
Journal of Machine Learning Research 19 (2018) 1-49 Submitted 5/17; Published 9/18

On Generalized Bellman Equations and

Temporal-Di↵erence Learning

Huizhen Yu janey.hzyu@gmail.com
Reinforcement Learning and Artificial Intelligence Group

Department of Computing Science, University of Alberta

Edmonton, AB, T6G 2E8, Canada

A. Rupam Mahmood rupam@kindred.ai
Kindred Inc.

243 College St

Toronto, ON M5T 1R5, Canada

Richard S. Sutton rsutton@ualberta.ca

Reinforcement Learning and Artificial Intelligence Group

Department of Computing Science, University of Alberta

Edmonton, AB, T6G 2E8, Canada

Editor: Csaba Szepesvári

Abstract

We consider o↵-policy temporal-di↵erence (TD) learning in discounted Markov decision
processes, where the goal is to evaluate a policy in a model-free way by using observations
of a state process generated without executing the policy. To curb the high variance issue
in o↵-policy TD learning, we propose a new scheme of setting the �-parameters of TD,
based on generalized Bellman equations. Our scheme is to set � according to the eligibility
trace iterates calculated in TD, thereby easily keeping these traces in a desired bounded
range. Compared with prior work, this scheme is more direct and flexible, and allows
much larger � values for o↵-policy TD learning with bounded traces. As to its soundness,
using Markov chain theory, we prove the ergodicity of the joint state-trace process under
nonrestrictive conditions, and we show that associated with our scheme is a generalized
Bellman equation (for the policy to be evaluated) that depends on both the evolution of �
and the unique invariant probability measure of the state-trace process. These results not
only lead immediately to a characterization of the convergence behavior of least-squares
based implementation of our scheme, but also prepare the ground for further analysis of
gradient-based implementations.

Keywords: Markov decision process, approximate policy evaluation, generalized Bellman
equation, reinforcement learning, temporal-di↵erence method, Markov chain, randomized
stopping time

1. Introduction

We consider discounted Markov decision processes (MDPs) and o↵-policy temporal-di↵erence
(TD) learning methods for approximate policy evaluation with linear function approxima-

c�2018 Huizhen Yu, A. Rupam Mahmood, and Richard. S. Sutton.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided

at http://jmlr.org/papers/v19/17-283.html.

Yu, Mahmood, and Sutton

tion. The goal is to evaluate a policy in a model-free way by using observations of a state
process generated without executing the policy. O↵-policy learning is an important part of
the reinforcement learning methodology (Sutton and Barto, 1998) and has been studied in
the areas of operations research and machine learning. (For an incomplete list of references,
see e.g., Glynn and Iglehart, 1989; Precup et al., 2000, 2001; Randhawa and Juneja, 2004;
Sutton et al., 2008, 2009; Maei, 2011; Yu, 2012; Dann et al., 2014; Geist and Scherrer, 2014;
Mahadevan et al., 2014; Mahmood et al., 2014; Liu et al., 2015; Sutton et al., 2016; Dai
et al., 2018.) Available TD algorithms, however, tend to have very high variances due to
the use of importance sampling, an issue that limits their applicability in practice. The
purpose of this paper is to introduce a new TD learning scheme that can help address this
problem.

Our work is motivated by the recently proposed Retrace algorithm (Munos et al., 2016)
and ABQ algorithm (Mahmood et al., 2017), and by the Tree-Backup algorithm (Precup
et al., 2000) that existed earlier. These algorithms, as explained by Mahmood et al. (2017),
all try to use the �-parameters of TD to curb the high variance issue in o↵-policy learning.
In particular, they all choose the values of � according to the current state or state-action
pair in such a way that guarantees the boundedness of the eligibility traces in TD learning,
which can help reduce significantly the variance of the TD iterates. A limitation of these
algorithms, however, is that they tend to be over-conservative and restrict � to small values,
whereas small � can result in large approximation bias in TD solutions.

In this paper, we propose a new scheme of setting the �-parameters of TD, based on
generalized Bellman equations. Our scheme is to set � according to the eligibility trace
iterates calculated in TD, thereby easily keeping those traces in a desired bounded range.
Compared with the schemes used in the previous work just mentioned, this is a direct way
to bound the traces in TD, and it is also more flexible and allows much larger � values for
o↵-policy learning.

Regarding generalized Bellman equations, in our context, they will correspond to a fam-
ily of dynamic programming equations for the policy to be evaluated. These equations all
have the true value function as their unique solution, and their associated operators have
contraction properties, like the standard Bellman operator. We will refer to the associated
operators as generalized Bellman operators or Bellman operators for short. Some authors
have considered, at least conceptually, the use of an even broader class of equations for
policy evaluation. For example, Ueno et al. (2011) have considered treating the policy
evaluation problem as a parameter estimation problem in the statistical framework of esti-
mating equations, and in their framework, any equation that has the true value function as
the unique solution can be used to estimate the value function. The family of generalized
Bellman equations we consider has a more specific structure. They generalize multistep
Bellman equations, and they are associated with randomized stopping times and arise from
the strong Markov property (see Section 3.1 for details).

Generalized Bellman equations and operators are powerful tools. In classic MDP the-
ory they have been used in some intricate optimality analyses (e.g., Schäl and Sudderth,
1987). Their computational use, however, seems to emerge primarily in the field of reinforce-
ment learning. Through the �-parameters and eligibility traces, TD learning is naturally
connected with, not a single Bellman operator, but a family of Bellman operators, with dif-
ferent choices of � or di↵erent rules of calculating the eligibility trace iterates corresponding

2

Generalized Bellman Equations and TD Learning

to di↵erent Bellman operators. Early e↵orts that use this aspect to broaden the scope of
TD algorithms and to analyze such algorithms include Sutton’s work (1995) on learning at
multiple timescales and Tsitsiklis’ work on generalized TD algorithms in the tabular case
(see the book by Bertsekas and Tsitsiklis, 1996, Chap. 5.3). In the context of o↵-policy
learning, there are more recent approaches that try to utilize this connection of TD with
generalized Bellman operators to make TD learning more e�cient (Precup et al., 2000; Yu
and Bertsekas, 2012; Munos et al., 2016; Mahmood et al., 2017). This is also our aim, in
proposing the new scheme of setting the �-parameters.

Our analyses of the new TD learning scheme will focus on its theoretical side. Using
Markov chain theory, we prove the ergodicity of the joint state and trace process under
nonrestrictive conditions (see Theorem 2.1), and we show that associated with our scheme
is a generalized Bellman equation (for the policy to be evaluated) that depends on both
the evolution of � and the unique invariant probability measure of the state-trace process
(see Theorem 3.2 and Corollary 3.1). These results not only lead immediately to a charac-
terization of the convergence behavior of least-squares based implementation of our scheme
(see Corollary 2.1 and Remark 3.2), but also prepare the ground for further analysis of
gradient-based implementations. (The latter analysis has been carried out recently by Yu
(2017); see Remark 3.3.)

In addition to the theoretical study, we also present the results from a preliminary
numerical study that compares several ways of setting � for the least-squares based o↵-
policy algorithm. The results demonstrate the advantages of the proposed new scheme
with its greater flexibility.

We remark that although we shall focus exclusively on policy evaluation in this paper,
approximate policy evaluation methods are highly pertinent to finding near-optimal policies
in MDPs. They can be applied in approximate policy iteration, in policy-gradient algorithms
for gradient estimation or in direct policy search (see e.g., Konda, 2002; Mannor et al., 2003).
In addition to solving MDPs, they can also be used in artificial intelligence and robotics
applications as a means to generate experience-based world models (see e.g., Sutton, 2009).
It is, however, beyond the scope of this paper to discuss these applications of our results.

The rest of the paper is organized as follows. In Section 2, after a brief background in-
troduction, we present our scheme of TD learning with bounded traces, and we establish the
ergodicity of the joint state-trace process. In Section 3, we first discuss generalized Bellman
operators associated with randomized stopping times, and we then derive the generalized
Bellman equation associated with our scheme. In Section 4, we present the experimental
results on the least-squares based implementation of our scheme. Appendices A-B include
a proof for generalized Bellman operators and materials about approximation properties of
TD solutions that are too long to include in the main text.

2. O↵-Policy TD Learning with Bounded Traces

We describe the o↵-policy policy evaluation problem and the algorithmic form of TD learn-
ing in Section 2.1. We then present our scheme of history-dependent � in Section 2.2, and
analyze the properties of the resulting eligibility trace iterates and the convergence of the
corresponding least-squares based algorithm in Section 2.3.

3

Yu, Mahmood, and Sutton

2.1 Preliminaries

The o↵-policy learning problem we consider in this paper concerns two Markov chains on a
finite state space S = {1, . . . , N}. The first chain has transition matrix P , and the second
P

o. Whatever physical mechanisms that induce the two chains shall be denoted by ⇡ and ⇡
o,

and referred to as the target policy and behavior policy, respectively. The second Markov
chain we can observe; however, it is the system performance of the first Markov chain that
we want to evaluate.

Specifically, we consider a one-stage reward function r⇡ : S ! < and an associated
discounted total reward criterion with state-dependent discount factors �(s) 2 [0, 1], s 2 S.
Let � denote the N ⇥N diagonal matrix with diagonal entries �(s). We assume that P and
P

o satisfy the following conditions:

Condition 2.1 (Conditions on the target and behavior policies)

(i) P is such that the inverse (I � P�)�1
exists, and

(ii) P
o
is such that for all s, s

0 2 S, P o
ss0 = 0) Pss0 = 0, and moreover, P

o
is irreducible.

The performance of ⇡ is defined as the expected discounted total rewards for each initial
state s 2 S:

v⇡(s) := E⇡
s [r⇡(S0) +

P1
t=1

�(S1) �(S2) · · · �(St) · r⇡(St)] , (2.1)

where the notation E⇡
s means that the expectation is taken with respect to (w.r.t.) the

Markov chain {St} starting from S0 = s and induced by ⇡ (i.e., with transition matrix P).
The function v⇡ is well-defined under Condition 2.1(i). It is called the value function of ⇡,
and by standard MDP theory (see e.g., Puterman, 1994), we can write it in matrix/vector
notation as

v⇡ = r⇡ + P� v⇡, i.e., v⇡ = (I � P�)�1
r⇡.

The first equation above is known as the Bellman equation (or dynamic programming
equation) for a stationary policy (cf. Footnote 2).

We compute an approximation of v⇡ of the form v(s) = �(s)>✓, s 2 S, where ✓ 2 <n

is a parameter vector and �(s) is an n-dimensional feature representation for each state s

(here �(s), ✓ are column vectors and the symbol > stands for transpose). Data available for
this computation are:

(i) a realization of the Markov chain {St} with transition matrix P
o generated by ⇡

o,
and

(ii) rewards Rt = r(St, St+1) associated with state transitions, where the function r relates
to r⇡(s) as r⇡(s) = E⇡

s [r(s, S1)] for all s 2 S.1

To find a suitable parameter ✓ for the approximation �(s)>✓, we use the o↵-policy TD
learning scheme. Define ⇢(s, s0) = Pss0/P

o
ss0 (the importance sampling ratio),2 and write

⇢t = ⇢(St, St+1), �t = �(St).

1. One can add to Rt a zero-mean finite-variance noise term. This makes little di↵erence to our analyses,
so we have left it out for notational simplicity.

2. Our problem formulation entails both value function and state-action value function estimation for a
stationary policy in the standard MDP context. In these applications, it is the state-action space of the
MDP that corresponds to the state space S here. In particular, for value function estimation, St here

4

Generalized Bellman Equations and TD Learning

Given an initial e0 2 <n, for each t � 1, the eligibility trace vector et 2 <n and the scalar
temporal-di↵erence term �t(v) for any approximate value function v : S ! < are calculated
according to

et = �t �t ⇢t�1 et�1 + �(St), (2.2)

�t(v) = ⇢t
�
Rt + �t+1v(St+1)� v(St)

�
. (2.3)

Here �t 2 [0, 1], t � 1, are important parameters in TD learning, the choice of which we
shall elaborate on shortly.

There exist a number of TD algorithms that use et and �t to generate a sequence of
parameters ✓t for approximate value functions. One such algorithm is LSTD (Boyan, 1999;
Yu, 2012), which obtains ✓t by solving the linear equation for ✓ 2 <n,

1

t

Pt�1

k=0
ek �k(v) = 0, v = �✓ (2.4)

(if it admits a solution), where � is a matrix with row vectors �(s)>, s 2 S. LSTD updates
the equation (2.4) iteratively by incorporating one by one the observation of (St, St+1, Rt) at
each state transition. We will discuss primarily this algorithm in the paper, as its behavior
can be characterized directly using our subsequent analyses of the joint state-trace process.

As mentioned earlier, our analyses will also provide bases for analyzing other gradient-
based TD algorithms (e.g., Sutton et al., 2008, 2009; Maei, 2011; Mahadevan et al., 2014)
by using stochastic approximation theory (Kushner and Yin, 2003; Borkar, 2008; Karmakar
and Bhatnagar, 2018). Because of the complexity of this subject, however, we will not
delve into it in the present paper, and we refer the reader to the recent work (Yu, 2017) for
details.

2.2 Our Scheme of History-dependent �

We now come to the choices of �t in the trace iterates (2.2). For TD with function approxi-
mation, one often lets �t be a constant or a function of St (Sutton, 1988; Tsitsiklis and Van
Roy, 1997; Sutton and Barto, 1998). If neither the behavior policy nor the �t’s are further
constrained, {et} can have unbounded variances and is also unbounded in many natural
situations (see e.g., Yu, 2012, Section 3.1), and this makes o↵-policy TD learning challeng-
ing.3 If we let the behavior policy to be close enough to the target policy so that P o ⇡ P ,
then variance can be reduced, but it is not a satisfactory solution, for the applicability of
o↵-policy learning would be seriously limited.

Without restricting the behavior policy, as mentioned earlier, the two recent papers
(Munos et al., 2016; Mahmood et al., 2017), as well as the closely related early work by

corresponds to the pair of previous action and current state in the MDP, whereas for state-value function
estimation, St here corresponds to the current state-action pair in the MDP. The ratio ⇢(s, s0) = Pss0/P

o
ss0

then comes out as the ratio of action probabilities under ⇡ and ⇡o, the same as what appears in most of
the o↵-policy learning literature. For the details of these correspondences, see (Yu, 2012, Examples 2.1,
2.2). The third application is in a simulation context where P o corresponds to a simulated system and
both P o, P are known so that the ratio ⇢(s, s0) is available. Such simulations are useful, for example, in
studying system performance under perturbations, and in speeding up the computation when assessing
the impacts of events that are rare under the dynamics P .

3. However, asymptotic convergence can still be ensured for several algorithms (Yu, 2012, 2015, 2016b),
thanks partly to a powerful law of large numbers for stationary processes.

5

Yu, Mahmood, and Sutton

Precup et al. (2000), exploit state-dependent �’s to control variance. Their choices of �t

are such that �t�t⇢t�1 < 1 for all t, so that the trace iterates et are made bounded, which
can help reduce the variance of the iterates.

Motivated by this prior work, our proposal is to set �t according to et�1 directly, so that
we can keep et in a desired range straightforwardly and at the same time, allow a much
larger range of values for the �-parameters. As a simple example, if we use �t to scale
the vector �t⇢t�1et�1 to be within a ball with some given radius, then we keep et always
bounded.

In the rest of this paper, we shall focus on analyzing the iteration (2.2) with a particular
choice of �t of the kind just mentioned. We want to be more general than the preceding
simple example. However, since the dependence on the trace et�1 would make �t dependent
on the entire past history (S0, . . . , St�1), we also want to retain certain Markovian properties
that are very useful for convergence analysis. This leads us to consider �t being a certain

function of the previous trace and past states. More specifically, we will let �t be a function
of the previous trace et�1 and a certain memory state that is a summary of the states
observed so far. The formulation is as follows.

2.2.1 Formulation and Examples

We denote the memory state at time t by yt. For simplicity, we assume that yt can only
take values from a finite set M, and its evolution is Markovian: yt = g(yt�1, St) for some
given function g. The joint process {(St, yt)} is then a simple finite-state Markov chain.
Each yt is a function of the history (S0, . . . , St) and y0. We further require, besides the
irreducibility of {St} (cf. Condition 2.1(ii)), that

Condition 2.2 (Evolution of memory states) Under the behavior policy ⇡
o
, the Markov

chain {(St, yt)} on S ⇥M has a single recurrent class.

This recurrence condition is nonrestrictive: If the Markov chain has multiple recurrent
classes, each recurrent class can be treated separately by using the same arguments we
present in this paper. However, we remark that the finiteness assumption on M is a
simplification. We choose to work with finite M mainly for the reason that with the traces
lying in a continuous space, to study the joint state and trace process, we need to resort
to properties of Markov chains on infinite spaces. With an infinite M, we would need to
introduce more technical conditions that are not essential to our analysis and can obscure
our main arguments.

We thus let yt and �t evolve as

yt = g(yt�1, St), �t = �(yt, et�1) (2.5)

where � : M⇥<n ! [0, 1]. We require the function � to satisfy two conditions.

Condition 2.3 (Conditions for �(·)) For some norm k · k on <n
, the following hold for

each memory state y 2 M:

(i) For any e, e
0 2 <n

, k�(y, e) e� �(y, e0) e0k ke� e
0k.

(ii) For some constant Cy, k�(s0)⇢(s, s0) · �(y, e) ek Cy for all e 2 <n
and all possible

state transitions (s, s0) that can lead to the memory state y.

6

Generalized Bellman Equations and TD Learning

In the above, the second condition is to restrict {et} in a desired range (as it makes ketk
maxy2MCy + maxs2S k�(s)k). The first condition is about the continuity of the function
�(y, e) e in the trace variable e for each memory state y, and it plays a key role in the
subsequent analysis, where we will use this condition to ensure that the traces et and the
states (St, yt) jointly form a Markov chain with appealing properties. We shall defer a
further discussion on the technical roles of these conditions to the end of Section 2.3 (cf.
Remark 2.2).

