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Abstract

Stochastic gradient descent is at the heart of many recent advances in machine
learning. In each of a series of steps, stochastic gradient descent processes
an example and adjusts the weight vector in the direction that would most
reduce the error for that example. A step-size parameter is used to control the
amount of adjustments. Altogether, the step-size parameter, the error and the
direction of adjustment form the update to the weight vector.

Importance weighting is a common technique used in machine learning,
where an example of a time step is weighted more than others. The scalars
that weight the examples are called the importance weights, and they vary from
time step to time step. Therefore, the update sizes fluctuate in proportion to
the importance weights, which increases the chance for unstable behavior.

This thesis extends a technique that handles importance weights developed
by Karampatziakis and Langford in 2011, which we refer to as the sliding-step
technique. The outcome of the sliding-step technique is an expression that
moderates the effect of the importance weights and choice of feature vectors
on the size of the updates.

The primary contribution of this thesis is to extend sliding-step from the
supervised learning setting to the temporal difference learning setting. For
simplicity, we restrict our attention to the one step case, i.e. TD(0), with
linear function approximation. We propose a new algorithm called sliding-
step TD, and in the tabular case, we show it is convergent with probability
one. Our empirical results suggest that sliding-step TD retains many of the
favorable properties of the original supervised learning sliding-step algorithms.
Finally, we consider applications to emphatic and residual-gradient algorithms,

for which importance weightings are especially important.
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A journey of a thousand miles begins with a single step.

— Lao Zi, Chinese philosopher.
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Chapter 1

Introduction

1.1 Stochastic Gradient Descent

In recent years, deep learning has dominated the field of machine learning,
making advances in natural language processing, image recognition, etc. At
the heart of deep learning is the method stochastic gradient descent (SGD).
SGD is especially useful in the on-line setting, where a stream of data is
presented to a learning system one example at a time. Each example consists of
an input & € R”, and a corresponding output y € R of some unknown function
of interest. The goal of the learning system is to find an approximation to this
unknown function using only the observed input and output pairs. For each
input, we can formulate an estimate that depends on the weight vector w.
An example of an estimate is a linear function of the input and the weight

vector "

w, where T denotes the transpose. By adjusting w in the direction
that would most reduce the difference between the estimate and the output of
each example (i.e., error or loss), this changes how “close” or “far away” the
approximation is to the actual function. Formally, SGD performs the following

update to the weight vector,
Wi = wy — aVlioss(yy, Ty wy),

where « is the step-size parameter that controls the amount of adjustment to
w in each time step ¢t = 0,1,2,---. Vlioss(y;, x;; wy) is the gradient of some
loss function w.r.t. w, and it defines the direction that would most reduce the

error for the example (x,y;). The stochasticity is due to the random choice
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of the example.

1.2 Importance Weighting

Importance weighting is a common technique used in machine learning, where
an example of a time step is weighted more than others. The scalars that
weight the examples are called the importance weights, denoted by A through-
out this thesis, and they vary from time step to time step. The update of
SGD with an importance weight becomes ahVlioss. If a is not made suffi-
ciently small, a large h would certainly result in a large change to w, which
could increase the error instead of reducing it. This problem is illustrated
in figure 1.1(a). Linearly scaling the gradient estimate increases the chance
for unstable behavior, and we are less certain of the convergence of the algo-
rithm. One way is to use a small enough step-size parameter that scales down
the largest importance weight. However, this could mean unnecessarily small

changes to w in other time steps and result in an overall slow down of learning.

1.3 The Sliding-step Technique in the Super-
vised Learning Setting

Karampatziakis and Langford (2011) introduce a new way of handling im-
portance weights in the supervised learning setting, which we refer to as the
sliding-step technique. The sliding-step technique can be described as fol-
lows: sub-divide the one update to the weight vector in one time step into
k steps, each with a step-size parameter of %h In each of the k steps, we
recompute the gradient estimate and adjust the weight vector in the newly
computed direction. By tending k& — oo where the step-size parameter %
becomes infinitesimal, we acquire a new class of algorithms. An illustration of
this gradient procedure in one dimensional can be seen in figure 1.1(b), where
the red point (wy, loss(y;, x; w;)) slides down the error surface towards the

optimum that would achieve a zero loss for that example.
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Figure 1.1: A demonstration of the sliding-step idea in one dimensional. (a)
is the update made to w without the sliding-step idea (b) is the update made

to w with the sliding-step idea. The blue curve is the error surface and in this

case, it is the squared loss function %(yt —x]w)?

In the presence of a large importance weight, the sliding-step technique
prevents the prediction from overshooting its target. This is because the gra-
dient estimate is recomputed in each step, and while the prediction tends to
yi, the gradient estimate tends to 0. Thus, the error after the update with
sliding-step is less than or equal to the error prior to the update.

The outcome of the sliding-step technique applied to the squared loss is

the expression:

1 — exp(—ahz'x)

(1.1)

x'x
replacing ah in the SGD update of ahVlioss. Let us write ' = |||/, and

the behavior of (1.1) as a function of ah is similar to:

win(ah |, 1

|||

(1.2)

As matter of fact, (1.1) is upper bounded by (1.2) as illustrated in figure 1.2.
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Figure 1.2: Comparing the sliding-step expression

min(ah ||z]|,1)

2
]l

When ah > W, (1.2) truncates ah to |\m1||2‘ Similarly, the expression
1 1
Il

(1.1) also truncates ah to Tl when ah is large but not at ah = Tl exactly.

Nonetheless, the effect of the truncation bounds the size of the update to the

weight vector, and hence reduces the variance of the iterates at the expense

of bias. When ah < W, (1.2) is ah, which deduces to the original SGD

update of ahVlioss. In this case, (1.1) will be approximately ah and the bias
1

introduced will be small. T=[? APpears in (1.1) also normalizes the input «,

which again bounds the size of the update.

1.4 The Contribution of this Thesis

In this thesis, we extend the sliding-step technique from supervised learning
to temporal difference learning. In supervised learning, the data are indepen-
dently identically distributed (i.i.d.), where each example can be processed in
any order while in temporal difference learning the data are sequential. Be-
cause of the sequential nature of the data, TD algorithms use bootstrapping,
where the target is also an estimate, or some parameterized function of the
weight vector. This leads to many choices that can be made in terms of the
extension. Due to these considerations, the extension we discuss in this the-
sis is not trivial. We restrict our attention to the one-step case with linear
function approximation, and thus we omit writing the usual (0) as in TD(0).

We propose a new algorithm called sliding-step TD, and in the tabular case
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with on-policy training, we show it to be convergent with probability one. Our
empirical results suggest that sliding-step TD retains many of the favorable
properties of the original supervised learning sliding-step algorithms. Finally,
we consider applications to emphatic TD and residual-gradient TD, for which

importance weightings are especially important.



Chapter 2

Background

This chapter defines terminologies and gives background information neces-
sary for this thesis. Readers who are familiar with these subjects can skip to
chapter 3 without any loss of continuity.

In section 2.1, we will use n € N to denote the discrete time steps instead
of t and let ¢ € R. The reason for the change of notation is to make the
explanation of section 2.1 more clear. However, for the rest of this chapter
and thesis, we go back to using ¢ to denote the discrete time steps, so to be

aligned with the notation in Sutton and Barto (2018).

2.1 Stochastic Gradient Descent

In supervised learning, we have a series of examples (@, Yn)n>0, Where x,, €
R™ is the input and y, is its target. In general, vy, can be a vector of real
numbers, but for simplicity sake, we denote y, € R. The set {(x,,y,)} is
assumed to be i.i.d. The goal is to find a weight vector w € R™ that minimizes
the expected loss between the target and its estimate gy, (€, ), where g, belongs
to a family of parameterized functions {g,, : R™ — R}. For an example, we
can consider the squared loss %(yn — Yo, (mn))2, where the expected loss is the
mean squared error given by f(w) = %E[yn — an(a:n)]z. Then, the goal is to
find:

w* = arg min f(w).



The problem is that the expectation in f(w) cannot be evaluated because the
underlying distribution in which the examples are drawn from is unknown. In
addition, if only an example (x,,y,) is made available at a time, then we can
use stochastic gradient descent (SGD) to obtain w* in an iterative fashion. In
each step, SGD adjusts the weight vector w by a small amount in the direction

that would reduce the loss the most for that example:

Wyt = Wy + Oy (yn - gwn (mn))v:gwn (wn) (21>

The direction that reduces the loss the most is the direction negative of the
gradient of the squared loss, which is — (Y, — Guw, (€1)) Vi, (€,). The amount
of adjustment is controlled by a sequence of step-size parameters (a,),>o sat-

isfying the step-size conditions (Robbins and Monro, 1951) while retaining

*

a, — 0, where upon convergence, SGD obtains w*. In the next subsection,

we introduce the step-size conditions and motivate why we need them.

2.1.1 The Step-size Parameters

For a sequence (a,)n>0, the step-size conditions (Robbins and Monro, 1951)

state:

S 0, = oo (22)
n=0
iai < 00. (2.3)
n=0

To motivate why the step-size parameters must satisfy these conditions, we

follow similar presentation of Borkar (2008). First, we rewrite (2.1) as follows,

Wi = W+ (v~ G, (20)) Vi, () + 0V f(w,) = 0,V f(0,)
= Wi+ an (= Vf(wn))
+ 0 ( (40 = G (@0)) Vo (@0) = E[ (v = G, (@) Vi, (@) 0] )
= w, + an( — Vf(w,) + Myi1), (2.4)

where (M,),>o is regarded as a sequence of noise. The reason why (M,,) can

be regarded as a sequence of noise is because it satisfies E[M,,|w,,,m <n] =0
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for n > 0 !. In other words, it is a sequence of zero mean random variables
uncorrelated with the past. Therefore, we can view (2.4) as a noisy discretized

version of the following ordinary differential equation (o.d.e),

w(t) = —Vf(w(t)),

which is known to converge to a local minimum of f. Since we are interested in
the asymptotic behavior of this o.d.e., we must ensure that (a,),>0 cover the
entire time axis t. In other words, (a;,),>o must satisfy (2.2) while retaining
o, — 0 so that in the limit, the asymptotic behavior of (2.1) tracks that of the
o.d.e. The second property (2.3) ensures both the discretization error and the
noise goes to 0 asymptotically with probability 1. In addition, the step-size
conditions (2.2) and (2.3) give guidelines to how fast the sequence «,, should
decay. The step-size parameters of SGD are crucial to its performance and
convergence.

