
Hierarchical Optimal Control of MDPs

Amy McGovern
Univ. of Massachusetts
Amherst, MA 01003
amy@cs.umass.edu

Doina Precup
Univ. of Massachusetts
Amherst, MA 01003
dprecup@cs.umass.edu

Balaraman Ravindran
Univ. of Massachusetts
Amherst, MA 01003
ravi@cs.umass.edu

Satinder Singh
Univ. of Colorado
Boulder, CO 80309

baveja@cs.colorado.edu

Richard S. Sutton
Univ. of Massachusetts
Amherst, MA 01003
rich@cs.umass.edu

Abstract

Fundamental to reinforcement learning, as well as to the
theory of systems and control, is the problem of represent-
ing knowledge about the environment and about possible
courses of action hierarchically, at a multiplicity of interre-
lated temporal scales. For example, a human traveler must
decide which cities to go to, whether to fly, drive, or walk,
and the individual muscle contractions involved in each
step. In this paper we survey a new approach to reinforce-
ment learning in which each of these decisions is treated
uniformly. Each low-level action and high-level course of
action is represented as an option, a (sub)controller and
a termination condition. The theory of options is based
on the theories of Markov and semi-Markov decision pro-
cesses, but extends these in significant ways. Options can
be used in place of actions in all the planning and learn-
ing methods conventionally used in reinforcement learning.
Options and models of options can be learned for a wide
variety of different subtasks, and then rapidly combined to
solve new tasks. Options enable planning and learning si-
multaneously at a wide variety of times scales, and toward
a wide variety of subtasks, substantially increasing the ef-
ficiency and abilities of reinforcement learning systems.

Introduction
The field of reinforcement learning is entering a new
phase, in which it considers learning at multiple levels,
and at multiple temporal and spatial scales. Such hierar-
chical approaches are advantageous in very large problems
because they provide a principled way of forming approx-
imate solutions. They also allow much greater flexibility
and richness in what is learned. In particular, we can con-
sider not just one task, but a whole range of tasks, solve
them independently, and yet be able to combine their in-
dividual solutions quickly to solve new overall tasks. We
also allow the learner to work not just with primitive ac-
tions, but with higher-level, temporally-extended actions,
called options. In effect, the learner can choose among
subcontrollers rather than just low-level actions. This new
direction is also consonant with reinforcement learning’s
roots in artificial intelligence, which has long focused on
planning and knowledge representation at higher levels. In
this paper we survey our work in recent years forming part
of this trend.
From the point of view of classical control, our

new work constitutes a hierarchical approach to solving
Markov decision problems (MDPs), and in this paper we
present it in that way. In particular, our methods are
closely related to semi-Markov methods commonly used

with discrete-event systems. The work we describe dif-
fers frommost other hierarchical approaches in that we do
not lump states together into larger states. We keep the
original state representation and instead alter the temporal
aspects of the actions.
In this paper we survey our recent and ongoing work in

temporal abstraction and hierarchical control of Markov
decision processes (Precup, Sutton & Singh 1998a,b, in
prep.). This work is part of a larger trend toward focus-
ing on these issues by many researchers in reinforcement
learning (e.g. Singh, 1992a,b; Kaelbling, 1993; Lin, 1993;
Dayan & Hinton, 1993; Thrun & Schwartz, 1995; Huber
& Grupen, 1997; Dietterich, 1998; Parr & Russell, 1998).

Markov Decision Processes
In this section we briefly describe the conventional re-
inforcement learning framework of discrete-time, finite
Markov decision processes, or MDPs, which forms the
basis for our extensions to temporally extended courses
of action. In this framework, a learning agent interacts
with an environment at some discrete, lowest-level time
scale . On each time step the agent per-
ceives the state of the environment, , and on that
basis chooses a primitive action, . In response to
each action, , the environment produces one step later
a numerical reward, , and a next state, . The en-
vironment’s transition dynamics are modeled by one-step
state-transition probabilities,

Pr

and one-step expected rewards,

for all and . These two sets of quantities
together constitute the one-step model of the environment.
The agent’s objective is to learn an optimal Markov pol-

icy, a mapping from states to probabilities of taking each
available primitive action, , that max-
imizes the expected discounted future reward from each
state :

where is a discount-rate parameter. is
called the value of state under policy , and is called

the state-value function for . The unique optimal state-
value function, , gives the
value of a state under an optimal policy. Any policy that
achieves is by definition an optimal policy. There are
also action value functions, and

, that give the value of a state given that a
particular action is initially taken in it, and a given policy
is followed afterwards.