Let us give a few simple examples of choosing � that satisfy Condition 2.3. We will later
use these examples in our experimental study (Section 4).

Example 2.1 We consider again the simple scaling example mentioned earlier and describe
it using the terminologies just introduced. In this example, we let yt = (St�1, St). For each
y = (s, s0), we define the function �(y, ·) so that when multiplied with �(y, e), the vector
�(s0)⇢(s, s0) e is scaled down whenever its length exceeds a given threshold Css0 :

�
�
y, e

�
=

(
1 if �(s0)⇢(s, s0)kek2 Css0 ;

Css0
�(s0)⇢(s,s0)kek2 otherwise.

(2.6)

Condition 2.3(i) is satisfied because for y = (s, s0) with �(s0)⇢(s, s0) = 0, �
�
y, e

�
e = e,

whereas for y = (s, s0) with �(s0)⇢(s, s0) 6= 0, �
�
y, e

�
e is simply the Euclidean projection

of e onto the ball (centered at the origin) with radius Css0/(�(s0)⇢(s, s0)) and is therefore
Lipschitz continuous in e with modulus 1 w.r.t. k · k2. Corresponding to (2.6), the update
rule (2.2) of et becomes

et =

(
�t ⇢t�1 et�1 + �(St) if �t⇢t�1ket�1k2 CSt�1St ;

CSt�1St ·
et�1

ket�1k2 + �(St) otherwise.
(2.7)

Note that this scheme of setting � encourages the use of large �t: �t = 1 will be chosen
whenever possible. A variation of the scheme is to multiply the right-hand side (r.h.s.)
of (2.6) by another factor �ss0 2 [0, 1], so that �t can be at most �St�1St . In particular,
one such variation is to simply multiply the r.h.s. of (2.6) by a constant � 2 (0, 1) so that
�t � < 1 for all t.

Example 2.2 The Retrace algorithm (Munos et al., 2016) modifies the trace updates in
o↵-policy TD learning by truncating the importance sampling ratios by 1. In particular, for
the o↵-policy TD(�) algorithm with a constant � = � 2 (0, 1], Retrace modifies the trace
updates to be

et = � �t ·min{1, ⇢t�1} · et�1 + �(St). (2.8)

As pointed out by Mahmood et al. (2017), to retain the original interpretation of � as a
bootstrapping parameter in TD learning, we can rewrite the above update rule of Retrace
equivalently as

et = �t �t ⇢t�1 et�1 + �(St) for �t = � · min{1,⇢t�1}
⇢t�1

(with 0/0 = 0). (2.9)

Each �t here is a function of (St�1, St) only and does not depend on et�1, so this choice
of �-parameters automatically satisfies Condition 2.3(i) with the memory states being yt =

7

Yu, Mahmood, and Sutton

(St�1, St). When the discount factors �(s) are all strictly less than 1, ketk for all t are
bounded by a deterministic constant that depends on the initial e0. Then for each initial
e0, Retrace’s choice of � coincides with a choice in our framework, since the C-parameters
in Condition 2.3(ii) can be made vacuously large so that the condition is satisfied by all
the traces et that could be encountered by Retrace. Thus in this case our framework for
choosing � e↵ectively encompasses the particular choice used by Retrace.

One can make variations on Retrace’s trace update rule. For example, instead of trun-
cating each importance sampling ratio ⇢(s, s0) by 1, one can truncate it by a constant
Kss0 � 1, and then use a scaling scheme similar to Example 2.1 to bound the traces. The
simplest such variation is to choose two memory-independent positive constants K and C,
and replace the definition of �t in (2.9) by the following: with �̃t =

min{K,⇢t�1}
⇢t�1

(where we

treat 0/0 = 0),

�t =

(
� �̃t if �̃t�t ⇢t�1 ket�1k2 C;

� �̃t · C
�̃t�t ⇢t�1 ket�1k2

otherwise.
(2.10)

Correspondingly, instead of (2.8), the update rule of et becomes

et =

(
� �t ·min{K, ⇢t�1} · et�1 + �(St) if �t ·min{K, ⇢t�1} · ket�1k2 C;

� C · et�1

ket�1k2 + �(St) otherwise.
(2.11)

These variations of Retrace are similar to Example 2.1 and satisfy Condition 2.3.4

2.2.2 Comparison with Previous Work

For policy evaluation, the Retrace algorithm (Munos et al., 2016) and the ABQ algorithm
(Mahmood et al., 2017) are very similar (ABQ was actually developed independently of
Retrace before the Munos et al. (2016) paper was published, although the ABQ paper
itself was released much later). Both Retrace and ABQ include the Tree-Backup algorithm
(Precup et al., 2000) as a special case. They can use additional parameters to select � from
a range of values, whereas Tree-Backup specifies �, implicitly, in a particular way (which
has the advantage of requiring no knowledge of the behavior policy) and does not have the
freedom in choosing �. Because of the relations between these algorithms, when comparing
our method to them, we will compare it with Retrace only. In the experimental study given
later in Section 4 on the performance of LSTD for various ways of setting �, we will compare
our scheme of choosing � with that of Retrace for � = 1, which lets Retrace use the largest
� that it can take.

We see in Example 2.2 that the eligibility trace update rule of Retrace can be written
in two equivalent forms, (2.8) and (2.9). The second form (2.9) has the advantage that
the �-parameters involved are shown explicitly. In TD learning, the �-parameters directly
a↵ect the associated Bellman operators and can be meaningfully interpreted as stopping
probabilities (see Section 3), whereas the importance sampling ratio terms in the eligibility

4. To see this, let the memory states be yt = (St�1, St). For each y = (s, s0), let �(y, e) be defined according

to (2.10), and let Cy in Condition 2.3(ii) be Css0 = ⇢(s,s0)
min{K, ⇢(s,s0)} · C (treat 0/0 = 0). Then note that

k�(y, e)e� �(y, e0)e0k2 �min
�

K
⇢(s,s0) , 1

· ke� e0k2 �ke� e0k2.

8

Generalized Bellman Equations and TD Learning

trace iterates are essentially unchanged, for they have to be there in order to correct for the
discrepancy between the behavior and target policies. For this reason, we prefer (2.9) to
(2.8) and prefer thinking in terms of the selection of �-parameters to that of what occurs
apparently to those importance sampling ratio terms in the trace updates.

As mentioned in Example 2.2, the Munos et al. (2016) paper does not make the connec-
tion between (2.8) and (2.9). Mahmood et al. (2017) recognized the role of the �-parameters
and made explicit use of it to derive the ABQ algorithm. However, in the ABQ paper, the
discussion and the presentation of the algorithm still emphasize the apparent changes in
those importance sampling ratio terms in the trace iterates. This is an unsatisfactory point
in that paper that we hope we have clarified with our present work.

We mentioned in the introduction that Retrace, ABQ and Tree-Backup are too conser-
vative and tend to use too small � values. Let us now make this statement more precise
and also explain the reason behind.

These algorithms tend to behave e↵ectively like TD(�) with small constant �, despite
that they can have �t = 1 at some time steps t. This is due to the nature of TD learning
with time-varying �, which is very di↵erent from that of TD with constant �. For time-
varying �, a large �t at one time step need not mean that we are using the information
of the cumulative rewards over a long time horizon to estimate the value at the state St

encountered at time t. Because the next �t+1 could be very small or even zero, forcing a
TD algorithm to “bootstrap” immediately. When large �t’s are interleaved with small ones,
we are e↵ectively in the situation of TD with small �. This could occur to our proposed
scheme as well if, for example, in Example 2.1 the thresholds Css0 are set too small. When we
use larger thresholds, we allow larger �. By comparison, Retrace, ABQ, and Tree-Backup
constrain the state-dependent �-parameters to be small enough so that all the products
�t�t⇢t�1 < 1, and this makes them prone to the small-� issue just mentioned. (See the
experiments in Section 4.2 for demonstrations.)

While we consider Retrace for approximate policy evaluation, the Munos et al. (2016)
paper actually focuses primarily on finding an optimal policy for an MDP, in the tabular
case, and it has demonstrated good empirical performance of Retrace and Tree-Backup
for that purpose. Despite this, its results are not adequate yet to establish asymptotic
optimality of these algorithms in the online optimistic policy iteration setting (personal
communication with Munos), and it is still an open theoretical question whether online
TD algorithms can solve an MDP like the Q-learning algorithm (Watkins, 1989; Tsitsiklis,
1994), when positive � (small or not) and rapidly changing target policies are involved.

We also mention that for policy evaluation, Munos et al. (2016, Section 3.1) have also
conceived the use of generalized Bellman operators, although they did not relate these
operators explicitly to history-dependent �’s and did not study corresponding algorithms
in this general case.

2.3 Ergodicity Result

The properties of the joint state-trace process {(St, yt, et)} are important for understanding
and characterizing the behavior of our proposed TD learning scheme. We study them in this
subsection. Most importantly, we shall establish the ergodicity of the state-trace process.
The result will be useful in convergence analysis of several associated TD algorithms (Yu,

9

Yu, Mahmood, and Sutton

2017), although in this paper we discuss only the LSTD algorithm. In the next section we
will also use the ergodicity result when we relate the LSTD equation (2.4) to a generalized
Bellman equation for the target policy in order to interpret the LSTD solutions.

We note that to obtain the results in this subsection, we will follow similar lines of
argument used in (Yu, 2012) for analyzing o↵-policy LSTD with constant �. However,
because � is now history-dependent, some proof steps in (Yu, 2012) no longer apply. We
shall explain this in more detail after we prove the main result of this subsection.

As another side note, one can introduce nonnegative coe�cients i(y) for memory states
y to weight the state features (similarly to the use of “interest” weights in the ETD algo-
rithm (Sutton et al., 2016)) and update et according to

et = �t �t ⇢t�1 et�1 + i(yt)�(St). (2.12)

The results given below apply to this update rule as well.
Let us start with two basic properties of {(St, yt, et)} that follow directly from our choice

of the � function:

(i) By Condition 2.3(i), for each y, �(y, e)e is a continuous function of e, and thus et

depends continuously on et�1. This, together with the finiteness of S ⇥ M, ensures
that {(St, yt, et)} is a weak Feller Markov chain.5

(ii) Then, by a property of weak Feller Markov chains (Meyn and Tweedie, 2009, The-
orem 12.1.2(ii)), the boundedness of {et} ensured by Condition 2.3(ii) implies that
{(St, yt, et)} has at least one invariant probability measure.

The third property, given in the lemma below, concerns the behavior of {et} for di↵erent
initial e0. It is an important implication of Condition 2.3(i); actually, it is our purpose of
introducing the condition 2.3(i) in the first place. In the lemma,

a.s.! stands for “converges
almost surely to.”

Lemma 2.1 Let {et} and {êt} be generated by the iteration (2.2) and (2.5), using the same

trajectory of states {St} and initial y0, but with di↵erent initial e0 and ê0, respectively. Then

under Conditions 2.1(i) and 2.3(i), et � êt
a.s.! 0.

Proof The proof is similar to that of (Yu, 2012, Lemma 3.2). Let �t = ket� êtk, and let Ft

denote the �-algebra generated by Sk, k t. Note that under our assumption, in the genera-
tion of the two trace sequences {et} and {êt}, the states {St} and the memory states {yt} are
the same, but the �-parameters are di↵erent. Let us denote them by {�t} and {�̂t} for the
two trace sequences, respectively. Then by (2.2), et � êt = �t ⇢t�1 (�tet�1 � �̂têt�1), and by
Condition 2.3(i), k�tet�1� �̂têt�1k ket�1� êt�1k. Hence ket� êtk �t ⇢t�1 ket�1� êt�1k,
so E

⇥
�t

��Ft�1

⇤
 E

⇥
�t ⇢t�1

��Ft�1

⇤
· �t�1 �t�1. This shows {(�t,Ft)} is a nonnegative

supermartingale. By the supermartingale convergence theorem (Dudley, 2002, Theorem
10.5.7 and Lemma 4.3.3), {�t} converges a.s. to a nonnegative random variable �1 with
E[�1] lim inft!1 E[�t]. From the inequality ket� êtk �t ⇢t�1 ket�1� êt�1k for all t, we
have �t �0 ·

Qt
k=1

�k⇢k�1, from which a direct calculation shows E
⇥
�t
⇤
 �0 · 1>(P�)t1

5. This means that for any bounded continuous function f on S ⇥ M ⇥ <n (endowed with the usual
topology), with Xt = (St, yt, et), E

⇥
f(X1) | X0 = x

⇤
is a continuous function of x (Meyn and Tweedie,

2009, Prop. 6.1.1).

10

Generalized Bellman Equations and TD Learning

where 1 denotes the n-dimensional vector of all 1’s. As t ! 1, (P�)t converges to the zero
matrix under Condition 2.1(i). Therefore, lim inft!1 E[�t] = 0 and consequently, we must
have �1 = 0 a.s., i.e., �t

a.s.! 0.

We use Lemma 2.1 and ergodicity properties of weak Feller Markov chains (Meyn, 1989)
to prove the ergodicity theorem below. A direct application to LSTD will be discussed
immediately after the theorem, before we give its proof.

To state the result, we need some terminology and notation. For {(St, yt, et)} starting
from the initial condition x = (s, y, e), we write Px for its probability distribution, and we
write “Px-a.s.” for “almost surely with respect to Px.” The occupation probability measures

are denoted by {µx,t}, and they are random probability measures on S ⇥M⇥<n given by

µx,t(D) := 1

t

Pt�1

k=0
1
�
(Sk, yk, ek) 2 D

�
8 Borel sets D ⇢ S ⇥M⇥<n

,

where 1(·) is the indicator function. We are interested in the asymptotic convergence of
these occupation probability measures in the sense of weak convergence: for probability
measures {µt} and µ on a metric space, {µt} converges weakly to µ if

R
fdµt !

R
fdµ as

t ! 1, for every bounded continuous function f .
We shall also consider the Markov chain {(St, St+1, yt, et)}, whose occupation probability

measures are defined likewise. This Markov chain is essentially the same as {(St, yt, et)},
but it is more convenient for applying our ergodicity result to TD algorithms because
the temporal-di↵erence term �t(v) involves (St, St+1, et). Regarding invariant probability
measures of the two Markov chains, obviously, if ⇣ is an invariant probability measure of
{(St, yt, et)}, then an invariable probability measure of {(St, St+1, yt, et)} is the probability
measure ⇣1 composed from the marginal ⇣ and the conditional distribution of S1 given
(S0, y0, e0) specified by P

o; i.e.,

⇣1(D) =
R P

s02S P
o
ss0 1

�
(s, s0, y, e) 2 D

�
⇣
�
d(s, y, e)

�
8 Borel sets D ⇢ S2 ⇥M⇥<n

.

(2.13)
(In the above, we used the notation

R
f(x) ⇣(dx) to write the integral of f w.r.t. ⇣, and the

notation ⇣
�
d(s, y, e)

�
is the same as ⇣(dx) with x = (s, y, e).)

Theorem 2.1 Let Conditions 2.1-2.3 hold. Then {(St, yt, et)} is a weak Feller Markov

chain and has a unique invariant probability measure ⇣. For each initial condition x :=
(s, y, e) of (S0, y0, e0), the occupation probability measures {µx,t} converge weakly to ⇣, Px-

a.s.

Likewise, the same holds for {(St, St+1, yt, et)}, whose unique invariant probability mea-

sure is as given in (2.13).

If the initial distribution of (S0, y0, e0) is ⇣, the state-trace process {(St, yt, et)} is sta-
tionary. Let E⇣ denote expectation w.r.t. this stationary process. We now state a corollary
of the above theorem for LSTD, before we prove the theorem.

Consider the sequence of equations in v, 1

t

Pt�1

k=0
ek �k(v) = 0, appeared in (2.4) for

LSTD. From the definition (2.3) of �t(v),

�t(v) = ⇢t
�
Rt + �t+1v(St+1)� v(St)

�
,

11

Yu, Mahmood, and Sutton

we see that for fixed v, every ek �k(v) can be expressed as f(Sk, Sk+1, ek) for a continu-
ous function f . Since the traces and hence the entire process lie in a bounded set un-
der Condition 2.3(ii), the weak convergence of the occupation probabilities measures of
{(St, St+1, yt, et)} shown by Theorem 2.1 implies that this sequence of equations has an
asymptotic limit that can be expressed in terms of the stationary state-trace process as
follows.

Corollary 2.1 Let Conditions 2.1-2.3 hold. Then for each initial condition of (S0, y0, e0),
almost surely, the sequence of linear equations in v,

1

t

Pt�1

k=0
ek �k(v) = 0, tends asymp-

totically to E⇣ [e0 �0(v)] = 0 (also a linear equation in v), in the sense that the random

coe�cients in the former equations converge to the corresponding coe�cients in the latter

equation as t ! 1.

In the rest of this section we prove Theorem 2.1. Broadly speaking, the line of argument
is as follows: We first prove the weak convergence of occupation probability measures to
the same invariant probability measure, for each initial condition. This will in turn imply
the uniqueness of the invariant probability measure.

After the proof we will first comment in Remark 2.1 on the di↵erences between our
proof and that of a similar result in the previous work (Yu, 2012). We will then comment
in Remark 2.2 about the technical roles of Condition 2.3 (which concerns the choice of the
function �(·)) and whether some part of that condition can be relaxed.

Proof of Theorem 2.1 As we discussed before Lemma 2.1, under Conditions 2.3,
{(St, yt, et)} is weak Feller and has at least one invariant probability measure ⇣. Then,
by (Meyn, 1989, Prop. 4.1), there exists a set D ⇢ S ⇥ M ⇥ <n with ⇣-measure 1 such
that for each initial condition x = (s, y, e) 2 D, the occupation probability measures {µx,t}
converge weakly, Px-a.s., to an invariant probability measure µx that depends only on the
initial condition x. To prove the theorem using this result, we need to show that (i) all
these {µx | x 2 D} are the same invariant probability measure, and (ii) for all x 62 D, {µx,t}
has the same weak convergence property.