In practice, we often resort to a constant step-size parameter « instead.
A constant step-size parameter is especially useful in the scenario where the
environment is changing slowly, slower than the algorithm can be made to
adapt. In this case, a > 0 allows the algorithm to keep making changes to
its weight vector, and the learning continues. The analysis of SGD with a
constant step-size parameter can be found in Borkar (2008) and Kushner and
Yin (2003). With a constant step-size parameter, we can no longer talk about
probability 1 convergence to the solution w* but that the iterates will concen-
trate within a neighborhood of w* with high probability. The neighborhood
can be made small by smaller o, but smaller « results in smaller adjustments
to the weight vector, and thus slower learning. While a bigger a results in
larger adjustments to the weight vector, but risks instability and divergence
in the long run. The size of « trades off the rate of learning and how close is

to w*.

LAny sequence that satisfies E[M,|w,,,m < n] = 0 for n > 0 is called a martingale
difference sequence



2.1.2 A Few Common Step-size Algorithms

Manually setting a step-size parameter is often difficult because the character-
istic of the dataset is unknown and searching for it may not be easily afforded.
There has been many step-size tuning algorithms for SGD, and to name a few,
ADAGRAD (Duchi et al., 2011), ADAM (Kingma and Ba, 2015) and RM-
SProp (Hinton et al., 2012) are amongst the most common. ADAGRAD tune
the step-size parameter for each component of the weight vector. ADAGRAD
keeps a running sum of the squares of the gradients with respect to each com-
ponent of the weight vector up to step t. The step-size parameter for that
component is one over the square root of this value plus some epsilon to keep
the algorithm from division by zero. Constructing the step-size parameter this
way has its drawbacks. The step-size parameter is one over the sum, which
can become extremely small when the sum is large. The problem is that after
some iterations, the changes made to the weight vector become minuscule,
and the iterates stop short of the local optimum. RMSProp addresses this
problem by using an exponentially decayed average of the squared gradients
instead. Thus, the sum is bounded, and one over the square root of the sum
prevents the step-size from becoming too small. ADAM is another step-size
tuning algorithm. It keeps a decaying sum of the gradients and a decaying
sum of the gradients squared. The former estimates the mean of the gradients
while the latter estimates the second moment of the gradients. The step-size
parameter becomes one over the square root of the second moment and the
mean estimate replaces the gradient term.

ADAGRAD, RMSProp and ADAM are just a few step-size algorithms.
Although the sliding-step algorithms also belong to this vast class of step-size
algorithms, but we will not compare ADAGRAD, RMSProp and ADAM with
the sliding-step algorithms. In this thesis, we limit our focus on comparing

the sliding-step algorithms with their respective standard counterparts.



2.2 Temporal Difference (TD) Learning

Temporal difference (TD) learning is about making long term predictions by
exploiting the temporal structure of the data. Before we define what long term
predictions are, we consider the framework in which TD is build upon. We con-
sider an infinite-horizon Markov Decision Process (MDP) M = (S, A, p, R, ~)
with finite state set S, action set A, and reward set R. The discount factor is
v € [0,1]. We use |S| to denote the cardinality of the state space S.

At each discrete time step ¢, an agent in state S; € S takes an action 4; € A
according to a given fixed policy 7 : S x A — [0, 1] where > 7(s,a) = 1. In
combination with the dynamics of the environment determined by the state-

transition probability p: S x A x S — [0, 1]:

p(s'|s,a) = Pr{S;s1 = §'|S; = s, Ay = a}

- Zp(8,7r|87 a)7

rerR
the agent transitions from the current state S; to the next state S;y; € S,
obtaining a numerical reward R;;; € R C R. We shalluser: S x A — R to

denote the expected rewards for a state and action pair:

r(s,a) = E, [Rt+1|5t =s,A = a]

= Zer(s',r|s,a). (2.5)

reR s'eS

A sample of MDP comes in the form of an episode, which is comprised
of a sequences of states, actions and rewards, (Sy, Ao, R1,S1, A1, Ra, -+, St),
where S7 denotes either a terminal state or a state up to some horizon. In
this thesis, we focus on the evaluation of a policy rather than decision making.
The policy is known and fixed throughout all time step t. Even though the
action selections based on the policy will affect the process of state to state
transitions, (So, R1, S1, Re, - - -, S7) will suffice in the computation of the state
values. Thus, an example of a sample (S;, Ryy1, Si+1) consists of the current

state, the reward, and the next state.
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2.2.1 Policy Evaluation

The idea of a long term prediction is captured by the return
Gi = Rip1 +yRipa + 7 Riys + -+,

which is a sum of discounted rewards from state S;. To evaluate a policy T,

we mean to evaluate the following quantity for every state s € S,

v(s) = E [Gt’St = 3]
=E, [Rt+1 + ’YGt+1‘St = S}
= Z m(als) Zp(s’, T|s, a) (r + VE[Gi11]Si41 = s'])

s'r

= ZW(@]S)(T(S,@) —l—fyZp(s’]s,a)v,r(s')). (2.6)

Equation (2.6) is the Bellman equation and it holds true for any finite MDP
M and policy 7.

We use v, € RISl to denote a vector of state values where each component
of this vector is v,(s). Likewise, 7, € RISI, where the sth component [rPals =
E:[Ri+1|S: = s], which is (2.5) with actions marginalized out. Now we can

rewrite (2.6) using the Bellman operator T : RISl — RISI:
(T™v;) =1 +VPv, = v, e, vy=0—~P,;) 'r,, (2.7)

where P, € RISIXISI ig the state transition matrix of the induced Markov chain

by the policy =, has its 7, jth component [Pr];; = > ., p(jli,a)m(ali).

2.2.2 On-policy and Off-policy Training

There are two common ways to evaluate the policy m, by ways of on-policy and
off-policy training. In on-policy training, state values of policy 7 is evaluated
using data generated by the same policy. In off-policy training, the state values
of policy 7 is evaluated using data generated by another policy, the behavior
policy p.

In off-policy training, the behavior policy u selects the agent’s action. As

a result, the state visitation and the distribution over the observed rewards
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will be different from following policy 7. Using importance sampling, we can
obtain an unbiased estimate of the return under = from state s (i.e., v(s)).

Consider the following return where the rewards are generated via policy pu,

GY = piRis1 + vpepe1 Riso + Y peproiproaRis + - (2.8)
where
p - W(At’St)
' M(At|5t)

is called the importance sampling ratio, assuming p(als) > 0 for every state
and action for which 7(a|s) > 0. We can rewrite (2.8) in the following recursive

form,

GY = pi(Rip1 +7GYy )

and show that E,, [Gf|5t = s} =E, [Gt|5t = s} = v.($).

Proof.
AlS,
E, [th‘st = 8] =K {ZEA ;83 (Rt+1 + ’)/thH) S, = s}
ZM ZEZE < (5,a) + VZP(SWS,C@EM [Gf+1}5t+1 = Sl})

_E, [Rm BG4St = &

Stzs},

which continues to roll out, and we get unbiased estimate of the state values

according to . O

If the two policies are the same (i.e. u = 7 where p = 1 for all state and

action pairs), then we return to the on-policy case.

2.2.3 Linear Function Approximation

We consider a class of linear functions that are parameterized by w to approx-

imate v,:

where w € R™ is called the weight vector and x(s) € R™ is called the feature

vector of state s. Each component of x(s) is a feature of the state. The feature

12



vectors are numerical representations of the underlying states. Throughout
this thesis, we let &; = x(.S;), and both notations will be used interchangeably.
The feature matrix is formed by gathering all the feature vectors and stack

them into a matrix:

Xs)xn =
— @) -

The columns of X spans an approximation subspace of dimension n where
the linear estimator Xw resides. If n = |S| and full rank, then the state
value function v, for every state can be represented exactly. A special case
of X is the identity matrix with dimension |S| x |S|, and this is the function
approximation equivalent of the tabular case, where we learn each individual
state values independently and asynchronously. If n < |S|, then not all of the
state value functions will be represented exactly, and the goal is to find w*
such that II(T7v(s, w*)) = v(s,w*) for all s € S, a projected version of the
Bellman equation (2.7).

2.2.4 TD Learning Algorithms

In the n-step learning case, the target of learning consists of Ry 1 + 7Riio +
<o+~ LR, ., plus the bootstrapped value of the state Si,,. In this thesis,
we consider the one-step learning case. We will apply the Sliding-step idea to

the following TD learning algorithms:

TD: (Sutton and Barto, 1998, 2018) w1 = Wy + adyxy (2.9)

Emphatic TD: (Sutton et al., 2016) wy 1 = wy + aFdxy, (2.10)
F,=~F,_1+i(S;) and Fy =1

Residual-gradient TD: (Baird, 1995) W = wy + ady(xy — vy, )(2.11)

The TD error 6; = Ryq + ’yzc;lwt — a:tT'wt is comprised of the target
Ry + va:tT w; and the prediction :ctT w,;. The target is comprised of the

reward and a bootstrapped value of the next state, where an estimate of the
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true value function is used instead. The x , is the feature vector of another
independently sampled next state.

