
TD(λ) Networks:
Temporal-Difference Networks with Eligibility Traces

Brian Tanner BTANNER@CS.UALBERTA .CA

Richard S. Sutton SUTTON@CS.UALBERTA .CA

Reinforcement Learning and Artificial Intelligence Laboratory, University of Alberta, Canada

Abstract

Temporal-difference (TD) networks have been
introduced as a formalism for expressing and
learning grounded world knowledge in a predic-
tive form (Sutton & Tanner, 2005). Like con-
ventional TD(0) methods, the learning algorithm
for TD networks uses 1-step backups to train
prediction units about future events. In conven-
tional TD learning, the TD(λ) algorithm is often
used to do more general multi-step backups of
future predictions. In our work, we introduce a
generalization of the 1-step TD network speci-
fication that is based on the TD(λ) learning al-
gorithm, creating TD(λ) networks. We present
experimental results that show TD(λ) networks
can learn solutions in more complex environ-
ments than TD networks. We also show that in
problems that can be solved by TD networks,
TD(λ) networks generally learn solutions much
faster than their 1-step counterparts. Finally, we
present an analysis of our algorithm that shows
that the computational cost of TD(λ) networks is
only slightly more than that of TD networks.

Temporal-difference (TD) networks are a formalism for ex-
pressing and learning grounded knowledge about dynami-
cal systems (Sutton & Tanner, 2005). TD networks are one
approach that can be used to learn a predictive representa-
tion of state (Littman et al., 2002; Jaeger, 1998; Rivest &
Schapire, 1990). Predictive representations are one of sev-
eral approaches to learning generative models of dynamical
systems that can be used for planning and/or reinforcement
learning. Predictive representations can be learned from
data (Wolfe et al., 2005), and have been shown to have
richer representational power than competing approaches
like POMDPs andnth-order Markov models (Singh et al.,

Appearing inProceedings of the22nd International Conference
on Machine Learning, Bonn, Germany, 2005. Copyright 2005 by
the author(s)/owner(s).

2004).

Predictive representations represent the state of a dynami-
cal system as a vector of predictions about future action–
observation sequences. The hypothesis that important
knowledge about the world can be represented strictly in
terms of predictions of relationships between observable
quantities is a novel idea that distinguishes predictive rep-
resentations from other approaches. Inpredictive state rep-
resentations(PSRs) introduced by Littman et al. (2002),
each prediction is an estimate of the probability of some
sequence of observations given a sequence of actions. TD
networks generalize PSRs; in TD networks each prediction
is an estimate of the probability or expected value of some
function of future predictions and observations. The pre-
dictions are thought of as “answers” to a set of “questions”
represented within the TD network.

The essential idea of TD learning can be described as learn-
ing a guess from a guess. Before TD networks, the two
guesses involved were predictions of the same quantity at
two points in time, for example, of the discounted future
reward at successive time steps. TD networks generalize
TD methods by allowing the second guess to be different
from the first. The current TD network learning algorithm
uses 1-step backups; the target for a prediction comes from
the subsequent time step. In conventional TD learning,
the TD(λ) algorithm is often used to do more general, n-
step backups. Rather than a single future prediction, n-step
backups use a weighted average of future predictions as a
target for learning (Sutton, 1988). TD(λ) is really a spec-
trum of algorithms, controlled by the continuous valued pa-
rameterλ ∈ [0, 1]. TD(λ=0) uses the earliest possible pre-
diction as the target for learning while TD(λ=1) uses the
latest possible prediction as the target. For other values of
λ, the targets for learning are distributed among all of the
predictions along the way.

A worthwhile contribution to the work on predictive rep-
resentations would be a least-squares algorithm for learn-
ing TD networks similar to LSTD (Boyan, 2002). We feel
that TD networks are still not well understood and that

TD(λ) Networks : Temporal-Difference Networks with Eligibility Traces

the TD(λ) algorithm still remains of widespread interest,
leaving LSTD networks an interesting possibility for future
work.

In this work, we present an extension to the TD network
learning algorithm that uses n-step backups of future pre-
dictions and observations. We call our approach TD(λ) net-
works. In this work we show that TD(λ) networks gener-
alize the previous approach; that the TD network specifi-
cation is identical to a TD(λ=0) network. From this point
forward, we refer to both 1-step and n-step TD networks
simply as TD networks. When the distinction is impor-
tant, we will refer to the previous specification as TD(0)
networks and our new specification as TD(λ) networks.

