrates some of the key features of
reinforcement-learning methods. First, there is the emphasis on learning while
interacting with an environment, in this case with an opponent player. Second,
there is a clear goal, and correct behavior requires planning or foresight that
takes into account delayed effects of one's choices. The simple reinforcement- .
learning player of naughts and crosses will, for example, learn to set up multi-
move traps for a short-sighted opponent. It is a striking feature of reinforce-
ment learning that it can achieve the effects of planning and lookahead without
using a world model or carrying out an explicit search over sequences of
choices. To be sure, planning using world models can be useful, but it is not
always worth the effort.

On the other hand, the naughts-and-crosses example is so simple that it
might give the false impression that reinforcement learning is restricted to such
tasks. Although naughts and crosses is a two-person game, reinforcement
learning also applies in the more natural context in which there is no explicit
external adversary. Naughts and crosses involves a relatively small, finite-state
set, whereas reinforcement learning can be applied to very large or even infi-
nite-state sets. For example, Tesauro (1994, 1995) combined the algorithm
described above with an artificial neural network to acquire impressive skill in
playing backgammon, which has a huge number of states—approximately 10%°.
The neural network provides this program with the ability to generalize from

Reinforcement Learning in Artificial Intelligence 365

its past experiences, so that in new situations it selects moves based on infor-
mation saved from similar situations faced in the past, as determined by its
network. Thus, how well a reinforcement-learning system can work with
problems having very large state sets is intimately tied to how appropriately it
can generalize from past experience. Methods for supervised learning, which
focus almost exclusively on the problem of forming appropriate generaliza-
tions, are most relevant to this aspect of reinforcement learning. A neural
network is clearly not the only, or necessarily the best, way to do this.

Other features of the naughts-and-crosses example are not essential to rein-
forcement learning, for example, learning with no prior knowledge beyond the
rules of the game. However, although many other reinforcement-learning
examples begin similarly devoid of knowledge, reinforcement learning by no
means entails a tabula rasa view of learning and intelligence. On the contrary,
prior information can be incorporated into a reinforcement-learning system in a
variety of ways that can be critical for efficient performance (Clause & Utgoft,
1992; Lin, 1992; Maclin & Shavlik, 1994; Mitchell & Thrun, 1993).

The naughts-and-crosses player also had to look ahead one step in order to
evaluate the possible immediate results of a move. To be able to do this, it had
to have a model of the game that allows it to "think about" how its environ-
ment will change in response to moves that it may never make. However, the
naughts-and-crosses player used its model in only a very simple way, whereas
other reinforcement-learning systems make much more extensive use of envi-
ronmental models (e.g., Barto et al, 1995; Moore & Atkeson, 1993; Sutton,
1990, 1991). They can generate hypothetlcal experiences from which they can
learn in the same way that the naughts-and-crosses player learns from real
experience, or they can "reason” about the consequences of possible behavior
and make various kinds of plans. These more complicated model-based rein-
forcement-learning systems can include a full range of high-level, symbolic
processing, and an important aspect of reinforcement learning is the i improve-
ment of environmental models through learning. Thus, although reinforcement
learning is often associated only with very low-level processing, this is by no
means an essential aspect of the approach.

On the other hand, there are reinforcement-learning methods that do not
need any kind of environmental model at all. Watkins (1989) called these
primitive methods. Systems using only primitive methods cannot even think
about how their environments will change in response to a single action.
Because models have to be reasonably accurate to be useful, primitive methods
can have advantages over more complex methods when the crucial bottleneck
in solving a problem is difficulty in constructing a sufficiently accurate envi-
ronmental model. Primitive methods are also important building blocks for
model-based methods.

ny

i

366 A.G. Barto and R.S. Sutton

The naughts-and-crosses player had access to the complete state of the
game, but reinforcement learning can also be applied when part of the state is
hidden, or when different states appear to the learner to be the same (e.g.,
Whitehead & Ballard, 1990; Jaakkola, Singh, & Jordan, 1995). Finally, the
naughts-and-crosses player is a reinforcement-learning system on just one
level. The decisions refined by learning are about the primitive moves of the
game. Recalling our comments about the abstract nature of the reinforcement-
learning framework, nothing prevents reinforcement learning from working at
higher levels, for example, where each of the "actions" is itself the application
of a possibly elaborate problem-solving method (e.g., Maes & Brooks, 1990;
Mahadevan & Connell, 1991; Singh, Barto, Grupen, & Connolly, 1994). In
hierarchical learning systems, reinforcement learning can work simultaneously
on several levels (Dayan & Hinton, 1993; Singh, 1991, 1992),

Fully satisfactory solutions are of course not yet available in all cases. Most
of the theoretical results that exist so far, in fact, apply only to problems that
share with the naughts-and-crosses problem the use of a tabular representation
of a finite set of state values and access to complete environmental states
(Barto et al, 1995). However, many reinforcement-learning researchers, like
many other Al researchers, are willing to forge ahead when theoretical guaran-
tees are lacking, and many applications of reinforcement-learning methods
have been realized in ways that go considerably beyond available theory.
Moreover, some of these applications have been very successful, as in the
examples mentioned above by Tesauro (1994, 1995), Zhang and Dietterich
(1995), and Crites and Barto (1996).

The Credit-Assignment Problem

In his famous paper "Steps Toward Artificial Intelligence," Minsky (1961)
presented the basic ideas of "success-reinforced decision models" and dis-
cussed the major computational problem that complex reinforcement-learning

systems would have to solve to be successful. He called this the credit-assign-
ment problem:

In applying such methods to complex problems, one encounters a serious
difficulty—in distributing credit for success of a complex strategy among
the many decisions that were involved (p. 17).

Later researchers distinguished between temporal and spatial aspects of the
problem. Temporal credit assignment concerns determining which actions in
the sequence of preceding actions were responsible for an eventual success (or
failure). For example, if you win a chess game, how should you apportion
credit among all the moves you made? The spatial aspect of the problem, on
the other hand, concerns allocating credit to the many, possibly simultaneous,
decisions that finally yielded an overt action. For example, if in winning the
chess game your temporal credit-assignment mechanism assigned a certain

Reinforcement Learning in Artificial Intelligence 367

amount of credit to a particular move, how should you further apportion this
credit among the various decisions that caused you to select it? Both aspects of
the credit-assignment problem remain central problems for modern reinforce-
ment-learning systems.