The emphasis F' € [0,00) of Emphatic TD emphasizes the update of a
state s based on how much the state is bootstrapped in addition to the interest
i:S — [0,00) expressed for that state. Interests weigh certain states more
than others, which shift the accuracy of the estimator toward those states.
Prior to interest, the accuracy of the estimator depends only on the state
visitation; more visited states will have more accurate estimates than the less
visited states. However, the state visitation is part of the process itself and
difficult to manipulate. The interest function circumvents this and provides
added flexibility where it can be used to re-weight the states according to
an user’s interest. Emphatic TD takes interest into account and is a stable
algorithm under off-policy training (Sutton et al., 2016; Yu, 2015).

The gradient estimate d;x; is a “partial” gradient in that it only considers
the effect of changing w; on the prediction (i.e., ¢, w;) while ignoring the effect
on the target Ry —i—a:;rlwt. These gradient estimates are called semi-gradients
by Sutton and Barto (2018), and §;x; is not the gradient of any objective
function. TD (2.9) and emphatic TD (2.10) are semi-gradient algorithms,
while residual-gradient TD (2.11) is a gradient algorithm.

Residual-gradient TD performs gradient descent on the Mean Squared Bell-
man Error (MSBE):

MSBEw) = de(s)(T7v(s, w) = v(s, w)>2

seS

= 3 de(5) (Ex [Ress +70(Siir, w)] S, = ] — s, w)>2, (2.12)

s€S
where d, is the fraction of time spent in state s. For a continuing task, d,
is the stationary distribution. If the policy and/or the environment is non-
deterministic, residual-gradient TD requires two independent samples of the
next state S;,; and S7.; (i.e., double sampling) in order to converge to the
minimum of MSBE. Otherwise, residual-gradient TD converges to the mini-
mum of Mean Squared TD Error (i.e., E[67]), which in general does not satisfy

the Bellman equation (2.7).
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In the limit, algorithms (2.9) to (2.10) aim to solve a projected version of

the Bellman equation (2.7):

Vir (8) = II(rr + YP Ve (5))
— [I(T™ V- (5))

for all s € §. Each differ in the weighting on the projection II. For an example

of a projection II, see the next section.

2.2.5 Fixed Point of On-policy TD

Linear TD is defined by the following stochastic algorithm,

-
Wiy = Wy + Q<Rt+1$t _Ect(mt — YLy41) lwt)
WV TV

b:cR"™ A eRnXn
= w; + Oé(bt — At'wt), (213)

which in an average sense behaves like the following deterministic algorithm,
Wi = wy + a(b — Aw,) (2.14)
when the process (St, Si1, 2(S;)) reaches the steady state. The matrix:
A= Z d,( ]Ed,r Si)(x(St) — v&(Ses1)) !St = s}

- Z 2(6)(a(s) = 2 {Pulecals)
= );TD,,(I — ’yPﬂ)X,
and the vector:
b=X'D,r,,

where D, € RISI¥IS! is a diagonal matrix of the steady state distribution d,.
By Sutton (1988) and Tsitsiklis and Van Roy (1997), A has a full set of
eigenvalues all of whose real parts are positive. Thus, we can invert A and
obtain w by solving Aw = b. We say that the stochastic algorithm (2.13)

is stable if the deterministic algorithm (2.14) converges to the unique fixed
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point w independent of the initial wy. By Tsitsiklis and Van Roy (1997), the
stochastic algorithm (2.13) do indeed converge to the fixed point w = A~'b.
By solving Aw = b, the exact form of w using the Bellman operator is as

follows,

w= (XD, X)X 'D(T" Xw). (2.15)

Then, it follows
Xw=1(T"Xw),

where I = X (X 'D,X) ' X "D, is the projection matrix weighted by D,
(Tsitsiklis and Van Roy, 1997). This is why we say that TD is solving a

projected version of the Bellman equation (2.7).

2.2.6 Evaluations of TD Learning Algorithms

The algorithms examined in this thesis learn in an on-line and iterative fash-
ion, and each algorithm produces a sequence of iterates (w;)s>o. We study the
performance of the algorithms by evaluating their iterates against some per-
formance measure. The iterate can be evaluated after every step or after each
episode has ended. Although there are many evaluation methods in machine
learning, we consider two of the most common methods used in reinforcement
learning: the learning curve and the sensitivity graph. We can gather all the
evaluations and plot the performance measure against steps or episodes as in
a learning curve graph, or we can average all the performance measures for
all steps or episodes and plot the summary against a set of chosen algorithmic
parameter value as in a sensitivity graph.

A learning curve reveals two aspects of the algorithm: 1) how fast the
algorithm improves performance and 2) what is the asymptotic performance
of the algorithm. If the performance measure is some error (i.e., distance
metric between the true value and the estimate), then the beginning of the
learning curve reveals how quickly this error goes to zero, and the tail of the

learning curve reveals how close is the error to zero.
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A sensitivity graph reveals the robustness of an algorithm, meaning how
sensitive an algorithm is toward changes in an algorithmic parameter. For a
specific domain, an algorithm may be stable within some range of an algorith-
mic parameter and sensitivity graph may also show what that range is.

One repeat of an experiment may generate data that favor one algorithm
over another, where in fact the one that seems to perform better is not better
on average. Therefore each experiment is repeated n number of times called
the runs, and each run is independent of the others. For every evaluation of
an algorithm (by steps or episodes), there will be n i.i.d performance measures
X1,...X,, and this counts as one sample. We can then compute the sample
mean (X) and sample variance (s?).

When comparing two sample means, it is common practice to examine the

confidence interval or standard error. The confidence interval is defined as

B 2
X+t 2,
n

where t* is the critical value of a t-distribution. We can see that the stan-
dard error is the confidence interval with the critical value equals 1, which
corresponds to roughly 95% confidence level. If the confidence interval of the
two means do not overlap, then the two means are statically different. If the
confidence interval does overlap, it is not necessarily true that they are not
statistically different. When in this situation, we can do more runs. The vari-
ance of the sample mean is "72, which diminishes at a rate of % Smaller the
variance of the sample mean implies smaller confidence interval, which leads
to more statistical power.

To generate a learning curve for an algorithm, there will be a sample of
performance measures, one sample for every step or episode. It is the sample
means that are plotted against the steps or episodes. To generate a sensitivity
graph for an algorithm, there will be a sample of sums for every value of the
algorithmic parameter. It is the mean of the sums that are plotted against the

values of the algorithmic parameter. In this thesis, we use standard error —

B

of the sample mean as error bars in each plot.

Because we are interested in the quality of the solution, and by which, we
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mean how closely the estimate of the state values approximate the true value
of the states weighted by their respective state visitation. Then, Root Mean

Squared Value Error (RMSVE):

RMSVE(w)= [ " d,(s)(vs(s) — v(w, s))? (2.16)
s€S

seems to be most appropriate in evaluating the performance of our algorithms.
vr(s) is the value of the state s if it were sampled according to policy 7 and
v(w, s) = w'x(s) is the linear function approximation of v;(s). The RMSVE
measures how well the linear estimator w ' x(+) estimates all of the state values
weighted by how often the state s is visited. How often a state is visited is
according to the steady-state distribution of the Markov chain induced by d,,,
the behavior policy. If the algorithm is on-policy, then d,, is d, for all state-

action pairs. For some problems, we compute RMSVE after every step and

for others, we compute RMSVE after every episode.

2.3 Importance Weighting in Machine Learn-
ing

Importance weighting is a common technique that appears in statistics and in
many fields of machine learning. Importance weights are non-negative values
that quantify the relative importance of one example over another. For an
example, active learning (Beygelzimer et al., 2009) weight unlabeled exam-
ples by importance weights to remove sampling bias, and thus it converges
to the optimal function in the class. Another example is boosting (Freund
and Schapire, 1995), where the importance weights reflect the accuracy of the
classification in previous iterations, and the accuracy of the weak hypothesis
(or strategies) are adapted rather than specified a priori.

In TD learning, the importance sampling ratio described in section 2.2.2
and emphasis described in section 2.2.4 are analogous to the importance weights
of the supervised learning, but differ in their purpose and how they transpire.
We will first discuss importance sampling ratio and then emphasis.

In the one-step off-policy TD learning, the update to the weight vector is
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weighted by an importance sampling ratio. The importance sampling ratio at
time step ¢ depends only on the state encountered and the action selected at ¢.
For the same state and action observed in different time steps, the importance
sampling ratio is the same.

The emphasis of emphatic TD is a sum of discounted interest of all the

previously visited states, and at time step ¢, it can be express as follows,

t
Ft — ’Yt(PO . Pt—l) —+ Z’yt_kl(Sk;>(pk e pt—l)'
k=1

Emphasis depends on the sequence of states (Sp, S1, -, S;) leading up to state
Sy. If the same state is visited in different time steps, the emphasis weighting

is different.
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Chapter 3

Extending the Sliding-step
Technique to TD Learning

This chapter concerns the first main contribution of the thesis. We talk about
how we extend the sliding-step technique to temporal difference (TD) learning,
and then propose a new algorithm called sliding-step TD.

-

For the rest of this thesis, we consider only the squared loss 3(y — & w)?.

3.1 The Karampatziakis and Langford’s Sliding-
step Technique

In supervised learning, it is common to use importance weights to quantify the
relative importance of one example (x4, y;) over another. One way of handling
importance weight in stochastic gradient descent is to multiply h; with the

gradient of the loss:
w1 = wi + ohy(yr — ] we)w,. (3.1)

In the presence of a large importance weight, the estimate ] w;,; can over-
shoot y; and achieve a large loss for that example (see figure 1.1(a)). We could
make the alpha small enough for the largest h, but then this could mean un-
necessarily small adjustments in the other updates. Small alpha slows down
overall learning.

