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SUMMARY

A neuron-like adaptive element is described that produces an important
feature of the anticipatory nature of classical conditioning. The response that
occurs after training (conditioned response) usually begins earlier than the rein-
forcing stimulus (unconditioned stimulus). The conditioned response therefore
usually anticipates the unconditioned stimulus. This aspect of classical condition-
" ing has been largely neglected by hypotheses that neurons provide single unit
analogs of conditioning. This paper briefly presents the model and extends earlier
results by computer simulation of conditioned inhibition and chaining of asso-

clations.

INTRODUCTION

The concept of single unit analogs of conditioning paradigms continues to
be influential in the study of the neural basis of leamning and memory. Hebb’s
suggestion that repeated and persistent pairing of presynaptic and postsynaptic
discharges facilitates synaptic transmission is an example of attributing to single .
units the associative learning properties observed behaviorally in classical con-
ditioning experiments [10]. Many theoretical models of plasticity in the nervous
systemn are based on this postalate (see ref. 7 for a review). While a literal form
of Hebb’s hypothesis has not been vindicated by physiological evidence, there is
ample support that forms of non-associative learning can take place via synaptic




222

modification [14, 15], and current research is directed toward a cellulay expli-
cation of associative learning [1, 36, 37]. .

This paper focuses on a property of classical conditioning that might 415,
be present at the cellular Ievel: this is the anticipatory aspect of the tempora]
relationship between the conditioned response {CR) and the unconditioned sti-
mulus (UCS). Since the conditioned stimulus (CS) must usually precede the ucs
for an association to be formed, the CS is a predictive cue for the occurrence of
the UCS, It is consistent with behavioral data to view the learning which takes
place during classical conditioning as the learning of this predictive relationship
(see, for example ref. 5). Equally well established is that the CR is usually initiated
before the UCS [9, 23]. Being a response to the predictive CS, the CR anticipates
the UCS and the unconditioned response (UCR). Although when very short
interstimulus intervals (ISIs) are used, the CR often will not begin until after UCS
onset, an anticipatory CR is the more usual case. Since a prediction must be
available earlier than the event predicted in order to provide useful information,
the anticipatory nature of the CR may be crucial to the adaptive significance of
the behavior elicited in classical conditioning experiments.

The fact that anticipatory CRs are possible at all is problematic for many
neural models. For example, in-a Hebbian model of conditioning, the GCS is a
strongly excitatory input to a neuron that also has the CS as an initially ineffective
input. Before conditioning, the UCR is the neuron discharge produced by the
UCS pathway. Pairing of the CS and UCS eventually increases the efficacy of
the C8 pathway until the CS also causes a discharge (the CR). Many mathematical
interpretations of this view require simultaneous pairing of the UCS and CS
signals at the neuron, thus implying an optimal ISI of zero. A suitable delay in
the CS pathway is often suggested to bring this model closer to the behavioral
data on ISI dependency [4, 30]. However, this delay also delays CR onset at least
until the time of UCS onset, thereby preventing the CR latency from ever being
shorter than the ISI required for conditioning.

Although the model we describe is still relatively coarse behaviorally com-
pared to the wealth of experimental data available on classical conditioning, it
makes several improvements over earlier neuron-like adaptive element models.
The model was introduced by the authors in ref. 29 and originated in the work
of Klopf [17-19} and Sutton [28] on modelling both classical and instrumental
conditioning. It is also closely related to the model of Rescorla and Wagner [25].
We discuss its relationship to these models below.

THE MODEL

Fig. 1a shows a neuron-like adaptive element with an input pathway for the
UCS and an input pathway for each stimulus capable of being associated with
the UCS. These latter stimuli are the conditioned stimuli which we denote by C5,,
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Fig. 1. a: a neuron-like adaptive element as an analog of ¢lassical conditioning. Each input pathway
x; has transmission efficacy Vs, corresponding to the associative stremgth of CS,. The UCS is
signalled via a pathway of fixed efficacy 1 Before conditioning, the element output contributes to
the UCR, and after conditioning it contributes to both the UCR and the CR. See text for a discussion
of rules for computing the element output and for updating the associative strengths. b: traces of
the signals x; and s (the temporal relationship of the signals shown is not intended to have 2
particular significance). The value of X; at time t is a weighted average of the values of x; over some
preceding time interval, and similarly for §. Tllnstrated here are exponential weightings. This causes
the values for %, and § to remain elevated for a time after the offsets of the corresponding signals.