The approach to temporal credit assignment used by many reinforcement-
learning systems, including the naughts-and-crosses player described above,
was introduced to Al in Samuel's program for learning how to play checkers
(Samuel, 1959). The idea is that a reinforcement-learning system should not
have to wait to learn until an externally supplied reinforcement signal occurs.
The checkers player, for example, should not have to wait until the end of a
game to receive reinforcement, The player should be able to produce for itself
internal reinforcement when it achieves important subgoals during a game.
Moreover, the player should be able to learn to recognize when important
subgoals are achieved. Samuel's method for doing this is related, as previousty
noted by Minsky (1961), to the phenomenon of conditioned reinforcement in
animal learning. An event that regularly precedes a reinforcing event can itself
acquire the ability to reinforce still earlier activity; i.e., the event becomes a
conditioned reinforcer. Conditioned reinforcers can, in turn, confer reinforcing
qualities upon earlier events, making them into conditioned reinforcers as well.
This suggests a recursive mechanism by which a system can learn long se-
quences of actions that ultimately bring about real success, that is, success as
determined by the ultimate primary reinforcer. Much of modern reinforcement
learning exploits this process.

The spatial aspects of credit assignment are not unique to reinforcement
learning. For example, the error backpropagation method for adjusting the
weights of a multi-layer artificial neural network is a spatial credit-assignment
method widely used in supervised learning (Rumelhart, Hinton, & Williams,
1986). Although this algorithm can be adapted to address temporal aspects of
credit assignment, it ordinarily only addresses the spatial aspects by apportion-
ing the credit (in this case, the blame) among the weights of a complex net-
work for the errors made by the network as a whole. Similarly, reinforcement-
learning systems have to adjust their decision rules even if some other mechan-
ism produces timely reinforcement. Reinforcement-learning systems can use a
variety of methods developed for supervised learning, although some methods
are better suited than others due to the different demands of reinforcement
learning.

The general approach to credit assignment taken by reinforcement-learning
systems is the major feature distinguishing them from methods based more
directly on evolutionary metaphors, such as genetic algorithms (Goldberg,
1989: Holland, 1975). Like reinforcement learning, evolutionary methods can
be used to adapt the interactive behavior of an agent to achieve an explicit
goal, but they do so without assigning credit on an intra-individual basis. For

368 A.G. Barto and R.S. Sutton

example, if an agent does well, credit is assigned to afl of its behavior, inde-
pendently of how specific components of this behavior were related to success;
tull credit will even be given to behavior that was not expressed during the
agent's lifetime. As a consequence, evolutionary methods, when used alone,
may be inherently less efficient than methods that assign credit by taking
into account intra-individual details about an agent's decision mechanisms and
how they are marshaled over time. On the other hand, by not attempting intra-
individual credit assignment, evolutionary methods are not misled by credit's
being incorrectly assigned. In any event, we do not consider evolutionary
methods to be especially well adapted to the reinforcement-tearning problem.
Although evolution and learning, especially reinforcement learning, share
many features and can naturally work together, as they do in nature, they do
not have equal access to the same credit-assignment mechanisms.

The Reinforcement-Learning Problem

Although certain learning algorithms are commonly associated with rein-
forcement [earning, it is more useful to define reinforcement learning in terms
of learning problems, or collections of problems, rather than as a collection of
algorithms. Here we present a model of the problem that many AI researchers
have adopted in their approaches to reinforcement learning. This model is
based on the Markov Decision Process formalism that has been widely studied
by decision theorists (e.g., Bertsekas, 1987; Ross, 1983).

Reward ;
Situation I Action

8 et
> It

2 :iSHi ENVIRONM ENT]*‘—-
[=]

FIGURE 3. A Reinforcement-Learning Model. A reinforcement-learning agent and its
environment interact over a sequence of discrete time steps. The actions are the choic-

es made by the agent; the situations provide the agent's basis for making the choices;
and the rewards are the basis for evaluating these choices.

The agent-environment interface

Reinforcement learning is about learning how to act to achieve a goal. A
fruitful way of modeling such learning is based on viewing a decision maker,
or agent, as a control system that is trying to develop a strategy by which it

Reinforcement Learning in Artificial Intelligence 369

can make its environment behave in a favorable way (where “favorable” has a
precise meaning). A simple type of strategy maps each situation to a probabili-
ty distribution over the actions that are possible for that situation. Upon deter-
mining that it is in a new situation, the agent selects an action according to the
probability distribution for that situation. As the agent learns, it changes this
mapping, called its policy, based on its accumulating experience.

To make the model more specific, think of the agent and its environment as
interacting over a potentially infinite sequence of discrete time steps ¢ =
1,2,3,... At each time step ¢, the reinforcement-fearning agent finds itself in a
situation, 5, € S, and on that basis uses its current policy to choose an action, a,
e A(s :)’ where A(sz) is the set of actions available for situation s,. One time step
later, in part as a consequence of its action, the agent receives a numerical
reward, r o€ %, and finds itself in a new situation, LI - S (Figure 3). Rein-
forcement-learning methods specify how such experiences produce changes in
the agent's policy, which tells it how to select an action in any situation.
Roughly speaking, the agent's objective is to find a policy that maximizes the
amount of reward it receives over the long run.

It is important to understand the degree of abstraction this model involves.
It is a very abstract and flexible model that can be applied at many different
levels to many different problems. The actions, for example, could be low-
level controls such as the voltages applied to the motors of a robot arm, or
high-level decisions such as whether or not to have lunch or go to graduate
school. Similarly, the situations can take a wide variety of forms. They could
be low-level situations, such as direct sensor readings, or high-level ones, such
as symbolic descriptions of the objects in a room. Some of the things making
up a situation could even be entirely mental or subjective. For example, the
agent could be in the situation of not being sure where an object is, or of
having just been “surprised” in some clearly defined sense. Similarly, some
actions could also be totally mental or computational, ¢.g., they may control
what the agent chooses to think about, or where it focuses its attention. In
general, actions can be the results of any decisions we learn how to make, and
the situations can be anything we can sense that might be useful in making the
decisions.

