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Neural models, and indeed models in any domain, can differ widely in terms
of the intentions with which they are consiructed and the levels of empirical
support on which they depend. A neural model might be based on detailed
observations of a particular experimental preparation, or it may be less di-
rectly related to anatomical and physiological data, relying instead on be-
havioral parallels, As neural models become farther removed from anatomy
and physiology and closer to “adaptive networks” or “self-organizing sys-
tems” of quasi-neural elements, they become less interesting to the neunro-
scientist, and the ferm *“neural model” becomes more misleading. With this
decreasing relevance to neuroscience, however, one might hope for increas-
ing relevance to psychology and perhaps to artificial intelligence. Yet many
such models have not been influential among psychologists despite the rich
history in psychology of purely descriptive behavioral models, and they have
not been influential among artificial intelligence researchers despite the fact
that these researchers have explicitly excluded concern with neural mecha-
nisms. One reason for this may be the fact that many abstract neural models
neither make significant contact with behavioral data nor suggest algorithms
that would be useful to the artificial intelligence researcher for solving
nontrivial problems.

In this article, we present an overview of a research program that is in-
tended explicitly to be a study of “adaptive networks™ of quasi-neural ele-
ments. However, we have tried to maintain careful and significant contact
with behavioral data from animal learning studies, with descriptive
behavioral models in that field, and with problem-solving methods of artifi-
cial intelligence. Alihough the mechanisms we discuss can be given neurai in-
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terpretations, we feel that it is premature to propose an extensive and detailed
nenral model to bridge the gap between anatomical and physiological data
and the behavioral level in which we are interested. We have instead concen-
trated on behavioral models that exhibit aspects of animal behavior that we
consider to be adaptively significant, and on the relationship between these
aspects of behavior and the computational requirements for solving
nontrivial problems. We are considering problems that animals are capable
of solving routinely, whose solutions provide obvious adaptive advantages,
and that are genuinely difficult to solve irrespective of the methods used.

Qur approach is to consider the general problem of control. Arbib (1972)

emphasizes that: “the animal perceives its environment to the extent that it is
prepared to interact with that environment in some reasonably structured
fashion.” This stress on what Arbib calls “action oriented perception” implies
that modeling approaches are misleading insofar as they consider just sen-
sory processing (e.g., pattern recognition), while neglecting highly structured
action generation processes and the closed-loop interaction, mediated by the
organism’s environment, between action and sensory patterns. From an engi-
neering point of view, we can say that animals are engaged in the problem of
controlling their environments in a closed-loop fashion to achieve certain
goals. Consequently, our strategy has been to consider entire control systems
facing contro! problems posed by environmental interaction, and we have
paid as much attention to the environments and the resulting control prob-
lems as we have to the controlling mechanisms themselves.

In addition to our emphasis on complete control problems, we have found
it useful to endow each network component with relatively sophisticated
computational power. Each primitive component of a network in our ap-
proach is best characterized as a complete, although simple, “reinforcement
learning control system” (Mendel & McLaren, 1970) that acquires knowledge
about feedback pathways in which it is embedded and uses this knowledge to
seck preferred inputs. In providing cach component with such capabilities,
we have been guided by the proposal of A. H. Klopf (1972, 1979, 1982} that
progress inunderstanding natural inteiligence, and progress in artificial intel-
ligence, might be furthered by a study of goal-seeking systems composed of
goal-secking components. Instead of viewing any form of goal-seeking be-
havior as an emergent property of a system consisting of non-goal-seeking
components, Klopf suggests that sophisticated goal-directed behavior arises
from interacting components that are self-interested, and exercise strategies
for furthering these self-interests, Goal-directed behavior is pushed down the
structural hierarchy to basic levels, and higher forms of goal-directed behav-
ior are seen as resulting from the competitive and cooperative interaction of
self-interested components. The neural interpretation of this hypothesis is
that neurons are similarly sophisticated goal-seeking control systems. In the
course of our discussion, we point out similarities between our adaptive ele-
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ments and goal-seeking strategies known to exist in single-celled organisms
such as bacteria. We think that the continued study of the numerous
commonalities between bacterial chemotaxis and other simple forms of
adaptive behavior in single cells, and the signaling systems of neurons
{Koshland, 1979) is a most promising avenue for assessing the hypothesis that
neurons are goal-seeking control systems. However, although we present our
learning algorithms in terms of neuronlike elements, we are not prepared to
argue that all the capabilities of these elements need necessarily reside at the
level of single cells.

This article is divided into three major parts. In the first part, we discuss a
neuronlike adaptive elemnent that is capable of reproducing some of the de-
tails of animal behavior in classical conditioning experiments. We emphasize
aspects of classical conditioning that are difficult to achieve by neural models
proposed in the past and that seem to have obvious adaptive significance; in
particular, we emphasize temporal phenomena involving prediction and ex-
pectation. This adaptive element resulted from our attempts to incorporate
the sensitivity to temporal succession that seems necessary for goal-seeking
control: If actions are to be selected according to their consequences, then
temporal factors are important because an action’s consequences unfold over
time. This adaptive element is not, however, capable of closed-loop control
and is not a goal-seeking system in the appropriate sense. In the second part
of this article, another type of adaptive element is discussed that is a goal-
seeking learning control system closely related to instrumental, rather than to
classical, conditioning. We discuss associative networks composed of these
elements, how their capabilities differ from associative memories studied in
the past, and why these differences are important from a problem-solving
perspective. We illusirate the learning capabilities of these networks in sev-
eral spatial learning tasks. Finally, in the third section, we discuss how the
open-loop classical conditioning element and the closed-loop goal-seeking el-
ement can interact to provide an approach to a fundamental problem of
adaptive system theory known as the “assignment of credit problem™: If re-
ward is achieved after a complex series of actions, to which component ac-
tions should the credit be assigned (or the blame in the case of penalty)?

ANALOGS OF CLASSICAL'CONDITIONING

Many adaptive network theories are based on neuronlike adaptive elements
that can behave as single unit analogs of animal classical conditioning (e.g.,
elements incorporating Hebb’s, 1949, postulate). However, there are many
features of animal behavior in classical conditioning experiments that are
generally not preserved by adaptive element analogs. Although one may val-
idiy question the rationaie for investigating networks of elements that are ex-
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act analogs of overt animal associative learning behavior (as surely some
properties of this behavior must be due to the effects of higher levels of or-
ganization), it seems reasonable to include those characteristics that are most
salient in terms of adaptive significance, that are problematic to achieve as
emergent properties of organizations of simpler components, and that offer
advantages from a problem-solving point of view. Here we describe an
adaptive clement analog of classical conditioning that preserves features of
the anticipatory nature of classical conditioning and is in agreement with
data regarding the effects of stimulus context in classical conditioning. We
show that these stimulus context effects can be interpreted as the capability to
“srthogonalize” input vectors. The element is a temporally refined extension
of the Rescorla-Wagner model of classical conditioning (Rescorla &
Wagner, 1972} and was presented by Sutton and Barto (1981b) and further
discussed by Barto and Sutton {1982).