To this end, we first consider an arbitrary pair (s, ys) in the recurrent class of {(St, yt)}
(cf. Condition 2.2). Let us show that for all initial conditions x 2 {(s, ys, e) | e 2 <n},
{µx,t} converges weakly to the same invariant probability measure, almost surely.

Since the finite-state Markov chain {(St, yt)} has a single recurrent class (Condition 2.2)
and its evolution is not a↵ected by {et}, the marginal of ⇣ on S ⇥ M coincides with the
unique invariant probability distribution of {(St, yt)}. So the fact that ⇣(D) = 1 and (s, ys)
is a recurrent state of {(St, yt)} implies that there exists some ê with (s, ys, ê) 2 D. For
the initial condition x̂ = (s, ys, ê), by the result of (Meyn, 1989) mentioned earlier, {µx̂,t}
converges weakly to µx̂, almost surely.

Now consider x = (s, ys, e) for an arbitrary e 2 <n. Generate iterates {êt} and {et}
according to (2.2), using the same trajectory {(St, yt)} with (S0, y0) = (s, ys), but with
ê0 = ê and e0 = e. By Lemma 2.1, êt � et

a.s.! 0. Therefore, except on a null set of sample

12

Generalized Bellman Equations and TD Learning

paths, it holds for all bounded Lipschitz continuous functions f on S ⇥M⇥<n that6

��R fdµx̂,t �
R
fdµx,t

�� =
���1t
Pt�1

k=0
f(Sk, yk, êk)� 1

t

Pt�1

k=0
f(Sk, yk, ek)

��� ! 0. (2.14)

By the a.s. weak convergence of µx̂,t to µx̂ proved earlier, except on a null set,
R
fdµx̂,t !R

fdµx̂ for all such functions f . Combining this with (2.14) yields that almost surely,R
fdµx,t !

R
fdµx̂ for all such f . By (Dudley, 2002, Theorem 11.3.3), this implies that

almost surely, µx,t ! µx̂ weakly.
Thus we have proved that for all initial conditions x = (s, ys, e), e 2 <n, {µx,t} converges

weakly, almost surely, to the same invariant probability measure µx̂. Denote µ = µx̂. Let
us now show that for any initial condition x, {µx,t} also converges to µ, Px-a.s.

Consider {(St, yt, et)} with an arbitrary initial condition x̄ = (s̄, ȳ, ē). Let ⌧ = min{t |
(St, yt) = (s, ys)} (the pair (s, ys) is as in the proof above). Note that ⌧ < 1 a.s., because
(s, ys) is a recurrent state of {(St, yt)}. Define (S̃k, ỹk) = (S⌧+k, y⌧+k), ẽk = e⌧+k for k � 0.

By the strong Markov property (see e.g. Nummelin, 1984, Theorem 3.3), {(S̃k, ỹk)}k�0

has the same probability distribution as the Markov chain {(St, yt)} that starts from
(S0, y0) = (s, ys). Therefore, by the preceding proof, Px̄-almost surely, for all bounded
continuous functions f on S ⇥M⇥<n,

lim
m!1

1

m

Pm�1

k=0
f(S̃k, ỹk, ẽk) =

R
fdµ. (2.15)

Denote a ^ b = min{a, b}. Using (2.15) and the fact ⌧ < 1 a.s., we have that Px̄-almost
surely,

lim
t!1

1

t

Pt�1

k=0
f(Sk, yk, ek) = lim

t!1

⇣
1

t

Pt^(⌧�1)

k=0
f(Sk, yk, ek) +

1

t

Pt�1

k=⌧ f(Sk, yk, ek)
⌘

= lim
t!1

1

t

Pt�⌧�1

k=0
f(S⌧+k, y⌧+k, e⌧+k)

= lim
m!1

1

m

Pm�1

k=0
f(S̃k, ỹk, ẽk) =

R
fdµ.

This proves that {µx,t} converges weakly to µ almost surely, for each initial condition x.
It now follows that µ must be the unique invariant probability measure of {(St, yt, et)}.

To see this, suppose ⇣ is another invariant probability measure. For any bounded continuous
function f , by stationarity, E⇣ [

1

t

Pt�1

k=0
f(Sk, yk, ek)] =

R
fd⇣ for all t � 1. On the other

hand, the preceding proof has established that for all initial conditions x,

1

t

Pt�1

k=0
f(Sk, yk, ek) =

R
fdµx,t !

R
fdµ, Px-a.s.,

which implies that if ⇣ is the initial distribution of (S0, y0, e0), then
1

t

Pt�1

k=0
f(Sk, yk, ek) !R

fdµ, P⇣-a.s. We thus have

R
fd⇣ = E⇣

h
1

t

Pt�1

k=0
f(Sk, yk, ek)

i
= lim

t!1
E⇣

h
1

t

Pt�1

k=0
f(Sk, yk, ek)

i

= E⇣

h
lim
t!1

1

t

Pt�1

k=0
f(Sk, yk, ek)

i
=
R
fdµ,

6. Here we are using the same (Sk, yk), k t in the occupation probability measures µx̂,t and µx,t. This is
valid because the et’s do not a↵ect the evolution of {(St, yt)} and are functions of these states and the
given initial e0. If we call the µx,t here µ̃x,t instead and define µx,t using another independent copy of
{(St, yt)}, then since the two sequences of occupation probability measures will have the same probability
distribution, {µx,t} will have the same weak convergence property as {µ̃x,t}.

13

Yu, Mahmood, and Sutton

where the third equality follows from the bounded convergence theorem. This showsR
fd⇣ =

R
fdµ for all bounded continuous functions f , and hence ⇣ = µ by (Dudley,

2002, Prop. 11.3.2), proving the uniqueness of the invariant probability measure.
The conclusions for the Markov chain {(St, St+1, yt, et)} follow from the same arguments

given above, if we replace St with (St, St+1) and replace the set S with the set of possible
state transitions. (We could have proved the assertions for {(St, St+1, yt, et)} first and then
deduced as their implications the assertions for {(St, yt, et)}. We treated the latter first, as
it makes the notation in the proof simpler.)

Remark 2.1 (About the proof) Theorem 2.1 is similar to (Yu, 2012, Theorem 3.2) for
o↵-policy LSTD with constant � (the analysis given in (Yu, 2012) also applies to state-
dependent �). Some of the techniques used to prove the two theorems are also similar.
The main di↵erence to (Yu, 2012) is that in the proof here we used an argument based
on the strong Markov property to extend the weak convergence property of {µx,t} for a
subset of initial conditions x 2 {(s, ys, e) | e 2 <n} to all initial conditions, whereas in
(Yu, 2012) this step was proved using a result on the convergence-in-mean of LSTD iterates
established first. The latter approach would not work here due to the dependence of �t on
the history. Indeed, due to this dependence, the proof of the convergence-in-mean of LSTD
given in (Yu, 2012) does not carry over to our case, even though that convergence does hold
as a consequence of Theorem 2.1, in view of the boundedness of traces by construction.
Compared with the proof of the ergodicity result in (Yu, 2012), the proof we gave here is
more direct and therefore better.

Regarding possible alternative proofs of Theorem 2.1, let us also mention that if we
prove first the uniqueness of the invariant probability measure, then, since {(St, yt, et)}t�1

lie in a bounded set, the weak convergence of occupation probability measures will follow
immediately from (Meyn, 1989, Prop. 4.2). However, because the evolution of the �t’s de-
pends on both states and traces, it does not seem easy to us to prove directly the uniqueness
part first.

Remark 2.2 (About the conditions on the function �(·)) Our proof of Theorem 2.1
relied on Lemma 2.1 and the two properties discussed preceding that lemma, namely, that
{(St, yt, et)} is a weak Feller Markov chain and has at least one invariant probability mea-
sure. As long as these hold when we weaken or change the conditions on the function �(·),
the proof and the conclusions of the theorem will remain applicable.

We introduced Condition 2.3(ii) to bound the traces for algorithmic concerns. For the
ergodicity of the state-trace process, Condition 2.3(ii) is unimportant—in fact, it can be
removed from the conditions of Theorem 2.1. The reason is that we used this condition
before Lemma 2.1 to quickly infer that {(St, yt, et)} has at least one invariant probability
measure, but this is still true without Condition 2.3(ii), in view of (Meyn and Tweedie, 2009,
Theorem 12.1.2(ii)) and the fact that under Condition 2.1(i), {et} is bounded in probability
(the proof of this fact is straightforward and similar to the proof of (Yu, 2012, Lemma 3.1)
or (Yu, 2015, Prop. A.1)).

Condition 2.3(i) is actually two conditions combined into one. The first is the continuity
of �(y, e)e in e for each y, which was used to ensure that the state-trace process is a weak

14

Generalized Bellman Equations and TD Learning

Feller Markov chain. To be more general, instead of letting the evolutions of the traces
and memory states be governed by the functions � and g, one may consider letting them
be governed by stochastic kernels. Then by placing a suitable continuity condition on the
stochastic kernel �, one can ensure that the state-trace process has the desired weak Feller
Markov property.

The second condition packed into Condition 2.3(i) is that for each y, �(y, e)e is a Lips-
chitz continuous function of e with modulus 1. This condition is somewhat restrictive, and
one may consider instead allowing the function to have Lipschitz modulus greater than 1.
However, additional conditions are then needed to ensure that Lemma 2.1 holds. (If this
lemma does not hold, then the state-trace process may not be ergodic and one will need a
di↵erent approach than the one we took to characterize the sample path properties of the
state-trace process.)

From an algorithmic perspective, if it is desirable to choose even larger �t’s or to have
greater flexibility in choosing these �-parameters, some of the generalizations just mentioned
can be considered. For example, Condition 2.3(ii) can be replaced and stochastic kernels
can be introduced to allow for occasionally large traces et, so that instead of having the
traces bounded, one only make their variances bounded in a desired range.

3. Generalized Bellman Equations

In this section, we continue the analysis started in Section 2.3. Recall that Corollary 2.1
established that the asymptotic limit of the linear equations (2.4) for LSTD is the linear
equation (in v):

E⇣ [e0 �0(v)] = 0.

Our goal now is to relate this equation to a generalized Bellman equation for the target
policy ⇡. This will then allow us to interpret solutions of (2.4) computed by LSTD as
solutions of approximate versions of that generalized Bellman equation.

To this end, we will first give a general description of randomized stopping times and
associated Bellman operators (Section 3.1). We will then use these notions to derive the
particular Bellman operators that correspond to our choices of the �-parameters and appear
in the linear equations for LSTD (Section 3.2). We will also discuss a composite scheme of
choosing the �-parameters as a direct application and extension of our results.

To simplify notation in subsequent derivations, we shall use the following shorthand
notation: For k m, denote S

m
k = (Sk, Sk+1, . . . Sm),

⇢
m
k =

Qm
i=k ⇢i, �

m
k =

Qm
i=k �i, �

m
k =

Qm
i=k �i. (3.1)

Also, we shall treat ⇢mk = �
m
k = �

m
k = 1 if k > m.

3.1 Randomized Stopping Times and Associated Bellman Operators

Consider the Markov chain {St} induced by the target policy ⇡. Let Condition 2.1(i) hold.
Recall that for the value function v⇡, we have that for each state s 2 S,

v⇡(s) = E⇡
s

⇥P1
t=0

�
t
1
r⇡(St)

⇤
(by definition)

15

Yu, Mahmood, and Sutton

and

v⇡(s) = r⇡(s) + E⇡
s [�1v⇡(S1)].

The second equation is the standard one-step Bellman equation.

To write generalized Bellman equations for ⇡, we shall make use of randomized stopping

times for {St}, a notion that generalizes naturally stopping times for {St} in that whether to
stop at time t depends not only on the past states St

0
but also on certain random outcomes.

A simple example is to toss a coin at each time and stop as soon as the coin lands on heads,
regardless of the history S

t
0
. (The corresponding Bellman equation is the one associated

with TD(�) for a constant �; cf. Example 3.1.) Of interest here is the general case where
the stopping decision does depend on the entire history.

To define a randomized stopping time formally, first, the probability space of {St} is
enlarged to take into account whatever randomization scheme that is used to make the
stopping decision. (The enlargement will be problem-dependent, as the next subsection
will demonstrate.) Then, on the enlarged space, a randomized stopping time ⌧ for {St} is
a stopping time7 relative to some increasing sequence of �-algebras F0 ⇢ F1 ⇢ · · · , where
the sequence {Ft} is such that

(i) for all t � 0, Ft � �(St
0
) (the �-algebra generated by S

t
0
), and

(ii) relative to {Ft}, {St} remains to be a Markov chain with transition probability P ,
i.e., for all s 2 S, Prob(St+1 = s | Ft) = PSts.

See (Nummelin, 1984, Chap. 3.3); in particular, see Prop. 3.6 in p. 31-32 therein for several
equivalent definitions of randomized stopping times.

Note that if Ft = �(St
0
) for all t, then the history of states St

0
fully determines whether

⌧ t and ⌧ reduces to a stopping time for the Markov chain {St}. The properties (i)-(ii)
in the above definition encapsulate our earlier intuitive discussion about making stopping
decisions, namely, stopping decisions are made based on the history S

t
0
and additional

random outcomes that do not a↵ect the evolution of the Markov chain.

Like stopping times, the strong Markov property also holds for randomized stopping
times for a Markov chain. This is an important basic property. It says that in the event
⌧ < 1, conditioned on the �-algebra F⌧ associated with the stopping time ⌧ relative to {Ft}
(which is the �-algebra generated by the events that “happen before ⌧”), the conditional
distribution of (S⌧ , S⌧+1, . . .) is the same as the probability distribution of a Markov chain
(S0, S1, . . .) with initial state S0 = S⌧ (Nummelin, 1984, Theorem 3.3).

The above abstract definition of a randomized stopping time allows us to write Bellman
equations in general forms without worrying about the details of the enlarged space, which
are not important at this point. For notational simplicity, when there is no confusion, we
shall still write P⇡ for the probability measure on the enlarged probability space and use E⇡

and E⇡
s to denote the expectation and conditional expectation given S0 = s, respectively,

w.r.t. P⇡.

If ⌧ is a randomized stopping time for {St}, the strong Markov property (Nummelin,
1984, Theorem 3.3) allows us to express v⇡ in terms of v⇡(S⌧) and the total discounted

7. A random time ⌧ is called a stopping time relative to a sequence {Ft} of increasing �-algebras if the
event {⌧ = t} 2 Ft for every t.

16

Generalized Bellman Equations and TD Learning

rewards R⌧ prior to stopping:

v⇡(s) = E⇡
s

hP⌧�1

t=0
�
t
1
r⇡(St) +

P1
t=⌧ �

⌧
1
· �t⌧+1

r⇡(St)
i

= E⇡
s

⇥
R

⌧ + �
⌧
1 v⇡(S⌧)

⇤
, (3.2)

where R
⌧ =

P⌧�1

t=0
�
t
1
r⇡(St) for ⌧ 2 {0, 1, 2, . . .} [{+1}.8 We can also write the Bellman

equation (3.2) in terms of {St} only, by taking expectation over ⌧ :

v⇡(s) = E⇡
s

hP1
t=0

⇣
1(⌧ > t) · �t

1
r⇡(St) + 1(⌧ = t) · �t

1
v⇡(St)

⌘i
,

= E⇡
s

hP1
t=0

⇣
q
+

t (S
t
0
) · �t

1
r⇡(St) + qt(St

0
) · �t

1
v⇡(St)

⌘i
, (3.3)

where

q
+

t (S
t
0) = P⇡(⌧ > t | St

0), qt(S
t
0) = P⇡(⌧ = t | St

0). (3.4)

The r.h.s. of (3.2) or (3.3) defines a generalized Bellman operator T : <N ! <N associated
with ⌧ , which has several equivalent expressions; e.g.,

(Tv)(s)=E⇡
s

⇥
R

⌧ + �
⌧
1
v(S⌧)

⇤
=E⇡

s

hP1
t=0

⇣
q
+

t (S
t
0
) · �t

1
r⇡(St) + qt(St

0
) · �t

1
v(St)

⌘i
, s 2 S.

Depending on the context, one expression can be more convenient to use than the other.
For example, the first expression is convenient for defining T through the associated ⌧ and
for deducing the contraction property of T , whereas expressions like the second will be of
interest when we want to know more explicitly the particular T for our TD learning scheme
and its dependence on the �-parameters.

In common with one-step Bellman operator, the generalized Bellman operator T is a�ne
and involves a substochastic matrix. If ⌧ � 1 a.s., then the value function v⇡ is the unique
fixed point of T , i.e., the unique solution of v = Tv, and T is a sup-norm contraction. In
fact, this can be shown for slightly more general ⌧ :

Theorem 3.1 Let Condition 2.1(i) hold, and let the randomized stopping time ⌧ be such

that P⇡(⌧ � 1 | S0 = s) > 0 for all states s 2 S. Then v⇡ is the unique fixed point of the

generalized Bellman operator T associated with ⌧ , and T is a contraction w.r.t. a weighted

sup-norm on <N
.

8. We explain the derivations in this footnote. In the case ⌧ = 0, R0 = 0. In the case ⌧ = 1, by
Condition 2.1(i), R1 =

P1
t=0 �

t
1 r⇡(St) is almost surely well-defined, while the second term �⌧

1 v⇡(S⌧) in
(3.2) is 0 because �1

1 :=
Q1

k=1 �k = 0 a.s., under Condition 2.1(i). Equation (3.2) is derived as follows:
By the strong Markov property (Nummelin, 1984, Theorem 3.3), on {⌧ < 1},

E⇡
⇥P1

t=⌧ �
⌧
1 · �t

⌧+1 r⇡(St) | F⌧

⇤
= �⌧

1 · E⇡
S⌧

⇥P1
t=0 �

t
1 r⇡(St)

⇤
= �⌧

1 v⇡(S⌧).