In particular, it is a mistake to think of the interface between a reinforce-
ment-learning agent and its environment as the physical boundary between a
robot’s or an animal's body and the external environment. Usually the bound-
ary is drawn closer to the agent. For example, the motors and mechanical
linkages of a robot and its sensing hardware should usually be considered parts
of the environment rather than parts of the learning agent, even though these
parts were probably designed to make the learning agent's task easier. Similar-
ly, if we apply the model to a person or animal, the skeleton, muscles, and
sensory organs should all be considered part of the learning agent's environ-

370 A.G. Barte and R.S. Sutton

ment. Reinforcers, too, may presumably be computed inside the physical
bodies of natural and artificial learning systems, but are considered external to
the reinforcement-learning agent.
: The general rule we follow is that anything that cannot be changed arbitrari-
ly by the learning agent is considered external to it and, thus, part of its envi-
ronment. Note that we do not assume that events in the environment are
unknown to the agent, only that they are incompletely controllable. For exam-
ple, the agent will often know quite a bit about how its reinforcers are comput-
ed as a function of its actions and the situations in which they occur. But we
always consider the reward computation to be external to the agent because it
defines the problem facing the agent and, thus, is beyond its ability to change
arbitrarily. In some cases, in fact, the agent may know everything about its
environment and still face a difficult reinforcement-learning problem, just as
we may know exactly how a puzzle like Rubik's cube works but still be unable
to solve it. The agent-environment boundary represents the limit of the agent's
control, not of its knowledge.

The agent-environment boundary can even be located at different places for
different purposes. In a complicated robot, many separate reinforcement-learn-
ing agents may be operating at once, each with its own boundary. For exam-
ple, one agent may make high-level decisions that form part of the situations
faced by a lower-level agent that implements the high-level decisions. In prac-
tice, the agent-environment boundary is determined once one has selected
particular sensations, actions, and reinforcers, and thus identified a particular
decision-making problem of interest.

The reinforcement-learning model is a considerable abstraction of the
problem of learning to make decisions based on their consequences. It propos-
es that whatever the details of the sensory and control apparatus, and whatever
objective one is trying to achieve, any problem of learning goal-directed be-
havior can be reduced to three signals passing back and forth between an agent
and its environment: One signal represents the choices made by the agent (the
actions); a second signal represents the basis on which the choices are made
(the situations); and a third signal defines the goal of learning (the rewards).
We do not claim that this framework is adequate to usefully model aff decision-
learning problems, but it has proven to be widely applicable. Of course, the
situation and action representations will vary greatly from application to appli-
cation, and will strongly affect performance. In reinforcement learning, as in

other kinds of learning, such representational choices are at present more art
than science,

Goals, rewards, and returns

In reinforcement learning, the concept of goal is modeled by a special
scalar signal called the reward that passes from the environment to the agent.
Informally, the agent's goal is to maximize the total reward it receives. This
means not just immediate reward, but reward over the long run.

Reinforcement Learning in Artificial Intelligence 371

The use of a scalar reward signal to formalize the idea of a goal is one of
the most distinctive features of reinforcement learning. Although this way of
formulating goals might at first appear limiting, in practice it ha$ proven to be
very flexible and very widely applicable. The best way to see this is to consid-
er examples of how it may be used. For example, to train a robot to walk,
researchers have provided reward on each time step proportional to the robot's
forward motion. In learning to run a maze, the reward is often zeto except
upon reaching the goal, when it becomes +1. Another common approach in
maze learning is to give a reward of -1 for every time step that passes prior to
reaching the goal; this encourages the agent to reach the goal as quickly as
possible. To train a robot to find and collect empty soda cans for recycling,
one might give it a reward of -+ 1 for each empty can collected. One might also
give the robot punishers when it bumps into things, or when people yell at it.
For an agent learning to play backgammon or chess, the natural rewards for
winning, losing, and drawing are +1, -1, and 0, respectively.

It is important to remember that rewards define the ultimate goal of the
learning process. The rewards delivered to a reinforcement-learning agent
should represent what you reaily want the agent to do. In particular, the
reward signal is not the place to impart to the agent prior knowledge about how
to achieve what you want it to do. For example, a chess-playing agent should
be rewarded only for actually winning, not for achieving subgoals such as
taking its opponent's pieces or gaining control of the center of the board. If
these kinds of subgoals are rewarded, the agent might find a way to achieve the
subgoals without achieving the real goal, e.g., taking the opponent's pieces
even at the cost of losing the game. The reward signal is a way of communicat-
ing to the robot whar it should achieve, not ow it should be achieved.

Newcomers to this model of reinforcement learning are sometimes sur-
prised that the rewards—the definition of the goal of learning—are computed
in the environment rather than in the agent. Certainly, most ultimate goals for
animals are recognized by computations occurring inside their bodies, e.g., by
sensors for recognizing food and hunger, pain and pleasure, etc. However, as
we discussed in the previous section, one can simply redraw the agent-envi-
ronment interface such that these parts of the body are considered to be outside
of the agent (and thus part of the agent's environment). For example, if the
goal concerns a robot's “internal” energy reservoirs, then these are considered
part of the environment; if the goal concerns the positions of the robot's limbs,
then these too are considered part of the environment—the boundary is drawn
at the interface between the limbs and their control systems,

Roughly speaking, structures and processes are considered part of the agent
if they are completely, directly, and with certainty, controllable; otherwise
they are considered part of the environment. The ultimate goal is always

372 A.G. Barto and R.S. Sutton

something over which the reinforcement-learning agent has imperfect controi:
It cannot, for example, simply decree that the goal has been achieved (in the
same way that it can arbitrarily set an internal parameter of its decision-making
process). Therefore, we place the reward source outside of the agent. Note that
this does not preclude the agent from defining for itself an internal goal, or a
sequence of internal goals. Indeed, the commonly used method for temporal-
credit assignment, based on Samuel's approach described above, does just that:
It effectively defines internal goals.