Options
We use the term options for our generalization of primitive
actions to include temporally extended courses of action.
Formally, an option consists of three components: an input
set , a policy , and a termination
condition . An option is available
in state if and only if . If the option is taken, then
actions are selected according to until the option termi-
nates stochastically according to . In particular, the next
action is selected according to the probability distribu-
tion . The environment then makes a transition to
state , where the option either terminates, with prob-
ability , or else continues, determining ac-
cording to , possibly terminating in accord-
ing to , and so on. When the option terminates, the
agent has the opportunity to select another option.
The input set and termination condition of an option to-

gether restrict its range of application in a potentially use-
ful way. In particular, they limit the range over which the
option’s policy needs to be defined. For example, a hand-
crafted policy for a mobile robot to dock with its battery
chargermight be defined only for states in which the bat-
tery charger is within sight. The termination condition
would be defined to be outside of and when the robot is
successfully docked. It is natural to assume that all states
where an option might continue are also states where the
option might be taken (i.e., that).
In this case, needs to be defined only over rather than
over all of .
The definition of options is crafted to make them as

much like actions as possible, except temporally extended.
Because options terminate in a well defined way, we can
consider policies that select options instead of primitive
actions. Let the set of options available in state be de-
noted ; the set of all options is denoted .
When initiated in a state , the Markov policy over op-
tions selects an option ac-
cording to probability distribution . The option is
then taken in , determining actions until it terminates in

, at which point a new option is selected, according to
, and so on. In this way a policy over options, ,

determines a policy over actions, or flat policy, .
Henceforth we use the unqualified term policy for Markov
policies over options, which include Markov flat policies
as a special case. Note, however, that is typically
not Markov because the action taken in a state depends on

which option is being taken at the time, not just on the
state. We define the value of a state under a general flat
policy as the expected return if the policy is started in :

where denotes the event of being initiated in
at time . The value of a state under a general policy (i.e.,
a policy over options) can then be defined as the value
of the state under the corresponding flat policy:

.

MDP + Options = SMDP
Options are closely related to the actions in a special kind
of decision problem known as a semi-Markov decision
process, or SMDP (e.g., see Puterman, 1994). In fact,
a fixed set of options defines a new discrete-time SMDP
embedded within the original MDP, as suggested by Fig-
ure 1. The top panel shows the state trajectory over dis-
crete time of an MDP, the middle panel shows the larger
state changes over continuous time of an SMDP, and the
last panel shows how these two levels of analysis can be
superimposed through the use of options. In this case the
underlying base system is an MDP, with regular, single-
step transitions, while the options define larger transitions,
like those of an SMDP, that last for a number of discrete
steps. All the usual SMDP theory applies to the super-
imposed SMDP defined by the options but, in addition,
we have an explicit interpretation of them in terms of the
underlying MDP. We will now outline the way in which
some of the SMDP results can be interpreted and used in
the context of MDPs and options.

SMDP

Time

MDP State

Options
over MDP

Figure 1: The state trajectory of an MDP is made up of small,
discrete-time transitions, whereas that of an SMDP comprises
larger, continuous-time transitions. Options enable an MDP tra-
jectory to be analyzed at either level.