Let us consider an alternative way of handling importance weight. At time

step ¢, we acquire an example (x,y) with importance weight h. Instead of
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Tw;)x to w1, we sub-divide it into k

assigning the update w; + ah(y — x
steps. In the first step, we compute the gradient of the loss at w;, and make
the first intermediate update to the weight vector with an adjustment of %h:

h
w, = wy; + %(y —x w,)x. (3.2)

In the second step, we recompute the gradient of the loss at w; (i.e., —(y —
x'w;)x), and make a second intermediate update to the weight vector along

this newly computed direction with an adjustment of O‘Th:

Wy = Wy + %h(y —xw)x. (3.3)

By swapping the expression (3.2) into w; of (3.3) and expand the recursion:

h h h
Wy = Wy + %(y —x w)T + % (y —x' (wt + %(y - a:th)a:)> x

2ah A%
=w; + (% - (%) cha:> (y — ' w,)x.

After the third step, we obtain:
. o « 2 « 3
ws =w;+ |3 <—w:a:t) -3 <—a:tT:ct> + (—tha:t) (y — " w,)x.
k k k
After performing k intermediate weight updates, we obtain:

1— (1= 2hgTg)k
U522 ) owa, 3.0

ka:wt+

and we set w;,; = wy. This procedure visualized in four steps is illustrated

in figure 3.1.

h
- % Vlioss

Squared
Loss

U'H»l

</

I LI
Wy wq Wo W3

Figure 3.1: Sub-divide the one update into 4 steps and perform 4 intermediate
weight updates. The illustration is in one dimensional, and the blue curve is
the squared loss surface.
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The k updates can be done sequentially through a loop, but we are only
interested in the limit of this gradient procedure. By taking k — oo and using

the fact that limg . (1 + z/k)* = exp(z), we obtain:

k
11— (1—2gTg) -
1}1—{20 x'x ly =z w)e

1= exp(—ahz ') (v — 2w,

'z
The limit of this gradient procedure as the step-size parameter becomes in-
finitesimal allows us to generalize (3.4) to

1 —exp(—ahx/
Wiy = Wi + (:cT:c LA) (ye — &, wy)ay, (3.5)
t Lt

where we can use any non-negative continuous numbers as importance weights.
In addition, the limit of this gradient procedure only requires an additional
computation of an exponential function, and only one update to the weight
vector in each time step t.

So far, we have described a technique that we call sliding-step and is in-
troduced by Karampatziakis and Langford (2011) in the supervised learning
setting. The picture figure 1.1(b) captures the idea: sub-dividing the one up-
date w; + ahy(y, — /] w;)x, into an infinite number of steps and doing them
in sequence, recomputing the gradient at each step. Because the gradient is
recomputed in every intermediate steps and the gradients will tend to 0 as the
predictions of every intermediate steps tend to y, the estimate after an update
x,; w1 will never overshoot y,. This has been shown in Karampatziakis and
Langford (2011).

The sliding-step algorithm (3.5) empirically outperforms the standard al-
gorithm (3.1) in terms of the quality after a parameter search and in terms of
the robustness of the parameter search (Karampatziakis and Langford, 2011).
The improvement makes some intuitive sense. The outcome of the sliding-step
technique is this expression:

1 — exp(—ahz ') (3.6)

z'x
replacing ach. Here are two ideas that merged. For the ease of writing, let § =

1
2
=)’

y—x w, and ||z||* = 2 . First of all, the expression (3.6) contains the
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which normalizes the gradient since (1 — exp(+))d—2 of (3.5) replaces (-)dx

[Ed]
of (3.1). Secondly, the expression (3.6) truncates large ah. This truncation
effect is best illustrated by considering

min(ah |1z, 1)

2
(ed| ’

(3.7)

which upper bounds (3.6) (see figure 1.2). For ah > W, (3.7) truncates ah

1
2
=)’

the size of the update to the weight vector.

to ﬁ For ah <

[l

(3.7) is approximately ah. Altogether, (3.6) bounds

3.2 Extending the Sliding-step Technique to
TD Learning

We now transition from the realm of supervised learning to TD learning. Let
v(S;, w),w € R" be a function that approximates v.(S;), the true value of
the state S; € S under the policy m. If we have the values of v,, then we
can employ stochastic gradient descent in the supervised learning setting to

update the weight vector:

w1 = wy + a(v(Sy) — a:tth)azt,

where ] w; is an estimate of v, (S;) at time step t.

In TD learning, we do not assume to have access to the values of v,. How-

ever, we have access to the one-step bootstrapping target Ry, 1 + x(S;41) T wy,

and compute this quite easily since we have the reward, the feature vector
of the next state, and the current weight vector. If we replace v,(S;) by the
one-step bootstrapping target, then we end up with TD(0) *:

wt+1 = Wy + o (Rt+1 + V:B;:_l’wt — :B;r’wt) Iy, (38)

(. J/
-~

St

where d; is the TD error. The update rule (3.8) is similar to the linear rule

seen in the supervised learning setting, where an error multiples the x.

'We omit (0) from now on since all TD algorithms are in the one-step case
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Upon first glance, the extension seems almost straight forward. Recall the
sliding-step idea: subdivide an update into k steps, where each step has step-
size parameter of 7. In each step, we recompute the gradient, and then take
k to infinity. We could do the same to the TD update. However, just like
TD, the bootstrapping target also depends on the current value of the weight
vector. Because the weight vector appears in both the target of the update
as well as the prediction, we have two choices to explore and each will impact
the extension differently. We can compute the intermediate weight via the

semi-gradient or the full-gradient way:

1. semi-gradient: consider only part of the gradient ignoring the effect of

changing the weight in the target.

2. full-gradient: consider the effect of changing the weight in both the target

and prediction.

The third choice, which we will not explore in this thesis is to change only the

weight vector of the target.

3.3 The Sliding-step TD Algorithms

In this section, we apply both the semi-gradient and full-gradient approach
to both TD (Sutton and Barto, 1998, 2018) and residual-gradient TD (Baird,
1995).

Since TD (3.8) is a semi-gradient algorithm (Sutton and Barto, 2018), it
seems natural to apply the semi-gradient approach to TD. This entails swap-
ping in the intermediate weight vector only in the prediction and holding the

weight vector in the target Ry 1 + a:tTJrl'wt fixed throughout all k steps:

Q@
- T T
wy = wy + — (R + ¢ wy — @, wy)ay

k
~ ~ (0% -
Wy = Wy + %(Rt+1 + zctTHwt — |z W, )z
After k steps, we obtain:
k
- 1—(1-¢%x/x
Wi = Wy + ( Tk t t) (Sta:t.
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By taking £ — oo, we obtain sliding-step TD:
1 — exp(—az, x;

z/ x,

)5ta:t. (3.9)

Wiy = Wy +

The expression, B3(a; Sy) = (1 —exp(—ax, x;)) is a function of a given S;, and

it replaces the usual step-size parameter a in TD (3.8). If either « = 0 or
x'x =0, 8 = 0 and no update is made in that step. If az'x — oo, 8 = 1.
Therefore, 8 is bounded between 0 and 1. If the parameter « is a constant,
then (a; s) is a constant with respect to state s. However, 5(«; s) is different

for every s € S.

3.4 The Sliding-step Residual-gradient TD Al-
gorithm

Residual-gradient TD is a gradient algorithm, which performs gradient descent
on the Mean Squared Bellman Error (2.12), and it is defined by the following

stochastic update,
Wi = Wy + (R + ’yth+1wt — :Btth)At, (3.10)

where A, = x; — yax; 1. It seems natural to apply the full-gradient approach
to residual-gradient TD, which entails swapping in the intermediate weight

vector in both the target and the prediction throughout all £ steps:

(6%
. T T
Wy = wy + — (Rip1 + T wy — x, wy)

k
~ ~ 07 ~ ~
Wy = W1 + E(Rt+1 + a:tTle — athwl )wt.
After k steps, we obtain:
1—(1—22ATA)F
’lbk = w; + ( k1 t> 5tAt7

AlA,
By taking £ — 0o, we obtain sliding-step residual-gradient TD:

1 — exp(—aA[ Ay)
Al A,

IYAVS

Wiy = Wy +
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3.5 A Discussion on the Extension

As it turns out, it is not a good idea to apply the full-gradient approach to
a semi-gradient algorithm like TD and semi-gradient approach to a gradient
algorithm like residual-gradient TD. In order to discuss the problem, we first
derive the following algorithms following the procedures in section 3.3 and
section 3.4.

First of all, if we apply the full-gradient approach to TD (3.8), where the

intermediate weight vector swaps into both the target and prediction:

(6%
- T T
Wy = wy + —(Ryy1 + T wy — T, wy)xy

k
L « R T -~ T ~
wy = Wy + E( i1 | T W | — | T, W ),

then after k£ steps, and by taking k — oo, we obtain:

1 —exp(—aA/z;)
A;xt

Wiyl = W + 5twt- (311)

Secondly, if we apply the semi-gradient approach to residual-gradient TD
(3.10), where the intermediate weight vector swaps into only the prediction:

a
- T T
w; = w + E(Rt+1 + @ w — x, wy)l\

(07
~ ~ T T ~
wy = wq + %(Rt—&-l + LWy — | T Wy )At,

then after k steps, and by taking k — oo, we obtain:

1 —exp(—aA'zy)
ATZEt

S, (3.12)

Wiy = Wy

Both (3.11) and (3.12) have the following expression,

1— _
Ma C= (wt - 751%+1)T33t'
c

Given S, Sii1, M is a function of a € [0, c0):

1 _
case 1: ¢ =0, M is undefined
c
1-— — 1
case 2: ¢ > 0, O<M§—
c c
1 — _
case 3: ¢ < 0, MZOZ,
c
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where || denote the absolute value. For case 3, a € [0, 00) and ¢ < 0, therefore,
—ac > 0. The exponential function, exp(z) for z > 0 is bounded below by its

first order Taylor series expansion,

exp(z) > 14z

1 —exp(z) < —z.