Then, since the term E⇡
s

⇥P1
t=⌧ �

⌧
1 · �t

⌧+1 r⇡(St)
⇤
= E⇡

s

⇥
1(⌧ < 1) ·

P1
t=⌧ �

⌧
1 · �t

⌧+1 r⇡(St)
⇤
, we use the

property of the conditional expectation given F⌧ and the fact F⌧ � �(S0) to rewrite this term as

E⇡
s

⇥
1(⌧ < 1) · E⇡

⇥P1
t=⌧ �

⌧
1 · �t

⌧+1 r⇡(St) | F⌧

⇤ ⇤
= E⇡

s [1(⌧ < 1) · �⌧
1 v⇡(S⌧)] = E⇡

s [�⌧
1 v⇡(S⌧)],

where in the last equality we also used the fact �1
1 = 0 a.s. This gives (3.2).

17

Yu, Mahmood, and Sutton

We prove this theorem in Appendix A. The proof amounts to showing that if a state
process evolves according to the substochastic matrix P̃ involved in the a�ne operator T ,
then all the states in S are transient (equivalently, the spectral radius of P̃ is less than 1
and I � P̃ is invertible (Puterman, 1994, Appendix A.4)). From this the conclusions of the
theorem follow as a basic fact from nonnegative matrix theory (Seneta, 2006, Theorem 1.1),
and one specific choice of the weights of the sup-norm in the theorem is simply the expected
time for the process to leave S from each initial state (see e.g., the proof of (Bertsekas and
Tsitsiklis, 1996, Prop. 2.2)).

For TD algorithms that do not use history-dependent �, the random times ⌧ and the
corresponding Bellman operators T have simple descriptions:

Example 3.1 (TD with constant or state-dependent �) Depending on the choice of
�, TD(�) algorithms are associated with di↵erent randomized stopping times ⌧ . In the case
of constant �, starting from time 1, we stop the system with probability 1� � if it has not
stopped yet; i.e.,

⌧ � 1 and P⇡(⌧ = t | ⌧ > t� 1, St
0) = 1� �, 8 t � 1.

In particular, we always stop at t = 1 if � = 0, and we never stop if � = 1. Similarly, for
state-dependent � where �t = �(St), a function of the current state, the preceding stopping
probability is replaced by 1��(St): P⇡(⌧ = t | ⌧ > t�1, St

0
) = 1��(St) for t � 1. In these

cases, by taking expectations over ⌧ , the corresponding Bellman operators can be expressed
solely in terms of � and the model parameters for the target policy.

3.2 Bellman Equation for the Proposed TD Learning Scheme

With the terminology of randomized stopping times, we are now ready to write down the
generalized Bellman equation associated with the TD learning scheme proposed in Sec-
tion 2.2. It corresponds to a particular randomized stopping time. We shall first describe
this random time, from which a generalized Bellman equation follows as seen in the preced-
ing subsection. That this is indeed the Bellman equation for our TD learning scheme will
then be proved.

Consider the Markov chain {St} under the target policy ⇡. We define a randomized
stopping time ⌧ for {St}:

• Let yt,�t, et, t � 1, evolve according to (2.5) and (2.2):

yt = g(yt�1, St), �t = �(yt, et�1), et = �t �t ⇢t�1 et�1 + �(St), t � 1.

• Let the initial (S0, y0, e0) be distributed according to ⇣, the unique invariant prob-
ability measure in Theorem 2.1 for the state-trace process induced by the behavior
policy.

• At time t � 1, we stop the system with probability 1 � �t if it has not yet been
stopped. Let ⌧ be the time when the system stops (⌧ = 1 if the system never stops).

To make the dependence on the initial distribution ⇣ explicit, we write P⇡
⇣ for the probability

measure of this process.

18

Generalized Bellman Equations and TD Learning

Note that by definition �t and �
t
1
=

Qt
k=1

�k are functions of the initial (y0, e0) and

states S
t
0
. From how the random time ⌧ is defined, we have for all t � 1,

P⇡
⇣ (⌧ > t | St

0, y0, e0) = �
t
1 =: h+t (y0, e0, S

t
0), (3.5)

P⇡
⇣ (⌧ = t | St

0, y0, e0) = �
t�1

1
(1� �t) =: ht(y0, e0, S

t
0), (3.6)

and hence

q
+

t (S
t
0) := P⇡

⇣ (⌧ > t | St
0) =

Z
h
+

t (y, e, S
t
0) ⇣

�
d(y, e) | S0

�
, (3.7)

qt(S
t
0) := P⇡

⇣ (⌧ = t | St
0) =

Z
ht(y, e, S

t
0) ⇣

�
d(y, e) | S0

�
, (3.8)

where ⇣(d(y, e) | s) is the conditional distribution of (y0, e0) given S0 = s, w.r.t. the initial
distribution ⇣. As before, we can write the generalized Bellman operator T associated
with ⌧ in several equivalent forms. Let E⇡

⇣ denote expectation under P⇡
⇣ . Similarly to the

derivation of (3.3), we can rewrite (3.2) in this case by taking expectation over ⌧ conditioned
on (St

0
, y0, e0) to derive that for all v : S ! <, s 2 S,

(Tv)(s) = E⇡
⇣

hP1
t=0

�
t
1
�
t
1
r⇡(St) +

P1
t=1

�
t�1

1
(1� �t)�t1 v(St) | S0 = s

i
. (3.9)

Or express T in the form of (3.3) by further integrating over (y0, e0) and using (3.7)-(3.8):

(Tv)(s) = E⇡
⇣

hP1
t=0

⇣
q
+

t (S
t
0
) · �t

1
r⇡(St) + qt(St

0
) · �t

1
v(St)

⌘ ��S0 = s

i
, (3.10)

for all v : S ! <, s 2 S, where in the case t = 0, q+
0
(S0) = 1 and q0(S0) = 0 since ⌧ > 0 by

construction.
It will be useful later to express TV � V in terms of temporal di↵erences. From (3.9),

by writing �
t�1

1
(1� �t)�t1 v(St) = �

t�1

1
�
t
1
v(St)� �

t
1
�
t
1
v(St) and rearranging terms, we have

for all v : S ! <, s 2 S,

(Tv)(s)� v(s) = E⇡
⇣

hP1
t=0

�
t
1
�
t
1
r⇡(St) +

P1
t=0

�
t
1
�
t+1

1
v(St+1)�

P1
t=0

�
t
1
�
t
1
v(St) | S0 = s

i

= E⇡
⇣

hP1
t=0

�
t
1
�
t
1
·
⇣
r⇡(St) + �t+1 v(St+1)� v(St)

⌘ ��S0 = s

i
. (3.11)

In a similar way, from (3.10), we can write9

(Tv)(s)� v(s) = E⇡
⇣

hP1
t=0

q
+

t (S
t
0
) · �t

1
·
⇣
r⇡(St) + �t+1 v(St+1)� v(St)

⌘ ��S0 = s

i
.

Remark 3.1 Comparing the two expressions (3.9) and (3.10) of T , we remark that the
expression (3.9) reflects the role of the �t’s in determining the stopping time, whereas the
expression (3.10), which has eliminated the auxiliary variables yt and et, shows more clearly
the dependence of the stopping time on the entire history S

t
0
. It can also be seen, from the

9. Since ⌧ is a randomized stopping time for the Markov chain {St}, we have P⇡
⇣ (⌧ > t | St+1

0) = P⇡
⇣ (⌧ >

t | St
0), so P⇡

⇣ (⌧ > t | St
0) � P⇡

⇣ (⌧ = t + 1 | St+1
0) = P⇡

⇣ (⌧ > t + 1 | St+1
0), i.e., q+t (St

0) � qt+1(S
t+1
0) =

q+t+1(S
t+1
0). Thus we can write the term qt(S

t
0) in (3.10) for t � 1 as q+t�1(S

t�1
0) � q+t (St

0), and the
expression for (Tv � v)(s) then follows by rearranging terms.

19

Yu, Mahmood, and Sutton

initial distribution ⇣, the dependence of �t on the traces and the dependence of the traces
on the function ⇢(·) (which describes importance sampling ratios), that both the behavior
policy and the choice of the feature representation assert a significant role in determining
the Bellman operator T for the target policy. This is in contrast with o↵-policy TD learning
that uses a constant �, where the behavior policy and the approximation subspace a↵ect
only how one approximates the Bellman equation underlying TD, not the Bellman equation
itself, which is solely determined by � (cf. Example 3.1).

Furthermore, note that as the invariant distribution of the state-trace process, ⇣ is
associated with the dynamic behavior of the states and traces under the behavior policy.
Generally, there is no explicit expression of ⇣ in terms of P o and the parameters in the
� function. As a result, in general we cannot express the operator T in terms of these
parameters in the learning scheme. This is di↵erent from the case of TD(�) where � is a
function of the present state only.

We now proceed to show how the Bellman equation v = Tv given above relates to the
o↵-policy TD learning scheme in Section 2.2. Some notation is needed. Denote by ⇣S the
invariant probability measure of the Markov chain {St} induced by the behavior policy ; note
that it coincides with the marginal of ⇣ on S. For two functions v1, v2 on S, we write
v1 ?⇣S v2 if

P
s2S ⇣S(s) v1(s) v2(s) = 0. If L is a linear subspace of functions on S and

v ?⇣S v
0 for all v0 2 L, we write v ?⇣S L. Recall that � is a function that maps each

state s to an n-dimensional feature vector. Denote by L� the subspace spanned by the n

component functions of �, which is the space of approximate value functions for our TD
learning scheme. Recall also that E⇣ denotes expectation w.r.t. the stationary state-trace
process {(St, yt, et)} under the behavior policy (cf. Theorem 2.1).

Theorem 3.2 Let Conditions 2.1-2.3 hold. Then as a linear equation in v, E⇣

⇥
e0 �0(v)

⇤
= 0

is equivalently Tv � v ?⇣S L�, where T is the generalized Bellman operator for ⇡ given in

(3.9) or (3.10).

Remark 3.2 (On LSTD) Note that

Tv � v ?⇣S L�, v 2 L�

is a projected version of the generalized Bellman equation Tv � v = 0 (projecting the left-
hand side onto the approximation subspace L� w.r.t. the ⇣S-weighted Euclidean norm).
Theorem 3.2 and Corollary 2.1 together show that this is what LSTD solves in the limit.

Note also that although the generalized Bellman operator T is a contraction (Theo-
rem 3.1), the composition of projection with T is in general not a contraction (cf. Ex-
ample B.1 in Appendix B). Thus we cannot use contraction-based arguments to analyze
approximation properties. For that purpose, we use the oblique projection viewpoint of
Scherrer (2010). Specifically, if the preceding projected Bellman equation admits a unique
solution v̄, then v̄ can be viewed as an oblique projection of v⇡ (Scherrer, 2010) and the
approximation error v̄ � v⇡ can be characterized as in (Yu and Bertsekas, 2010) by using
the oblique projection viewpoint. The details of these are given in Appendix B.

Remark 3.3 (On gradient-based TD) While Theorem 3.2 is about the LSTD algo-
rithm, it also helps prepare the ground for analyzing gradient-based algorithms similar to

20

Generalized Bellman Equations and TD Learning

those discussed in (Maei, 2011; Mahadevan et al., 2014). Like LSTD, these algorithms aim
to solve the same projected generalized Bellman equation as characterized by Theorem 3.2
(cf. Remark 3.2). Their average dynamics, which is important for analyzing their conver-
gence using the mean ODE approach from stochastic approximation theory (Kushner and
Yin, 2003), can be studied based on the ergodicity result of Theorem 2.1, in essentially the
same way as we did in Section 2.3 for the LSTD algorithm. For details of the convergence
analysis of these gradient-based TD algorithms, see the recent work (Yu, 2017).

In the rest of this subsection, we give a corollary to Theorem 3.2, deferring the proofs
of both the theorem and the corollary to the next subsection. The corollary concerns
a composite scheme of setting �, which is slightly more general than what Section 2.2
described. It results in a Bellman operator that is a composition of the components of
other Bellman operators, and it can be useful in practice for variance control. Let us
describe the scheme first, before explaining our motivation for it.

Partition the state space into m nonempty disjoint sets: S = [m
i=1

Si. Associate each set
Si with a possibly di↵erent scheme of setting � that is of the type described in Section 2.2,

and denote its memory states by y
(i)
t and �-function by �

(i)(·, ·). Keep m trace vectors

e
(1)

t , . . . , e
(m)

t , one for each set, and update them according to

e
(i)
t = �

(i)
t �t ⇢t�1 e

(i)
t�1

+ �(St) 1(St 2 Si), 1 i m, (3.12)

where �
(i)
t = �

(i)
�
y
(i)
t , e

(i)
t�1

�
. We then have m ergodic state-trace processes that share the

same state variables,
��

St, y
(i)
t , e

(i)
t

�
, i = 1, 2, . . . ,m. Each process has a unique invariant

probability measure ⇣(i) (Theorem 2.1) and an associated randomized stopping time ⌧ (i) and
generalized Bellman operator T (i), as discussed in this subsection. Define now an operator
T by concatenating the component mappings of T (i) for Si as follows: for all v 2 <N and
s 2 S,

(Tv)(s) := (T (i)
v)(s) if s 2 Si. (3.13)

Consider an LSTD algorithm that defines the trace et to be the sum of the m trace vectors,

et =
Pm

i=1
e
(i)
t , (3.14)

and uses the traces to form the linear equation as before,

1

t

Pt�1

k=0
ek �k(v) = 0, v = �✓.

Note that 1

t

Pt�1

k=0
ek�k(v) = 0 is the same as

Pm
i=1

1

t

Pt�1

k=0
e
(i)
k �k(v) = 0. By Corollary 2.1,

as a linear equation in v, it tends asymptotically (as t ! 1) to the linear equationPm
i=1

E⇣(i)
⇥
e
(i)
0
�0(v)

⇤
= 0.

Corollary 3.1 Let Condition 2.1 hold. Consider the composite scheme of setting � dis-

cussed above, and let Conditions 2.2-2.3 hold for each of the m schemes involved. Let LSTD

calculate traces according to (3.12) and (3.14). Then the limiting linear equation (in v) as-

sociated with LSTD,
Pm

i=1
E⇣(i)

⇥
e
(i)
0
�0(v)

⇤
= 0, is equivalently Tv � v ?⇣S L�, where T is

the generalized Bellman operator for ⇡ given by (3.13) and has the same fixed point and

contraction properties as stated in Theorem 3.1.

21

Yu, Mahmood, and Sutton

The use of composite schemes will be demonstrated by experiments in Section 4.2.2.
Here let us explain informally our motivation for such schemes.

Remark 3.4 (About composite schemes of setting �) Our motivation for using the
composite schemes is revealed by the equation (3.13). Typically each T

(i) is designed to
be simple to implement in TD learning. For example, if we ignore for now the bounding
of traces introduced in Section 2.2 and just consider TD(�) with constant �, T (i) can be
the Bellman operator T

(�) for TD(�) with some constant �. A simple, extreme example
is to partition the state space into two sets, and associate one with T

(�)
,� = 1, and the

other with T
(�)

,� = 0. Using the combination (3.13) of the two operators in TD then
means that for the first set of states whose � = 1, we want to estimate their values by
using the information about the total rewards received when starting from those states,
whereas for the second set of states whose � = 0, we only use the information about their
one-stage rewards and how these states relate to the “neighboring” states in the transition
graph. While this way of using di↵erent kinds of information for di↵erent states is natural
and useful for TD-based policy evaluation, it cannot be realized by keeping a single trace
sequence as before and only letting �t evolve with states or histories. Indeed, in that case,
as discussed in Section 2.2.2, interleaving large and small �t’s would make the algorithm
behave e↵ectively like TD with small � over the entire state space.

In the context of the more complex scheme of setting � discussed in this paper, our
motivation and reasons for considering composite schemes are the same. Each T

(i) can be
designed to be simple to implement, such as in the simple scaling example in Section 2.2.
The parameters in the ith scheme can be chosen so that they encourage the use of large �t’s
throughout time or dictate the use of only small �t’s. By combining component mappings
of T (i) through (3.13), composite schemes allow us to use cumulative rewards and transition
structures at di↵erent timescales for di↵erent states. This provides additional flexibility in
managing the bias-variance trade-o↵ when estimating the value function (see Figure 9 and
Figure 11 in Section 4.2.2 for a demonstration).

Finally, we mention that for o↵-policy LSTD(�) with constant �, composite schemes
were proposed in (Yu and Bertsekas, 2012) and analyzed in (Yu, 2012, Proposition 4.5, Sec-
tion 4.3). Our Corollary 3.1 extends that result. The convergence analysis of the gradient-
based algorithms for the composite schemes is given in (Yu, 2017).

3.3 Proofs of Theorem 3.2 and Corollary 3.1

We divide the proof of Theorem 3.2 into two steps. The first step deals with an expression
for the trace vector, given in the following lemma. It is more subtle than the other step in
the proof, which involves mostly calculations.

We start by extending the stationary state-trace process {(St, yt, et)}t�0 to t = �1,
�2, . . ., and work with a double-ended stationary process {(St, yt, et)}�1<t<1 (by Kol-
mogorov’s existence theorem (Dudley, 2002, Theorem 12.1.2), such a process exists). Note
that as before this is a Markov chain whose transition probability is defined by the be-
havior policy ⇡

o together with the update rules (2.2) and (2.5) for et, yt and �t, and the
marginal distribution of each (St, yt, et) is ⇣. We keep using the notation P⇣ and E⇣ for this
double-ended stationary Markov chain.

22

Generalized Bellman Equations and TD Learning

Recall the shorthand notation (3.1) introduced at the beginning of Section 3: For k m,
⇢
m
k =

Qm
i=k ⇢i, �

m
k =

Qm
i=k �i, �

m
k =

Qm
i=k �i, and in addition, �

0

1
= �

0

1
= ⇢

�1

0
= 1 by

convention.