Until this point, we have been imprecise when we spoke of the goal of
learning as maximizing reward over the long run. How might this be formaily
defined? If the sequence of rewards received after time step ¢ is denoted For
T, oo Tyyyr ---» then what aspect of this sequence do we wish to maximize?
There are several useful answers to this question. The simplest is to maximize
the total reward:

T r, T, ot O

r£+1 T

where T is a final time step. This approach makes sense in applications in
which there is a natural notion of final time step in a trial, that is, when the
agent-environment interaction breaks naturally into subsequences, such as
plays of a game, trips through a maze, or any sort of repeated attempt where
each repetition ends with a reset to a standard state. In these cases Equation 1
defines the return for time step ¢, i.e., the return that accumulates gffer time
step 1.

On the other hand, suppose that the agent-environment interaction does not
naturally break into identifiable subsequences but simply goes on without limit,
This would be the natural way to characterize a continuous process-control
application, or an application to a robot with a long expected lifespan. The
total-reward formulation then becomes problematic because the final time step
becomes T approaches oo, and the return as given by Equation 1 becomes a
sum of an infinite number of terms. Thus the return, which is what the agent is
trying to maximize, could itself be infinite (e.g, if the agent receives a reward
of +1 at each time step).

The additional concept we need is that of discounted return. According to
this approach, the agent's objective is to learn how to select actions so that, at
every time step, the discounted sum of the rewards received over the future is
maximized. That is, the objective is to learn to maximize the following defini-
tion of return for each time step

oo
2 _ k1
Ty T YT T YT + e ““kfl'y Tk @)

where v is a positive number called the discount factor.

Reinforcement Learning in Artificial Intelligence 373

The discount factor determines the present value of future rewards: A
reward received k time steps in the future is worth v*! times what it would be
worth if it were received immediately. If 0 < v < 1, this infinite discounted
sum is finite as long as each individual reward is finite. If y = 0, the agent is
“myopic,” i.e., only concerned with maximizing immediate rewards. Its objec-
tive in this case would be to learn how to act at each time step ¢ so as to
maximize only r . If each of the agent's actions happened only to influence
the immediate reward, not future rewards as well, then a myopic agent could
maximize Equation 2 by separately maximizing each immediate reward. But,
in general, acting to maximize immediate reward can reduce access to future
rewards so that the total reward may actually be reduced. As -y approaches one,
the objective takes future rewards into account more strongly: The agent
becomes more farsighted. Other definitions of return for infinite-duration
problems are possible (Mahadevan, 1996), but the discounted return is the
simpiest mathematically.

Example: A problem that served as an early illustration of reinforcement
learning is the problem of pole-balancing (Michie & Chambers, 1968). The
objective here was to apply forces to a cart moving along a track so as to keep
a pole hinged to the cart from falling over (Figure 4). We define a balancing
Jailure as the fall of the pole past a given angle from vertical or the cart's
exceeding the limits of the track. The pole is reset to vertical after each balanc-
ing failure. This problem could be treated as a total-reward problem, where the
natural subsequences are the repeated attempts to balance the pole. The reward

FIGURE 4. The Pole-Balancing Problem. The objective is to apply forces to a cart
moving along a track so as to keep a pole hinged to the cart from falling over.

374 A.G. Barto and R.S. Sutton

in this case would be +1 for every time step on which failure did not occur, so
that the return at each time would be the number of steps before failure. Alter-
natively, a punisher of -1 could be given for each failure and zero reward at all
other times. The return at each time would then be related to -y ¥, where & is
the number of time steps before failure. In either case, the return is maximized
by keeping the pole balanced for as long as possible.

Struations and states

The srare of a system with respect to an external observer is a summary of
the observer's past experience with the system. The summary need not be a
complete history of every observed input and output, but it must contain all the
information that makes a difference as far as the system's future behavior is
concerned. In particular, the observer must be able (in principle) to predict the
system's future behavior just as well from knowledge of its current state as
from knowledge of its complete history. For example, the state of a cannonball
in flight is its current position vector and velocity vector. It doesn't matter how
its current position and velocity came about.

In reinforcement learning, the external observer is the agent, and the state
of interest is the state of the environment. In fact, the notion of "situation" is
meant to be an approximation of the environment's state. What exactly is the
state of the environment? The agent's past experience with the environment
consists of all of the previous situations, actions, and rewards. Assuming that
interaction began at ¢t = 0, the complete history at time 7 is

ar o0 Ty Ggs S0} 3

Any signal x e X, t = 0, gives the state of the environment at time step ¢ if and
only if the joint probability of the state, situation, and reward at time step
t+1, given x, and a,, the action at time step 7, is the same as their joint prob-
ability given H‘ and a. When the number of possible states, situations, re-
wards, and actions are finite, this can be written simply as follows:

Plx \=x, 5., =s,r, =rlx,a}l="Pyx, =xs, =57, =r|H a},@
forallt 20, xeX,5¢8,7re¢R, a eA(s), and all pOSSlbIeH where X, S, R,
and A(s) are finite sets of possibie states situations, rewards and actions,
respectxvely In reinforcement learning, situations are intended to approximate
the environment's states. The situations are in fact true states if and only if

p {S:+1=S’ r —-—I‘ | S a} =P {St+l ' r+1=r s H:’at} (5)

forallz 2 0,5¢S,re®, aeA(s), and all possible H. (If any of these sets
are not finite, e.g., if a reward can be any real number, then the same condi-
tions can be written in terms of probability density functions.) In this important
special case, the environment and its interface define a Markov Decision
Process, or MDP. If an MDP has a finite number of states, and a finite number

{S r atl’ rl’rr-l’a:—z’s

Reinforcement Learning in Ariificial Intelligence 375

of actions are available for each state, then it is a finite MDP. Because it is
particularly easy to conceptualize and to prove theorems about finite MDPs,
they play a central role in the theoretical analysis of reinforcement learning,

The conditional probability distributions given by Equation 5 constitute a
complete description of the dynamics of the MDP. As far as the agent is con-
cerned, the dynamics specify how the environment changes over time in re-
sponse to its actions. If a reinforcement-learning agent has complete knowledge
of its environment's dynamics, then it faces a reinforcement-learning problem
under conditions of complete information. Most problem-solving methods in Al
have addressed problems of complete information, whereas reinforcement
learning focuses primarily on problems of incomplete information. The reader
should be careful not to confuse complete and incomplete information with
complete and incomplete observation of the environmental state. We refer to
the case of complete observation by saying that the environment has the
Markov property.