Planning with options requires a model of their conse-
quences. Fortunately, the appropriate form of model for
options, analogous to the and defined earlier for
actions, is known from existing SMDP theory. For each
state in which an option may be started, this kind of model
predicts the state in which the option will terminate and
the total reward received along the way. These quantities
are discounted in a particular way. For any option , let

denote the event of being initiated in state at

time . Then the reward part of the model of for state
is

(1)

where is the random time at which terminates. The
state-prediction part of the model of for state is

Pr

(2)

for all , under the same conditions, where is an
identity indicator, equal to 1 if , and equal to 0 oth-
erwise. Thus, is a combination of the likelihood that
is the state in which terminates together with a mea-

sure of how delayed that outcome is relative to . We call
this kind of model a multi-time model (Precup and Sutton,
1998) because it describes the outcome of an option not
at a single time, but at potentially many different times,
appropriately combined.
Using multi-time models we can write Bellman equa-

tions for general policies and options. For instance, let
us denote a restricted set of options by and the set of all
policies selecting only from options in by . Then
the optimal value function given that we can select only
from is

A corresponding optimal policy, denoted , is any pol-
icy that achieves , i.e., for which
in all states . If and models of the options are
known, then can be formed by choosing in any propor-
tion among the maximizing options in the equation above.
It is straightforward to extend MDP planning methods

to SMDPs. The policies found using temporally abstract
options are approximate in the sense that they achieve only
, which is typically less than .

The Rooms Example
As a simple illustration of planning with options, con-
sider the rooms example, a gridworld environment of four
rooms shown in Figure 2. The cells of the grid corre-
spond to the states of the environment. From any state the
agent can perform one of four actions, up, down, left
or right. These actions usually move the agent in the
corresponding direction, but with 1/3 probability they in-
stead move the agent in another, random direction. In each
of the four rooms, the system is also provided with two
built-in hallway options that take the agent from anywhere
within the room to one of the hallway cells leading out of
the room.

HALLWAYS

o

8 multi-step options

up

down

rightleft

(to each room's 2 hallways)

4 stochastic
primitive actions

Fail 33%
of the time

G

* o2

1

Figure 2: The rooms example is a gridworld environment with
stochastic cell-to-cell actions and room-to-room hallway op-
tions. Two of the hallway options are suggested by the arrows
labeled and . The label indicates a location used as goal.

To complete the specification of the planning problem
we designate one state as a goal, say the state labeled , by
providing a reward of +1 on arrival there. Figure 3 shows
the results of applying synchronous value iteration (SVI)
to this problem with and without options. The upper part
of the figure shows the value function after the first two
iterations of SVI using just primitive actions. The region
of accurately valued states moved out by one cell on each
iteration, but after two iterations most states still had their
initial arbitrary value of zero. In the lower part of the fig-
ure are shown the corresponding value functions for SVI
with the hallway options. In the first iteration all states
in the rooms adjacent to the goal state became accurately
valued, and in the second iteration all the states became
accurately valued. Rather than planning step-by-step, the
hallway options enable the planning to proceed at a higher

Iteration #0 Iteration #1 Iteration #2

with cell-to-cell primitive actions

Iteration #0 Iteration #1 Iteration #2

with room-to-room options

V (goal)=1

V (goal)=1

Figure 3: Value functions formed over iterations of planning
by synchronous value iteration with primitive actions and with
hallway options. The hallway options enable planning to pro-
ceed room-by-room rather than cell-by-cell. The area of the disk
in each cell is proportional to the estimated value of the state,
where a disk that just fills a cell represents a value of 1.0. We use
discounting with for this task.

SMDP Solution
(600 Steps)

S

GTermination-Improved
Solution (474 Steps)

Trajectories through
Space of Landmarks

0 1 2 30

1

2

3
-600
-500
-400
-300
-200
-100
 0

SMDP Solution Termination-Improved Solution
0 1 2 30

1
2

3
-600
-500
-400
-300
-200
-100

0

Figure 4: Termination improvement in navigating with landmark-directed controllers. The task (left) is to navigate from S to G
in minimum time using options based on controllers that run each to one of seven landmarks (the black dots). The circles show
the region around each landmark within which the controllers operate. The thin line shows the optimal behavior that uses only these
controllers run to termination, and the thick line shows the corresponding termination improved behavior, which cuts the corners. The
right panels show the state-value functions for the SMDP-optimal and termination-improved policies. Note that the latter is greater

level, room-by-room, and thus be much faster.