In a simple classical conditioning experiment, the subject is repeatedly pre-
sented with a neutral conditioned stimutus (CS), that is, a stimulus that does
not cause responses other than orienting responses, followed after an interval
of time (the interstimulus interval, or ISI) by an unconditioned stimulus
(UCS), which reflexively causes an unconditioned response (UCR). Aftera
number of such pairings of the CS and the UCS-UCR, the CS comes to elicit
a response of its own, the conditioned response (CR), which closely resem-
bles the UCR or some part of it. For example, a dog is repeatedly presented
with first the sound of a bell (the CS) and then food (the UCS), which causes
the dog to salivate (the UCR). Eventually, just the sound of the bell causes
salivation (the CR). This description leaves much unsaid, as we see later, but
will suffice as we describe an adaptive element analog.

Fig. 7.1 shows an adaptive element with an input pathway for the UCSand
one for each stimulus capable of being associated with the UCS. These latter
stimuli are (potential) conditioned stimuli, and we denote them by C5,
1 <i=<n. Let xo(t) denote the activity of the UCS pathway at time £, and let
x(f) denote the activity of pathway CS, 1 <i=<n, attime?. The element’s out-
put is assumed to contribute to both the UCR and the CR. For our present
purposes, we assume that these activity levels at any time are positive real
numbers. The associative strength of each CS at time ¢ with respect to the
UCS is denoted by Vi, (9, I =i=<n, and represents the efficacy, or weight, of
the corresponding inpﬁt pathway. The weight of the UCS pathway is fixed at
some constant value that we denote by A. Let s{f) denote the weighted sum of
all the inputs at time ¢, that is,

s(t) = A + El Vcs,. (B)x{8). 8]
For our present purposes, it does not matier exactly how the element output

is computed, and for simplicity, we assume that at time £ it is just s(7).
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FIG.7.1 An adaptive element analog of classical conditioning. (Reprinted from Barto
& Sutton, 1982).

Several other variables are required in order to define the adaptive ele-
ment. For each stimulus signal x,, I si=<n, we require a separate stimulus
trace that we denote by x,. By this we mean that activity of variabie x, is re-
flected in later activity of variable x,. This is accomplished by letting x(f) be a
weighted average of the values of x, for some period of time preceding ¢. Simi-
larly, we require a trace of the sum 5. Let 5(¢) denote a weighted average of the
values of s over some interval preceding 7. In the computer simulations de-
scribed as follows, we generated these traces using the first-order linear dif-
ference equations

X+ 1) = ax{) + (1 — a)x(0)
st + 1) = Bs(0 + (1 — Bys(®)
where o and 8 are constants such that 0=<q, §<1. This process produces
exponentially decaying traces with time constants depending on the parame-
ters o and 8 (Fig. 7.2}.
In terms of the two variables s and 5, and the variables x,, x, and ¥, for

each pathway 1 =i=<n, the adaptive element successively generates values of
the associative strengths, or weights, as follows: for each /, 1 =i<n,

Ves{t + 1) = Vi (@ + cls() — 50Ix(0) @

where ¢ is a positive constant determining the rate of learning.

The process specified by Equations [ and 2 can be described as follows:
Activity on any input pathway { possibly causes an immediate change in the
element output s (we have assumed, again for simplicity, that there is no de-
lay through the element) and also causes that pathway to be “tagged” by the
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FIG.7.2 Anexponentially decaying stimulus trace. Activity of variable x; causes a pro-
Ifonged trace x;.

stimulus trace X, as being “eligible” for modification for a certain period of
time (the duration of the trace) after the activity on pathway / ceases. A
weight is modified only if it is eligible and the current value of s differs from
the value of the trace s of 5. The simplest case, and the one used in our simla-
tions, results from letting s(£) = s{(t — 1)sothats(9) — s(®) = s() — s(t —
1), which is a discrete form of the rate of change of s. ‘
The notion that one set of conditions makes pathway efficacies “eligible”
for modification, but that actual modifications occur due to other conditions
during periods of eligibility, is a major feature of Klopf’s (1972, 1982) theory
of neunral adaptation. This notion itself is not uncommon among theorists,
but the idea of two separate variables, one for signaling the occurrence of
events and another for retaining knowledge of these occurrences so that
events can be associated with iater events, has not been deeply explored. In
many neural theories, for example, neural discharges signal the occurrence of
stirnulus events and aiso bridge the temporal gap required for conditioning
by “reverberating” in some manner. Because it seems advantageous for an or-
ganism to be able to perceive events as occurring as closely as possible to their
actual times of occurrence, and particularly as early as possible, additional
mechanisms must be postulated to distinguish neural activity that is signaling
the occurrence of an event from reverberatory neural activity that is storing
reflections of past events. In a two-variable system (e.g., x; and x) these two
functions are cleanly separated. Although reverberatory activity is probably
important at many levels in the central nervous system, one need not assume
that reverberation is the primary mechanism at all levels for spanning the
time between the sequential events on which learning depends. We now ex-
amine several aspects of our adaptive element’s behavior with respect to clas-
- sical conditioning data and suggest how these aspects of behavior are impor-
tant from the perspective of problem solving.
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Anticipatory Nature of Classical Conditioning

The interval between CS onset and CR onset is called the CR latency. For a
particular response there is a positive minimum CR latency due to various
types of intrinsic delays (e.g., 70-80 msec for rabbit nictitating-membrane
response). If the 51 in a conditioning experiment is shorter than the mini-
mum CR latency, then the CR necessarily begins after UCS onset. More usu-
ally, however, the ISI is longer than the minimum CR latency, and the CR be-
gins before the UCS onset (although the CR latency tends to change during
conditioning procedures [see, for example, Kimmell, 1965]). Being a re-
sponse to the predictive CS, the CR anticipates the UCS and the UCR
{Gormezano, 1972; Mackintosh, 1974).