¥, =GB,

j=1,..., n. The associative strength of each CS; with respect to the UCS is
denoted by Vs, and characterizes the efficacy of the corresponding pathway.
These associative strengths vary over time as functions of simulated classical
conditioning paradigms. The efficacy of the UCS pathway is fixed at some
constant value which we denote by A. The element output level is assumed to
contribute to both the UCR and the CR. _

For each CS,, i = 1,..., n, let x; be a time function representing the presence
or absence of that stimulus. That is, for each time t, x(t) = 1 if CS; is present at
time t, and x,(t) = 0 otherwise. Similarly, let x,(t) indicate the presence or absence
of the UCS at time t and let the associative strength at time t of CS; be denoted
by Ves,(t). In addition, let s(t) denote the weighted sum of all the inputs to the
element in which each input signal is weighted by the efficacy of its pathway; that
is, let

n

s() = 2 xo(t) + ZVCSi(t)xi(t)' )

i=1
The manner in which the output of the element is computed is not critical for the
present discussion and, for simplicity, we assume that the output at time t is just
s(t). ,
Several other variables are required in order to define the model. First, for
each stimulus signal x;,i=1,...,n, we require a separate stimulus trace which we
denote by X;. By this we mean that the occurrence of CS; at time 1, indicated by
x{t) = 1, initiates a prolonged trace given by non-zero values of a separate variable
%(t) for some period of time after t. This is accomplished by letting X(t) bea
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weighted average of the values of x; for some time period preceding t, Similarly,
we require a trace of the output s. Let 5(t) denote a weighted average of the valyeg
of the variable s over some time interval preceding t. Fig. 1b shows examples of
these traces produced by exponentially weighted averages*. Although exponep.
tially decaying traces are used in this article, traces of this form are not esseatis]
for the model behavior described. Other forms of traces produce similar byt
quantitatively different behavior. We use exponential traces merely becaunse they
are the simplest to generate.

The behavior of the adaptive element is therefore described by the values
over time of the two variables s and 5, and the values of the 3 variables x,, %, and
Vs, for each input pathway i = 1,..., n. In terms of these variables, the model
takes the form of a set of difference equations for successivély generating the
values of the associative strengths: for each i,1=1,..., n,

Ves(t + 1) = Vs () + e[s(t) - SO (2)

where ¢ is a positive constant determining the rate of learning,

We can describe the process given by Eqns. 1 and 2 as follows: activity on
any input pathway i, i = 1,..., n, possibly causes an immediate change in the
element output s but also causes the connection from that pathway to become
‘tagged’ by the stimulus trace X; as being eligible for modification for a certain
period of time (the duration of the trace ;). A connection is modified only if it
is eligible and the current value of s differs from the value of the trace § of s. Thus,
the traces X, mark their corresponding pathways as being eligible for modification.
In order to account for the temporal relationships observed in classical condition-
ing experiments, the eligibility traces must last for a time period on the order of
several seconds in length.

The effectiveness of the reinforcement for the conditioning process depends
on the difference s(t) — 5(t) which determines how the eligible connections actually
change. The simplest case, and the one used in our simulations, results from
letting §(t) = s(t — 1). Then s(t) — s(t) = s(t} — s{t — 1) which is a discrete form of
the rate-of-change of the variable s. The most important property of this difference
is that it is zero while s is constant irrespective of the magnitude of s, This
contributes to the stability of our model. Prolonged traces 5 like that shown in
Fig. 1b can produce the same kind of effect and also filter out fast transient
fluctuations of s so that associative strengths are not strongly influenced by the
noise componentts of signals.

* Inthe computer simulations that produced the data shown below, we generated these traces using
the first-order linear difference equations

Tt + 1) = aX(t) + (1 - Q)xd0)

S+ 1) = B(t) + (1 s(t)

where & and f are constants such that 0 < e, f<< 1.
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An adaptive element operating according to the learning rule given by Egs. 1
and 2 is able to increase its response in anticipation of increased stimalation
because it uses stimulus trace variables X, that are different from the stimulus-
signaliing variables x;. The CR is produced by the CS signal, but learning is
governed by the interaction of the trace of that signal with later element activity.

CLASSICAL CONDITIONING WITH A SINGLE CS

In order to understand the behavior of this model it is useful to consider the
simplest special case of a single rectangular signal representing CS occurrence to
the adaptive element. Fig. 2a shows an adaptive element analog of this situation.
We assume that Vs is initially zero and that the trace § takes the simplest form
&(t) = s(t— 1). The eligibility trace X is taken to have an exponential form as
shown in Fig. 1b.