In Section 1 we review the TD(0) networks specification.
We present and discuss the new learning algorithm in Sec-
tions 2 and 3 respectively. In Section 4 we compare the
performance of TD(λ) networks for various values ofλ,
including TD(λ=0) networks. In Section 5 we have in-
cluded a detailed cost analysis of our implementation the
algorithm. Finally, we conclude and discuss our results in
Section 6.

1. TD Networks

We present a brief review of the details of TD networks
here, for further details please consult the original TD net-
works paper (Sutton & Tanner, 2005).

TD networks learn to predict future observations that will
be generated by their environment (a dynamical system).
At each of a series of discrete time stepst, the environ-
ment generates an observationot ∈ O, and the agent takes
an actionat ∈ A. The action and observation events oc-
cur in sequence,at−1, ot, at, ot+1, at+1, ot+2, with each
event potentially dependent only on those preceding it
in the sequence. This sequence will be calledexperi-
ence. In this work, we will use the TD networks to pre-
dict action-conditional functions of future experience in
partially-observable environments. Throughout this paper
we consider the observation to be a single bit, either 0 or 1.
In general, with more observations,ot can be represented
as a vector of bits.

A TD network is a network of nodes each of which rep-
resents a single scalar prediction. Each node has links to
other nodes and/or the observation from the environment.
These links represent the targets for learning — what the
node should predict. Each of these nodes is some ques-
tion about the system, and accordingly this set of nodes
and links is called thequestion network.

Figure 1 is an example of the type of question network we
use in this paper. In this example, the question being asked
by the node labeledy1 at timet is “If the next action isa1,

what is the probability that the next observationot+1 will
be 1?” Similarly, the question asked by the node labeledy4

at timet is “If the next action isa2, what is the expected
value of the prediction from nodey1 at timet + 1?”

Each node in a TD network can be thought of as a func-
tion approximator. The inputs to each node is defined by
a set of interconnections called theanswer network. The
prediction made by each node is a function of these in-
put features. These predictions provide the answers to the
questions asked by the question network.

Ot+1

y2

a2

y1

a1

y3

a1

y4

a2

y7

a1

y8

a2

y9

a1 a2 y5 y6
a1 a2 a1 a2

Figure 1. Symmetric action-conditional question network. The
network forms a symmetric tree, with a branching factor equal
|A|. This example has depthd = 4. Some of the labels have been
left out of this diagram for clarity, each of these nodes should have
a labelyi and each is conditioned on some action.

Formally, the prediction for nodei at time stept is denoted
asyi

t ∈ [0, 1], i = 1, . . . , n. The column vector of predic-
tionsyt = (y1

t , . . . , yn
t)T is updated by:

yt = σ(Wtxt) (1)

wherext ∈ <m is a feature vector,Wt is an×m matrix of
modifiable weights, andσ is the S-shaped logistic function
σ(s) = 1

1+e−s .

The feature vector is a function of the preceding action,
observation, and node values.

xt = x(at−1, ot, yt−1) ∈ <m (2)

In our experiments,xt has one component for each unique
combination of the current observation and previous action
(one of which is1, the rest0), andn continuous valued
components equal to the predictionsyt−1.

From this description, the operation of the question and
answer network may not be completely clear. At a high
level, the operation of a TD network can be explained in
five steps:

1. Choose an actionat−1 and receive an observation
from the environmentot

TD(λ) Networks : Temporal-Difference Networks with Eligibility Traces

2. Calculate the input vectorxt as a function of the pre-
vious predictionsyt−1, the action just takenat−1, and
the new observationot

3. Create the new predictionsyt = σ(Wtxt)

4. Calculate the targetszt−1 for the previous predictions
yt−1 usingyt and the observationot according to the
question network’s links and the action conditions

5. Update the weightsW according to(zt−1 − yt−1)

We turn our attention back to the question network. In the
most general case, the definition of a question is very loose;
questions can be any function of future predictions or ob-
servations. In this paper we consider the special case of
question network in which each nodei has a single tar-
get, either some other prediction or the observation at the
next time step. We call this type of question network a
single-targetquestion network. This special case includes
all question networks that have been considered in previous
work. We refer to the target of nodei as the “parent” ofi or
p(i). The later parents of nodei: {p(p(i)), p(p(p(i))), ...}
are written in the short form{p2(i), p3(i), ...}.

In Figure 1 the parent of Node 9 is Node 4,p(9) = 4.
The parent of Node 4 is Node 1 (p(4) = 1), sop(p(9)) =
p2(9) = 4. The third parent of Node 9,p(p(p(9))) =
p3(9) = o, the observation bit.