Termination Improvement
So far we have assumed that an option, once started, must
be followed until it terminates. This assumption is neces-
sary to apply the theoretical machinery of SMDPs. On the
other hand, the whole point of the options framework is
that one also has an interpretation in terms of the under-
lying MDP. This enables us to consider interrupting op-
tions before they would terminate normally. For exam-
ple, suppose we have determined the option-value func-
tion for some policy and for all state–options
pairs that could be encountered while following .
This function tells us how well we do while following
and committing irrevocably to each option, but it can

also be used to re-evaluate our commitment on each step.
Suppose at time we are in the midst of executing option
. If is Markov in , then we can compare the value
of continuing with , which is , to the value of
terminating and selecting a new option according to ,
which is . If the latter is
more highly valued, then why not terminate and allow
the switch? Indeed, we have shown that this new way
of behaving is guaranteed to be better. We characterize
this as an improvement in the termination condition of the
original option, i.e., as a termination improvement.
Figure 4 shows a simple example of termination im-

provement. Here the task is to navigate from a start
location to a goal location within a continuous two-
dimensional state space. The actions are movements of
0.01 in any direction from the current state. Rather than
working with these low-level actions, infinite in number,
we introduce seven landmark locations. For each land-
mark we define a controller that takes us to the land-
mark in a direct path. Each controller is only applicable
within a limited range of states, in this case within a cer-
tain distance of the corresponding landmark. Each con-

troller then defines an option: the circular region around
the controller’s landmark is the option’s input set, the con-
troller itself is the policy, and arrival at the target land-
mark is the termination condition. We denote the set of
seven landmark options by . Any action within 0.01 of
the goal location transitions to the terminal state, ,
and the reward is on all transitions, which makes this
a minimum-time task.

One of the landmarks coincides with the goal, so it is
possible to reach the goal while picking only from . The
optimal policy within runs from landmark to landmark,
as shown by the thin line in Figure 4. This is the opti-
mal solution to the SMDP defined by and is indeed the
best that one can do while picking only from these op-
tions. But of course one can do better if the options are
not followed all the way to each landmark. The trajectory
shown by the thick line in Figure 4 cuts the corners and
is shorter. This is the termination-improved policy with
respect to the SMDP-optimal policy. The termination im-
provement policy takes 474 steps from start to goal which,
while not as good as the optimal policy in primitive actions
(425 steps), is much better, for no additional cost, than the
SMDP-optimal policy, which takes 600 steps. The state-
value functions, and for the two policies are also
shown on the right in Figure 4.

Another illustration of termination improvement in a
more complex task is shown in Figure 5. The task here
is to fly a reconnaissance plane from base, to observe as
many sites as possible, from a given set of sites, and return
to base without running out of fuel. The local weather at
each site flips between cloudy and clear according to in-
dependent Poisson processes. If the sky at a given site is
cloudy when the plane gets there, no observation is made
and the reward is . If the sky is clear, the plane gets a
reward, according to the importance of the site. The plane
has a limited amount of fuel, and it consumes one unit
of fuel during each time tick. If the fuel runs out before

reaching the base, the plane crashes and receives a reward
of .

10
50

50

50

100

25
15 (reward)

5

25

8

Base

100
decision
steps

options

(mean time between
 weather changes)

40

50

60

Low FuelHigh Fuel

Expected
Reward

per
Mission

SMDP
Planner

Static
Re-planner

Termination
Improvement

Figure 5: The mission planning task and the performance of
policies constructed by SMDP methods, termination improve-
ment of the SMDP policy, and an optimal static re-planner that
does not take into account possible changes in weather condi-
tions.

The primitive actions are tiny movements in any direc-
tion (there is no inertia). The state of the system is de-
scribed by several variables: the current position of the
plane, the fuel level, the sites that have been observed
so far, and the current weather at each of the remaining
sites. This state-action space has approximately bil-
lion elements (assuming 100 discretization levels of the
continuous variables), making the problem intractable by
normal dynamic programming methods. We introduced
options that can take the plane to each of the sites (includ-
ing the base), from any position in the input space. The
resulting SMDP has only 874,800 elements and it is feasi-
ble to determine exactly for all sites . From this
solution and the model of the options, we can determine

for any option and any
state in the whole space.
The data in figure 5 compares the SMDP and termi-

nation improvement policies found for the problem with
the performance of a static planner, which exhaustively
searches for the best tour assuming the weather does not
change, and then re-plans whenever the weather does
change. The policy obtained by the termination im-
provement approach performs significantly better than the
SMDP policy, which in turn is significantly better than the
static planner.