The rectangular CS signal causes an increase in the eligibility ¥ of the CS
pathway that persists for some time after the C3 offset. The rectangular UCS
signal causes a positive change in s at its onset and an equal but negative change
at its offset. Since eligibility is greater at the time of the UCS onset than at its
offset, the associative strength of the CS is caused to have a net increase: it
increases a certain amount at the UCS onset and decreases by a lesser amount
at the UCS offset. Fig. 2b shows the time courses of the signals involved.

After the start of conditioning, the CS, because its associative strength is no
longer zero, causes an increase in the output level s. Hence, CS onset causes
a transient increase in the reinforcement signal s —§, and its offset causes a
transient decrease. With additional trials the associative strength of the CS in-
creases until the positive teinforcement of the UCS onset Is counterbalanced by
the negative reinforcement of the CS offset (Fig. 2c). We are assuming here, for
simplicity, that the intertrial interval is long enough for the eligibility of the CS
pathway to decay to zero between trials so that CS onset has no effect. Similarly,
we are assuming that the UCS is long enough so that UCS offset has no effect
on the associative strength.

The equilibrium associative strength Vg attained by this process is a
dynamic equilibrium. Except in the special case in which the CS offset and UCS
onset occur at exactly the same time, V.4 continues to change during each trial,
but eventually undergoes no net change per trial. By the asymptotic associative
strength of a CS we therefore mean that value which eventually holds both before
and after a trial. This value in general depends on the durations and amplitudes
of the CS and UCS, the ISI, and the character of the traces X and §. A mathemati-
cal analysis of a special case is given in ref. 29. Figure 3, trials 0—10, shows a
typical acquisition curve plotting the associative strength value after each trial.

Notice from Fig. 2¢ that the value of s, the output of the element, shows a
response to the CS and the UCS. The latter response corresponds to a component
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Fig. 2. Classical conditioning for a single C8. a: the adaptive element analog, The single CS x has
vatiable associative strength Vg, and the UCS has fixed strength 1. For simplicity, the output is
simply the weighted sum of the input signals. b: time courses of the signals during the first trial
The associative strength Vg increases due to the non-zero trace X coinciding with the positive
difference s ~ 5 caused by the UCS onset. c: time courses of the signals after complete training. Since
Vs is now positive, CS oceurrence causes changes in s. Then C8 offset, coinciding with positive
eligibility %, causes a decrease in Vcs. At equilibrinm, this decrease is exactly counterbalanced by
the increase caused by UCS onset. Thus, after complete training, V¢ continues to change within
each trial but undergoes no et change, The increase in s due to the CS represents the development

of the CR.

of the UCR while the former represents a component of the CR. Note that this
CR component begins earlier than the UCS indicating that the model provides
a basis for thie anticipatory nature of the CR. The time interval between the onset
of this CR component and the arrival of the CS signal to the adaptive element is
zero since we have assumed zero latency for the adaptive element response.
Another fact about the behavior of this model is that it produces an ISI-
dependency similar to that found experimentally in animals. The asymptotic
associative strength versus ISI curve is an inverted U with a maximum at the ISI
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Fig. 3. Results of a computer simufation experiment. The associative strengths at the end of each
trial are plotted. Changes in the associative strengths which occur within trials are not shown. Trials
0--10; presentation of CS, alone followed by the UCS resulted in the rise of the associative strength
of C8, to the asymptotic level. Trials [1-20: CS, and CS, presented together followed by the UCS
produced no change since CS, was redundant. This is the blocking paradigm. Trials 21-35: C5,
began earlier than C$,. The element became sensitive to the eartier predicior and lost sensitivity

to the later.

equal to the duration of the CS [29]. Although in animal experiments the optimal
ISI is roughly independent of overt CS duration (but see ref. 27), the model is
consistent with experimental data if it is assumed that ‘effective’ or ‘internal’ CS
duration is not the same as overt, external CS duration.