This anticipatory aspect of the CR is a crucial factor in the adaptive signifi-
cance of the behavior elicited in classical conditioning experiments, Putting
on the hat of a designer of an intelligent problem solver, it would seem desira-
ble to have a mechanism that is able to extract predictive regularities in its in-
put so as to make a representation of a predicted event occur at the earliest
time at which that event can be predicted with reasonable certainty. A predic-
tion that is available only at the same time as, or later than the event predicted
is no more useful in guiding behavior than no prediction at all; and, assuming
a competitive environment, the earlier the prediction is available, the better.
Moreover, internal predictive representations might act as predictive cues for
other internal events, creating the possibility for effectively “compressing”
the time scale in a manner similar to what would happen if we were to tape-
record something at one tape speed (“real time™) and play it back at a higher
speed (“faster than real time™). The utility of predictive methods is well estab-
lished in engineering applications (Box & Jenkins, 1976), and the adaptive
advantage to an organism possessing these capabilities is clear.

The fact that anticipatory CRs are possible at all is problematic for many
neural theories. For example, many mathematical interpretations of the
Hebbian postulate require simultaneous pairing of the UCS and CS signals at
the adaptive element, thus implying an optimal ISI of zero. Because the de-
pendency of conditioning on the ISI is generally recognized, delays inthe CS
pathway are often suggested to bring the behavior closer to animal data
(Burke, 1966; Uttley, 1979). Such delays can be used to reproduce the experi-
mental observation that the CS onset must precede the UCS onset in order
for conditioning to occur, but they do not by themselves explain the experi-
mental observation that the CR onset generally also occurs before the UCS
onset. Such delays necessarily delay CR onset at least until the time of UCS
onset, thereby preventing the CR latency from ever being shorter than the ISI
required for conditioning. Reverberatory trace mechanisms in the CR
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pathway are more satisfactory, but they do not allow for precise temporal lo-
calization of the CS.

Let us examine the behavior of the aforementioned adaptive element fora
special case of classical conditioning in which the CS and the UCS are rectan-
gular pulses, the CS associative strength is initially zero, and the trace stakes
the form s(t) = s(¢ — 1). Figure 7.3a shows the adaptive element analog of

Ucs

x=C5 VCS s=UCR and CR

FIG. 7.3 _Analog (?f classical conditioning with a single CS. (a) The adaptive element
configuration. (l?) Time courses of the model variables for the first trjal. (¢} Time courses
of the model variables after complete conditioning. Note that the element response (5) to

ha Al tan & Ly n
the C8 auticipates the UCS. (Reprinted from Bario & Sution, 1982).
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this situation, and Figs. 7.3b and 7.3c show the signal time courses we now
describe. On the first trial, the occurrence of the CS causes an increase in the
eligibility ¥ of the CS pathway that persists for some time after CS offset.
‘When the UCS occurs, it causes a positive change in s at its onset and an equal
but negative change at its offset. Because eligibilityi is greater at the time of
UCS onset than at the time of UCS offset, V, is caused to have a net in-
crease: It increases at UCS onset and decrcases by a lesser amount at UCS
offset (Fig. 7.3b).

On the second trial, ¥ is no longer zero so that CS occurrence causes
changes in s int addition to those caused by UCS occurrence (Fig. 7.3¢). The
increase in 5 at CS onset has no effect on ¥ because eligibility is zero (we are
assuming that the intertrial interval is long enough to let eligibility decay to
zero between trials). The decrease in s at CS offset, however, occurs during -
high eligibility and therefore causes a decrease in V. The UCS causes an in-
crease inV as on the first trial, but the net result of both the CS and UCS s
less of an mcrease than on Trial 1. With additional trials, ¥ increases until
the positive effect of the UCS is counterbalanced by the negatlve effect of the
CS offset. The process therefore stabilizes in the sense that eventually ¥V, will
experience no net change per trial (although it will in general continue to
change during these trials). Stability is achieved through negative feedback
due to increases in ¥, causing increased decreases in V., at CS offset. Figure
7.4, Trials 0-10, shows a typical acquisition curve pIottmg the associative
strength after each trial'.

Fig. 7.3c shows that the value of s shows a response to the CS and the UCS,
The later response is assumed to contribute to the UCR whereas the earlier
one is assumed to contribute to the CR. Thus, the CR component anticipates
the UCS onset and the UCR onset. Here, the CR latency is zero because we
have assumed that there is no delay in the input/output response of the ele-
ment, but the ISI must be positive for conditioning to occur, The basis for
this anticipatory behavior is clearly the prolonged eligibility trace. If an event
regularly precedes another event by an amount of time spannable by this
trace’s duration, then the association between these events can be “recorded,”
in a sense, by the adaptive element and “played back” at a much faster time
scale.

The adaptive element is also capable of doing something more subtle than
this. Because activity on any input pathway with nonzero weight causes
changes in s, this activity can cause changes in the weights of other pathways.
Thus, a previously conditioned CS can act as a UCS for a second CS. This
also can occur in a Hebbian element analog of classical conditioning, but

*This acquisition curve is strictly negatively accelerated whereas experimental acquisition
curves generally have an initial period of positive acceleration. Extensions of models sirilar to
1 ad e glement have been propesed to remedy this (Frey & Sears, 1978).

gur adaptive element
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FIG.7.4 Analog of a blocking experiment. Trials 0-10: Acquisition curve for a single
CS in Part I of the blocking experiment. Trials 11-20: Part II of the blocking experiment.
CS, and CS; are identically paired; the formation of an association from CS, is blocked
due to prior conditioning to CS;. Trials21-35: Interaction of stimulus context and antici-
patory effects. Blocking is reversed because C3, is an earlier predictor of UCS occur-
rence, (Reprinted from Barto & Sutton, 1982).

when coupled to the anticipatory capabilities of our element, some novel con-
sequences appear. Figure 7.5 shows a simulated experimental arrangement in
which each trial consists of a temporal sequence of four CSs (i.e., a serial
compound CS) followed by a UCS. Oaly the CS that occurs immediately be-
fore the UCS (i.e., CS.) initiates an eligibility trace that reaches far enough
into the future to permit conditioning to occur. At first, then, only the associ-
ative sirength of CS; increases. As an association from CS; is forming, how-
ever, CS; occurrence causes changes in s and thereby acts as a UCS for the
preceding CS, that is, for CS;. In turn, CS; acts as a UCS for CS;, etc. Figure
7.5 shows the acquisition curves of this higher-order conditioning process.
During this process, the CR onset moves back in time from the time of CS,
onset to the earler time of CS, onset. Kehoe, Gibbs, Garcia, and Gormezano
(1979) observed a strong effect of this nature for rabbit nictating-membrane
response (see also Gormezano & Kehoe, in press). Chaining of associations in
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this manner (by a single element)} permits conditioning to occur for ISIs much
longer than those that can be spanned by a single eligibility trace, provided
there are regularly occurring intervening events. Under such conditions, the
anticipatory CR will tend to begin at the earliest time at which the UCS can be
predicted with reasonable certainty irrespective of the eligibility trace dura-
tion. We discuss the significance of this capability from a problem-solving
perspective in more detail in a later section (“Assignment of Credit”).