One can show that by iterating Equation 4 or Equation 5 an agent can
predict any future state and reward from knowledge only of the current state
and its proposed course of action (together with knowledge of the dynamics) as
well as would be possible given the complete history. It also follows that the
situations in MDPs provide the best possible basis for choosing actions. That
is, the best policy for choosing actions as a function of situations is just as
good as the best policy for choosing actions as a function of complete histories.

Even when the situations are not technically states in the sense of exactly
satisfying Equation 5, it may still be appropriate to think of the situation in
reinforcement learning as an approximation to the environment's state. In
particular, we always want the situation to be a good basis for predicting future
rewards and for selecting actions. For some purposes, it is also desirable to use
present situations to accurately predict following situations. States provide an
unsurpassed basis for doing all of these things. To the extent that situations
approximate states in these ways, one can obtain better performance from
reinforcement-learning systems. For all of these reasons, it is useful to think of
the situation at each time step as an approximation to an MDP's state, although
one should remember that a situation is often not precisely a state. Although
most reinforcement-learning algorithms can be applied when the situations are
not states, sometimes with good results, almost all of the formal theory rests on
the assumption that situations are actual states.

Example: In the pole-balancing problem introduced in the previous section,
a situation would be a state if it exactly specified, or made it possible to exactly
reconstruct, the position and velocity of the cart along the track, the angle
between the cart and the pole, and the rate at which this angle is changing (the
angular velocity). In an idealized cart-pole system, this information would be
sufficient to exactly predict the future behavior of the cart and pole, given the

376 A.G. Barto and R.S. Sutton

actions taken by the controller. In practice, however, it is never possible to
know this information exactly because any real sensor would introduce some
distortion and delay in its measurements. Furthermore, in any real cart-pole
system there are always other components of the state, such as the bending of
the pole, the temperatures of the wheel and pole bearings, and various forms of
backlash, which slightly affect the behavior of the system. These factors would
cause violations of Equation 5 if the role of state were played by only the posi-
tions and velocities of the cart and the pole.

However, often the situations of the positions and velocities serve quite well
as approximate states. In several of the early studies of learning the pole-bal-
ancing problem, in fact, learning was successful despite the fact that each situa-
tion provided only a very coarse representation of the true state. For example,
in our work {Barto, Sutton, & Anderson, 1983), the possible cart positions
were divided into three regions: right, left, and middle. The situations indicat-
ed only in which of these three large regions the cart was located (and there
were similarly rough quantizations of the other three intrinsic state variables).
These rough approximations to the state were sufficient to easily solve the
problem using reinforcement learning. In fact, this coarse representation of the
state probably facilitated learning because it forced the learning agent to ignore
fine distinctions that would not have been particularly useful in solving the
problem.

Example: In draw poker, each player is dealt a hand of five cards, There is
a round of betting in which each player exchanges some of his cards for new
ones, and then there is a final round of betting. At each round of betting, a
player must match the highest bets of the other players or else drop out (fold).
After the second round of betting, the player with the best hand and who has
not folded is the winner and collects all the bets.

The relevant state in draw poker is different for each player. Each player
knows the cards in his own hand, but can only guess at those in the other
players’ hands. A common mistake is to think that the state must include the
contents of all the players' hands and the cards remaining in the deck. Howev-
er, this would provide more information than the state. In a fair game, one
assumes that the players are in principle unable to determine these things from
their past observations. If a player did have such information, some future
events (such as the cards one could exchange for) could be better predicted
than by remembering all past observations.

In addition to knowledge of one's own cards, the state in draw poker in-
cludes knowledge of the bets and the numbers of cards drawn by the other
players. For example, if a player draws three new cards, you may suspect he
retained a pair and adjust your estimate of the strength of his hand accordingly.
The players' bets also influence your assessment of their hands. In fact, all of
your past history with these particular players is part of the state. Does Ellen

Reinforcement Learning in Artificial Intelligence ‘ 377

like to bluff, or does she play conservatively? Does her face or demeanor
provide clues to the strength of her hand? How does Joe's play change when it
is late at night, or when he has already won a lot of money?

Although everything ever observed about the other players may have an
effect on the probabilities that they are holding various kinds of hands, in
practice this is far too much to remember and analyze, and most of it will have
no clear effect on one's predictions and decisions. Very good poker players are
adept at remembering just the key clues and at sizing up new players quickly,
but no one remembers everything that may be relevant. As a result, the situa-
tions people use to make their poker decisions are imperfect state models, and
the decisions themselves are presumably imperfect. Nevertheless, people can
still make very good decisions in such problems. The inability to have access
to a perfect representation of the environment's state is probably not a severe
problem for an Al agent,

Value Functions

Almost all reinforcement-learning algorithms are based on estimating value
Junctions—functions of situations, or of situation-action pairs, that estimate.
how good it is for the agent to be in that situation. The notion of "how good" is
defined in terms of expected future rewards or, to be precise, as the expected
return given, by Equation | or Equation 2, for example. Of course, the re-
wards an agent can expect to receive in the future depend on what actions it
takes. Accordingly, value functions are defined with respect to a particular
policy. Recall that a policy, let us call it «, is a mapping from situations 5 ¢ S
to probability distributions over possible actions a ¢ A(s). Informally, the value
of a situation under a policy w, denoted V™(s), is the expected return when
starting in s and following w. For MDPs, we can define V7(s) formally as:

T

V() = E, {5, | s =s}, ©)

. for the total-reward case, where the return is defined by Equation 1, and where
E {} denotes the expected value given that the agent follows policy . For the
discounted case, in which the return is given by Equation 2, V™(s) is defined
as:

-]

Vi(s) = E_ {kz=8," Forer | 8,55} @)

Similarly, following Watkins (1989), we define the action-value, or quality,
of taking action ¢ in situation s under a policy w, denoted Q"(s,qa), as the
expected return starting from s, taking the action @, and thereafter following
policy : '

378 A.G. Barto and R. S, Sutton

T
Q"(s,a) = E_ EE r | s=s, a,=aj, (8)
=t

for the total-reward case, and

Q"(s.a) = E ,éEo‘YerkH | 5,=5, a,=a}, &)

for the discounted-reward case. In either case, the (situation) value function is
related to the action value function by

Vi) = E (Q"(s.a,)}, (10)

where a_ is the action selected according to the probability distribution over
actions given by w(s).