Combining everything together,

1

(1~ exp(~alel)) > ~ale|—
— — eXpl—a|cC = —Q|Cl—.
=y e

1mew(zad) of cage 3 grows exponentially large, which circles

The expression
back to the same problem of making large updates. Because of case 1 and 3,
we eliminate algorithms (3.11) and (3.12) from further experiments.

As demonstrated thus far, extending the sliding-step technique from super-
vised learning to TD learning is not trivial. In supervised learning, the data
are i.i.d where each example can be processed in any order while in temporal
difference learning, the data are sequential. By exploiting the sequential na-
ture of the data through bootstrapping, the target of TD learning algorithms
also depend on the weight vector. This has led to many choices in terms of

extension.
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Chapter 4

Analysis of the Sliding-step TD
Algorithm

This chapter concerns the second contribution of this thesis. We show that
the sliding-step TD in the tabular setting with on-policy training converges
with probability 1. In addition, we show how (3.9) compares with the tabular
setting. We leave the formal analysis of (3.9) for future research, but we show

how it performs empirically in the next chapter.

4.1 The Tabular Setting

For the rest of this chapter, we consider a data stream of the form: Sy, Ry 1, Sy,
.., where t = 0,1,.... We use as4(t) = a(t;s) interchangeably throughout

this section, and define ks : S — [0,00). Let
Bla(t); 5) = 1 — exp(—au(t)rs) € 0,1

is a separate sequence for each state s € §, and they are treated like step-size
parameters in the following analysis.

We begin the analysis by defining a table of state values written in vector
form, whose component is updated independently and asynchronously. After
t time steps, we have a vector of state values V() € RIS |, with component
Vis(t),s € S, which is updated according to:

Blas(t); s)

Ks

Vit +1) = Vi(t) + [Re1 + Ve (t) = Vi(D)], (4.1)
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where the next state s’ transitions from the current state s € S according to
the transitional probability p(s’|s). The immediate reward R;; is obtained
after transitioning from state s to s’. We call (4.1) the tabular sliding-step
TD, which is analogous to tabular TD. Like tabular TD, only the current
state’s value is updated while all other state values remain unchanged. Tabular
sliding-step TD fits the asynchronous model of Bertsekas (1982) and Bertsekas
and Tsitsiklis (1989). Together with the asynchronous model and stochas-
tic approximation, Tsitsiklis (1994) prove the convergence of Q-learning with
probability 1, where the same proof can be used to prove the convergence of
on-line tabular TD (Tsitsiklis, 1994). For the rest of this section, we show how
tabular sliding-step TD (4.1) fits into the proof of Tsitsiklis (1994).

Theorem 4.1.1. V(t) defined by the update rule (4.1) converges to v,(s) with
probability 1 for all s € S in the case of

(1) v <1 or
(2) v =1, and the policy 7 is a proper stationary policy

under the condition that ay(t) is F(t)—measurable ! for every s € S and t,

and that the sequence (a(t)), one for each state s satisfies:

Zas(t) =00 w.p. 1
=0

Zag(t) <oo wp. 1,
t=0

Proof. We show that the random sequence (B(as(t);s)), one for every state

s € § also satisfies the following conditions,

NE

Blas(t);s) =00 w.p. 1 (4.2)

~+
Il
o

B (as(t);s) < oo w.p. 1. (4.3)

WE

t=

=]

LF(t) represent the history of the algorithm wup to the ¢-th iteration:
So, R1,@s,(0),V(0),S1, Ry,...,S:. A random variable that is said to be F(t)—measurable
means that the random variable is completely determined by the history represented by
F(t)
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Then, the rest follows from Tsitsiklis (1994) and the iterate V (¢) converges to
V.

It is reasonable to set a(-;s) > 0 when we update Vi and «(-;s) = 0
when V; remains unchanged because [(as(t);s) = 0 whenever a4(t) = 0.
Let X,, = > 1 — exp(—as(t)ks) and the random sequence X, Xpqq,- -+ is
monotonically increasing (i.e., X,, < X, 1) because 1 —exp(—z) is a monoton-
ically increasing function and to get to X, 1, we add something nonnegative
to X,,. We show that lim, .. X,, = > ;051 — exp(—as(t)ks) = oo by using
exp(—z) < 1+ 2% —z for z € [0, 00),

1 — exp(—Hrsa(t)) > rsaus(t) — 530@(@

Z 1 — exp(—a(t)ks) > K Z o (t) — K2 Z a2(t)
t=0 t=0 t=0
lim X, > ks lim Z a,(t) — k% lim Zag(t)

> ks lim E a,(t) — k2C) = lim (/is g as(t) — /@iCH) = 00
n—oo n—oo
t=0 t=0

Ergo, (B(as(t); s)) satisfies (4.2).
Let Y, = Y7 (1 —exp(—r,as(t)))? and the random sequence Yy, V41, - - -
is monotonically increasing. We show that lim,, o ¥, = > oo (1—exp(—as(t)ks))* <

C' for some deterministic constant C' by using exp(—z) > 1 — x for z € [0, 00)

(1 —exp(—rsas(t))) < (Ksas(t))
(1- eXp(_’{sOCS(t)))2 < ("35()‘8(75))2

n

D (1= exp(—reas(t))* < K2 al(t)

t=0

lim Y, < lim /ﬁ?Zai(t) < 00

n—00 n—>00
t=0

Ergo, (B(ksas(t))) satisfies (4.3)
Since Kk, is a constant given state s, and so is 1/ks, the scaled sequence

(M) also satisfies condition (4.2) and (4.3). O

Rs

One way to build the sequence, (5(ksas(t))) incrementally is to keep a list

of the state visitations. For instance, after having observed the state s at time
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step ¢, we increment the state visitation count, n(¢;s) by 1 and set a(t; s) to

be ﬁ Because n(t; s) grows by 1 each time state s is visited, the sequence,

1,1/2,1/3,- - clearly satisfies the two conditions.

Alternatively, we can set a(t) = % for all state s € S, where t = 1,2,....

1

+» where ¢ corresponds to

For every state s, there will be a sub-sequence of

the time steps when s is visited. However, % is not the same as m, and a(t)

may not satisfy the two necessary conditions for convergence. For instance,

state s occurs at time ¢t = 10,100, 1000 . .., and therefore, the geometric series
> o Tomior = 5 < 00, and hence violates condition (4.2).

4.2 The Linear Function Approximation Set-
ting

The tabular sliding-step TD is not a practical algorithm, but it is useful in
comparison with the linear version. Without further ado, we focus our atten-

tion on a version of sliding-step TD (3.9) stated as follows,

1 —exp(—a(t)z/ z;

Wi = Wy + ( )) [Ripr + x/ w, — x] w]x,, (4.4)

x,
where the « is replaced with «(t) instead. (4.4) differs from tabular sliding-
step TD (4.1) in the sense that the former generalizes while the latter does
not. In the linear function approximation setting, the state values are linear
combinations of the feature vector € R" and a weight vector w € R™. The
dimension n can equal |S| or less than |S|. Either way, whenever the weight
vector changes via (4.4), the change may affect the values of many states. Such
generalization of the state values based on one state-to-state transition may
speed up learning but also makes the analysis more difficult. We leave the
formal analysis of sliding-step TD (4.4) for future research. For the remainder
of this chapter, we discuss how the parameter o can influence the behavior of
sliding-step TD. In the next chapter, we show empirically how the choice of

feature vectors can also influence the behavior of sliding-step TD.
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4.2.1 Special Cases

If the feature vectors are all of the same magnitude (i.e., z(s) x(s) = C for
all s € §) and sequence («(t)) satisfy the step-size conditions (Robbins and
Monro, 1951), then the expression,

1 —exp(—a(t)z(s) 'z(s)) _1- exp(—a(t)C)
x(s)x(s) C

(4.5)

is a scaled sequence that also satisfy the step-size conditions by similar argu-
ment made in the proof of theorem 4.1.1. Then, sliding-step TD deduces to
TD, and the rest follows from the results of Tsitsiklis and Van Roy (1997); w;
converges to the fixed point of TD with probability 1. An example of («(t))
that would allow (4.5) to satisfy the step-size conditions is the diminishing
sequence %, t=1,2...

Some examples of feature vectors whose magnitude are all the same include
the basis unit vectors and normalized feature vectors (i.e., % for all s € S).

In both cases, C' =1 for all s € §. Regardless of the dimension n equals the
|S| or less than |S|, sliding-step TD simplifies to TD:

w1 = w; + (1 — exp(—a®)) (R + vz w — , wi)xy
with a particular sequence of step-size parameters 1 — exp(—a(t)).

4.2.2 General Case

The general case involves feature representation x(s) € R™, and n can equal

|S| or less than |S|. We consider a constant o € [0,00), and the expression

l—expaf(—s;gﬂ(j&l;m(s)) depends on the choice of a.

When « is small, we expect sliding-step TD to behave similarly to TD.

This is because

1 — exp(—axz(s) x(s)) N az(s) x(s) _
x(s) x(s) x(s) x(s)

for all state s € S. We see this by first fixing s and examine the first order

Taylor series expansion of 3(«;s) = 1 — exp(—az(s) 'z(s)) around a = 0:
Bas 5) = B0; 5) + BO; 5) (e — 0) + By = a(s) Ta(s) + o,
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where 8 denote the ith order derivative of function 8 with respect to . For

0<€&<a,
R BAE)a® _ —(am(s) ®(s))* exp(—Ex(s) "z (s))
! 2 2
Ry = (az(s) 'z(s))? e;p( £x(s) x(s)) < (aw(S)Qw(5>) .