Stimulus Context Effects and Crthogonalization

In classical conditioning experiments the associative strength of the stimuli
that act as context for a CS on a trial can nullify or even reverse the effect of
the occurrence of the UCS on that trial. In this section, we discuss two exam-
ples of stimulus context effects, known as blocking and condifioned inhibi-
tion, and show how the adaptive element already described is able to produce
these effects. We then explain this by relating our element to the
Rescorla-Wagner model of classical conditioning and discuss the signifi-
cance of this behavior from a problem-solving point of view. In particular,
we observethat the stimulus context effects that animals exhibit can be inter-
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FIG.7.5 Serially compound CSs. As their associative sirengths increase, later CSsserve
as UCSs for earlier CSs. (Reprinted from Barto & Sutton, 1982).
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preted as the result of a process that “orthogonalizes” stimulus vectors, a
process of considerable practical importance.

A typical blocking experiment consisis of two parts. In Part I, one stimu-
lus, CS:, is paired with the UCS at an appropriate I1SI until the associative
strength between CS, and the UCS reaches its asymptotic value. In Part 11,
CS; continues to be paired with the UCS, but another stimulus, CS;, co-
occurs with CS;. Although CS; is appropriately paired with the UCS in Part
I1, it conditions very poorly, if at all, compared to a control group lacking
prior Part I conditioning to CS; (see, for example, Hilgard & Bower, 1975).
The results of a simulation of blocking using our adaptive element are iilu-
strated in Trials 0-20 of Fig. 7.4. For the first 10 trials, CS, was presented
alone and followed by the UCS, and for Trials 11-20, CS; was presented
identically paired with CS;, and both were followed by the UCS, During
trials 11-20, changes in VCSZ were blocked because 5 did not change while the
S, pathway was eligible.

Conditioned inhibition is another stimulus context effect involving at least
two CSs, denoted CS+ and CS—. Suppose the occurrence of CS+ alone is
always followed by the UCS, but the co-occurrence of CS+ and CS— is
never followed by the UCS. For this paradigm, the associative strength ¥,
increases so that CS + produces a CR, but ¥ becomes negative so that a
CR does not follow the co-occurrence of CS+ and CS—; CS— becomes a
conditioned inhibitor of the CR. Figure 7.6 shows the results of a simulation
of this procedure using our adaptive element.

Perhaps the best way to explain how our adaptive element produces these
effects is to relate it to the Rescorla~Wagner model, which was devised to de-
scribe these effects in animal behavior (Rescorla & Wagner, 1972). The
Rescorla-Wagner model is based on the view that learning occurs only when
expectations are violated, According to this view, for example, blocking oc-
curs because Part I training creates an expectation of the UCS that is not dis-
rupted in Part I1. When the activity trace 5in Equation 2 is interpreted as pro-
viding the expected value of the actual activity s, then Equation 2 resembles
the Rescorla-Wagner model because it implies that eligible pathways are
modified whenever the actual value of s differs from the expected value 5.
Theterms — 5isa measure of how strongly the current activity confirms or
contradicts the previously formed expectation. Sutton and Barto (1981b) dis-
cuss the Rescorla-Wagner model and these correspondences in detail. Antici-
patory aspects of classical conditioning and ISI dependency are not ad-
dressed by the Rescorla-Wagner model because, unlike our element, it is a
trial-level model that does not distinguish between different times within
each trial.

It is a striking fact that the Rescorla-Wagner model, which was formulated
to describe compactly a wide variety of effects observed in animal learning
experiments, is identical to an algorithm for iteratively computing the inverse
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FIG. 7.6 Analog of a conditioned inhibition experiment. CS+ is always followed by
the LJCS, but the co-occurrence of CS + and CS— is never foliowed by the UCS. CS — be-
comes a conditioned inhibitor of the CR. (Reprinted from Barto & Sution, 1982}).

of a linear transformation, a process having many practical problem-solving
applications. This algorithm has a long history in mathematics and appeared
in the form of an adaptive element developed by Widrow and Hoff (1960},
which they called an “adaline” (for adaptive /inear). Closely related adaptive
elements are those used in Rosenblatt’s “perceptron” (1962) and Uttley’s
“informon” (1979). Consider a set X = {X*, 1 =a =<k} of stimulus patterns

== (xf, . . . x¥) and an associated set of real numbers Z = {z=, 1 =x =k}
where each z= is the adaline response desired for stimulus pattern X*. The
weights of an adaline change as follows: for 1<i<n,

Wit + 1) = wip) + ela) — E w0

where z{f) ¢ Z is the reference or “teacher” signal that provides the desired re-
sponse to input pattern X(f) = (x{#),. . ., x,(f) Je X, andcisa positive con-
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stant. If the set X of input veciors is linearly independent and an adaline is
trained by presenting the adaline with sufficient repetitions of the pairs
(X*,79), 1 <<k, it will eventually respond with z¢ when presented with X
alone, 1 <o =<k. In other words, it will form a weight vector W™* = (wf,.. .,
w¥) such that

[ws ..., wil xp] =z

x5
for i<=asxk.

Widrow and Heff (1960) proposed associative memory networks similar
to those discussed by Anderson and Kohonen in this volume but consisting of
adalines (although Widrow’s work considerably predated this use of the term
associative memory). Amari (1977a, 1977b) and Kohonen and Oja (1976) dis-
cuss similar networks. An associative memory network consisting of adalines
does not require orthogonal input, or “key,” vectors in order to obtain per-
fect recall peformance. Amari (1977a, 1977b) calls this “orthogonal learning”
because nonorthogonal patierns are “orthogonalized” by the network. More-
over, if the set X is not even linearly independent, the system will form
weights so as to minimize the mean square error. The process is, in fact, an al-
gorithm for computing a linear regression or, more technically, for finding
the Moore-Penrose pseudoinverse of a linear transformation. Duda and
Hart (1973) provide a good overview of this general theory in the context of
pattern classification.