CLASSICATL CONDITIONING WITH SEVERAL STIMULI

In behavioral experiments the associative strengths of the stimuli that act
as context for a CS on a trial can nullify or even reverse the effect of the
occurrence of the UCS on that trial. This can be seen in numerous experimental
paradigms, of which the simplést is blocking. In part I of a typical blocking
experiment, one stimulus, CS,, is paired with a UCS at an appropriate IST until
the associative strength between CS$, and the CR reaches its asymptotic value.
In part II, CS, continues to be paired with the UCS, but another stimulus, CS,,
co-occurs with CS,. Although CS, is appropriately paired with the UCS in part
11, it conditions very poorly, if at all, compared to a control group without prior
part I conditioning to C8,. Effects of the associative strengths of context stimuli
on conditioning occur in a variety of experimental paradigms, of which blocking,
overshadowing, and conditioned inhibition are some of the prominent examples

{11L
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The results of a simulation of blocking are illustrated in trials 020 of Fig. 3,
For the first 10 trials, CS; was presented alone and followed by the UCS. The
associative strength Vg, quickly rose to the UCS level A = 0.6. For trjals 11-20,
CS, was presented identically paired with CS,, and both were followed by the
UCS. During these trials Vg, and Vg, did not change (Fig. 3). Changesin V¢
were blocked since the signal s did not change while the CS pathway was eligible,

The adaptive element we have described is also able to extract from its input
signals those which most reliably predict the UCS, For example, if CS, is paired
with 100% of the UCSs while CS, is paired with a lesser percentage, then
eventually CS; becomes completely dominant (Vog, = 4, Vg, = 0) even if CS,
had been dominant initially (see ref. 29 for other details).

In a related experimental arrangement the model produces conditioned
imhibition. If the occurrence of CS* alone is always followed by the UCS, but
the co-occurrence of CS* and CS~ is never followed by the UCS, then CS§-
becomes an inhibitor of the CR. The associative strength Vg . increases so that
CS ™ produces a CR, but Vg~ becomes negative so that a CR does not follow

CS* + CS~ (Fig. 4).
HIGHER ORDER CONDITIONING

One reason the Hebbian postulate has remained influential among theorists
is that adaptive elements based on this postulate do not require specialized input
pathways whose sole function is to carry signals telling when and how the con-
nection weights on the other pathways should change (i.e. so-called “teacher’
inputs). Since the Hebbian postulate implies that the activity of any input pathway
can cause changes in other pathways, pathways whose efficacies have become
strengthened through previous training can further affect other pathways. A
mode! with this property can produce behavior similar to higher order conditioning
in animal learning: a previously conditioned CS can act as a UCS for a second
CS. Since the reinforcement signal s —5 of the element described here can be
influenced by activity on any input pathway, the element also exhibits this property.
When coupled to the anticipatory capabilities of our model, several novel conse-
quences appear.

First, the adaptive element tends to respond to the earfiest predictors of the
UCS arrival. For example, assume CS; and CS, both end at the same time and
are both always followed by reinforcement, but let CS, start earlier than CS,.
Then, even if CS is dominant initially (V.g, = 4, Vg, = 0), eventnally the earlier
predictor C8, will completely dominate CS, {eventually Vg, = 0, Vg, = 1}. See
trials 2135 of Fig. 3. Although both stimuli were presented in trials 11-20 and
in trials 21-35, in the former case CS, was blocked by C8,, while in the latter
the associative strength of CS, increased quickly as the associative strength of
CS, decreased. In the earlier trials CS, was redundant to C$,, which had already
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Fig. 4. Conditioned inhibition. C$* occurring zlone predicted UCS occurrence, but C8* and CS~
occurring together predicted its absence. Alternaiing reinforced and unreinforced trials produced
the learning curves shown (plotted points are in groups of 4 trials). Intratrial changes in associative
strengths are mot shown. Associative strengths were attained which sum to zero so that a response
was produced to CS*, but no response followed the oceurence of CS* and C8~ together. CS~

became a conditioned inhibitor.

been conditioned, but in the later trials CS, provided important new information:
it was the earliest indicator that the UCS would occur. This advantage, combined
with the fact that CS, was totally redundant to CS,, produced complete con-
ditioning to CS, and the elimination of conditioning to CS,.

This steady state is approached quickly and in an orderly manner. Very
briefly, on each trial the associative strength Vg, increases and then decreases
by a lesser amount for a net gain, while Vg, always decreases: Vg, increases
because CS, predicts the onset of CS,’s excitation, and both Vg, and Vg,
decrease at the offsets of CS, and CS,. Ttis thus the facilitating effect of the onset
of CS, which causes conditioning to CS,.