Lemma 3.1 P⇣-almost surely,
P1

t=1
�
0

1�t�
0

1�t⇢
�1

�t�(S�t) is well-defined and finite, and

e0 = �(S0) +
P1

t=1
�
0

1�t�
0

1�t⇢
�1

�t �(S�t). (3.15)

Proof First, we show E⇣

⇥P1
t=1

�
0

1�t⇢
�1

�t

⇤
< 1. Indeed,

E⇣

⇥P1
t=1

�
0

1�t⇢
�1

�t

⇤
=
P1

t=1
E⇣

⇥
�
0

1�t⇢
�1

�t

⇤
=
P1

t=1
⇣
>
S (P�)t1 < 1,

where the first equality follows from the monotone convergence theorem, the second equality
from Condition 2.1(ii) and a direct calculation, and the last inequality follows from Condi-
tion 2.1(i) (since (I � P�)�1 =

P1
t=0

(P�)t). This implies
P1

t=1
�
0

1�t⇢
�1

�t < 1, P⇣-a.s., so
�
0

1�t⇢
�1

�t ! 0 as t ! 1, P⇣-a.s. Since �
0

1�t 1 for all t, it also implies that

E⇣

⇥P1
t=1

�
0

1�t�
0

1�t⇢
�1

�t k�(S�t)k
⇤
 maxs2S k�(s)k · E⇣

⇥P1
t=1

�
0

1�t⇢
�1

�t

⇤
< 1. (3.16)

It then follows from a theorem on integration (Rudin, 1966, Theorem 1.38, p. 28-29) that
P⇣-almost surely, the infinite series

P1
t=1

�
0

1�t�
0

1�t⇢
�1

�t�(S�t) converges to a finite limit.
We now prove the expression for e0. By unfolding the iteration (2.2) for et backwards

in time, we have for all m � 1,

e0 = �(S0) +
Pm�1

t=1
�
0

1�t�
0

1�t⇢
�1

�t �(S�t) + �
0

1�m�
0

1�m⇢
�1

�m e�m. (3.17)

Let m ! 1 in the r.h.s. of (3.17). For the last term, the trace e�m lies in a bounded set
by Condition 2.3(ii), �0

1�m 1, and as we just showed, �0
1�m⇢

�1

�m ! 0, P⇣-a.s. So the last
term converges to zero P⇣-a.s. Also as we just showed, the second term converges P⇣-almost
surely to

P1
t=1

�
0

1�t�
0

1�t⇢
�1

�t�(S�t). The expression (3.15) for e0 then follows.

Proof of Theorem 3.2 Treating �
0

1
= �

0

1
= ⇢

�1

0
= 1, we write the expression of e0 given

in Lemma 3.1 as e0 =
P1

t=0
�
0

1�t�
0

1�t⇢
�1

�t �(S�t), P⇣-a.s. We use this expression to calculate
first E⇣

⇥
e0 · ⇢0f(S1

0
)
⇤
for an arbitrary function f on S ⇥ S. (Note that f is bounded and

measurable, since S is finite.) We have

E⇣

⇥
e0 · ⇢0f(S1

0)
⇤
=
P1

t=0
E⇣

h
�
0

1�t�
0

1�t⇢
�1

�t �(S�t) · ⇢0f(S1

0
)
i

=
P1

t=0
E⇣

h
�
t
1
�
t
1
⇢
t�1

0
�(S0) · ⇢tf(St+1

t)
i

=
P1

t=0
E⇣

h
�(S0) · E⇣

⇥
�
t
1
�
t
1
⇢
t
0
f(St+1

t) | S0, y0, e0

⇤ i
(3.18)

where we used the stationarity of the double-ended state-trace process to derive the second
equality, and we changed the order of expectation and summation in the first equality. This
change is justified by the dominated convergence theorem (cf. (3.16)), and so are similar
interchanges of expectation and summation that will appear in the rest of this proof.

To proceed with the calculation, we relate the expectations in the summation in (3.18)
to expectations w.r.t. the process with probability measure P⇡

⇣ introduced in Section 3.2

23

Yu, Mahmood, and Sutton

(which we recall is induced by the target policy ⇡ and involves the randomized stopping time
⌧). Let Ẽ⇡

⇣ denote expectation w.r.t. the marginal of P⇡
⇣ on the space of {(St, yt, et)}t�0.

From the change of measure performed through ⇢
t
0
, we have

E⇣

⇥
�
t
1�

t
1⇢

t
0 f(S

t+1

t) | S0, y0, e0

⇤
= Ẽ⇡

⇣

⇥
�
t
1�

t
1 f(S

t+1

t) | S0, y0, e0

⇤
, t � 0. (3.19)

Combining this with (3.18) and using the fact that ⇣ is the marginal distribution of (S0, y0, e0)
in both processes, we obtain

E⇣

⇥
e0 · ⇢0f(S1

0)
⇤
=
P1

t=0
Ẽ⇡
⇣

h
�(S0) · Ẽ⇡

⇣

⇥
�
t
1
�
t
1
f(St+1

t) | S0, y0, e0

⇤ i

= Ẽ⇡
⇣

h
�(S0) ·

P1
t=0

Ẽ⇡
⇣

⇥
�
t
1
�
t
1
f(St+1

t) | S0

⇤ i
. (3.20)

We now use (3.20) to calculate E⇣

⇥
e0 �0(v)

⇤
for a given function v. Recall from (2.3) that

�0(v) = ⇢0 ·
�
r(S1

0
) + �1v(S1)� v(S0)

�
, so we let f(St+1

t) = r(St+1

t) + �t+1v(St+1)� v(St) in
(3.20). Since E⇡

⇣ [r(S
t+1

t) | St
0
] = r⇡(St), we have

P1
t=0

Ẽ⇡
⇣

⇥
�
t
1
�
t
1
f(St+1

t) | S0

⇤
=
P1

t=0
Ẽ⇡
⇣

h
�
t
1
�
t
1

⇣
r⇡(St) + �t+1v(St+1)� v(St)

⌘ ���S0

i

= (Tv � v)(S0),

where the last equality follows from the expression (3.11) for TV �V . Therefore, by (3.20),

E⇣

⇥
e0 �0(v)

⇤
=
P

s2S ⇣S(s)�(s) · (Tv � v)(s), (3.21)

and this shows that E⇣

⇥
e0 �0(v)

⇤
= 0 is equivalent to Tv � v ?⇣S L�.

We now prove Corollary 3.1.

Proof of Corollary 3.1 We apply Theorem 3.2 to each state-trace process
��

St, y
(i)
t , e

(i)
t

�

for i = 1, 2, . . . ,m. Specifically, by (3.21) and the definition (3.12) of e(i)t ,

E⇣(i)
⇥
e
(i)
0
�0(v)

⇤
=
P

s2S ⇣S(s) · �(s)1(s 2 Si) ·
�
T
(i)
v � v

�
(s).

Hence

Pm
i=1

E⇣(i)
⇥
e
(i)
0
�0(v)

⇤
=
P

s2S ⇣S(s)�(s) ·
hPm

i=1
1(s 2 Si) ·

�
T
(i)
v � v

�
(s)

i

=
P

s2S ⇣S(s)�(s) · (Tv � v)(s),

where the last equality follows from the definition (3.13) of the operator T . This shows that

the linear equation in v,
Pm

i=1
E⇣(i)

⇥
e
(i)
0
�0(v)

⇤
= 0, is equivalently Tv � v ?⇣S L�.

We now prove that T has v⇡ as its unique fixed point and is a contraction with respect
to a weighted sup-norm—in other words, Theorem 3.1 applies to T . For this, it su�ces to
show that T satisfies the conditions of Theorem 3.1, namely, T is a generalized Bellman
operator associated with a randomized stopping time ⌧ that satisfies P⇡(⌧ � 1 | S0 =
s) > 0 for all states s 2 S. We can define such a random time ⌧ from the randomized
stopping times ⌧ (i) associated with the Bellman operators T (i). In particular, by enlarging

24

Generalized Bellman Equations and TD Learning

the probability space if necessary, we can regard ⌧
(i), i = 1, 2, . . . ,m, as being defined on

the same probability space.10 We then let ⌧ = ⌧
(i) if S0 2 Si. With this definition, we have

P⇡(⌧ � 1 | S0 = s) > 0 for all states s 2 S (since ⌧
(i) � 1 a.s. for all i). For each set Si,

by (3.2), the component mappings of the generalized Bellman operator T⌧ associated with
⌧ are given by

(T⌧v)(s)=E⇡
s

⇥
R

⌧ + �
⌧
1
v(S⌧)

⇤
=E⇡

s

⇥
R

⌧ (i) + �
⌧ (i)
1

v(S⌧ (i))
⇤
= (T (i)

v)(s), s 2 Si.

So T⌧ = T by the definition (3.13) of T ; i.e., T is the Bellman operator associated with the
randomized stopping time ⌧ .

4. Numerical Study

In this section, we first use a toy problem to illustrate the behavior of traces calculated by
o↵-policy LSTD(�) for constant � and for � that evolves according to a simple special case
of our proposed scheme described in Example 2.1. We then compare the behavior of LSTD
for various choices of �, on the toy problem and on the Mountain Car problem.

4.1 Behavior of Traces

The toy problem we use in this study has 21 states, arranged as shown in Figure 1 (left).
One state is located at the centre, and the rest of the states split evenly into four groups,
indicated by the four loops in the figure. The topology of the transition graph is the same for
the target and behavior policies. We have drawn the transition graph only for the northeast
group in Figure 1 (left); the states in each of the other three groups are arranged in the
same manner and have the same transition structure. Given this symmetry, to specify the
transition matrices P and P

o for the target and behavior policies ⇡ and ⇡
o respectively, it

su�ces to specify the submatrices for the central state and one of the groups. If we label
the central state as state 1 and the states in the northeast group clockwise as states 2-6,
the submatrices of P and P

o for these states are given, respectively, by

⇡ :

0

BBBBBB@

0 0.25 0 0 0 0
0 0 1 0 0 0
0 0.2 0 0.8 0 0
0 0 0.2 0 0.8 0
0 0 0 0.2 0 0.8
0.8 0 0 0 0.2 0

1

CCCCCCA
, ⇡

o :

0

BBBBBB@

0 0.25 0 0 0 0
0 0 1 0 0 0
0 0.5 0 0.5 0 0
0 0 0.5 0 0.5 0
0 0 0 0.5 0 0.5
0.5 0 0 0 0.5 0

1

CCCCCCA
.

Intuitively speaking, from the central state, the system enters one group of states by moving
diagonally in one of the four directions with equal probability, and after spending some time
in that group, eventually returns to the central state and the process repeats. The behavior
policy on average spends more time wandering inside each group than the target policy,
while the target policy tends to traverse clockwise through the group more quickly.

10. That we can do so is clear from the definition of each ⌧ (i) as described at the beginning of Section 3.2
and from the fact that for each i, the initial distribution ⇣(i) on (S0, y

(i)
0 , e(i)0) has the same marginal on

S, which is ⇣S .

25

Yu, Mahmood, and Sutton

northeast
group

central
state

southeast
group

1
1

.8/.5

.8/.5

.8/.5

.8/.5

Figure 1: The transition graph of a toy problem (left) and a cycle pattern in it (right). The
numbers appearing in the right graph indicate the importance sampling ratios for
the state transitions represented by each directed edge. From such cycle patterns
one can infer whether the trace sequence is unbounded almost surely.

All the rewards are zero except for the middle state in each group—for the northeast
group, this is the shaded state in Figure 1 (left). For the two northern (southern) groups,
their middle states have reward 1 (�1). The discount factor is � = 0.9 for all states. As to
features, we aggregate states into 5 groups: the 4 groups mentioned earlier and the central
state forming its own group, and we let each state have 5 binary features indicating its
membership.

We now discuss and illustrate the behavior of traces in this toy problem. For comparison,
we first do this for the o↵-policy TD(�) with a constant �. It can help explain the challenges
in o↵-policy TD learning and our motivation for proposing the new scheme of setting �.

4.1.1 Traces for Constant �

In this experiment we let � = 1 and consider the trace iterates {et} calculated by TD(1). In
general, by identifying certain cycle patterns in the transition graph, one can infer whether
{et} will be unbounded over time almost surely (Yu, 2012, Section 3.1). Figure 1 (right)
shows such a cycle of states in the transition graph of the toy problem. It consists of the
central state and the northeast group of states. Labeled on each edge of the cycle is the
importance sampling ratio for that state transition. Traversing through the cycle once from
any starting state, and multiplying together the importance sampling ratios of each edge
and the discount factors of the destination states, we get

�
0.8
0.5

�4 · �6 =
�
0.8
0.5

�4 · 0.96 > 1.
From this one can infer that {et} calculated by o↵-policy TD(1) will be unbounded in this
problem (cf. Yu, 2012, Prop. 3.1).

We plotted in the upper left graph of Figure 2 the Euclidean norm ketk of the traces
over 8 ⇥ 105 iterations for TD(1). One can see the recurring spikes and the exceptionally
large values of some of these spikes in the plot. This is consistent with the unboundedness
of {et} just discussed.

The unboundedness of {et} tells us that the invariant probability measure ⇣ of the
state-trace process {(St, et)} has an unbounded support. Despite this unboundedness, {et}
is bounded in probability (Yu, 2012, Lemma 3.4) and under the invariant distribution ⇣,
E⇣

⇥
ke0k

⇤
< 1 (Yu, 2012, Prop. 3.2). The latter property implies that under the invariant

distribution, the probability of ke0k > x decreases as o(1/x) for large x. Since the empirical

26

Generalized Bellman Equations and TD Learning

0 1 2 3 4 5 6 7 8

x 10
5

0

1000

2000

3000

4000

5000
norm of traces

t

10 12 14 16 18 20 22 24 26 28
0

5

10
histogram for segments of traces whose norm > 100

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fractions of traces whose norm > x

x

Figure 2: Statistics of traces for TD(1) in a toy problem (see the text in Section 4.1.1 for
detailed explanations).

distribution of the state-trace process converges to ⇣ almost surely (Yu, 2012, Theorem 3.2),
during a run of many iterations, we expect to see the fraction of traces with ketk > x drop
in a similar way as x increases.

The simulation result shown in the right part of Figure 2 agrees with the preceding
discussion. Plotted in the graph are fractions of traces with ketk > x during 8 ⇥ 105

iterations (the vertical axis indicates the fraction, and the horizontal axis indicates x). It
can be seen that despite the recurring spikes in ketk during the entire run, the fraction of
traces with large magnitude x drops sharply with the increase in x.

While only a small fraction of traces have exceptionally large magnitude, they can
occur in consecutive iterations. This is illustrated by the histogram in the lower left part of
Figure 2. The histogram concerns the excursions of the trajectory {et} outside of the ball
{e 2 <n | kek 100}. The horizontal axis indicates the lengths of the excursions (where
the length is the number of iterations an excursion contains), and the vertical axis indicates
how many excursions of length x occurred during the 8⇥ 105 iterations of the experimental
run. We plotted the histogram for lengths x > 10. It can be seen that one can have large
traces during many consecutive iterations. Such behavior, although tolerable by LSTD, is
especially detrimental to TD algorithms and can disrupt their learning. This is our main
motivation for suggesting the use of �-parameters to bound the traces directly.

4.1.2 Traces with Evolving �

We now proceed to illustrate the behavior of traces and LSTD for � that evolves according
to our proposed scheme. Specifically, for this demonstration, we will use the simple scaling
example given by (2.6)-(2.7) in Example 2.1, with all the thresholds Css0 being the same
constant C. That is, the update rule for et used in this experiment is

et =

(
�t ⇢t�1 et�1 + �(St) if �t⇢t�1ket�1k2 C;

C · et�1

ket�1k2 + �(St) otherwise.
(4.1)

27

Yu, Mahmood, and Sutton

We first simulate the state-trace process to illustrate the ergodicity of this process stated by
Theorem 2.1. We will shortly study the performance of LSTD for di↵erent values of C in
Section 4.2.1. The results of these two experiments are shown in Figure 3 and Figures 4-5,
respectively, and the details are as follows.

According to the ergodicity result of Theorem 2.1, no matter from which initial state
and trace pair (S0, e0) we generate a trajectory {(St, et)}0tt̄ according to the behavior
policy, the empirical distribution of state and trace pairs in this trajectory should converge,
as t̄ ! 1, to the same distribution on S ⇥ <n, which is the marginal of the invariant
probability measure ⇣ on that space. Since S is discrete, we can verify this fact by examining
the empirical conditional distribution of the trace given the state. In other words, for each
state s, we examine the empirical distribution of the trace for the sub-trajectory (Stk , etk),
k = 1, 2, . . ., where Stk = s and it is the kth visit to state s by the trajectory. We check
if this empirical distribution converges to the same one as we increase the length t̄ of the
trajectory and as we vary the initial condition (S0, e0).

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

0 20 40 60
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

x 10
4

0

0.5

1

kth visit

0 2 4 6

x 10
4

0

0.5

1

kth visit

0 1 2 3 4

x 10
4

0

0.5

1

kth visit

0 1 2 3 4

x 10
4

0

0.5

1

kth visit

Figure 3: Demonstration of convergence of empirical conditional distributions on the trace
space. (See the text in Section 4.1.2 for detailed explanations.)

To give a sense of what these limiting distributions over the trace space look like, we
set the parameter C = 50 and generated a long trajectory with 8 ⇥ 105 iterations. In the
top row of Figure 3, we plotted three normalized histograms of the first trace component
for the sub-trajectories associated with three states of the toy problem, respectively: the
central state (left), the middle state of the northeast group (middle), and the first state of
the southeast group (right).

To check whether the empirical conditional distributions on the trace space converge
along the sub-trajectory {(Stk , etk)} for a given state, we compare the characteristic func-
tions fk of these distributions with the characteristic function f of the empirical conditional
distribution obtained at the end of the sub-trajectory during the experimental run. In par-

28

Generalized Bellman Equations and TD Learning

ticular, we evaluate all these (complex-valued) characteristic functions at 500 points, which
are chosen randomly according to the multivariate normal distribution on <5 with mean 0
and covariance matrix 2002I. We take the maximal di↵erence between fk and f at these
500 points as an indicator of the deviation between the two corresponding distributions.11

In the bottom row of Figure 3, the first three plots show the di↵erence curves obtained in
the way just described, for three di↵erent states, respectively. These three states are the
same ones mentioned earlier in the description of the top row of Figure 3. The horizontal
axis of these plots indicates k, the number of visits to the corresponding state. As can
be seen, the di↵erence curves all tend to zero as k increases, which is consistent with the
predicted convergence of the empirical conditional distributions on the trace space.