Thus there exist a § > 0 such that
|R1| < C|a?] for all |a— 0| < 6,

where C' = M Therefore, the reminder,

R, = 0(a?), a—0. (4.6)
1—exp(—ax(s) T x(s)) 1
On the other hand, o — 0o, — I;(S)%C(S)m OOk

If we consider (4.4) with a sequence of diminishing «(t) (i.e., a(t) — 0),

then at some point, all the expression lfeXp(;(‘:)(Qi((gTw(s)) ~ « due to (4.6). We

would expect sliding-step TD to behave similarly to TD.

For a constant « that is not sufficiently small 2, the expression

1—exp(—ax(s)  x(s))

OMIO) is a different constant in [0, 00) for different feature vectors.

If two states are represented by the same feature vector, then the expression
would be the same. Although the expression only scales the steps, and the
direction of the update determined by d;x; is the same as TD, the iterates w;
are not averaged the same way as TD. The stochastic update of the sliding-step

TD does not average to the following expected update,

1 —exp(—az/ z;)

Eq, T (Rip1 + 2w — 2/ w),
g c:;rSt)

= Eq, [g(a; St)Rt—'rlwt} — Eq, [9(045 St)i(z: — thJrl)T} w
b A

for some fixed w. The expectation is evaluated w.r.t. the steady-state distribu-

tion d,, which we assume exists and is positive for all states. Let G € RISIXIS|

2By sufficiently small, we mean (4.6)
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be a diagonal matrix whose diagonal entries are g(a; s) and D, € RISIXISI be
another diagonal matrix whose diagonal entries are d,(s). Writing out the A

and b in matrix and vector forms as follows,

A=Eq, [ (o Sp)i(x — ’Y@H)T}
— Z d,( Edﬁ (e 8)|S; = S}IE,J;Tr [a:t(a:t — ’y:ctH)T]St = s}

:Zdﬂsga;s < Z’y x)ss (s >

= X'GD,(I-+P,)X,

b=E,4, [g(oz; St)RtHa:t}
= X'"GD,r,.

If A has a full set of eigenvalues all of whose real parts are positive, then
we can solve Aw = b (Sutton, 1988; Tsitsiklis and Van Roy, 1997; Sutton
et al., 2016) and obtain,

w =A"'b
= (X'GD,X —7X'GD,P,X)'X'GD,r,. (4.7)
In general, A may not have a full set of eigenvalues all of whose real parts
are positive (e.g., set a = 4 in the following two-state Markov chain experi-
ment). However, the iterates of sliding-step TD also does not oscillate around

w'’. This is best illustrated via the following experiment involving a two-state

Markov chain,

N m(right|-) = 0.5
-1 W(leftl-) = 0.5
- v =0.9

Figure 4.1: Two states random walk without a terminal state

State 1 is represented by a scalar value of 0.2 while state 2 is represented by
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a scalar value of 2. In this case, the feature matrix is of rank 1, smaller than
the number of states, and the true state values cannot be represented exactly.

The probability of taking the left or right action is 0.5. Taking the left
action in any state results in a reward of -1 and taking the right action in any

state results in a reward of 0. The policy 7w induces a Markov chain whose
0.5 0.5
0.5 0.5

be computed exactly and is d, = [0.5,0.5]". The true state values v, can also

process is determined by P, = { } . The steady-state distribution can

be computed exactly and are [-5, -5] ", where the first component corresponds
to state 1 and second component corresponds to state 2.

For a sufficiently small «, sliding-step TD performs similarly to TD. For
an « that is not sufficiently small, the iterates of sliding-step TD oscillate in
a neighborhood that is different from the fixed point of TD (2.15) and also

different from w'.

Sliding-step TDiaw = 0.128 D

TD a= 0.256
4.40 H S5
3.95 @%/4‘8

T
0 100 200 10* 107% 1072 10! 10°

RMSVE

4.38 1
a = 1.02

4.13 1

3.90 1

Steps a

(@) (b)
Figure 4.2: Hlustration of the fixed point of TD and sliding-step TD. (a) is the
learning curves with various a’s. (b) is sensitivity graphs where « is searched
in powers of 2. The optimal « is found to be 0.256 for TD and 2.048 for
sliding-step TD. The RMSVEs for the learning curves are averaged over 500

runs. The RMSVEs for the sensitivity graphs are averages of 200 steps and
then averaged over the 500 runs.

Results and Discussion:

In this problem, we are interested in the quality of the solution, by which
we mean how closely the state value estimates approximate v, weighted by
their respective state visitation. Therefore RMSVE (2.16) is an appropriate

performance measure.
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As a sanity check, TD’s fixed point is -0.59 according to (2.15), which
should produce a RMSVE(w) of 4.38. This matched the observations in fig-
ure 4.2(a). For a = 2.048, the eigenvalue of A is 0.0977, which is real and
positive and w’ = —2.28 according to (4.7). Thus, the RMSVE(w’) is 3.22,
but we observed the RMSVE(w;) of sliding-step TD fluctuating around 3.9
instead, which is statistically different from 3.22. Checking a few more a’s,
we observed similar mismatch. For a = 1.02, RMSVE(w’) is 3.98, but we ob-
served RMSVE(w;) of sliding-step TD fluctuating around 4.13. For ov = 0.128,
RMSVE(w') is 4.35, but we observed RMSVE(w;) of sliding-step TD fluctu-
ating around 4.38, which was similar to TD. As « decreases, we saw the perfor-
mance of sliding-step TD matching that of the TD as seen in figure 4.2(b). For
a small enough «, we conjecture that sliding-step TD in the long run should

behave in an average sense similar to that of (2.14).

4.3 Comparison to Normalized TD Algorithm

Sliding-step TD 1is similar to another algorithm called the normalized TD
(Bradtke, 1994). Both algorithms intend to control the size of the updates.

Both algorithms have similar stochastic updates:

. Ly
N lized TD: a(R x . w, —x w)———
ormalize a(Rip1 + vz, wy ; t)e g
T
Sliding-step TD: (1 — exp(—az, @;))(Rit1 + y&,w; — T, w) Tt )

where € is a small, positive number, which can be set to 0 if &(s) are non-zero
for all s € §. We shall compare the two algorithms empirically in the next

chapter.
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Chapter 5

Experiments with the
Sliding-step TD Algorithm

This chapter concerns the third contribution of this thesis. In particular,
we present experiments to compare how tabular sliding-step TD differs from
tabular TD. Then, we show how feature choices may affect the performance
of the linear case: sliding-step TD, TD and normalized TD in the on-policy
setting.

5.1 The Goal of the Study

Goal 1: We study how kg of the tabular sliding-step TD affect the perfor-
mance of the algorithm. Tabular TD serves as the baseline for comparison.
The simplest way is to set ks to be a constant (e.g. k; = 1) for all s € S, since
there is no concept of feature representations for each state. Another choice

is set ks = x(s)" x(s) to match the expression 1_BXI¥(_S()1%(JS()S;$(S)) of sliding-step

TD in the linear case.

Goal 2: We study the effect of feature vectors on the performance of sliding-
step TD. The evaluation involves two ways of setting the a. The first way is
to set a as a constant for all states through out all time steps. The second

way is to set «(t) as a diminishing sequence for all states.
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5.2 The Domain of the Study

We define the following five-state Markov chain by the following transition and

reward matrices,

[0.42 0.13 0.14 0.03 0.28
0.25 0.09 0.16 0.35 0.15
P.= 1008 0.20 0.33 0.17 0.22
0.36 0.05 0.00 0.52 0.07
10.17 0.24 0.19 0.18 0.22

[—3.62 102.1 27.92 12844 9.7
—56.5 31.61 104.15 143.92 —4.74
R= (20172 —-76.23 4458 101.1 33.2
84.7  84.61 25.01 3.25 68.32
| 92.36 —53.94 049  24.03 204.8

The transition matrix is exactly like the one in Bradtke and Barto (1996). The
reward matrix is arbitrarily generated to include both positive and negative
values that cover a large range of numbers. The steady-state distribution of
this Markov chain can be computed exactly, and it is [0.28,0.14, 0.15,0.24, 0.19] .
The true state values v, are [378.91, 410.74, 402.62, 391.85, 413.03]", where

the 7th component corresponds to state ¢ and ¢ =1,--- 5.

5.3 The Representations

We represent each state by a vector of real values, transpose each vector, and
stack them into a feature matrix. This study involves two sets of feature ma-
trices with linearly independent columns. The first set of matrices X; and
X5 have ranks equal the number of the states while the second set of feature
matrices X| and X5 have ranks less than the number of the states. Function
approximation with the first set of feature representations can represent all the

states values v, exactly while the second set of feature representations cannot.
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—160.59 —117.66 80.84 —158.6 61.56
77.58 210.62 —128.85 —29.88  54.83

X, = | —55.58 —86.12 —24.54 149.71 —-75.27
46.78 —96.32 78.13 —8.75 —122.62
—92.71 33.7 —31.62 1.8 —115.98

The magnitude of the feature vector x(s)" x(s) for states 1 to 5 are 75111.72,
96396.90, 39186.65, 32682.43, 24185.25.