Both the stimulus context effects of blocking and conditioned inhibition
can be seen as instances of “orthogonalization.” For a form of blocking, one
has the stimulus vector X! = (1, 0) representing the occurrence of CS, alone
and the vector X2 = (1, 1) representing the co-occurrence of CS, and CS,.
These are clearly linearly independent but not orthogonal. The responses de-
sired are 2! = z2 = X (as the UCS, and hence the UCR, occurs on both CS;
alone and CS; + CS; trials). An adaline will form the weight vector
W+ = (), 0) giving

m, 0] 1 =[)\,O][1]=x
L)L

Equivalently, the process solves the matrix equation

fw., wﬂ[l 1]=[>\,)\]
0 1

for wy and w; by effeciively finding the inverse of the 2 X 2 matrix whose
columns are the stimulus patterns X? and X=. Blocking appears because w;
turns out to be zero.
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For conditioned inhibition, one has the vectors X* = (1, 0) for CS+ oc-
currence and X2 = (1, 1) for the co-occurrence of CS + and CS— . These are
the same linearly independent but nonorthogonal vectors that represent the
blocking experiment. The desired responses are z! = A and z2 = 0 because
the UCS is absent for CS—. An adaline will produce the weight vector
W* = (A, —)), showing that CS+ eventually excites the element and CS —
eventually inhibits it. Again, the process solves a matrix eguation.

These stimulus context effects, and others that we have not discussed, pro-
vide evidence that animals “orthogonalize” their stimulus patterns during
classical conditioning experiments. We think the independent discovery of
this orthogonalization algorithm, in one case to describe animal behavior
and in the other case to provide solutions to practical problems, is a remark-
able instance of how purely theoretical problem-solving considerations can
illuminate the adaptive significance of animal behavior. The adaptive ele-
ment defined by Equations 1 and 2 orthogonalizes input patterns by virtue of

its similarity to an adaline (and hence to the Rescorla-Wagner model} while

also preserving some of the anticipatory aspects of classical conditioning. We
have not yet thoroughly explored how these two aspects of our element’s be-
havior interaci, but an example of this interaction is provided by the results
shown in Fig. 7.4, Trials 21-35. Here blocking is reversed because CS; begins
earlier than a previously conditioned CS,, suggesting that stimulus context
effects occur insofar as they are consistent with the tendency to extract the
earliest predictors of the UCS. We know of no atterpts to perform this ex-
periment on an animal preparation.

‘We have also not vet thoroughly explored the possibilities suggested by the
use of our classical conditioning element in the associative memory paradigm
discussed by Anderson and Kohonen in this volume. In one study, however,
we used these elements to form a predictive associative memory that served
as an internal model to evaluate proposed, but not overtly executed actions
(Sutton & Barto, 1981a; see Fig. 7.7). We illustrated how this configuration
was able to account for some of the difficult features of an experiment
demonstrating “latent learning” in animals. We now focus on another type of
adaptive clement that was used in the “action selector” component shown in
Fig. 7.7.

GOAL-SEEKING ADAPTIVE ELEMENTS

The adaptive element described in the preceding section operates in a com-
pletely open-loop mode: Its operation does not depend in any way on its be-
ing able to influence its input signals, as is appropriate because the classical
conditioning paradigm was designed to prevent response contingencies (al-
though in practice it may be impossible to remove all such contingencies). In-
strumental (cued operant) conditioning, on the other hand, is learning that
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FIG.7.7 The use of a predictive associative memory as an internal model enabling pro-
posed actions to be evaluated before they are executed. (Reprinted from Sutton & Barto,
1981a). '

occurs in experimental paradigms that do involve response contingencies.
Reinforcement may be given or withheld depending on the animal’s response.
If a system can exert such control over its input, it is possible to speak of goal-
seeking behavior in which, for example, the system acts so as to obtain appe-
titive stimuli and avoid aversive stimuli. Despite common belief to the con-
trary, nontrivial forms of response-contingent learning have received very
little attention from adaptive network theorists?. Recognizing this, Klopf
(1972, 1982) proposed that neurons may operate as analogs of instrumental

2This may seern a surprising comment, and an adequate defense of it is beyond the scope of the
present chapter. Although the “errot-cosrection” methods employed by the adaline or percep-
tion, for example, are often considered to be analogous to “trial-and-error” learning, they are
not. These methods search in the space of weight vectors but not in the space of possible actions.
In Barto and Sutton (1981b) we discuss this in more detail.
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conditioning rather than classical conditioning and suggested how this may
be accomplished. What follows is a discussion of some of our studies of net-
works of such goal-seeking components.

The psychological literature on instrumental conditioning and on the rela-
tionship between instrumental and classical conditioning is extremely com-
plex. Rather than attempting to carefully integrate our studies of closed-loop
Iearning rules with this literature, as we attempted to do for the open-loop
case of classical conditioning, we have instead concentrated on the problem-
solving potential of such rules. Here we describe some simulation experi-
ments intended to illustrate these capabilities in a vivid and intuitively satisfy-
ing manner. This adaptive element was presented by Barto, Suiton, and
Brouwer (1981) and the experiments described here were presented by Barto
and Sutton (1981b).

This adaptive element has » input pathways x, 1<i=n, a specialized
“payoff” pathway z, and an output pathway y. Weletx(2), i<i=un, z(?), and
¥(#) respectively denote the activity on these pathways at time 7. As usual, a
variable weight with value w,(f) at time ¢ is associated with each pathway x,
I=i<n. Let

s(t) = T withx (o).
The output of the element at time 7 is
. 1ifs{») + NOISE(®) > 0
¥ = 3

0 else

where NOISE(?) is a normally distributed random variable with mean zero.
The weights change according to the following equation:

w() = wit — D + clz(t) — z(t — Dyt — DHxfe = 1 4

for 1 =i=<n, where ¢ is a positive constant determining the rate of learning.
This adaptive clement searches for the action that will lead to the largest
payoff obtainable in the situations signaled by its stimulus patterns. Suppose
the payoff provided to the element at time 7 is a function of the element’s ac-
tion at time ¢ — 1 and the stimulus pattern X{f — 1) = a(t — D, .. o
x(¢ — 1)) present at time ¢ — 1; that is z(0) — fI¥(t — I), X{t — 1)]. The
element is to learn to perform the action y(f — 1) in response to the pattern
X(¢t — 1) that maxirmizes z{f}. The element searches for this action by trying
its various responses to each pattern and settling on the one that turns out to
be best. The element need never be directly instructed as to which response is
best for each pattern. If the consequences of an action are not returned to the

clement in one time step as we have assumed here, it is appropriate to replace
the terms z{f — 1), ¥{¢ — 1), and x{¢ — 1) in Equation 4 with prolonged
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traces of these signals such as those used in the classical conditioning element
described in the previous section.