A behavior of the adaptive element that is closely related to that just
described is the ability to chain associations. Figure 5 shows an experimental
arrangement in which 4 CSs with a particular temporal ordering were paired with
a UCS. Also shown in Fig. 5 are the acquisition curves produced by computer
simulation. The associative strength of CS,, the CS immediately preceding the
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Fig 5. Chaining of associations. Four C'Ss were presented to the adaptive element in trials having
the temporal arrangement shown at the top of the figure. Conditioning occurred for each CS, with
later C8s attaining asymptotic associative strength before the earlier CSs. The onset of a later C8
tomes 10 provide reinforcement for an earlier CS. Associations can therefore be formed for time
intervals longer than the stimulus traces if intervening events reliably occur.

UCS, increased first. Then CS, onset acted as reinforcement for CS8, which, in
turn, came to reinforce CS8, which then was able to reinforce CS.. This caused
the onset of the CR to move earlier in time as conditioning proceeded. For the
temporal arrangement of the CSs shown in Fig. 5, the steady state was achieved
in which all 4 associative strengths had the same value. For other temporal
arrangements, variants of this basic behavior are produced. Notice that unlike the
experiment described immediately above, the later predictors did not lose their
associative strengths. This was due to the fact that here the CS offsets did not
coincide. Chaining of associations in this manner permits conditioning to occur
for ISIs much longer than those which can be spanned by a single stimulus trace .
as long as there are regularly occurring intervening events. Kehoe et al. [16]
observed a strong effect of this nature for rabbit nictitating membrane response.

RELATIONSHIP TO OTHER MODELS

The adaptive element described here is closely related to the adaptive
element proposed by Klopf | 17-19]. Klopf suggested that the temporal characte-
ristics of conditioning, both classical and mstrumental, can be produced if one set
of conditions makes synapses eligible for modification of their transmission effi-
cacies, but acmal modifications occur due to other influences during periods of
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eligibility. This differs from many other adaptive element proposals in that eligibility

is seen as being indicated in some way completely separate from the usual process

of converting presynaptic activity to postsynaptic polarization. In the present

model we have departed from Klopf’s proposal in two ways. First, in the model
described here an input pathway becomes eligible for modification whenever a

signal arrives via that pathway. In Klopf’s model, on the other hand, eligibility is

triggered only if an input signal actually causes a suprathreshold response by the

element. Second, in Klopf's model it is the value of s, which would cotrespond,
to neuronal membrane potential, that provides the reinforcement signal. The
model presented here uses what amounts to the change in s to provide reinforce-

ment. We have found that this modification of Klopf{’s proposal not only provides

for stability but afso produces the stimulus context effects.

The model described here also has strong connections to the Rescorla
~Wagner model which was proposed to describe stimulus context effects [25].
The Rescorla—Wagner model is based on the often proposed view that learning
occurs only when expectations are violated. According to this view, for example,
blocking occurs since part I training creates an expectation of the UCS that is not
disrupted in part II. We can similarly interpret the activity trace § as providing the
expected value of the actval aciivity s as pointed out by Sutton [28]. Then the
model described here can be interpreted as causing eligible pathways to be modi-
fied whenever the actual value of s differs from the expected value §. The rein-
forcement signal s — §is a measure of how strongly the current activity (s) confirms
or contradicts the previously formed expectation (5). Thus, our model can be
viewed as producing stimulus context effects for essentially the same reason they
are produced by the Rescorla—Wagner model. Anticipatory aspects of classical
conditioning and ISI dependency, however, are not addressed by the Res-
corla—Wagner model since it does not distinguish between times within each trial.

Another adaptive element that is closely related to the Rescorla—Wagner
model is Uttley’s informon [30]. While this adaptive element does produce
stimulus context effects and does distingnish between times within trials, it is not
a valid model of the intratrial temporal structure of classical conditioning. In
particular, it does not produce anticipatory conditioned responses or the appro-
priate ISI dependency. Clearly it was not Uttley’s intention to produce such a
detailed model of classical conditioning, and these deficiencies should not detract
from his contribution. Nevertheless, we reiterate our position that the anticipatory
nature of classical conditioning may be an essential aspect of animal learning.