For MDPs, the value functions V7(s) and Q"(s,a) can be estimated from
experience. For example, if an agent follows policy « and maintains an aver-
age, for each situation encountered, of the actual returns that have followed
that situation, then the averages will converge to the situation's value, V"(s), as
the number of times that situation is encountered approaches infinity. If sepa-
rate averages are kept for each action taken in a situation, then these averages
will similarly converge to the action values, Q"(s,a). Estimation methods of
this kind are often called Monte Carlo methods because they involve averaging
over many random samples of actual returns. Of course, if there are very many
situations, or very many actions possible in each situation, then it may not be
practical to keep separate averages for each situation individually. Instead, the
agent may maintain V" and Q" as parameterized functions and adjust the
parameters to better match the observed returns. This can also produce accu-
rate estimates, although much depends on the nature of the parameterized
function approximation,

A fundamental property of value functions used throughout reinforcement
learning and dynamic programming is that they satisfy particular recursive
relationships if the situations are genuine states. For any policy = and any state
§ the following consistency condition holds between the values of any "neigh-
boring" states:

o
W(s) = E-:r IEEO’Y er+k+1 ‘ st:s}
=]

— k _
=E, {rz+1 + '};cEU’Y Toiks2 | S:'"S}

=E {r , + vVis,,) | s, =5}, an
for the discounted-reward case, and

Reinforcement Learning in Artificial Intelligence 379

Vi) = E_{r,, + V"G,) | 5,=s} (12)

for the total-reward case for ¢ # T. Similar consistency conditions hold for Q™.
These conditions can be used in several different ways to compute or approx-
imate V_ and Q7.

Example: Figure 5a uses a rectangular grid to illustrate a simple finite
MDP. The cells of the grid correspond to the states (situations) of the problem.
At each cell, four actions are possible: NORTH, SOUTH, EAST, and WEST,
which deterministically cause the agent to move one cell in the respective
direction in the grid. Actions that would take the agent off the grid leave its
location unchanged, but also result in a reward of -1. Other actions result in a
reward of 0, except those that move the agent out of the special states A and B.
From state A, all four actions yield a reward of -+10 and take the system to
A'. From state B, all actions yield a reward of +5 and take the system to B’.

Suppose the agent selects the four actions with equal probabilities in all
states. Figure 5b shows the value function, V7, for this policy, for the dis-
counted-reward case with v = 0.9. This value function was computed by
solving the system of equations given by Equation 11. Notice the negative
values near the lower edge; these are the result of the high probability of hit-
ting the edge of the grid there under the random policy. Notice that A is the
best state to be in under this policy, but that its expected return is less than 10,
its immediate reward. The expected return is reduced because from A the
agent is taken to A', from which it is likely to run into the edge of the grid.
State B, on the other hand, is valued more than 5, its immediate reward,
because from B the agent is taken to B', which has a positive value. From B'

IR 3.3/8.8/4.4{53/15
\ 3 1.513.0/2.3/1.9/05
”0} Bﬁ_ 4—{—" o.tlo7|o7|04]04
/ -1.0|-0.4-0.4{-0.6]-1.2
A -1.9-1.3]-1.2-1.4{-2.0
(a) (b)

FIGURE 5. Rectangular-Grid Illustration of a Value Function. a. Bach cell is a state,
and the agent can move one cell in any of the cardinal directions. Cells A, A’, B, and
B' are special states. Rewards are generated as described in the text, b, The value
function for the policy of selecting the four actions with equal probabilities in all states.

380 A.G. Barto and R.S. Sutton

the expected penalty (negative reward) for possibly running into an edge is
more than compensated for by the expected gain for possibly stumbling onto A
or B.

The Optimality Equation

Solving a reinforcement-learning problem means finding a policy that
maximizes the expected return for each situation. For finite MDPs, we can
precisely define the optimal solution in the following simple way. Value func-
tions define a partial ordering over policies. A policy = is better than or equal
to a policy #" if its expected return is greater than or equal to that of «* for all
states. In other words, = = ' if and only if V*(s) = V™(s) for all 5 € S.
There is always at least one policy that is better than or equal to all other po-
licies. This is an optimal policy.- Although there may be more than one, we
denote all the optimal policies by w*. They share the same value function,
denoted V*, defined as

VE(s) = VT (5) = max V7(s) forall se S (13)
and the same action-vatue function, denoted 0*, defined as
O*s,a) = 07 (s,a) = max Q"(s,a) forall s ¢ S, for all a e A(s). (14)

Because V* is the value function for a policy, it must satisfy a consistency
condition such as Equation 11 or' Equation 12. Because it is the optimal value
function, however, V*'s consistency condition can be written in a special form,
often called the oprimality equation, which is independent of the policy. Intui-
tively, the optimality equation is based on the fact that the value of a state
under an optimal policy must equal the expected return for the best action from
that state:

V*(S) N mzlx E”""‘ k{EOFY-erkH | S::S’ arza}’ (15)

for the discounted-reward case. From this follows the optimality equation for
the discounted-reward case:

Vi) = max E {r, + YV, D |5 =8, a=a}, (16)
a

for all s e S. For finite MDPs, the optimality equation has a unique solution
independent of the policy, unlike the ordinary consistency condition (11),
whose solution depends on the policy. The optimality equation is actually a
system of equations, one for each state, so that there are | S| equations in | S}
unknowns. If the dynamics of the environment are known, then in principle
one can solve this system of equations for V* using one of a variety of methods
for solving systems of nonlinear equations.