Formally, the target for nodei is zi:

zi
t =

{
y

p(i)
t+1 or ot+1 if ci

t = 1
yi

t if ci
t = 0

(3)

whereat is the next action, andci
t ∈ {0, 1} corresponds to

whether the action condition foryi was met at timet.

Each componentwij
t of Wt is updated by the learning rule:

wij
t+1 − wij

t = α(zi
t − yi

t)
∂yi

t

∂wij
t

(4)

whereα is a step-size parameter. Notice that ifci
t = 0, then

the error(yi
t − yi

t) will be zero.

In this paper we analyze this learning rule directly so it is
useful to simplify it as much as possible.

Using the prediction update equation from Equation 1, the
exact weight update rule is:

∆wij
t = α(zi

t − yi
t)y

i
t(1− yi

t)x
j
t (5)

2. TD(λ) Networks

The target function described in Equation 3 is only cor-
rect for single-step TD(0) updates. Each prediction made

at timet has a TD target that may become available at time
t + 1. This TD target may itself be a prediction of some
other value that will be available at timet + 2. In this case
it is possible to “unroll” the first prediction, to ask a ques-
tion at timet about an event at timet+2. A question can be
unrolled step by step until it is asking a question about the
data, the observation bit. Each prediction made at timet is
indirectly predicting several events at different moments in
time and therefore has a different target for each moment.

t+5

O

y1

a1

y4

a2

y9

a1

O

y1

a1

y4

a2

O

y1

a1

O

y1

y4

a2

y9

a1

y4

a2

y9

a1

a1

y9

a1

y9

a1

y4

a2

y1

a1

t+1t t+2 t+3 t+4

Figure 2. Extended target flow diagram for nodes{1,4,9} of ques-
tion network in Figure 1. The links in this diagram show the flow
of target values back toward the original predictions. The solid
links are the 1-step TD targets for these predictions. The dashed
links are a sample of the unrolled multi-step targets. We have left
out the action-condition labeling on the dashed links to reduce the
clutter.

Using the parent functionp(i), the relationship between
targets follows the structure of the question network. The
first target foryi

t comes directly from the 1-step TD rela-
tionship in the question network, and is simplyzi

t. The
second target is recursively defined, it is the next tar-
get of the parent of nodei, z

p(i)
t+1 . Following this pro-

cess, we can derive ak step sequence of targets foryi
t:

zi
t, z

p(i)
t+1 , z

p2(i)
t+2 , ...z

pk−1(i)
t+k−1 , wherepk(i) is the observation

bit.

In order to keep notation a simple as we can, for the follow-
ing section we will consider a single nodei and a single
starting time stept. Under these conditions, the first tar-
get of a prediction can be written asz(0). The subsequent
targets arez(1), z(2), z(3), ..., z(k − 1).

To make this concrete, consider the prediction node9 in
Figures 1 and 2. In this case,z(0) = y4

t+1, z(1) = y1
t+2,

andz(2) = ot+3. Although each target in this sequence
is a prediction of the same eventot+3, each was calculated
using different information. Our intuition is that the targets
generated later in time may sometimes be more accurate
than the earlier targets. Some combination of the targets

TD(λ) Networks : Temporal-Difference Networks with Eligibility Traces

from this sequence may then be better than any particular
single target in the sequence.

While the conditions of the predictions match the experi-
ence of the agent, this sequence of targets is available and
valid. If the agent’s experience diverges from the condi-
tions of the question network, no further updates are per-
formed. If multiple targets become available, we can imag-
ine using any (or all) of these targets for learning. As with
TD(λ), we propose an exponentially weighted average of
these targets. The multi-step weighted target for prediction
yi

t is denoted asvi
t, where:

vi
t = ((1− λ)

k−1∑
n=0

λnz(n)) + λkz(k − 1) (6)

The one-step target is given the largest weight(1− λ), the
two-step target is given(1 − λ)λ, the three-step target is
given (1 − λ)λ2, etc. The last item in this sequence will
receive all of the remaining weight (λk).

Ideally, we would like to use the blended targetvi
t in an

update rule such as:

∆wij
t = α(vi

t − yi
t)y

i
t(1− yi

t)x
j (7)

We desire an online, incremental algorithm where the value
of vi

t will not be available at timet. We can use some stan-
dard (and novel) tricks to implement this learning rule in-
crementally using a variation of eligibility traces as with
TD(λ). Pseudo-code for our TD(λ) networks learning al-
gorithm is in Figure 3. The weight update rule in this algo-
rithm achieves the behavior of Equation 7 using incremen-
tal updates of successive targets.