0.31 1.55 1851 —-0.6 1.22
—-191 1.77 =251 0.71 221
Xy,=|-016 023 73 —1.04 3.07
0.04 195 86 0.23 0.04
0.55 046 33.84 —1.18 1.54

The magnitude of each feature vector for states 1 to 5 are 346.97, 18.47, 63.88,
77.82,1149.42. The magnitude of feature vectors of X, are more varying than
X

—160.59  80.84 61.56

17758 —128.85  54.83
X|=|—5558 —24.54 —75.27
46.78 78.13 —122.62
—-92.71 —-31.62 —-115.98

The magnitude of each feature vector for states 1 to 5 are 36113.88, 51143.30,
9356.92, 23328.32, 23046.32.

0.31 1851 1.22

—1.91 —-2.51 221

X5,=|-016 7.3 3.07

0.04 8.6 0.04

0.55 33.84 1.54
The magnitude of each feature vector for states 1 to 5 are 344.2 , 14.83, 62.74,
73.96, 1147.82. Again, the magnitude of feature vectors of X', are more varying

than X7.
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5.4 The Setup

For a decaying sequence «(t), we chose the equation from Darken

"o
(1+(t/7))
and Moody (1990). The parameters, 79, T are constants; 7 controls the initial
a(t), t < 7 indicates the search phase while ¢ > 7 indicates the converge phase.
Although 7~ offers a wide range of values for a(t), but it also has more
parameters to tune. The a and the 7y are searched in powers of 2 while the
7 is searched in increment of 100. To obtain a(t;s) for the tabular setting,
we keep track of the state visitation counts n(t; s) up till time step ¢, and set
a(t;s) = HH?#)/T

We are interested in the quality of the solution and the speed of the learning
in each evaluation. With regard to the quality of the solution, we mean how
closely the state value estimates approximate v, weighted by their respective
state visitation. Therefore RMSVE is an appropriate performance measure.

We generate two types of graphs to visually compare the performance of
the algorithms. First, we average each RMSVE(w;) over the runs, and plot
the mean against the steps to generate the learning curve. Second, we sum
up all the RMSVE(w;) computed in each step of a run, and plot the mean of
the runs against each of the o to generate the sensitivity graph. The learning
curves help us compare how fast each algorithm learns as well as the quality
of the solutions in the long run. The sensitivity graphs help us compare how
sensitive is each algorithm towards the changes in the parameter. With regard

to the speed of learning, we mean how quickly the RMSVE decays with respect

to time steps.

5.5 The Tabular Setting

We show results for Goal 1: the choice of ks € [0,00) can impact the perfor-

mance of the tabular sliding-step TD. We can set x, = x(s) "x(s) to match the

expression kex%@‘;ﬁf&;m(s)) of the sliding-step TD. For feature representation

X, tabular sliding-step TD learned slowly. This is because the magnitude

of the feature vectors are all very large, and thus each scaling factor m
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is very small for all s € §. The small scaling factors scale down the size of
each adjustment to the state values making learning slower. On the other
hand, with a different feature representation X5, tabular sliding-step TD with
ks = x(s) x(s) learned faster. Finally, by setting x, to a constant of 1, 2,
or 4 for all s € §, we saw no statistically significant performance difference

between tabular sliding-step TD and tabular TD.

X,

Tabular Sliding-step TD
Tabular TD

RMSVE

0 50 100
Steps (in thousands)
Figure 5.1: Five-state Markov Chain: performance comparison of tabular
sliding-step TD with tabular TD. The black dotted line is the learning curve for
tabular TD. For label X; and X, we choose ks = x(s) ' x(s). For k = 1,2,4,
ks is a constant of value 1,2, or 4. Each learning curve has been optimized for

no, T where a(t;s) = no/(1 + n(t;s)/7). The RMSVEs are averaged over 50

runs.

5.6 The Linear Function Approximation Set-
ting

We present the results for Goal 2: comparing the performance of sliding-step
TD to that of TD and normalized TD. We averaged each RMSVE(w;) over
the 50 runs and plotted the mean against the steps to generate the learning
curve. We applied a moving window of size 1000 along the steps to further
smooth the curve and contrast the differences. Second, we summed the 100,000
RMSVE(w;) for each run and acquired 50 sums for each . We plotted the
mean of the 50 sums against each of the « to generate the sensitivity graph

with respect to a.
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Results and Discussions:
In all experiments, sliding-step TD performed in a wider range of o values
than TD, and hence providing substantial evidence of robustness in sliding-

step TD. Sliding-step TD behaved more like TD than normalized TD. This

1—exp(—az(s) T x(s))
w(s) T a(s)

Sliding-step TD learned faster than TD when the magnitude of the fea-

was expected as for small «, the expression

~ Q.

ture vectors x(s) x(s) varied significantly as observed in figure 5.4 and fig-

ure 5.5. One possible explanation for this result is due to the expression

1—exp(—ax(s) Tx(s

OO ) , which normalizes the magnitude of feature vectors, and hence

bounding the size of the update.

In the case when the magnitude of feature vectors are all large, sliding-step
TD still needed a small « or 79 so not to diverge. With small a’s, we found no
statistically significant speedup in sliding-step TD. However, sliding-step TD
was still more robust than TD. Let us examine figure 5.2(a) in detail. A small
« such as 3.0e-5 would have pushed 1 — exp(—ax(s) z(s)) towards a value
of 1 for all 5 states. An value of 1 is too large, because normalized TD with
a > 5.24e-1 already diverged, and normalized TD has a similar expression

o s ) : 1—exp(—ax(s) T z(s))
of Y OMEIO) compared to the sliding-step TD’s expression of OO

The optimal @ = 5e-6 made the expression all approximately 4e-6 for all 5
states. Sliding-step TD performed similarly to TD with the optimized step-size

parameter o = 4 e-6.
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Figure 5.2: Five-state Markov Chain: performance comparison of sliding-step
TD, TD and normalized TD with feature matrix X;. (b) is optimized for
7 and shown w.r.t. 7y of a(t) = 142?/7‘ The RMSVEs are averages of 100
thousand steps and then averaged over 50 runs. The big dots indicate the

optimal parameter values.

w Normalized TD
@ D
=
o
375 - 375 :
Normalized TD
T T T T T T 1 1
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Figure 5.3: Five-state Markov Chain: performance comparison of sliding-step
TD, TD and normalized TD with feature matrix X. (b) is optimized for
7 and shown w.r.t. ny of a(t) = i77- The RMSVEs are averages of 100
thousand steps and then averaged over 50 runs. The big dots indicate the

optimal parameter values.
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Figure 5.4: Five-state Markov Chain: performance comparison of Sliding-step
TD, TD and Normalized TD with feature matrix X,. (a) and (c) are learning
curves optimized for a. (b) and (d) are sensitivity graphs optimized for 7 and
shown w.r.t. ny of a(t) = lff/T. Row 1 is w.r.t. constant step-size parameter.
Row 2 is w.r.t. diminishing step-size parameter. The RMSVEs for the learning
curves are averaged over 50 runs. The RMSVEs for the sensitivity graphs are
averages of 100 thousand steps and then averaged over 50 runs. The big dots

in the sensitivity graphs indicate the optimal parameter values.
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Figure 5.5: Five-state Markov Chain: performance comparison of Sliding-step
TD, TD and Normalized TD with feature matrix X5. (a) and (c) are learning
curves optimized for a.. (b) and (d) are sensitivity graphs optimized for 7 and
shown w.r.t. 1y of a(t) = 112/7' Row 1 is w.r.t. constant step-size parameter.
Row 2 is w.r.t. diminishing step-size parameter. The RMSVEs for the learning
curves are averaged over 50 runs. The RMSVEs for the sensitivity graphs are
averages of 100 thousand steps and then averaged over 50 runs. The big dots

in the sensitivity graphs indicate the optimal parameter values.
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Chapter 6

Emphatic TD and
Residual-gradient TD
Extensions

This chapter concerns the last contribution of this thesis, where we extend the
sliding-step technique to emphatic TD and residual-gradient TD. We compare
the performance of sliding-step emphatic TD and sliding-step residual-gradient

TD by ways of two experiments.

6.1 The Sliding-step Emphatic TD Algorithm

We consider both the on-policy and off-policy training, and this is because both
the emphatic TD and residual-gradient TD are stable and convergent under
off-policy training. In addition, the stochastic update of both algorithms have
importance sampling ratio and emphasis, which can result in large updates to
the weight vector. We present the sliding-step emphatic TD (6.1) and sliding-
step residual-gradient TD (6.2) in the off-policy setting. This is because in the
on-policy setting, the importance sampling ratios are all ones.

The sliding-step emphatic TD is defined by the following update to its

weight vector,

1 — exp(—aFipx/ )

Wiy = Wi + T (Rep1 + ’thTH'wt - th’wt)iBt
where Ft = ’)/pt—lFt—l + Z(St) and FO =1. (61)

Some updates of emphatic TD are weighted more than others by a quantity

46



called the follow-on trace F; '. The follow-on trace is a sum of all the visited
state’s interest i(S;) € [0,00) up to step t. F; can take on large values and as
matter of fact, the variance of F; can be infinite (Sutton et al., 2016). In off-
policy training, emphatic TD also has importance sampling ratio. Importance
sampling ratio for step t is defined as p; = w(A¢|S;)/1(A:|S), and it can be
large if p(A;|S;) is small. Since pg,---p;—1 are all incorporated inside the
follow-on trace, this further exacerbates the problem of having a large F;. To
make matter worse, p, multiplies F; in the update resulting in an even larger
value. If the step-size parameter « is not reduced to small enough value, one
update to the weight vector could increase the TD error than reducing it.

Sliding-step emphatic TD has F; and p; incorporated inside the expression:
Bla; pe, Fy;8) = 1 — eXp(_aptFtthwt)-

Hence, bounding the size of the update due to the F; and p; because 5(«; py, Fi; S;) —

1 as Fipy — o0.