Reinforcement Learning in Artificial Intelligence 381

Once one has V*, it is relatively easy to determine an optimal policy. For
each state §, there will be one or more actions at which the maximum is ob-
tained in the optimality equation. These are all equally good actions. Any
policy that selects only from among these is an optimal policy. Another way of
saying this is that any policy that is greedy with respect to the optimal evalua-
tion function V* is an optimal policy. The term greedy is used in computer
science to describe any search or decision procedure that selects alternatives
based only on local or immediate considerations, without considering the
possibility that such a selection may prevent future access to even better alter-
natives (Pearl, 1984). Consequently, it is descriptive of policies that select
actions based only on their short-term consequences. The beauty of V* is that
if one uses it to evaluate the short-term consequences of actions, specifically
the one-step consequences, then a greedy policy is actually optimal in the long-
term sense in which we are interested because V* already takes into account
the reward consequences of all possible future behavior. By means of V*, the
optimal expected long-term return is turned into a quantity that is locally and
immediately available for each state.

The optimality equation therefore provides one route for finding an optimal
policy, and thus for solving a reinforcement-learning problem. Unfortunately,
the solution outlined above is almost never directly useful. This solution relies
on three assumptions that are rarely true in practice; (1) Situations are actual
states, i.e., the agent-environment interaction can be modeled as an MDP; (2)
We accurately know the complete dynamics of the environment, required to
even obtain the optimality equation; and (3) We need enough computational
resources to complete the computation of the solution. For the kinds of prob-
lems in which we are interested, one is generally not able to implement this
solution exactly because various combinations of these assumptions are violat-
ed. For example, although the first two assumptions present no problems for
the game of backgammon, the third is a major impediment. Since the game has
about 10%° states, it would take thousands of years on today's fastest computers
to solve the optimality equation for V*. Unless there is some special additional
mathematical structure that can be exploited, one has to settle for approximate
solutions. '

Many different decision-making methods can be viewed as ways of approx-
imately solving the optimality equation. For example, heuristic search methods
of Al (Pearl, 1984) can be viewed as expanding the right-hand side of Equation
16 several times, up to some depth, forming a "tree” of possibilities, and then
using a heuristic evaluation function to approximate V* at the “leaf" nodes.
(Heuristic search methods such as A* are almost always based on the total-
reward case, e.g., when the rewards are negative costs.) The methods of
dynamic programming can be related even more closely to the optimality
equation (Bertsekas, 1987). Many primitive reinforcement-learning methods

T T

382 A.G. Barto and R.S. Sutton

are well understood as approximately solving the optimality equation, using
actual experienced transitions in place of knowledge of the expected transi-
tions. ’

Example: Suppose we solve the optimality equation for the simple grid
problem introduced in the previous example and shown again in Figure 6a.
Recall that state A is followed by a reward of +10 and transition to state A "
while state B is followed by a reward of +35 and transition to state B’. Figure
6b shows the optimal value function, and Figure 6¢ shows the corresponding
optimal policies. Where there are multiple arrows in a cell, either action is
optimal.

AJ |B, 22.0|24.4{22.0{19.4117.5 — [ool

+5] 19.8|22.019.8/17.8116.0 (IR I P i

+10} 5] 17.8|19.8/17.8|16.0, 14 4 Lt g TS

16.0[17.816.0| 14.4{13.0 T_, t O o O O A

A-‘f 14.416.0/14.4[13.0[11.7 T., t PR D
(a) {b) (c)

FIGURE 6. Rectangular-Grid Solution. a. The rectangular-grid illustration. b, The
optimal value function, V*. ¢. Optimal policies, 7% Where there are multiple arrows
in a cell, either action is optimal.

Learning

We have said that an agent's objective in a reinforcement-learning problem
is, roughly speaking, to find a policy that maximizes the amount of reward it
receives over the long run. We can now be more precise about what this
means. The agent may be thought of as interacting with its environment over
an infinite number of time steps. If the agent is trying to maximize total reward
given by Equation 1 over subsequences of finite length, then we can imagine
that it experiences an infinite number of such subsequences (e.g., can play an
infinite number of games of backgammon). A reinforcement-learning agent has
successfully completed learning when all the actions that it selects are optimal,
Le., when all of its actions are given by some optimal policy, This means that
after successful learning, the agent always acts to maximize the expected return
from each situation it encounters. Obviously, this ideal situation is usually only
achievable in the limit, if at all, as the time step of interaction goes to infinity,
Most of the algorithms we consider have been designed to achieve, under

[T e

Reinforcement Learning in Artificial Intelligence 383

idealized circumstances, this kind of learning-in-the-limit, or asymptotic learn-
ing. This is what we mean by saying that an agent should eventually learn to
act optimally.

Optimal learning may be contrasted with asymptotic learning. One might
imagine that the agent should not only achieve optimal behavior in the limit,
but should also improve its behavior as quickly as possible. That is, it should
optimally learn how to behave optimally by making the best use of all of the
experience it accumulates during its lifetime, as well as any prior knowledge it
might bring to the task. An agent that learns optimally would maximize the
total amount of reward it receives over its entire lifetime, not just over some
time period in the infinite future. Although an ideal reinforcement-learning
agent would be capable of optimal learning, we do not regard optimal learning
as a realistic goal in designing reinforcement-learning agents. For the kinds of
problems in which we are interested, optimal learning strategies can be gener-
ated only with extreme computational cost. We are, however, interested in
algorithms by which an agent can improve its performance efficiently over
time but without undertaking the complex process of designing an optimal
learning strategy.

Even the ability to asymptotically learn to act optimally is usually beyond
what is possible for a reinforcement-learning agent. We do not realistically
expect that a reinforcement-learning agent would ever really achieve optimality
even if it could learn over an infinite time period. A well-defined notion of
optimality organizes the approach to learning we describe in this chapter and
provides a way to understand the theoretical properties of various learning
algorithms. However, it is an ideal that reinforcement-learning agents can only
approximate to varying degrees. We noted previously that even if the rein-
forcement-learning agent has a complete and accurate model of its environ-
ment’s dynamics, it is usually impossible for the agent to simply compute an
optimal policy by solving the optimality equation. For example, board games
such as chess are a tiny fraction of human experience, yet large, custom-de-
signed computers still cannot compute the optimal moves. A critical aspect of
the problem facing a reinforcement-learning agent will always be the computa-
tional power available to it, in particular, the amount of computation it can
perform in a single time step. Although it is unclear how to quantify corputa-
tional demands, they must be recognized.