Because the predictions made within TD networks are of
different events, implementing eligibility traces is not as
simple as with conventional TD(λ). Each predictionyi

t

needs its own eligibility trace. This makes our algorithm
slightly more complicated than traditional TD(λ).

3. TD(λ) Algorithm Discussion

In a nutshell, our algorithm keeps a record of predictions
and whether the conditions of the unrolled definition of
those predictions are consistent with later experience of
the agent. At each time step, new targets become available
for past predictions. By combining the temporal-difference
yt − yt−1 with historic information about the inputs to the
answer network (xt−k), the weight vectorW is updated
(scaled byλt−k−1) towards the new target to improve the
past predictionyt−k.

This algorithm has some interesting properties, controlled
by the particular value ofλ that is used.

Traces← {}
for t = 0 to T do

newTraces← {}
a← chooseAction()
o← getObservation(a)
xt ← x(a, o, yt−1)
yt ← σ(Wxt)
for (i, k) ∈ Traces do

if checkCondition(pt−k−1(i), a) == TRUE
then

if pt−k(i) 6= observation then
z ← yt−1[pt−k(i)]

else
z ← o

end if
p← yt−1[pt−k−1(i)]
for wj ∈W [i] do

wj+ = α(z − p)p(1− p)xj
kλt−k−1

end for
if pt−k(i) 6= observation then

newTraces← newTraces ∪ (i, k)
end if

end if
end for
for i ∈ y do

newTraces← newTraces ∪ (i, t)
end for
Traces← newTraces

end for

Figure 3. Pseudo-code for TD(λ) learning algorithm. The algo-
rithm uses a boolean functioncheckCondition(i, a) which will
return true if the actiona is consistent with the action condition
of nodei, and false otherwise.

If λ = 0, the first target of a prediction will get weight00 =
1, meaning that this first target will get the full weight of the
update. For subsequent targets,0t−k−1 = 0 resulting in the
update having no effect. This behavior is exactly the same
as the previous 1-step TD network learning algorithm.

If λ = 1, each target available gets the full weight of
the update, because1x = 1. Each subsequent temporal-
difference effectively overwrites the update made by the
previous target. The net effect is that the last available tar-
get receives the full weight of the update and the interme-
diate targets receive no weight. If the prediction’s condi-
tions match exactly with the stream of experience, all of
the weight will go to the grounded, unrolled target. If the
stream of experience diverges from the conditions of the
prediction, the weight of the update will go to some inter-
mediate TD target. This behavior is analogous to a Monte
Carlo style of update, with one important difference. In a
Monte Carlo approach, an update would only occur if the

TD(λ) Networks : Temporal-Difference Networks with Eligibility Traces

conditions of the completely unrolled definition of a pre-
diction were met. This would mean that nodes at deeper
depths would be exponentially less likely to receive up-
dates, because the exact sequence of the conditions would
be less likely to occur. With TD(1), these predictions will
always receive an update as long as their first condition is
met, using more of the available data.

Finally, if an intermediate value ofλ is used, then the
weight of the updates are divided among the targets that
become available. The remainder of the weight will always
be assigned to the final available target.

4. The effect ofλ in TD networks

There are certain partially-observable environments for
which a TD network solution exists, but the TD(0) learn-
ing algorithm cannot find it (Tanner & Sutton, 2005). The
recursive nature of TD networks allow the occurrence of in-
formation flow dependencies between the question and an-
swer networks. When the predictionyi

t critically depends
on an input feature inxt that corresponds toyj

t−1, and the
targetzj

t−1 depends onyi
t, a “chicken or egg” type dilemma

can occur. The TD(0) solution to this problem that we have
previously proposed is to augment the input vectorx by in-
cluding recent actions and observations in addition to the
immediately previous action and observation. This recent
history allows the TD(0) learning algorithm to solve prob-
lems that could not be solved without history. History also
allows the TD(0) learning algorithm to solve existing prob-
lems faster than before.

Our hypothesis is that for some values ofλ > 0, the TD(λ)
network learning algorithm can solve this information flow
dependency problem without adding additional informa-
tion to the input vector.

These two distinct approaches are both trying to solve the
same general problem, allowing TD networks to model
more complex dynamical systems. Although we do not re-
port results here, we expect that these two techniques can
be combined to solve even more difficult problems.