So far we compared the empirical distributions along the same trajectory. Next we
compare them against the one obtained at the end of another trajectory that starts from a
di↵erent initial condition. The di↵erence curve for one state (the first state in the southeast
group) is plotted in the last graph in the bottom row of Figure 3, and it is the lower curve in
that graph. As can be seen, the curve tends to zero, suggesting that the limiting distribution
of these empirical distributions does not change if we vary the initial condition, which is
consistent with Theorem 2.1.

For comparison, we also plotted the di↵erence curve when these same empirical con-
ditional distributions are compared against the empirical conditional distribution obtained
from the same trajectory but for a di↵erent state (specifically, the middle state of the north-
east group). This is the upper curve in the last graph in the bottom row of Figure 3. It
clearly indicates that for the two states, the associated limiting conditional distributions
on the trace space are di↵erent. It also shows that the characteristic function approach we
adopted in this experiment can e↵ectively distinguish between two di↵erent distributions
(cf. Footnote 11).

4.2 LSTD with Evolving �

We now present experiments on the LSTD algorithm.

4.2.1 A Toy Problem

Let us first continue with the toy problem of the previous subsection and show how the
LSTD algorithm performs in this problem as we vary the parameter C in the � function for
bounding the traces. We ran LSTD for C = 10, 20, . . . , 100, using the same trajectory, for
3 ⇥ 105 iterations, and we computed the (Euclidean) distance of these LSTD solutions to
the asymptotic TD(1) solution (in the space of the ✓-parameters), normalized by the norm
of the latter. We then repeat this calculation 10 times, each time with an independently
generated trajectory. Plotted in Figure 4 (left) against the values of C are the means and
standard deviations of the normalized distances of LSTD solutions thus obtained.

11. Recall that a tight sequence {pk} of probability distributions on <m converges to a probability distribu-
tion p if and only if the characteristic functions of pk converge pointwise to the characteristic function of
p (Dudley, 2002, Lemma 9.5.5). Recall also that we are dealing with convergence in distribution here,
which is much weaker than convergence in total variation, so we cannot use total variation as a metric
on the distribution space in this case.

29

Yu, Mahmood, and Sutton

0 10 20 30 40 50 60 70 80 90 100 110
0

0.02

0.04

0.06

0.08

0.1

0.12

C

n
o

rm
a

liz
e

d
 d

is
ta

n
ce

 t
o

 T
D

(1
)

so
lu

tio
n

0.88 0.9 0.92 0.94 0.96 0.98 1
0

0.02

0.04

0.06

0.08

0.1

0.12

λ

n
o

rm
a

liz
e

d
 d

is
ta

n
ce

 t
o

 T
D

(1
)

so
lu

tio
n

Figure 4: Compare LSTD solutions with evolving � (left) and with constant � (right).
For constant �, the red dot-dash curve in the right plot shows the quality of
the asymptotic TD(�) solutions, and LSTD(�) would approach this curve in the
limit, but due to variance issues, it can require an impractically large number of
iterations to exhibit this convergent behavior. LSTD with evolving � outperforms
LSTD with constant � in this case and e↵ectively archives the quality of TD(�)
solutions for large constant �.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

λ

n
o

rm
a

liz
e

d
 d

is
ta

n
ce

 t
o

 T
D

(1
)

so
lu

tio
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.45

0.5

0.55

0.6

0.65

λ

a
p

p
ro

xi
m

a
tio

n
 e

rr
o

r
(n

o
rm

a
liz

e
d

)

Figure 5: Approximation quality of asymptotic TD(�) solutions with constant � for the toy
problem. Larger � yields better approximations.

For comparison, we did the same for LSTD with a large constant �: � = 0.9, 0.92, . . . , 1.
Figure 4 (right) shows the result, where the dash-dot curve indicates the normalized distance
of the asymptotic TD(�) solution—the solution that LSTD(�) would obtain in the limit.
It can be seen that the performance of LSTD deteriorates as � gets close to 1. We think
that this is because due to the high variance issue, the convergence of LSTD with a large
constant � is too slow and requires far more iterations than the 3⇥105 iterations performed.
In comparison, LSTD with evolving � behaves better: it works e↵ectively for C � 20, and

30

Generalized Bellman Equations and TD Learning

the approximation quality it achieved with such C is comparable to that of asymptotic
TD(�) solutions for a large constant � around 0.96.

Figure 5 shows the quality of the asymptotic solutions of TD(�) with constant �, for
the full range of � values. Plotted in the left graph is the normalized distance of the TD(�)
solution to the TD(1) solution. Plotted in the right graph is the normalized approximation
error of the corresponding approximate value function, where the error is measured by
the weighted Euclidean norm with weights specified by ⇣S (the invariant distribution on
S under the behavior policy), and the normalization is over the weighted norm kv⇡k⇣S of
the true value function v⇡ of the target policy. It can be seen that using � > 0.9 provides
considerably better approximations for this problem than using small �.

We also found that for this problem, if we set � according to the Retrace algorithm with
� = 1 (cf. (2.8) in Example 2.2), then the performance of LSTD is comparable to TD(�)
with a small � around 0.5. (Specifically, for Retrace, the normalized distance to the TD(1)
solution is 0.37, and the normalized approximation error is 0.54, which are comparable
to the numbers for TD(0.5), as Figure 5 shows.) This is not surprising, because, as we
discussed earlier in Section 2.2.2, in keeping �t⇢t�1 1 always, Retrace and ABQ can be
too “conservative,” resulting in an overall e↵ect that is like using a small �, even though �t

may appear to be large at times. Recall also that this can happen to our proposed scheme
too. In the present experiment, for instance, this can happen when C is small; in particular,
the case C = 0 reduces to LSTD(0).

4.2.2 Mountain Car Problem

In this subsection we demonstrate LSTD with evolving � on a problem adapted from the
well-known Mountain Car problem (Sutton and Barto, 1998). The details of this adaptation,
including the target and behavior policies involved, can be found in the report (Yu, 2016a,
Section 5.1, p. 23-26); most of these details are not crucial for our experiments, so to avoid
distraction, we only describe briefly the experimental setup here.

In Mountain Car, the goal is to drive an underpowered car to reach the top of a steep
hill, from the bottom of a valley. A state consists of the position and velocity of the car,
whose values lie in the intervals [�1.2, 0.5], [�0.07, 0.07], respectively. The position 0.5
corresponds to the desired hill top destination, while the position �⇡/6 (⇡ �0.52) lies at
the bottom of a valley that is between the destination and a second hill peaked at �1.2 in
the opposite direction (see the illustration in Figure 6). Except for the destination state,
each state has three available actions: {back, coast, forward}, and the rewards depend
only on the action taken and are �1.5, 0 and �1 for the three actions, respectively. The
dynamics is as given in (Sutton and Barto, 1998). We consider undiscounted expected total
rewards, so the discount factor is 1 except at the destination state, where the discount factor
is 0 and from where the car enters a rewardless termination state permanently.

The target policy ⇡ is a simple but reasonably well-behaved policy. On either slopes
between the two hills, it tries to increase its energy (kinetic plus gravitational potential
energy) by accelerating in the direction of its current motion. If this brings it up to the
opposite hill (position < �1), it coasts; otherwise, if its velocity drops to near zero, it goes
forward or backward with equal probability. Figure 6 visualizes the total costs �v⇡ of the

31

Yu, Mahmood, and Sutton

Figure 6: Left: Illustration of the Mountain Car problem. Right: Costs �v⇡ for this prob-
lem are estimated and visualized as a color image, with the coloring scheme
indicated by the colorbar. (The horizontal and vertical axes of the image corre-
spond to position and velocity, respectively, for the 2-dimensional state space of
this problem.)

Figure 7: Left: Visualization of weights on states induced by the behavior policy. Right:
The color image visualizes the approximation of �v⇡ obtained from a discretized
model for the Mountain Car problem, where the coloring scheme is the same as
that shown in Figure 6 (right). The quality of this approximation is close to that
of TD(0).

target policy,12 where the horizontal (vertical) axis indicates position (velocity) and the

12. The values of v⇡ shown in Figure 6 are estimated by simulating the target policy for each starting state
in a set of 171 ⇥ 141 points evenly spaced in the position-velocity space. In particular, the position
(velocity) interval is evenly divided into subintervals of length 0.01 (0.001), and for each stating state,
the target policy is simulated 600 times.

32

Generalized Bellman Equations and TD Learning

colorbar on the right shows the value corresponding to each color. The discontinuity of the
function in certain regions can be seen in this figure.

The behavior policy ⇡
o is an artificial policy that takes a random action (chosen with

equal probability from the three actions) 90% of the time, and explores the state space by
jumping to some random state 10% of the time. It also restarts when it is at the destination:
with equal probability, it either restarts near the bottom of the valley or restarts from a
random point sampled uniformly from the state space.13

We now explain how we will measure approximation qualities. Since the Mountain Car
problem has a continuous state space, it is actually not covered by our analysis, which is for
finite-state problems. Although we can treat it as essentially a finite-state problem (since
the simulation is done with finite precision in computers), the number of states would still
be too large to calculate the weights ⇣S . So, to measure weighted approximation errors
kv � v⇡k for approximate value functions v produced by various LSTD algorithms in the
subsequent experiments, we will compare v and v⇡ at a grid of points in the state space and
calculate a weighted Euclidean distance between the function values at these grid points,
using a set of weights precalculated by simulating the behavior policy.14 The image in
Figure 7 (left) visualizes these weights.

We use tile-coding (Sutton and Barto, 1998) to generate 145 binary features for our
experiments.15 The approximate value functions obtained with LSTD algorithms are thus
piecewise constant. For comparison, we also build a discrete approximate model by state
aggregation. The discretization is done at a resolution comparable to our tile-coding scheme,
and the dynamics and rewards of this model are calculated based on data collected under
the behavior policy. The solution of the discrete approximate model is shown in Figure 7
(right) (the coloring scheme for this and the subsequent images are the same as shown in
Figure 6). It is similar to the approximate value function calculated by LSTD(0), which
is shown in Figure 8 (first image, top row). As will be seen shortly, with positive �, the
approximation quality of LSTD improves. Thus the discrete model approximation approach
is not as e↵ective as the TD method in this case.

We now report the results of our experiments on the Mountain Car problem.

First Experiment: In this experiment, we compare three ways of setting �: (i) Retrace
with � = 1 (cf. Example 2.2); (ii) our simple scaling scheme with parameter C used in
the previous experiments (cf. (4.1) and Example 2.1); and (iii) a composite scheme of the
type discussed at the end of Section 3.2, which partitions the state space into two sets16

13. The behavior policy is exactly the same as described in (Yu, 2016a, p. 24-25) except for the possibility
of restarting near the bottom of the valley whenever the destination is reached.

14. Specifically, we chose a grid of 171⇥ 141 points evenly spaced in the position-velocity space. We ran the
behavior policy for 8 ⇥ 105 e↵ective iterations, where an iteration is considered to be ine↵ective if the
behavior policy takes an action, e.g., the restart action, that is impossible for the target policy. A visit
to a state at an e↵ective iteration was counted as a visit to the nearest grid point. At the end of the
run, visits to a boundary point (�1.2, 0) were disregarded as they were due to boundary e↵ects in the
dynamics of this problem, and the final counts were normalized to produce a set of weights on the grid
points that sum to 1.

15. Two tilings are used: the first (second) comprises of 64 (81) uneven-sized rectangles that cover the state
space. Together they produce a total of 145 binary features. The details of the coding scheme are as
described in (Yu, 2016a, p. 28).

16. The first set consists of those states (position, velocity) with either position �0.9 or velocity � 0.04.
The rest of the states belong to the second set.

33

Yu, Mahmood, and Sutton

Figure 8: Visualized in the color images are approximations of �v⇡ obtained by LSTD
with di↵erent schemes of setting �, where the coloring scheme is as that shown
in Figure 6 (right). The choices of � for each image, from left to right and top
to bottom, are as follows. Top row: C = 0 (equivalent to LSTD(0)), C = 5,
Retrace. Middle row: C = 25, C = 125, C : (125, 25). Bottom row: C = 200,
C = 300, C : (300, 50).

and applies the simple scaling scheme with parameters C1, C2 for the first and second
set, respectively. When referring to this composite scheme in the figures, we will use the
designation C : (C1, C2).

We ran LSTD with di↵erent ways of setting � just mentioned, on the same state tra-
jectory generated by the behavior policy, for 6 ⇥ 105 e↵ective iterations (cf. Footnote 14).
Some of the approximate value functions obtained at the end of the run are visualized as
images in Figure 8. It can be seen that the result of Retrace is similar to that of the simple
scaling scheme with a small C, and as we increase C, the approximation from the scaling
scheme improves.

To compare more precisely the approximation errors and see how they change over time
for each algorithm, we did 10 independent runs, each of which consists of 6⇥ 105 e↵ective

34

Generalized Bellman Equations and TD Learning

C=0 5 10 15 20 25 50 75 100 125 150 175 200 225 250 275 C=300 Retrace C: (125,0) (125,25) (200,0) (200,25) (300,0) C: (300,50)
12

13

14

15

16

17

18

19

20

21
a

p
p

ro
xi

m
a

tio
n

 e
rr

o
r

(w
e

ig
h

te
d

)

Figure 9: Compare the approximation error of LSTD for di↵erent schemes of setting �.

iterations. The results are shown in Figures 9-11. Plotted in Figure 9 for each algorithm
are the mean and standard deviation of the approximation errors for the 10 approximate
value functions obtained by that algorithm at the end of the 10 runs. We can see from this
figure the improvement in approximation quality as C increases. We can also see that the
result of Retrace is in between those of C = 0 and C = 5, which is consistent with what
the images in the top row of Figure 8 tell us.

0 50 100 150 200 250 300
10

15

20

25

30

35

40

45

x2000 iterations

a
p

p
ro

xi
m

a
tio

n
 e

rr
o

r
(w

e
ig

h
te

d
)

Retrace
C=5
C=25

0 50 100 150 200 250 300
0

20

40

60

80

100

120

x2000 iterations

a
p

p
ro

xi
m

a
tio

n
 e

rr
o

r
(w

e
ig

h
te

d
)

Retrace
C=125
C=200
C=300

Figure 10: Compare the temporal behavior of LSTD for di↵erent schemes of setting �.

0 10 20 30 40 50 60 70 80 90 100
10

15

20

25

30

35

40

45

50

x2000 iterations

a
p

p
ro

xi
m

a
tio

n
 e

rr
o

r
(w

e
ig

h
te

d
)

Retrace
C=125
C: (125,0)
C: (125,25)

0 10 20 30 40 50 60 70 80 90 100
10

15

20

25

30

35

40

45

50

55

60

x2000 iterations

a
p

p
ro

xi
m

a
tio

n
 e

rr
o

r
(w

e
ig

h
te

d
)

Retrace
C: (125,0)
C: (200,0)
C: (300,0)

0 10 20 30 40 50 60 70 80 90 100
10

15

20

25

30

35

40

45

50

55

60

x2000 iterations

a
p

p
ro

xi
m

a
tio

n
 e

rr
o

r
(w

e
ig

h
te

d
)

Retrace
C: (125,25)
C: (200,25)
C: (300,50)

Figure 11: Compare the temporal behavior of LSTD for di↵erent schemes of setting �.

35

Yu, Mahmood, and Sutton

Plotted in Figures 10-11 are the approximation errors calculated per 2000 e↵ective it-
erations for each algorithm, during one of the 10 experimental runs. Figure 10 (left) shows
how Retrace compares with the simple scaling with C = 5 and C = 25. It can be seen
that the latter two achieved better approximation quality than Retrace without increases
in variance. Figure 10 (right) shows that for larger values of C, variances also became larger
initially; however, after about 5 ⇥ 104 iterations, these schemes overtook Retrace, yielding
better approximations.

Figure 11 shows how the composite scheme of setting � performs. Comparing the plots
in this figure with the right plot in Figure 10, it can be seen that the composite schemes
helped in reducing variances, and in about 2 ⇥ 104 iterations the schemes C : (125, 0) and
C : (125, 25) overtook Retrace and yielded better approximations. Together with Figure 9,
Figure 11 shows clearly the bias-variance trade-o↵ of using composite schemes in this prob-
lem.

Second Experiment: Similarly to the previous experiment, we now compare our pro-
posed method with several other ways of setting � for the LSTD algorithm as well as
with a constrained variant of LSTD: (i) Retrace with � = 1 as before; (ii) constant �;
(iii) constrained LSTD with constant �; and (iv) the simple scaling scheme with parame-
ter C. For constant � 2 [0, 1], the constrained LSTD(�) used in this experiment evolves
the trace vectors as o↵-policy LSTD(�) does, but it forms and solves the linear equation
1

t

Pt�1

k=0
[ek]50 · �k(v) = 0, v = �✓ instead, where the function [·]50 truncates each component

of the trace vector to be within the interval [�50, 50]. (Such an algorithm follows naturally
from the ergodicity of the state-trace process and the approximation of an unbounded in-
tegrable function by a bounded one. For a detailed discussion, see (Yu, 2016b, Section 3.2)
or (Yu, 2017, Section 3.3).)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Retrace C=5 25 125 200 C=300
10

12

14

16

18

20

22

24

a
p
p
ro

xi
m

a
tio

n
 e

rr
o
r

(w
e
ig

h
te

d
)

LSTD(λ) constrained LSTD(λ)

Figure 12: Compare the approximation errors of several LSTD algorithms.