It is not generally recognized that the Rescorla—Wagner model is essentially
identical to a computational method for approximating the solution of a set of
linear equations. This method has a long history in applied mathematics and was
proposed two decades ago as an adaptive mechanism by Widrow and Hoff [34].
It is also closely related to Rosenblatt’s perceptron [26], as is Uttley’s informon.
Duda and Hart [6] provide a good discussion of the details of this learning rule.
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Tt is remarkable, in our opinion, that the Rescorla-Wagner theory, which was
proposed to compactly describe a wide variety of effects observed in animg)
learning experiments, also provides an important algorithm with strong cop-
nections to useful areas of applied mathematics. One type of problem to which
these mathematical methods are applied is that of constructing causal models of
observed dynamic processes [3]. This suggests that the mathematical theory may
have relevance for understanding the adaptive significance of animal conditioning
- hehavior. The model described here is also related to this theory but produces
anticipatory responses and higher order effects. These mathematical aspects of
the model are more fully discussed in [29].

DISCUSSION

The behavior of the model we have presented has parallels with several aspects
of animal behavior in classical conditioning experiments. Although it is not a fully’
adequate model of classical conditioning, it does account in a simple way for a
variety of stimulus context effects, including blocking and conditioned inhibition,
and produces several forms of higher order learning suggestive of secondary
reinforcement phenomena. It also suggests a basis for some of the anticipatory
aspects of classical conditioning. The model clearly does not address higher order
modulatory influences such as those produced by attentional or stimulus salience
factors. We have also not attempted to relate all of the properties of the model
to behavioral data. For example, although closely related to the Rescorla—Wagner
model, it has a number of differing implications that have not been fully explored.
For example, we have not systematically explored the implications of-our model
with respect to some of the limitations of the Rescorla—Wagner model that have
been pointed out by a number of authors (see, for example, refs. 7, 24 and 38).

While there is no direct evidence that the learning phenomena that are
accounted for by our model occur at a cellular level, that possibility cannot be
dismissed. There is evidence thai mechanisms can exist within a single neuron for
short term stimulus traces as well as longer term memory. Studies show that in
many preparations, both vertebrate and invertebrate, synaptic modulation can
depend on relatively complex temporal factors and that reverberatory activity is
not necessary for some forms of short term memory [14, 22, 31-33]. It has been
suggested, for example, that in addition to the role cyclic nucleotides and calcium
ions may play in simple neurotransmission, they might also carry more indirect
messages which might, for example, be involved in learning and memory [8, 35}

There is also evidence suggesting that one set of conditions may determine
whether a pathway is able to undergo modulation, while another set of conditions
determines whether these changes actually occur [21]. The model we have
described illustrates that by separating the functions of stimulus signalling from
the storage of stimulus traces, a simple mechanism can extract cansal information
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from the environment and make that information available early enough to provide
a basis for decision making.

The behavior of the model also relies on a mechanism for detecting changes
in the level of stimulation. The use of changes in the level of stimulation rather
than its absolute level provides for complex temporal relationships and also solves
many of the stability and saturation problems which have beset other theoretical
models of synaptic plasticity. A cellular interpretation of the model therefore
suggests the utility of a means for detecting changes in postsynaptic membrane
potential or postsynaptic firing frequency, that is, for computing the term s ~3 in
Egn. 2. A biochemically natural way for detecting this change is to assume that
s — S represents the level of a substance X which is formed at a rate Vg and
decomposed at a rate V, (cf. ref. 20). If membrane depolarization causes a fast
increase in V,and a slower increase in V,,, then the concentration of X will show
a transient increase to any increase in depolarization. Similarly, if hyperpolari-
zation causes a fast decrease in V, and a slower decrease in V,,, then the level of
X will show a transient decrease to any downward change in depolarization
(Fig. 6). This manner of regulating a hypothetical substance X is similar to that
proposed for the regulation of mtraceliular cyclic AMP [12]. If this view is
correct, then both V; and V,, for cyclic AMP are linked to membrane potential.
There is also evidence that cyclic AMP concentration can be increased by depo-
larizing agents such as electrical stimulation in the absence of neurotransmitter
action [13).

Finally, we have suggested that prolonged changes in synaptic efficacy may
depend on the relatively long-term history of synaptic activity and on complex
regulatory machinery. If this view is correct, then one would not expect to observe
details of celtular associative learning without experimental conditions very pre-
cisely defined to control the internal state of the cell and the cellular context of

the stimulation:

Formation rate V; /(f AN
Decomposition rate Vy = d

Membrane potertial

[X]=s-5

Fig 6. A hypothetical biochemical mechanism for detecting changes in membrane potential (cf.
ref. 20). Ifthe formation rate V of substance X increases with depolanzanon and the decomposition
rate V, increases at a slower rate, then the concentration of X will show a transient increase to a
sustained increase in depolarization. In a similar manner the concestration of X will signal the onset

of sustained hyperpolarization.
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