The random component in the element’s response (Equation 3) is essential
to this process. Responses are made randomly but are biased in one direction
or the other by the sum 5. Because s depends on the input patterns through the
weights, the weights determine how this probabilistic bias conditionally de-
pends on each input pattern. According to Equation 4, if the element “fired”
at t — 1 (.e., ¥ — 1) = 1) in the presence of nonzero input activity on
pathway i (i.c., x{f — 1)>0), perhaps due to an excitatory effect of signai x,
or perhaps by chance, and this was followed by an increase in payoff (i.e.,
z(f) — z{t - 1)>0)}, then firing in the presence of signal x; is made more
likely by incrementing weight w,. Similarly, the firing probability is decreased
if the payoff decreases. The noise in the response, then, is essential to the
learning process because it generates trials in the absence of any
preestablished influence from sensory input and continues to generate trials
as this influence is established. Conducting a search in this probabilistic man-
ner also permits the element to improve its performance (in terms of the
amount of payoff received) even if the environment provides payoff in a
nondeterministic manner, a property whose importance will become more
clear when we consider a network of these elements.

Hill Climbing and Chemotaxis

The adaptive element just described implements an elaboration of a goal-
seeking strategy that occurs in certain simple organisms. Fraenkel and Gunn
(1961) discuss a number of methods used by animals for finding and re-
maining near light or dark areas, warm or cool areas, or, in general, for ap-
proaching attractants and avoiding repellents. One of the most primitive
mechanisms is a strategy that they called klinokinesis, the most intensely
studied example of which occurs in the behavior of various types of bacteria
such as Escherichia coli, Salmonelilg typhimurium, or Bacillus subtilis. This
manifestation of klinokinesis, known as bacterial chemotaxis, was discov-
ered in the 1880s and was recently reviewed by Koshland (1979). These bacte-
ria propel themselves along relatively straight paths by rotating (1) flagella.
With what at first appears to be a random frequency, they reverse flagellar
rotation, which causes a momentary disorganization of the flagellar fila-
ments. This causes the bacterium to stop and tumble in place. As the disor-
ganized flagellum continues to rotate in the new direction, its filaments twist
together again, causing the bacterium to move off in some random new direc-
tion. I the attractant is getting stronger, the probability of reversing flagellar
rotation decreases, thereby increasing the probability that the bacterium will
continue to move in the same direction; whereas if the attractant level drops,
the probability increases that the bacterium’s flagellum will reverse and cause
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the bacterium to swim off in a randomly chosen new direction. Runs in direc-
tions leading up the attractant gradient therefore tend to be longer than runs
in dircctions leading down the gradient. As a result of this strategy, bacteria
are able to find and remain in the vicinity of the peaks of attractant distribu-
tions. Selfridge (1978) points out the general utility of this basic mechanism,
which he calls “run-and-twiddle” —if things are getting better, keep doing
whatever you are doing; if things are getting worse, do something (anything!)
else. It is a very effective strategy, particularly when gradient information is
very noisy.

To see how the adaptive element defined by Equations 3 and 4 implements
an analog of this procedure, consider an elernent that receives only a single in-
put signal, say x,, in addition to the payoff, and assume that x, has a constant
value of 1, that is, xe{f) = 1 for all #. The weight w, associated with this sig-
nal changes according to Equation 4, where the term x{t — 1) = 1 foralls.
The payoff level z(?) represents the level of attractant sensed by the element at
time £ Thus, if “firing” is followed by an increase in attractant level, then fir-
ing is made more likely. Note that we can consider the single constant input
and its weight as a convenient means of specifying a variable threshold (so
that the constant input need not really be supplied from the element’s envi-
ronment). If upper and lower bounds were imposed on the value of wo and if
the learning constant ¢ were large enough, then a single “move” up or down
the attractant gradient would respectively cause the element to “continue
doing what it was doing” or to “do something else” (with a high probability).

Rather than direcily simulating a spatial version of “running” and
“twiddling” using a single element, we simulated an “organism” whose loco-
motion is controlied by four adaptive elements, each controlling movement
in one of the four cardinal directions; it moves north if Element 1 fires, south
if Element 2 fires, etc. In case two elements fire simultaneously, then an ap-
propriate compound move is made, for example, northwest. A sort of “recip-
rocal inhibition” is used to reduce the probability that the north and south or
the east and west elements fire together. We assume that each move is a fixed
distance and is completed in a single time step. Clearly, we were not at-
tempting to model in any detailed manner the motor control system of an ac-
tual organism, and we have not opiimized this hill-climbing strategy. Figure
7.8 shows the simulated organism’s trail in an environment containing a
“tree” as the center of an attractant distribution that decreases linearly with
distance from the tree. The organism (shown as an asterisk) approaches the
iree and remains in its vicinity.

Associative Search

The simulated organism climbing the attractant distribution in Fig. 7.8 is not
forming long-term memory traces. If we were to move it back to its starting
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FIG. 7.8 Chemotacticlike behavior of a network of goal-seeking adaptive elements.
The “organism,” shown as an asterisk, started in the upper right and generated the trail
shown as it climbed an attractant distribution whose peak is marked by the location of the
“tree.” (Reprinted from Barto & Sution, 1981b).

position, it would take just as long (on the average) io move toward the tree;
nothing was learned during the first excursion. This suggests that the other
input pathways to the elements controlling locomotion might provide infor-
mation that can be used to guide the hill-climbing procedure and that their
weights might provide useful long-term memeory traces. The following simu-
lation experiments were designed to explore the coupling of associative learn-

ing capabilities with chemotacticlike behavior. To the spatial environment al- -

ready described, we added four “landmarks,” each of which emits a
distinctive “odor” that decays with distance from the landmark (Fig. 7.9a).
These odors are nentral in the sense that they are not attractants or repellents
but can serve as cues as to location in space.

Figure 7.9b shows the network of four adaptive elements that controls
movement in the manner described. These input pathways are labeled verti-
cally on the left according to the landmarks to which they respond. The loca-
tion of the organism, then, determines the input pattern it receives. The
shaded input pathway N in Fig. 7.95 indicates that the organism is near the

north neutral landmark. Given the presence of these other signals, there is no
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longer a need for the constant input x, (although the system still works if it is
present). The arrangement of input and output pathways used in Fig. 7.9b
permits us to show the connection weights as circles centered on the intersec-
tions of input pathways and the vertical output element “dendrites.” We
show positive weights as hollow circles and negative weights as solid circles.
The sizes of the circles indicate the relative magnitudes of the corresponding
weights. The uppermost “tree” input is the payoff pathway z, which has no
associated weights, This network is an example of what we have called an “as-
sociative search network” (Barto et al., 1981). The matrix of weights forms
an associative memory, but unlike those discussed by others, it need not be
directly told what associations to store. Instead, it stores the successful re-
sults of the chemotacticlike search. With sufficient experience, the system
can learn to respond to the configuration of signals at each place with the ac-
tion that is optimal for that place.