Intra-Option Learning
Optimal value functions can be determined by learning
as well as by planning. One natural approach is to use
SMDP learning methods (Bradtke & Duff (1995), Parr &

Russell (1998), Mahadevan et al. (1997), and McGov-
ern, Sutton & Fagg (1997)), which treat complete option
executions just as primitive actions are treated in conven-
tional reinforcement learning methods. One drawback to
these methods is that they need to execute an option to ter-
mination before they can learn about it. Because of this,
they can only be applied to one option at a time—the op-
tion that is executing at that time. More interesting and
potentially more powerful methods are possible by taking
advantage of the structure inside each option. In particu-
lar, if the options are Markov and we are willing to look
inside them, then we can use special temporal-difference
methods to learn usefully about an option before the op-
tion terminates. This is the main idea behind intra-option
methods .

0

0.5

1

1.5

2

2.5

3

3.5

0 2000 4000 6000 8000 10000

Absolute error in option
values averaged over
options

Episodes

SMDP Q-learning

Intra

 Macro Q-learning

-4

-3.8

-3.6

-3.4

-3.2

-3

-2.8

-2.6

-2.4

-2.2

-2

0 2000 4000 6000 8000 10000

Intra-option value learning

SMDP Q-learning

Episodes

Macro Q-learning

Average on-line reward

Figure 6: Comparison of SMDP, intra-option and Macro Q-
learning. Intra-option methods converge faster to correct values.

Figure 6 shows an illustration of the advantages of intra-
option learning in the rooms example. In this case small
negative rewards were introduced at all the states, and the
goal was located at . We experimented with two SMDP
methods: one-step SMDP Q-learning (Bradtke & Duff,
1995) and a hierarchical form of Q-learning calledMacro
Q-learning (McGovern, Sutton & Fagg, 1997). Although
the SMDP methods can be used here, they were much
slower than the intra-option method.

Analyzing the Effects of Options
Adding options can either accelerate or retard learning de-
pending on their appropriateness to the particular task. In
another aspect of our work, we are trying to break down
the effect of options into components that can be measured
and studied independently. The two components that we
have studied so far are: the effect of options on initial ex-
ploratory behavior, independent of learning, and the ef-
fect of learning with options on the speed at which cor-
rect value information is propagated, independent of the
behavior. We have found that both of these effects are sig-
nificant.
We have measured these effects in gridworld tasks and

in the larger, simulated robotics task shown on the left in
Figure 7. This is a foraging task in a two-dimensional
space. The circular robot inhabits a world with two rooms,
one door connecting them, and one food object. The robot

Simulated Environment Without Options With Options

foodfood sensing
radius

sonars

Figure 7: The simulated robotic foraging task. The picture on of the environment shows the five sonars, the doorway sensors, and
the food sensor. The graphs on the right hand side represent the position of the robot during a random walk.

has simulated sonars to sense the distance to the nearest
wall in each of five fixed directions and simple inertial
dynamics, with friction and inelastic collisions with the
walls. We provide two options, one which orients the
robot towards the door, and the other which drives the
robot forward until it encounters a wall. Because the state
space is continuous and large, we used a tile-coding func-
tion approximators is necessary.
To assess the effect of options, we examined the be-

havior for 100,000 steps when the actions were selected
randomly from the primitive actions only and from both
the primitive actions and the options. The two right pan-
els in Figure 7 show a projection of one such trajectory
onto the two spatial dimensions. The options have a large
influence on this exploratory behavior. With options, the
robot crosses more often between the two rooms and trav-
els more often with high velocity. In preliminary results
we have also been able to show faster learning of efficient
foraging strategies through the use of options.