Figure 12 is similar to Figure 9 and shows, for each algorithm, the mean and standard
deviation of the approximation errors of 10 approximate value functions obtained at the end
of 10 independent experimental runs (each of which consists of 6⇥ 105 e↵ective iterations).
The horizontal axis indicates the algorithms and their parameters. As can be seen from this
figure, for constant small �, LSTD(�) performed well in this problem, and LSTD(0.3) and
Retrace are comparable. For constant � > 0.7, LSTD(�) failed to give sensible results, and
LSTD(0.7) started to show this unreliable behavior. This behavior of LSTD(�) is related
to what we observed in Figure 4(right) in the small toy problem, and it is, we think, due to

36

Generalized Bellman Equations and TD Learning

0 50 100 150 200 250 300
10

15

20

25

30

35

40

45

x2000 iterations

a
p

p
ro

xi
m

a
tio

n
 e

rr
o

r
(w

e
ig

h
te

d
)

C=25
Retrace
LSTD(0.6)
constrained LSTD(0.8)
constrained LSTD(0.9)
constrained LSTD(1)

0 50 100 150 200 250 300
10

15

20

25

30

35

40

45

x2000 iterations

a
p

p
ro

xi
m

a
tio

n
 e

rr
o

r
(w

e
ig

h
te

d
)

C=25
C=125
C=200
C=300
constrained LSTD(1)

Figure 13: Compare the temporal behavior of several LSTD algorithms.

the high variance issue, which becomes more severe as � gets larger. Constrained LSTD(�)
is much more reliable, and it did consistently well for all values of � tested. LSTD with
evolving � also did well, and with C > 125, it achieved a slightly better approximation
quality than constrained LSTD(1).

Figure 13 compares the temporal behavior of several algorithms during one experimental
run. Plotted are the approximation errors calculated per 2000 iterations for each algorithm
in the comparison. It can be seen that in this problem constrained LSTD(�) did not su↵er
from large variances even with large � values, and compared with constrained LSTD(1),
the behavior of LSTD with evolving � was also reasonable for large C.

Third Experiment: In this experiment we first compare the simple scaling scheme and
Retrace, where both schemes now use an additional parameter � 2 [0, 1], as discussed in
Examples 2.1-2.2. Recall that when � = 1, they reduce to the schemes that we already
compared in the previous experiments. For both schemes, as � becomes smaller, we expect
the approximation quality to drop but the variance to get smaller.

Plotted in Figure 14 for C = 125, C = 200 and Retrace are the results obtained from a
single experimental run consisting of 3⇥105 e↵ective iterations. As before the approximation
errors were calculated per 2000 iterations. The results do show the expected bias-variance
trade-o↵ e↵ects of the parameter �, during the initial period of the experimental run,
although the e↵ects on Retrace turned out to be smaller and hard to discern at the scale
of the plot.

Next we test some of the variations on Retrace discussed in Example 2.2. Specifically, we
consider (2.10)-(2.11) with parameters � = 0.9, K 2 {1.5, 2.0, 2.5, 3.0} and C 2 {50, 125}.
Plotted in Figure 15 are the results from one experimental run of 3⇥105 e↵ective iterations.
For comparison, the plots also show the behavior of Retrace and the simple scaling scheme
with the same values of C during that run (these algorithms used the same � = 0.9). As
expected and can be seen from the figure, the approximation quality improves with K and
C. While the variances also tend to increase during the initial part of the run, the variants
that truncate the importance sampling ratios by K = 1.5 performed comparably to Retrace
initially, soon overtook Retrace and achieved better approximation quality.

37

Yu, Mahmood, and Sutton

0 50 100 150
10

11

12

13

14

15

16

17

18

19

20

21

x2000 iterations

a
p

p
ro

xi
m

a
tio

n
 e

rr
o

r
(w

e
ig

h
te

d
)

C = 125

β = 0.6

β = 0.7

β = 0.8

β = 0.9

β = 1

0 50 100 150
10

11

12

13

14

15

16

17

18

19

20

21

x2000 iterations

a
p

p
ro

xi
m

a
tio

n
 e

rr
o

r
(w

e
ig

h
te

d
)

C = 200

β = 0.6

β = 0.7

β = 0.8

β = 0.9

β = 1

0 50 100 150
10

11

12

13

14

15

16

17

18

19

20

21

x2000 iterations

a
p

p
ro

xi
m

a
tio

n
 e

rr
o

r
(w

e
ig

h
te

d
)

Retrace

β = 0.6

β = 0.7

β = 0.8

β = 0.9

β = 1

Figure 14: Compare the approximation error and temporal behavior of LSTD for di↵erent
schemes of setting �. From left to right: C = 125, C = 200, Retrace.

0 50 100 150
10

12

14

16

18

20

22

24

26

28

30

x2000 iterations

a
p

p
ro

xi
m

a
tio

n
 e

rr
o

r
(w

e
ig

h
te

d
)

Retrace
K=1.5, C=50
K=2.0, C=50
K=2.5, C=50
K=3.0, C=50
C=50

0 50 100 150
10

12

14

16

18

20

22

24

26

28

30

x2000 iterations

a
p

p
ro

xi
m

a
tio

n
 e

rr
o

r
(w

e
ig

h
te

d
)

Retrace
K=1.5, C=125
K=2.0, C=125
K=2.5, C=125
K=3.0, C=125
C=125

Figure 15: Compare the approximation error and temporal behavior for some variations on
Retrace.

5. Conclusion

We developed in this paper a new scheme of setting the �-parameters for o↵-policy TD
learning, using the ideas of randomized stopping times and generalized Bellman equations
for MDPs. Like the two recently proposed algorithms Retrace (Munos et al., 2016) and
ABQ (Mahmood et al., 2017), our scheme keeps the traces bounded to reduce variances,
but it is much more general and flexible. To study its theoretical properties, we analyzed
the resulting state-trace process and established convergence and solution properties for
the associated LSTD algorithm, and these results have prepared the ground for conver-
gence analysis of the gradient-based implementation of our proposed scheme (Yu, 2017). In
addition we did a preliminary numerical study. It showed that with the proposed scheme
LSTD can outperform several existing o↵-policy LSTD algorithms. It also demonstrated
that in order to achieve better bias-variance trade-o↵s in o↵-policy learning, it is helpful
to have more flexibility in choosing the �-parameters and to allow for large � values. Fu-
ture research is to conduct a more extensive numerical study of both least-squares based
and gradient-based algorithms, with more versatile ways of using the memory states and
�-parameters, in o↵-policy learning applications.

38

Generalized Bellman Equations and TD Learning

Acknowledgments

An abridged version of this article appeared first at The 30th Canadian Conference on Ar-

tificial Intelligence (CAI), May 2017. We thank several anonymous reviewers for CAI and
JMLR for their helpful feedback. We also thank Dr. Ajin Joseph and Dr. Martha Steen-
strup for reading parts of our manuscript and providing comments that helped improve our
presentation. This research was supported by a grant from Alberta Innovates—Technology
Futures.

Appendix A. Proof of Theorem 3.1

We prove Theorem 3.1 in this appendix. Recall from Section 3.1 that the generalized
Bellman operator T associated with a randomized stopping time ⌧ satisfies that v⇡ = Tv⇡.
By (3.2), the substochastic matrix P̃ in this a�ne operator T is given by

P̃ss0 = E⇡
s

⇥
�
⌧
1 1(S⌧ = s

0)
⇤
, s, s

0 2 S. (A.1)

We can extend P̃ to a transition matrix P̃
e by adding an additional absorbing state � to

the system, so that P̃ e
��

= 1 and

P̃
e
s� = 1�

P
s02S P̃ss0 = 1� E⇡

s

⇥
�
⌧
1

⇤
, s 2 S.

Both conclusions of Theorem 3.1 will follow immediately if we show that I � P̃ is
invertible. Indeed, if I � P̃ is invertible, then v = Tv has a unique solution, which must
be v⇡ since v⇡ is always a solution of this equation. In addition, if I � P̃ is invertible, then
since P̃ is a substochastic matrix, the spectral radius of P̃ must be less than 1. Consider
adding to P̃ a small enough perturbation ✏M , where M is the matrix of all ones and ✏ is
a su�ciently small positive number so that the spectral radius of P̃ + ✏M is less than 1.
Applying (Seneta, 2006, Theorem 1.1) to the nonnegative primitive matrix P̃+✏M , we have
that (P̃ + ✏M)w < w where w is a positive eigenvector of the matrix P̃ + ✏M corresponding
to a positive eigenvalue that is strictly less than 1. Consequently P̃w (P̃ + ✏M)w < w,
implying that P̃ is a linear contraction w.r.t. a weighted sup-norm (with weights w), which
is the second conclusion of the theorem.

Hence, to prove Theorem 3.1, it su�ces to show that the inverse (I� P̃)�1 exists, which
is equivalent to that for the Markov chain on S [{�} with transition matrix P̃

e, all the
states in S are transient (see e.g., Puterman 1994, Appendix A.4).

We prove this by contradiction. Suppose it is not true, and let S̃ ⇢ S be a recurrent
class of the Markov chain. Then for all s 2 S̃, P̃ e

ss0 = 0 for s0 62 S̃ (i.e., the submatrix of P̃
corresponding to S̃ is a transition matrix). In particular, P̃ e

s� = 0, so

E⇡
s

⇥
�
⌧
1

⇤
= 1� P̃

e
s� = 1, 8 s 2 S̃, (A.2)

implying that given S0 2 S̃, �⌧
1
= 1 a.s. (since �

⌧
1
2 [0, 1]). Then by (A.1),

P̃ss0 = E⇡
s

⇥
1(S⌧ = s

0)
⇤
, 8 s, s0 2 S̃. (A.3)

Observe from (A.2) that given S0 2 S̃, the event {⌧ = 1} has zero probability. This is
because under Condition 2.1(i), �t

1

a.s.! 0 (as t ! 1) and consequently �
1
1

:=
Q1

t=1
�t = 0

39

Yu, Mahmood, and Sutton

a.s. Indeed, the existence of the inverse (I � P�)�1 =
P1

t=0
(P�)t under Condition 2.1(i)

implies (P�)t ! 0 as t ! 1. Since the sth entry of (P�)t1 equals E⇡
s [�

t
1
], we have

E⇡
s [�

t
1
] ! 0 as t ! 1. As the nonnegative sequence {�t

1
}t�1 is nonincreasing (since each

�t 2 [0, 1]), this implies, by Fatou’s lemma (Dudley, 2002, Lemma 4.3.3), that �
t
1

a.s.! 0.
Thus if S0 2 S̃, ⌧ is almost surely finite.

We now consider a Markov chain {St} with transition matrix P and S0 2 S̃. We will
extract from it a Markov chain {S̃k}k�0 with transition matrix P̃

e on the recurrent class
S̃, by employing multiple stopping times. We will show �

1
1

= 1 a.s., contrary to the fact
�
1
1

= 0 a.s. just discussed.
For ease of explanation, let us imagine that there is a device that if we give it a sequence

of states S0, S1, . . . generated according to P , it will output the stopping decision at a
random time ⌧ that is exactly the randomized stopping time ⌧ associated with the operator
T . (Because ⌧ is a randomized stopping time for {St}, a device that correctly implements
⌧ does not a↵ect the evolution of {St}, so we can give {St} to the device as inputs.)

Let {St} start from some state S0 = s 2 S̃. We use the device just mentioned to
generate the first randomized stopping time ⌧1. We then reset the device so that it now
“sees” the time-shifted process {S⌧1+t0 | t0 � 0} with the initial state being S⌧1 . We wait till
the device makes another stopping decision, and we designate that time by ⌧2. We repeat
this procedure as soon as the device makes yet another stopping decision. This gives us a
nondecreasing sequence 0 ⌧1 ⌧2 · · · .

Since S0 = s 2 S̃, by what we proved earlier, ⌧1 is almost surely finite. Let S̃1 = S⌧1

and S̃0 = S0. The transition from S̃0 to S̃1 is according to the transition matrix P̃
e by

construction (cf. (A.3)). Since S̃ is a recurrent class for P̃
e, we must have S̃1 2 S̃ almost

surely. Then, repeating the same argument and using induction, we have that almost
surely, for all k � 1, ⌧k is defined and finite and S̃k := S⌧k 2 S̃. Thus we obtain an infinite
sequence {S̃k}, which is a recurrent Markov chain on S̃ with its transition matrix given by
the corresponding submatrix of P̃ e.

Now in view of (A.2), almost surely,

�
⌧1
1

= 1, �
⌧2
⌧1+1

= 1, · · · , �
⌧k+1
⌧k+1

= 1, · · · (A.4)

(recall that if ⌧k + 1 > ⌧k+1, �
⌧k+1
⌧k+1

= 1 by definition). Consider first a simpler case of
the randomized stopping time ⌧ that defines T : for any initial state S0, ⌧ � 1 a.s. Then,
{⌧k} is strictly increasing, and by multiplying the variables in (A.4) together, we have
�
1
1

= 1 a.s. For the general case of ⌧ assumed in the theorem, ⌧ = 0 is possible, but
P⇡(⌧ � 1 | S0 = s) > 0 for all states s 2 S. This means that the event of ⌧k being the
same for all k greater than some (random) k̄ has probability zero. So {⌧k} must converge
to +1 almost surely, and we again obtain, by multiplying the variables in (A.4) together,
that �1

1
= 1 a.s. This contradicts the fact proved earlier, namely, that for any initial state

S0, �11 = 0 a.s. So the assumption of a recurrent class S̃ ⇢ S for P̃
e must be false. This

proves Theorem 3.1.

Appendix B. Oblique Projection Viewpoint and Error Bound for TD

In this appendix we first explain Scherrer’s interpretation of TD solutions as oblique projec-
tions (Scherrer, 2010), and we then give approximation error bounds for TD similar to those

40

Generalized Bellman Equations and TD Learning

given by Yu and Bertsekas (2010), which do not rely on contraction properties. We will
explain these properties of TD in the context of generalized Bellman operators discussed in
this paper. Although this was not the framework used in (Scherrer, 2010; Yu and Bertsekas,
2010) and our setup here is more general than the one discussed in those previous papers,
the arguments and reasoning are essentially the same.

B.1 Solutions of TD as Oblique Projections of the Value Function

Let us start with the projected Bellman equation associated with TD/LSTD that we noted
in Remark 3.2:

Tv � v ?⇣S L�, v 2 L�,

where T is a generalized Bellman operator with v⇡ as its unique fixed point, and L� is the
approximation subspace. We can write this equation equivalently as

v = ⇧⇣STv, (B.1)

where ⇧⇣S denotes the projection onto the approximation subspace L� with respect to the
⇣S-weighted Euclidean norm. In the subsequent derivations, we will not use the fact that
⇣S is the invariant probability measure induced by the behavior policy on S, so the analyses
we give in this appendix apply to any weighted Euclidean norm k · k⇣S .

Scherrer (2010) first realized that the solution of the projected Bellman equation (B.1)
can be viewed as an oblique projection of the value function v⇡ on the approximation sub-
space L�. This viewpoint provides an intuitive geometric interpretation of the TD solution
and explains conceptually the source of its approximation bias. Analytically, this view also
gives tight bounds on the approximation bias, as we will elaborate later in Section B.2.

An oblique projection is defined by two nonorthogonal subspaces of equal dimensions:
it is the projection onto the first subspace orthogonally to the second (Saad, 2003), as
illustrated in Figure 16. More precisely, for any two n-dimensional subspaces L1,L2 of <N

such that no vector in L2 is orthogonal to L1, there is an associated oblique projection

operator ⇧L1L2 : <N ! L1 defined by

⇧L1L2 x 2 L1, x�⇧L1L2 x ? L2, 8x 2 <N
. (B.2)

If the two subspaces are the same: L1 = L2 or if x lies in L1, then the oblique projection
⇧L1L2x is the same as ⇧L1x, the orthogonal projection of x onto L1. In general this need
not be the case and ⇧L1L2 x 6= ⇧L1x typically (cf. Figure 16). A matrix representation of
the projection operator ⇧L1L2 is given by

⇧L1L2 = �1

�
�>
2 �1

��1
�>
2 , (B.3)

where �1 and �2 are N ⇥n matrices whose columns form a basis of L1 and L2, respectively
(see Saad 2003, Chap. 1.12). For comparison, a matrix representation of the orthogonal

projection operator ⇧L1 is ⇧L1 = �1

�
�>
1
�1

��1
�>
1
. (Below we will use the same notation

for a projection operator and its matrix representations.)
Back to the projected Bellman equation (B.1), let us assume it has a unique solution

vTD and express vTD in terms of v⇡. We have vTD = ⇧⇣STvTD. By Theorem 3.1, v⇡ is the

41

Yu, Mahmood, and Sutton

Figure 16: Oblique projection of x onto the subspace L1 orthogonally to the subspace L2.

unique solution of v = Tv. Recall that the generalized Bellman operator T is a�ne and can
be expressed as Tv = r̃⇡ + P̃⇡v for some vector r̃⇡ and substochastic matrix P̃⇡. It follows
that r̃⇡ = (I � P̃⇡) v⇡ and

�
I �⇧⇣S P̃⇡

�
vTD = ⇧⇣S r̃⇡ = ⇧⇣S

�
I � P̃⇡

�
v⇡. (B.4)

Let the columns of � form a basis of the approximation subspace L�, and let D be the
diagonal matrix with ⇣S as its diagonal elements. Then a matrix representation of the
projection operator ⇧⇣S is ⇧⇣S = �

�
�>

D�
��1
�>

D. Using this representation of ⇧⇣S and
the fact vTD 2 L�, we obtain from (B.4) an expression of vTD in terms of v⇡:

vTD = �
�
�>

D(I � P̃⇡)�
��1
�>

D(I � P̃⇡) v⇡. (B.5)

(Here the invertibility of the matrix �>
D(I � P̃⇡)� is equivalent to our assumption that

vTD is the unique solution of (B.1).)
Let us compare the expression (B.5) with (B.3). We see that if the geometry on <N is

determined by the usual Euclidean norm k · k2, then vTD is an oblique projection of v⇡ for
the two subspaces L1 = L� and L2 = column-space

�
(I � P̃⇡)>D�

�
.