Figure 7.10 illustrates the performance of this system. In this case, noise
has been added to the atiractant level in order to make the hill-climbing task
more difficult. Figure 7.10a shows the trail of an inexperienced organisin that
starts near the nothern neutral landmark. It eventually remains in the vicinity
of the tree. Figure 7.10b shows the trail produced by replacing the organism
at its original starting point after it has undergone the experience shown in
Fig. 7.10a. It now proceeds directly to the tree, clearly benefiting from its
earlier experiences. Figure 7.11a shows the network after learning. Nonzero
weights have appeared so that, for example, proximity to the northern land-
mark causes a high probability of movement south because the “odor” of the
northern landmark excites the element that causes movement south and in-
hibits the one that causes movement north. Figure 7.11b shows the results of
learning as a vector field in which each vector shows the average direction
that the organism will take on its first step from any place. The vector field is
the organism’s map of its environment (it is never literally present in the envi-
ronment). Moreover, it should be clear that the organism would follow this
map even if the tree and its attractant distribution were to be removed (so
long as the neutral landmarks remained). Although the problem is simple
enough for this network to solve by forming a linear associative mapping, it
illustrates how adaptively significant behavior can be achieved naturally by
combining associative learning with chemotacticlike strategies. Further
discussion of this example is provided in Barto and Sutton (1931b).

Although some accounts of learning in the cybernetic literature essentially
equate learning and hill climbing, here we see an example of a hill climber
that learns. This is very important from a problem-solving perspective.
Search is an essential element of almost any problem-solving task {see, for ex-
ample, Minsky, 1963), but it is often essential to minimize explicit search in
order to gain efficiency. The landmark-guided hill-climbing example illu-
strates how the results of explicit searches can be transferred to an associative
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FIG. 7.10 Chemotacticlike behavior combined with associative learning. (a) The trail -
of an inexperienced organism that starts near the northern neutral landmark. Hill climb-
ing is difficult because noise has becn added to the attractant level, but the organism even-
tually remains in the vicinity of the attractent peak. (b) The trail produced by an experi-
enced organism. After the experience shown in (a), the organism is placed in its original
starting position, It now proceeds directly to the tree, clearly benefiting from its previous
experience.

long-term store so that in future encounters with similar (but not necessarily
identical) situations the system need only access the store in order to find out
what to do. The associative search network shows how all of this can be ac-
complished without centralized control. It is thus an improvement over a
nonlearning search method while also offering an improvement over the
usual storage methods for associative memories because the optimal re-
sponses need not be known a priori by the environment, the system, or the

FIG. 7.9 (Opposite page) (a) A spatial environment in which the attracting “tree” is
surrounded by four other landmarks. The landmarks each possess a distinctive “odor™
that can be sensed at a distance but that is not an attractant. Odor distributions decrease
linearly from their associajed landmarks and become undetectable at a certain distance
(indicated for landmark ‘#” by the surrounding circle). (b) A network of goal-secking
adaptive elements. The five input pathways are labeled vertically on the left according to
the landmarks to which they respond. The shaded input pathway N indicates that the or-
ganism is near the north nentral landmark. The four output pathways controlling actions
are labeled horizontally at the bottom according to the direction of movement they cause.
The shaded output elements indicate that a southeast movement is being made. The asso-
ciative matrix weights are displayed as circles centered on the intersections of the horizon-
tal input pathways and vertical output pathways, Positive weights are shown as hellow
circles, and negative weights are shown as solid circles. (Reprinted from Barto & Sutton,

1981b).




146 BARTO AND SUTTON

B ~vvuvyvuill Id b dd e
A ‘-\\\‘ullllull\fﬂ'//(/"
R R O A A A A A N

L ATV I VI T " T T S T S T v g
A B T T I I B B i e

g e T T S R B A I
n T

A o e
R T T U U P
g 4._-_‘,-.-»;~~~---—’—
P P L R L )

A R

AAAAX A PPV NN

AAAZA?AFP TV NS

AAA2A7Z PPV,

SN

ACTIONS . ViAan
/-//'/‘/‘f/‘}‘PFi‘i\\\\\

A Prvs v

PAAAPAIPEIITI UV Y VA n

FIG. 7.11 Associative memory contents after learning. (a) The network showing the
weights. Nonzero weights have appeared so that, for example, proximity to the northern
[andmark causes a high probability of moving south because the “odor” of the northern
tandmark excites action S and inhibits action . (b} A vector field representation of the
associative memory’s contents. Each vector shows the most likely direction that the or-
ganism will move on its firs? step from any place. Note the generalization to places it has
never visited. (Reprinted from Barto & Sutton, 1981b).

system’s designer. Future research will focus on networks that combine asso-
ciative learning with search strategies that are more sophisticated than simple
hill climbing.

Neural Signaling and Bacteriai Chemotaxis

Koshland (1979) suggests that study of the numerous commonalities be-
tween bacterial chemotaxis and other forms of adaptive behavior in single-
celled organisms, and the signaling systems of neurons may provide insight
into neural mechanisms. Like bacteria, neurons possess receptors that detect
chemical signals from their environments. A bacterium’s sensory-processing
system produces signals that control its motor response by altering the proba-
bility of flagellar reversal. Neurons similarly respond to chemically mediated
afferent signals and produce action potentials as “motor” responses.
Koshland (1979) hypothesizes that many features of bacterial chemotaxis can
be accounted for by a model in which random variations in the concentration
of a hypothetical tumble regulator substance X are modulated by changes in
attractant concentrations. Flagellar reversal occurs whenever the concentra-
tion of X exceeds a threshold. Suppose X is formed at rate ¥, and decom-
posed at rate V. If an increase in the level of attractant sensed causes a fast
increasein V,and a slower increase in V;, then the intraceilular concentration
of X will show a transient increase to any sustained increase in attractant
level, and a transient decrease to any sustained decrease (Fig. 7.12), thus
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causing the appropriate hill-climbing behavior. This is the same sort of “dif-
ferentiation” accomplished by the term s(f) — s(#) of the classical condi-
tioning element (Equation 2) and the term z(¥) — z{¢f — 1) of the goal-
seeking element (Equation 4). More specifically, the value of the term
5(®) + NOISE(#) in Equation 3 functionally corresponds to the concentra-
tion of the hypothetical substance X in Koshland’s model. Mechanisms sirmi-
lar to those suggested by Koshland for bacterial chemotaxis could provide a
basis for neurons to exhibit related behavior.

it is an intriguing hypothesis that neurons implement goal-seeking strate-
gies related to those of single-celled organisms. Perhaps it will prove useful to
view neurons as swimming {in a metaphorical sense, of course) in an environ-
ment of contingencies determined by the nervous system of which they are a
part and the organism and its environment to whose survival they comtribute,
Important aspects of a neuron’s behavior may involve its ability to influence
its own input when operating in its usual environment. This influence may ex-
tend through the environment external to the entire organism, as well as

through local internal feedback loops. In order to experimentally investigate -

this hypothesis, single neurons would need to be studied in closed-loop con-
trol situations in which their efferent activity could influence, perhaps after
considerable delay, their afferent activity according to experimentally known
and controllable transformations.