The memory available to the agent is also an important constraint. The
agent may require memory to build up approximations of value functions,
policies, and models. In problems with small, finite situation sets, it is often
possible to form these approximations using arrays or tables. In most cases of
practical interest, however, there are far more situations than could possibly be
entries in a table. In these cases the functions must be approximated using
some sort of compact representation. Most of the theory of reinforcement

384 A.G. Barto and R.S. Sutton

learning applies to the tabular case, but many practical applications have used
more compact representations. '

So, our model of the reinforcement-learning problem forces us to settle for
approximations. However, it also presents some unique opportunities for
achieving useful approximations. For instance, we said above that a reinforce-
ment-learning agent has successfully completed learning when all the actions it
selects are given by some optimal policy. But, this does not mean that the
agent's policy has to be optimal. An optimal policy specifies an optimal action
for every possible situation, but for an agent to behave optimally its policy has
to be optimal only for the situations it actually encounters. How the agent
would act in situations it never encounters has no impact on the total amount of
reward it will receive. Similarly, in approximating optimal behavior, there may
be many situations that the agent will encounter with such a low probability
that selecting suboptimal actions for them wil! have littie impact on the amount
of reward it receives. Tesauro's backgammon player, for example, plays with
exceptional skill even though it might make very bad decisions on bhoard con-
figurations that occur rarely in games against experts. In fact, such rare con-
figurations may make up a very large fraction of the game's state set. The
interactive nature of reinforcement learning makes it possible to approximate
optimal policies in ways that put more effort into learning to make good deci-
sions for frequently encountered situations, at the expense of less effort for
infrequently encountered situations. This is a key property that distinguishes
reinforcement learning from other approaches to approximately solving MDPs.

Summary
Let us summarize the elements of the model of a reinforcement-learning
problem that we have presented. Reinforcement learning is about learning how
to behave in order to achieve a goal. The reinforcement-learning agent and its
environment interact over a sequence of discrete time steps. The specification
of their interface defines a particular problem: The actions are the choices
made by the agent; the situations provide the agent's basis for making the
choices; and the rewards are the basis for evaluating these choices. Everything
inside the agent is completely known and controllable by the agent; everything
outside is incompletely controllable but may or may not be completely known.
A policy is a stochastic rule by which the agent selects actions as a function of
situations. Roughly, the agent's objective is to learn a policy that maximizes
| the amount of reward it receives over the long run,
~ The state of the environment is a summary of the history of its situations,
inputs (agent actions), and rewards that is sufficient to determine how it will
- behave in the future. The situation is meant to approximate the state. The
- dynamics of the environment are the stochastic relationships between the state
-~ and action at one time step and the situation and reward at the next. If an
environment has the Markov property, then knowledge of the situation is suffi-

Reinforcement Learning in Artificial Intelligence 385

cient to predict the environment's future behavior given a proposed course of
action; the situation is a sufficient proxy for the state. This is rarely exactly
true, but often nearly so, and situations should be chosen or constructed so that
the Markov property approximately holds. If the Markov property does hold,
then the environment is called a Markov Decision Process, or MDP. A finite
MDP is an MDP with finite situation and action sets. Most of the current
theory of reinforcement learning is restricted to finite MDPs.

The return is the function of future rewards that the agent seeks to maxi-
mize. It has several different definitions depending upon whether one is inter-
ested in total reward or discounted reward. A policy's value function assigns to
each situation the expected return from that situation given that the agent uses
the policy. The optimal value function assigns 10 each state the largest expected
return from that state achievable by any policy. A policy whose evaluation
function is the optimal evaluation function is an optimal policy. Whereas there
is only one optimal evaluation function for a given MDP, there may be many
optimal policies. Any policy that is greedy with respect to the optimal evalua-
tion function is an optimal policy. The optimality equation is a special consist-
ency condition that the optimal value function must satisfy and that can, in
principle, be solved for the optimal value function, from which an optimal
policy can be determined with relative ease.

Most of the algorithms that have been developed for reinforcement learning
were designed for asymptotic learning, which means that, under ideal circum-
stances, as learning continues indefinitely, all the agent's actions approach
optimal actions. We pointed out that this does not mean that the agent's policy
must become an optimal policy; it only has to be optimal for the situations the
agent actually encounters. We contrasted this with optimal learning, in which
the agent should improve its behavior as quickly as possible by making the best
possible use of all of the experience it accumulates during its lifetime, as well
as any prior knowledge it might bring to the task. Although the rate of learning
is a central issue in reinforcement learning, we do not regard optimal learning
as a realistic goal in designing reinforcement-learning algorithms due to the
extreme computational cost of obtaining optimal learning strategies for the
kinds of problems that interest us.

The ability to asymptotically learn to act optimally is also usually impossi-
ble for a realistic reinforcement-learning agent due to limitations in computa-
tional resources. Even if the agent has a complete and accurate model of its
environment, the agent may not be able to perform enough computation per
time step to fully use it. The memory available to the agent is also an important
constraint. The agent may require memory to build up approximations of value
functions, policies, and models. In most cases of practical interest, there are
far more situations than could possibly be entries in a look-up table, and the
functions must be approximated using some sort of compact representation.

386 A.G. Barto and R.8. Sution

Although most of the theory of reinforcement learning is restricted to the
tabular case, many practical applications have used more compact representa-
tions.

Reinforcement-learning problems differ according to the level of knowledge
initially available to the agent. In problems of complete information, the agent
has a complete and accurate model of its environment's dynamics. In problems
of incomplete information, this level of knowledge is not available. It is im-
portant not to confuse complete and incomplete information with complete and
incomplete observation of the environmental state. We refer to the case of
complete observation by saying that the environment has the Markov property.
For problems of incomplete information, model-based reinforcement-learning
methods attempt to make up for the lack of a model by learning a model on
line based on experience with the environment. Primitive methods attempt to
optimize the policy without constructing a model of the environment's dynam-
ics. Intermediate cases are possible as well.

A well-defined notion of optimality organizes the model of reinforcement
learning we have described in this chapter. Optimality provides a way to
understand the theoretical properties of various learning algorithms, but it is an
ideal that reinforcement-learning agents can only approximate to varying
degrees. In reinforcement learning, we are concerned with cases in which
optimal solutions cannot be found but can be approximated in some way.

s