Alternatively, consider the case where the geometry on <N is determined by some
weighted Euclidean norm k · k⇠ with weights ⇠ (for example, ⇠ = ⇣S , which is one of the
cases of interest in o↵-policy learning). In this case we can first scale each coordinate by the
square root

p
⇠(s) of its weight to reduce the case to that of the norm k · k2. Specifically,

let ?⇠ denote orthogonality with respect to k ·k⇠, and let ⌅ denote the diagonal matrix that
has ⇠ as its diagonal elements. For the linear mapping h : v 7! ⌅1/2

v, we have

kvk⇠ = kh(v)k2, and v1 ?⇠ v2 , h(v1) ? h(v2). (B.6)

The second relation means that v̄ is an oblique projection of v for two subspaces L1,L2 with
respect to k · k⇠ (i.e., v̄ 2 L1 and v � v̄ ?⇠ L2), if and only if h(v̄) is an oblique projection
of h(v) for the two subspaces h(L1), h(L2) with respect to k · k2:

h(v̄) 2 h(L1), h(v)� h(v̄) ? h(L2).

42

Generalized Bellman Equations and TD Learning

With these facts in mind, we rewrite (B.5) equivalently as follows:

⌅1/2
vTD = ⌅1/2� ·

�
�>

D(I � P̃⇡)⌅
�1⌅1/2 · ⌅1/2�

��1 · �>
D(I � P̃⇡)⌅

�1⌅1/2 · ⌅1/2
v⇡

=) h(vTD) = h(�) · (h(�2)
> · h(�)

��1
h(�2)

> · h(v⇡), (B.7)

where
�2 = ⌅

�1(I � P̃⇡)
>
D� (B.8)

and h applied to a matrix denotes the result of applying h to each column of that matrix.
Comparing (B.7) with (B.3), we see that h(vTD) is an oblique projection of h(v⇡) with
respect to k · k2 for the two subspaces h(L1), h(L2), where

L1 = L� = column-space(�), L2 = column-space(�2). (B.9)

So based on the discussion earlier, with respect to the weighted Euclidean norm k · k⇠ on
<N , vTD is an oblique projection of v⇡ for the two subspaces L1,L2.

Note that by (B.8), the second subspace L2 defining the above oblique projection is the
image of the approximation subspace L� under the linear transformation ⌅�1(I � P̃⇡)>D.
Thus L2 depends on the dynamics induced by the target policy as well as the generalized

Bellman operator T that we choose. Relating the oblique projection interpretation of vTD

to Figure 16, we can see where the approximation bias of TD, vTD �⇧⇠v⇡, comes from.

B.2 Approximation Error Bound

We now consider the approximation error of vTD and use the oblique projection viewpoint to
derive a sharp bound on the approximation bias vTD � ⇧⇠v⇡. Before proceeding, however,
let us first remind the reader that unless the norm k · k⇣S for the projection operator
⇧⇣S is purposefully chosen, the composition of ⇧⇣S with a generalized Bellman operator
T is usually not a contraction, and thus error bounds for projected generalized Bellman
equations usually cannot be obtained with contraction-based arguments. This is the case
even for on-policy learning, as the following example shows.

Example B.1 (Non-contractive ⇧⇣ST) If the target policy ⇡ induces an irreducible
Markov chain with invariant probability measure ⇣S , and if T is the Bellman operator
for TD(�) with a constant �, then, as Tsitsiklis and Van Roy (1997) showed, ⇧⇣ST is a
contraction operator w.r.t. the weighted Euclidean norm k · k⇣S . Consequently, the matrix
�>

D(P̃⇡�I)� associated with the TD(�) algorithm is negative definite (Tsitsiklis and Van
Roy, 1997). The derivation of the contraction property of ⇧⇣ST in this case relies critically
on the inequality ⇣

>
S P̃⇡ < ⇣

>
S . This inequality generally does not hold for the substochastic

matrix P̃⇡ in the generalized Bellman operator T , when � is not constant. So, for non-
constant �, we can no longer expect ⇧⇣ST to be a contraction or the matrix �>

D(P̃⇡� I)�
to be negative definite.

As an example, consider a simple two-state problem in which the system under the
target policy ⇡ moves from one state to another in a cycle. Let ⇡

o = ⇡, let the discount
factor � be a constant, and let � be a function of states with �(1) = 0, �(2) = 1. Then

⇣
>
S = (0.5, 0.5) and P̃⇡ =

✓
�
2 0
� 0

◆
. For � near 1, e.g., � = 0.95, and for � as given below,

43

Yu, Mahmood, and Sutton

we can calculate the ⇣S-weighted norm of ⇧⇣S P̃⇡ and the matrix associated with TD(�):

� =

✓
3 1
1 1

◆
,

��⇧⇣S P̃⇡

��
⇣S

=
��P̃⇡

��
⇣S

⇡ 1.31 > 1,

�>
D(P̃⇡ � I)� =

✓
0.4862 �0.1713
0.7787 �0.0738

◆
.

The latter matrix is not negative definite; in fact, its eigenvalues have positive real parts,
so it is not even a Hurwitz matrix (TD(�) can diverge in this case). In the above, we have
⇧⇣S P̃⇡ = P̃⇡, and while ⇧⇣S P̃⇡ is not a contraction w.r.t. k · k⇣S , it is still a contraction
w.r.t. some matrix norm. If we now let � = (3, 1)> instead, then the spectral radius of the
matrix ⇧⇣S P̃⇡ comes out as �(⇧⇣S P̃⇡) ⇡ 1.10 > 1, so ⇧⇣S P̃⇡ (and hence ⇧⇣ST) cannot be a
contraction w.r.t. any matrix norm.

We now proceed to bound the bias term vTD � ⇧⇠v⇡ relative to kv⇡ � ⇧⇠v⇡k⇠, the
distance between v⇡ and the approximation subspace measured with respect to k · k⇠. It is
more transparent to derive the bound for the case of a general oblique projection operator
⇧L1L2 with respect to the usual Euclidean norm k·k2, so let us do that first and then use the
linear transformation h(·) to translate the result to TD, as we did earlier in the preceding
subsection.

We bound the bias k⇧L1L2x�⇧L1xk2 relative to kx�⇧L1xk2, by calculating

 := sup
x2<N

k⇧L1L2x�⇧L1xk2
kx�⇧L1xk2

= sup
x2<N

k⇧L1L2(x�⇧L1x)k2
kx�⇧L1xk2

(B.10)

(where we treat 0/0 = 0). This constant depends on the two subspaces L1, L2, and
reflects the “angle” between them. It has several equivalent expressions, e.g.,

 = sup
x?L1, kxk2=1

k⇧L1L2xk2 = k⇧L1L2(I �⇧L1)k2, (B.11)

or with �(F) denoting the spectral radius of a square matrix F ,

 =

r
�

⇣
⇧L1L2(I �⇧L1) · (I �⇧L1)

>⇧>
L1L2

⌘
=
q
�
�
⇧L1L2⇧L2L1 �⇧L1

�
. (B.12)

(After the definition of , each expression of in (B.10)-(B.12) follows from the preced-
ing one; in particular, for the last expression in (B.12), we used the fact that ⇧>

L1
=

⇧L1 ,⇧
>
L1L2

= ⇧L2L1 , and ⇧L1⇧L2L1 = ⇧L1 .)
We can express in terms of the spectral radius of an n⇥n matrix, similarly to what was

done in (Yu and Bertsekas, 2010). In particular, we take the last expression of in (B.12)
and rewrite the symmetric matrix in that expression using the matrix representations of
the projection operators as follows:

⇧L1L2⇧L2L1 �⇧L1 = �1(�
>
2 �1)

�1�>
2 · �2(�

>
1 �2)

�1�>
1 � �1(�

>
1 �1)

�1�>
1 .

By a result in matrix theory (Horn and Johnson, 1985, Theorem 1.3.20), for any N ⇥ n

matrix F1 and n⇥N matrix F2, �(F1F2) = �(F2F1). Applying this result to the preceding

44

Generalized Bellman Equations and TD Learning

expression with F1 = �1, we have that �
�
⇧L1L2⇧L2L1 �⇧L1

�
is equal to the spectral radius

of the matrix

(�>
2 �1)

�1(�>
2 �2)(�

>
1 �2)

�1(�>
1 �1)� I.

Combing this with (B.12), we obtain that

2 = �(F)� 1, where F = (�>

2 �1)
�1(�>

2 �2)(�
>
1 �2)

�1(�>
1 �1). (B.13)

Thus, for the above , the bound below holds for all x 2 <N and with equality attained at
some x:

k⇧L1L2x�⇧L1xk2 kx�⇧L1xk2. (B.14)

We now translate the result (B.13)-(B.14) to our TD context. We want to bound the
relative bias

��vTD � ⇧⇠v⇡

��
⇠
/
��v⇡ � ⇧⇠v⇡

��
⇠
. As discussed earlier in Section B.1, we can

replace k · k⇠ with k · k2 by using the linear transformation h(·) to scale the coordinates. In
particular, by the two relations given in (B.6),

��vTD �⇧⇠v⇡

��
⇠��v⇡ �⇧⇠v⇡

��
⇠

=

��h(vTD)�⇧h(v⇡)
��
2��h(v⇡)�⇧h(v⇡)

��
2

, (B.15)

where ⇧ on the r.h.s. stands for the orthogonal projection onto h(L�) with respect to k · k2.
As shown by (B.7), h(vTD) is an oblique projection of h(v⇡) for the two subspaces h(L�)
and h(L2), where L2 is given by (B.8)-(B.9). According to (B.13), the constant for this
oblique projection is

p
�(F)� 1 where, if we take �1 = � and �2 as defined by (B.8), F

is now given by the expression in (B.13) with h(�1), h(�2) in place of �1,�2, respectively.
Thus, by (B.14) and (B.15) we obtain that

��vTD �⇧⇠v⇡

��
⇠

��v⇡ �⇧⇠v⇡

��
⇠

for =
p
�(F)� 1, (B.16)

where F is an n ⇥ n matrix given by

F =
⇥
h(�2)

>
h(�1)

⇤�1 ·
⇥
h(�2)

>
h(�2)

⇤
·
⇥
h(�1)

>
h(�2)

⇤�1 ·
⇥
h(�1)

>
h(�1)

⇤
(B.17)

for
�1 = �, �2 = ⌅

�1(I � P̃⇡)
>
D�, (B.18)

or more explicitly, after substituting the expressions of h(�1) and h(�2) in the formula of
F and removing h, we have

F =
�
 >�

��1
�
 >⌅�1

��
�>

��1
�
�>⌅�

�
, where = (I � P̃⇡)

>
D�.

Note that by the definition of , the bound (B.16) is a worst-case bound that depends
only on the two subspaces involved in the oblique projection operator. In other words,
given the approximation subspace L�, the dynamics described by P̃⇡, the projection norm
k · k⇣S and the norm k · k⇠ for measuring the approximation quality, the bound (B.16) is
attained by a worst-case choice of the rewards r̃⇡ for the target policy. In this sense, the
bound (B.16) is tight.

45

Yu, Mahmood, and Sutton

References

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
Belmont, MA, 1996.

V. S. Borkar. Stochastic Approximation: A Dynamic Viewpoint. Cambridge University
Press, Cambridge, 2008.

J. A. Boyan. Least-squares temporal di↵erence learning. In The 16th Int. Conf. Machine

Learning (ICML), 1999.

B. Dai, A. Shaw, L. Li, L. Xiao, N. He, Z. Liu, J. Chen, and L. Song. SBEED: Convergent
reinforcement learning with nonlinear function approximation. In The 35th Int. Conf.

Machine Learning (ICML), 2018.

C. Dann, G. Neumann, and J. Peters. Policy evaluation with temporal di↵erences: A survey
and comparison. Journal of Machine Learning Res., 15:809–883, 2014.

R. M. Dudley. Real Analysis and Probability. Cambridge University Press, Cambridge,
2002.

M. Geist and B. Scherrer. O↵-policy learning with eligibility traces: A survey. Journal of

Machine Learning Res., 15:289–333, 2014.

P. W. Glynn and D. L. Iglehart. Importance sampling for stochastic simulations. Manage-

ment Science, 35:1367–1392, 1989.

R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge,
UK, 1985.

P. Karmakar and S. Bhatnagar. Two timescale stochastic approximation with controlled
Markov noise and o↵-policy temporal di↵erence learning. Math. Oper. Res., 43(1):130–
151, 2018.

V. R. Konda. Actor-Critic Algorithms. PhD thesis, MIT, 2002.

H. J. Kushner and G. G. Yin. Stochastic Approximation and Recursive Algorithms and

Applications. Springer-Verlag, New York, 2nd edition, 2003.

B. Liu, J. Liu, M. Ghavamzadeh, S. Mahadevan, and M. Petrik. Finite-sample analysis of
proximal gradient TD algorithms. In The 31st Conf. Uncertainty in Artificial Intelligence

(UAI), 2015.

H. R. Maei. Gradient Temporal-Di↵erence Learning Algorithms. PhD thesis, University of
Alberta, 2011.

S. Mahadevan, B. Liu, P. Thomas, W. Dabney, S. Giguere, N. Jacek, I. Gemp, and J. Liu.
Proximal reinforcement learning: A new theory of sequential decision making in primal-
dual spaces, 2014. arXiv:1405.6757.

46

Generalized Bellman Equations and TD Learning

A. R. Mahmood, H. van Hasselt, and R. S. Sutton. Weighted importance sampling for o↵-
policy learning with linear function approximation. In Advances in Neural Information

Processing Systems (NIPS) 27, 2014.

A. R. Mahmood, H. Yu, and R. S. Sutton. Multi-step o↵-policy learning without
importance-sampling ratios, 2017. arXiv:1702.03006.

S. Mannor, R. Rubinstein, and Y. Gat. The cross entropy method for fast policy search. In
The 20th Int. Conf. Machine Learning (ICML), 2003.

S. Meyn. Ergodic theorems for discrete time stochastic systems using a stochastic Lyapunov
function. SIAM J. Control Optim., 27:1409–1439, 1989.

S. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Cambridge University
Press, Cambridge, 2nd edition, 2009.

R. Munos, T. Stepleton, A. Harutyunyan, and M. G. Bellemare. Safe and e�cient o↵-policy
reinforcement learning. In Advances in Neural Information Processing Systems (NIPS)

29, 2016.

E. Nummelin. General Irreducible Markov Chains and Non-Negative Operators. Cambridge
University Press, Cambridge, 1984.

D. Precup, R. S. Sutton, and S. Singh. Eligibility traces for o↵-policy policy evaluation. In
The 17th Int. Conf. Machine Learning (ICML), 2000.

D. Precup, R. S. Sutton, and S. Dasgupta. O↵-policy temporal-di↵erence learning with
function approximation. In The 18th Int. Conf. Machine Learning (ICML), 2001.

M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, New York, 1994.

R. S. Randhawa and S. Juneja. Combining importance sampling and temporal di↵erence
control variates to simulate Markov chains. ACM Trans. Modeling and Computer Simu-

lation, 14(1):1–30, 2004.

W. Rudin. Real and Complex Analysis. McGraw-Hill, New York, 1966.

Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, 2nd edition,
2003.

M. Schäl and W. Sudderth. Stationary policies and Markov policies in Borel dynamic
programming. Probability Theory and Related Fields, 74:91–111, 1987.

B. Scherrer. Should one compute the temporal di↵erence fix point or minimize the Bellman
residual? The unified oblique projection view. In The 27th Int. Conf. Machine Learning

(ICML), 2010.

E. Seneta. Non-negative Matrices and Markov Chains. Springer, New York, 2006.

47

Yu, Mahmood, and Sutton

R. S. Sutton. Learning to predict by the methods of temporal di↵erences. Machine Learning,
3:9–44, 1988.

R. S. Sutton. TD models: Modeling the world at a mixture of time scales. In The 12th Int.

Conf. Machine Learning (ICML), 1995.

R. S. Sutton. The grand challenge of predictive empirical abstract knowledge. In IJCAI

Workshop on Grand Challenges for Reasoning from Experiences, 2009.

R. S. Sutton and A. G. Barto. Reinforcement Learning. MIT Press, Cambridge, MA, 1998.

R. S. Sutton, C. Szepesvári, and H. Maei. A convergent O(n) algorithm for o↵-policy
temporal-di↵erence learning with linear function approximation. In Advances in Neural

Information Processing Systems (NIPS) 21, 2008.

R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvári, and
E. Wiewiora. Fast gradient-descent methods for temporal-di↵erence learning with lin-
ear function approximation. In The 26th Int. Conf. Machine Learning (ICML), 2009.

R. S. Sutton, A. R. Mahmood, and M. White. An emphatic approach to the problem of
o↵-policy temporal-di↵erence learning. Journal of Machine Learning Res., 17(73):1–29,
2016.

J. N. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Machine Learning,
16:185–202, 1994.

J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-di↵erence learning with function
approximation. IEEE Trans. Autom. Control, 42(5):674–690, 1997.

T. Ueno, S. Maeda, M. Kawanabe, and S. Ishii. Generalized TD learning. Journal of

Machine Learning Res., 12:1977–2020, 2011.

C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge Univ.,
England, 1989.

H. Yu. Least squares temporal di↵erence methods: An analysis under general conditions.
SIAM J. Control Optim., 50:3310–3343, 2012.

H. Yu. On convergence of emphatic temporal-di↵erence learning. In The 28th Ann. Conf.

Learning Theory (COLT), 2015. A longer version at arXiv:1506.02582.

H. Yu. Some simulation results for emphatic temporal-di↵erence learning algorithms, 2016a.
arxiv:1605.02099.

H. Yu. Weak convergence properties of constrained emphatic temporal-di↵erence learning
with constant and slowly diminishing stepsize. Journal of Machine Learning Res., 17
(220):1–58, 2016b.

H. Yu. On convergence of some gradient-based temporal-di↵erences algorithms for o↵-policy
learning, 2017. arxiv:1712.09652.

48

Generalized Bellman Equations and TD Learning

H. Yu and D. P. Bertsekas. Error bounds for approximations from projected linear equations.
Math. Oper. Res., 35(2):306–329, 2010.

H. Yu and D. P. Bertsekas. Weighted Bellman equations and their applications in approxi-
mate dynamic programming. LIDS Technical Report 2876, MIT, 2012.

49