Attractant level

Decomposition rate W

[X]

FiG.7.12 Hypothetical mechanism for detecting attractant gradient in bacterial chem-
otaxis (from Koshland, 1979). The formation and decomposition rates ¥Vyand Vyof ahy-
pothetical substance X are influenced by the attractant level, Both ¥rand ¥, follow the
attractant level sensed, but ¥, changes more slowly than ¥ Thisresults in the concentra-
tion of X responding to changes in attractant levels. {After Barto & Sutton, 1981c).
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ASSIGNMENT OF CREDIT

We have described two types of adaptive elements that share many basic
features but whose behaviors have a different character, one closely related
to classical conditioning, and the other related to instrumental conditioning
and bacterial chemotaxis. We have argued that both types of behavior would
confer adaptive advantages to any organism possessing them, but we have
not suggested how these forms of behavior might be related. Here, we pro-
pose that this relationship can be understood in terms of what has been called
the “assignment of credit problem.” Suppose success is achieved by a com-
plex mechanism after operating over a considerable period of time (for exam-
ple, a chess-playing program wins a game). To what particular decisions
made by what particular components should the successs be attributed? And,
if failure results, what decisions deserve blame? The magnitude of this prob-
lem is most forcefully appreciated by those actually attempting to construct
systems capable of learning to improve performance in complex tasks. This is
closely related to the problem known as the “mesa” or “plateau” problem
(Minsky, 1963; Minsky & Selfridge, 1960). The performance evaluation
function available to a learning system may consist of large level regions in
which hill-climbing degenerates to exhaustive search. Only a few of the situa-
tions cbtainable by the learning system and its environment are known to be
desirable, and these situations may occur rarely.

An approach to one aspect of this problem is illustrated by the network of
goal-seeking components described previously. At each time step, each ele-
ment produces a component of a total output pattern. If a paitern produces

an increase in the performance evaluation (i.e., if the organism moves up the
attractant gradient), to what element or elements should success be attrib-

uted? The network solves this problem by assigning credit to asy element that
happened to fire, whether or not its firing was actually causal in producing
success. The probabilistic nature of the search procedure, however, allows
any misleading consequences of this strategy to be averaged out with re-
peated trials (and we are reminded of the philosophical problem of truly dis-
tinguishing causality from correlation). More technically, part of each ele-
ment’s operation implements what is known as a stochastic learning
automaton optimization method (see, for example, Narendra & Thathachar,
1974) and is capable of improving its performance under the uncertainty pro-
duced by the unknown and random influences of the other elements on its
own payoff. Of course, the larger the network, the more trials will be re-
quired in general for credit to be apportioned correctly. Thus, this method
alone will not suffice for large networks. Another part of the solution may be
to permit interconnections to form between elements and to effectively assign

credit i i indivi
credit to linked aseemblies of elements rather than to individua! elements.
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Our experiments with layered networks of goal-seeking elements suggest that
this approach indeed works, but a complete discussion is beyond the scope of
the present chapter.

Another aspect of the assignment of credit problem concerns temporal fac-
tors. The utility of making a certain action may depend on the sequence of ac-
tions of which it is a part, and an indication of improved performance may
not occur until the entire sequence has been completed. The landmark learn-
ing task presented here does not iflustrate this problem because we assumed
that an action was always evaluated in a single time step. An approach to this
probiem has been discussed by Minsky (1963) and has been used successfully
in Samuel’s (1959) famous learning checkers-playing program. Theideaistc
interpret predictions of future reward as rewarding events themselves. In
other words, neutral stimulus events can themselves become reinforcing if
they regularly occur before events that are intrinsically reinforcing. This phe-

nomenon is observed in animal learning experiments in which neutral stimuli
can become “secondary reinforcers” if they predict “primary reinf orcement.”
This has two consequences. First, a prediction of eventual reward can rein-
force the actions that precede that prediction, thereby eliminating the delay
in obtaining useful evaluative feedback. Second, a prediction of reward can
provide reinforcement to the learning process by which the predictions them-
selves are formed, permitting the formation, via associative transfer, of pre-
dictions of predictions, etc. This is, in fact, the mechanism employed by the
classical conditioning element described in the second section of this chapter.
Its anticipatory behavior, coupled with its ability to produce higher-order
conditioning, is ideally suited for providing evaluative informationto a goal-
secking system that is more useful than information directly available from
its environment. This view parallels the CR-mediational theories of instru-
mental conditioning proposed by animal learning theorists {Gormezano &
Kechoe, in press). Moreover, the classical conditioning element turns out to
implement an algorithm remarkably similar to a part of the actual algorithm
used by Samuel in his checkers-playing program. We are currently
investigating systems that combine both types of adaptive elements and that

face control tasks characterized by variably delayed reinforcement, and it

may be possible to devise a single relatively simple element that combines

both types of behavior.

CONCLUSION

In this article, we have described some of the resuits of a research program
intended to reexamine the potential for networks of neuronlike adaptive ele-

ments to provide a computational substrate for solving nontrivial problems,

Eaia




150 BARTO AND SUTTON

‘We have highlighted examples of how adaptively significant features of ani-
mal behavior and pure problem-solving considerations converge: the antici-
patory nature of classical conditioning and the necessity to construct internal
evaluation criteria to solve problems involving variably delayed reinforce-
ment; stimulus context effects of classical conditioning and the utility of
orthogonalizing stimulus patterns for associative storage; bacterial chemo-
taxis and the necessity of search in problem solving. We have described an
adaptive element that preserves some of these features of classical condi-
tioning and an element that combines the goal-secking nature of chemotaxis
with associative learning. Networks of the latter type of element conduct
searches, store the resuits of these searches, and access these results to aid
future searches. They also eliminate the necessity for the learning system’s
environment to know the optimal associations. Further, this is accomplished
without centralized control. Our present research is directed toward ex-
tending these capabilities in order to produce networks that are able to solve
problems that have proved resistant to standard problem-solving methods.
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