Closing
In this paper we have briefly surveyed a number of ways
in which temporal abstraction can contribute to the hierar-
chical control of MDPs. We have presented some of the
basic theory and several suggestive examples, but many of
the most interesting questions remain open.

Acknowledgments
The authors gratefully acknowledge the contributions to these
ideas of many colleagues, especially Andrew Barto, Ron Parr,
Tom Dietterich, Andrew Fagg, Leo Zelevinsky and Manfred
Huber. We also thank Paul Cohen, Robbie Moll, Mance Har-
mon, Sascha Engelbrecht, and Ted Perkins for helpful reactions
and constructive criticism. This work was supported by NSF
grant ECS-9511805 and grant AFOSR-F49620-96-1-0254, both
to Andrew Barto and Richard Sutton. Satinder Singh was sup-
ported by NSF grant IIS-9711753.

References
Bradtke, S. J., and Duff, M. O. 1995. Reinforcement learning
methods for continuous-time Markov decision problems. In
Advances in Neural Information Processing Systems 7, 393–
400. MIT Press.

Dayan, P., and Hinton, G. E. 1993. Feudal reinforcement learn-
ing. In Advances in Neural Information Processing Systems 5,
271–278. Morgan Kaufmann.

Dietterich, T. G. 1998. The MAXQ method for hierarchical
reinforcement learning. In Proc. of the 15th Intl. Conf. on Ma-
chine Learning. Morgan Kaufmann.
Huber, M., and Grupen, R. A. 1997. A feedback control struc-
ture for on-line learning tasks. Robotics and Autonomous Sys-
tems 22(3-4):303–315.
Kaelbling, L. P. 1993. Hierarchical learning in stochastic do-
mains: Preliminary results. In Proc. of the 10th Intl. Conf. on
Machine Learning, 167–173. Morgan Kaufmann.
Lin, L.-J. 1993. Reinforcement Learning for Robots Using Neu-
ral Networks. Ph.D. Dissertation, Carnegie Mellon University.
Mahadevan, S.; Marchallek, N.; Das, T. K.; and Gosavi, A.
1997. Self-improving factory simulation using continuous-time
average-reward reinforcement learning. In Proc. of the 14th
Intl. Conf. on Machine Learning, 202–210. Morgan Kaufmann.
McGovern, A.; Sutton, R. S.; and Fagg, A. H. 1997. Roles of
macro-actions in accelerating reinforcement learning. InGrace
Hopper Celebration of Women in Computing, 13–17.
Parr, R., and Russell, S. 1998. Reinforcement learning with
hierarchies of machines. In Advances in Neural Information
Processing Systems 10. MIT Press.
Precup, D.; Sutton, R. S.; and Singh, S. 1998a. Multi-time
models for temporally abstract planning. In Advances in Neural
Information Processing Systems 10. MIT Press.
Precup, D.; Sutton, R. S.; and Singh, S. 1998b. Theoretical
results on reinforcement learning with temporally abstract op-
tions. In Machine Learning: ECML98. 10th European Confer-
ence on Machine Learning. Proceedings, 382–393. Springer.
Singh, S. P. 1992a. Reinforcement learning with a hierarchy of
abstract models. In Proc. of the 10th National Conf. on Artifi-
cial Intelligence, 202–207. MIT/AAAI Press.
Singh, S. P. 1992b. Scaling reinforcement learning by learning
variable temporal resolution models. In Proc. of the 9th Intl.
Conf. on Machine Learning, 406–415. Morgan Kaufmann.
Sutton, R. S.; Precup, D.; and Singh, S. 1998. Intra-option
learning about temporally abstract actions. In Proc. of the 15th
Intl. Conf. on Machine Learning. Morgan Kaufman.
Sutton, R. S.; Precup, D.; and Singh, S. in preparation. Between
MDPs and Semi-MDPs: learning, planning, and representing
knowledge at multiple temporal scales.
Puterman, M. L. (1994). Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley.
Thrun, S., and Schwartz, A. 1995. Finding structure in rein-
forcement learning. In Advances in Neural Information Pro-
cessing Systems 7, 385–392. MIT Press.