6.2 The Sliding-step Residual-gradient TD Al-
gorithm

In the off-policy case, the importance sampling ratio of residual-gradient TD
can scale up the size of the update in just one step, increasing the chance
for unstable behavior. However, the importance sampling ratio is inside the
expression of the sliding-step residual-gradient TD, which is defined by the
following stochastic update to its parameter vector,

(1 — exp(—ap Al AY))
Al
where A; = oy — yaiy1. (6.2)

(Rep1 + 7w, — & wi)A,

Wi = Wi +

6.3 1000-state Random Walk

This experiment is in the on-policy setting. We change the number of neighbors

in the original problem (Sutton and Barto, 2018). Instead of 100 neighbors, we

For A\ = 0, the follow-on trace is the emphasis. In the more general setting of emphatic
TD()), these two quantities are not equivalent.

47



consider 50 and then 20 neighbors. The state space consists of states 1 to 1000
with two terminal states; one positioned left of state 1 and one positioned right
of state 1000. The agent always starts in state 500, and it takes a left or right
action with equal probability. In the case of 50 neighbors, once committed to
an action, agent transitions to one of its 50 neighbors with equal probability.
Of course, there is not always 50 neighbors to the left or right of a state, so
whatever remains of the 50 neighbors account toward the terminal state. For
example, if the current state is 975 and the agent decides to go right, then
25 of the remaining 50 is considered part of the terminal state and the agent
transitions to one of the state in the range of 976 to 1000. Thus going right
in state 975 will have a probability of 0.25 of terminating on the right. The
reward is 0 everywhere except a -1 when transitioning to the left terminal state
and a +1 when transitioning to the right terminal state. The discount factor
isv=1.

The reason for the modification of this problem from 100 neighbors to 50
and 20 neighbors is for us to observe a larger range of follow-on trace values.
Since v = 1 and all of the states has interest of 1, then the follow-on trace (i.e.,
F, = F,_1+1) grows linearly with the number of time step in an episode. The
random walk takes less number of steps to reach the terminal states when it
can reach 1 of 100 neighbors versus 1 of 20 neighbors at a time since the former
is more likely to reach further to the left or right. However, just how large
can the number of steps be before the random walk terminates if we start in
state 5007 We list out the expected number of steps before termination if the
starting state is in state 500. On average, F' can take on the following values

for a neighbor of 50 and 20,

m | expected number of steps | variance of number of steps
before termination before termination

50 | 309.14 63533.10

20 | 1785.15 2123450.03

Table 6.1: Expected number of steps before termination in the 1000-states
random walk

For each of the above number of neighbors, there is a high probability of
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having large F's.

In the following experiments, we will use two feature representations: tile
coding and Fourier basis. We run each experiment for 5000 episodes and repeat
each independently 30 times. At the end of each episode, an RMSVE(w.) (7
denote the time when the episode terminates) is computed and plotted in the
learning curve with respect to episode. For the sensitivity graph, all 5000
RMSVEs are summed and presented for each a.

With tile coding, we used 50 tilings, and each tiling is offset by four states.
We tile 100 states together. The tile coding serves as a basis of our comparison
since the feature vectors are a list of 1’s and 0’s and the number of active tiles
will always equal the number of tilings, 50 in this case. Thus, the size of the
feature vectors, x(s) " x(s) = 50, the number of tilings for all states. We will

experiment with emphatic TD and sliding-step emphatic TD.

Results and Discussions

Going from 50 neighbors to 20 neighbors, the follow-on trace on average in-
creases. In response to the larger emphasis value, the optimal « shifted from
an order of e-5 to e-6. However, sliding-step emphatic TD performed in a
wider range of o’s than emphatic TD. We saw evidence of robustness again
in sliding-step emphatic TD. Similarly, sliding-step residual-gradient TD was

more robust than residual-gradient TD.
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Figure 6.1: 1000-states random walk: performance comparison of sliding-step
emphatic TD and emphatic TD. (a) is for 50 neighbors with tile coding. (b)
and (c) are for 50 and 20 neighbors with Fourier basis. The RMSVEs are
averages of 5000 episodes and then averaged over 30 runs.
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Figure 6.2: 1000-states random walk with 50 neighbors: performance compari-
son of sliding-step residual-gradient TD and residual-gradient TD with Fourier
basis. The RMSVEs are averages of 5000 episodes and then averaged over 30

runs.
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6.4 Chicken Problem

This experiment is in the off-policy setting. There are a total of 8 states with 1
terminal state. The agent starts in the first four states with equal probability.
If the agent is within the first four states, then the behavior and target policy
are the same, and the agent goes forward. If the agent has passed the first four
states, the behavior policy chooses to go forward or go back to the first four
states with equal probability. The target policy, however will always choose to
go forward. If the agent goes forward and makes it to the terminal state, then
it earns a reward of 1, and the episode terminates. If the agent go back to the
first four states, then it receives a reward of 0 and the process continues. the
discount factor is v = 0.9.

For every run, a new set of feature vectors are randomly generated to repre-
sent the eight states. Each feature vector is {0,1}%, and we ensure no feature
vectors are all zeros and the feature matrix is always rank 6. We ran each

experiment for 5000 episodes and repeated each independently for 100 runs.

Results and Discussions

In all experiments, sliding-step algorithms performed in ranges of o that were
wider than their respective TD counterparts. Sliding-step emphatic TD was
more robust than emphatic TD, and sliding-step residual-gradient TD was
more robust than residual-gradient TD.

Sliding-step emphatic TD with optimized o« = 0.016 learned faster than
emphatic TD in the first 100 episodes as seen in figure 6.3(c). Emphatic TD
outperformed sliding-step emphatic TD in the long run evident in figure 6.3(d),
but the difference was small.

After optimizing for «, residual-gradient TD learned faster than sliding-
step residual-gradient TD, but the latter was less noisy in the long run. We
reduced the a of residual-gradient TD to 0.016 in the hope that it is less noisy
in the long run, but with a smaller «, residual-gradient TD performed worse

than the algorithm with o = 0.128 (a bigger «) in the long run.
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Figure 6.3: Chicken Problem: performance comparison of sliding-step em-
phatic TD and emphatic TD. (a) learning curves with optimized o« = 0.016
for sliding-step emphatic TD and «a = 0.004 for emphatic TD. (b) sensitivity
graphs where the RMSVEs are averages of 500 episodes. (c¢) sensitivity graphs
where the RMSVEs are averages of the first 100 episodes (early learning). (d)
sensitivity graphs where the RMSVEs are averages of the last 1000 episodes
(late learning). All the RMSVEs are averaged over 100 runs.

52



Residual-gradient
TD

a =0.016
\ Residual-gradient TD o = 0.128

RMSVE

0.27
a = 0.016

0.322 ~

7100 T LELLARLL | RELELALRALL | RELELALRALL | T
0 500 10=¢ 1073 1072 107! 10°

Episodes
(03
@ (b)

Figure 6.4: Chicken problem: performance comparison of sliding-step residual-
gradient TD and residual-gradient TD. The RMSVEs for the learning curve are
averaged over 100 runs. The RMSVEs for the sensitivity graph are averages
of 500 episodes and then averaged over 100 runs.
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Chapter 7

Conclusion

We have extended the sliding-step technique to TD learning, and presented a
new algorithm called sliding-step TD. It is similar in form to TD, but differs

1—exp(—ax )

— replacing the usual step-size parameter. We

in the expression
prove that the tabular sliding-step TD in the on-policy setting converges with
probability 1. However, sliding-step TD is designed for linear function approx-
imation, and it differs from the tabular algorithm in that it generalizes where
as the tabular algorithm does not. The analysis of sliding-step TD does not
follow from the tabular sliding-step TD, and we leave the formal analysis of
sliding-step TD for future research.

The expression %_;w%) within the update of the sliding-step TD de-
pends on the state representations, or feature vectors. If the magnitude of the
feature vectors are the same for all state s € §, then sliding-step TD deduce
to TD. A few special cases involves basis unit vector and normalized vectors.

Therefore, for those special cases, sliding-step have the same convergence prop-

erties as TD. For the general case, the behavior of sliding-step TD depends

1—exp(—ax ' x)
'z

on the choice of . For sufficiently small «, the expression is ap-
proximately «, which means sliding-step TD performs similarly to TD. Such
results have been confirmed experimentally. For an « that is not sufficiently
small, the expression is different depending on the feature vectors. In this
case, sliding-step TD does not average in the same way as TD, and does not
converge in the neighborhood of TD.

In the empirical evaluations of the sliding-step TD, we consider two set-
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tings of the parameter «: constant o and diminishing «(t). In all settings,
we saw evidence of robustness in sliding-step TD. When the magnitude of the
feature vectors varied significantly, sliding-step TD learned faster than TD.

One possible explanation of the speedup could be because of the expression

1—exp(—azx ' x)

T normalizes the feature vectors, and hence bounding the size of

the update to the weight vector. However, when the magnitude of the fea-
ture vectors were all large, sliding-step TD still needed a small enough « to
converge, and sliding-step TD performed similarly to TD.

Lastly, we extended the sliding-step technique to emphatic TD and residual-
gradient TD, which are known to have large updates to the weight vector due
to emphasis and importance sampling ratios. In both the on-policy and off-
policy settings, sliding-step emphatic TD was more robust than emphatic TD,
and sliding-step residual-gradient TD was more robust than residual-gradient
TD. In the off-policy setting, sliding-step emphatic TD learned faster than
emphatic TD. To our surprise, we saw no speedup in sliding-step emphatic
TD in the on-policy setting with large emphasis.

In all experiments, the sliding-step technique allowed for a wider range
of a values than setting « alone. Therefore, the sliding-step technique signifi-
cantly improved the robustness of the TD algorithms with respect to parameter

search.
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