In this work we report the results of comparing our TD(λ)
networks to TD(0) networks in three domains. It isn’t clear
exactly what is the best metric to compare one TD network
learning algorithm to another; we will report the average er-
ror of the answer network vs. amount of data to learn that
model. This will illustrate both the speed of learning and
the relative error of the models that are learned. Average er-
ror of the answer network at timet is defined as the average
root mean-square error (RMSE) of all of the nodes in the
network. To evaluate the success of our algorithm, the er-
ror of an individual prediction is found by asking an oracle
what the unrolled answer to each question would be if the
node’s action sequence were performed from the current

time. This oracle is not used for anything other than eval-
uation. In each experiment, a variety of values were used
for the step size parametersα, and the results presented are
for whichever value ofα performed best. In general, if any
value ofα could solve the problem, then all values ofα that
we tried{.5, .25, .125, .0625} were able to solve the prob-
lem. Loweringα increased the amount of data required to
learn a solution of the same quality. In each of these exper-
iments, the initial weights in the answer network were set
uniformly,wij = 1

|x| . Each environment (discussed further
below) is started in the state whereot = 1.

The first experimental results (Figure 5) that we present are
for the 6-state cycle world in Figure 4 (Tanner & Sutton,
2005). The question network used for this experiment was
a chain of 5 predictions like that one in Figure 4. In pre-
vious work, we have reported that this problem cannot be
solved with TD(0) networks unless the input vectorx is
expanded to include recent history. We tested TD(λ) net-
works on this problem for a variety of values forλ.

1

0

0

0

Ot+1

y1

y2

y3

Cycle World Question Network

0

0 y4

y5

Figure 4. A counterexample for TD(0) network learning. On the
left is a representation of the cycle world. This environment has
six states that are cycled through deterministically. On the right
is the associated question network. There are no actions in this
world.

For all values ofλ > 0, the TD(λ) network learning al-
gorithm is able to find a solution. Asλ increases, the
amount of data required for learning decreases. A good
model (RMSE< .05) is found withλ = 1 in under 5 000
steps. To learn an equivalent model,λ = .75 requires 7 000
steps,λ = .5 requires 32 000 steps, andλ = .25 requires
189 000 steps.

Our second experimental domain is the n-state ring world
(Tanner & Sutton, 2005). The general structure of the ring
world is shown in Figure 6. This domain is more complex
than the cycle world because it has multiple actions. The

TD(λ) Networks : Temporal-Difference Networks with Eligibility Traces

0

0.15

0.3

0.45

1000 10000 100000 1000000

RMSE

Time Steps

λ=1 λ=.75
λ=.5

λ=.25

λ=0

Figure 5. Learning curves of our learning algorithm for various
values ofλ on the 6-state cycle world. This chart represents the
average RMSE over all of the nodes in the TD(λ) network as the
amount of data is increased. Each data point in this graph is the
average error of the network over 500 time steps. Note that the x-
axis (amount of data) is an exponential scale. The cycle world is
completely deterministic, so these results are for a single training
run.

actions used to generate experience for our experiments are
chosen randomly. The results from testing our algorithm
for various value ofλ on the 5-node and 8-node versions of
the ring world are shown in Figures 7 and 8 respectively.

It is important to experiment with the 5-state ring world to
investigate the effect ofλ on a problem that can be solved
with TD(λ = 0). For all of theλ > 0 values that were used,
RMSE< .05 was achieved in under 10 000 time steps. As
before, increasingλ reduced the amount of data that was
required to reach a the same error level. In the extreme
TD(0) case, the model will not reach RMSE< .05 until
over 150 000 time steps have passed.

The number of nodes in fully symmetric question networks
rises exponentially with the depth of the network, making
it quite costly to make longer predictions. Through ex-
perimentation, we have found a smaller question network
that can represent the ring world. This question network is
shown in Figure 6, and scales linearly with the number of
states in the ring. In this experiment, TD(0) could not find
a solution to the 8-state ring world in any of the configura-
tions that we tried. Although not shown, we continued the
experiment and even after ten million steps the TD(0) net-
works did not improve. TD(λ > 0) was able to solve this
problem for all values ofλ that we tried. Again, increasing
λ decreases the amount of data required by the algorithm.

Although not presented in detail here, we have seen simi-
lar improvements with TD(λ) vs TD(0) on other problems
such as the partially-observable random walk world and the
float-reset problem (Sutton & Tanner, 2005; Littman et al.,

1 Ot+1

y9

R

Ring World Question Network

y1

L

y10

R

y2

L

y16

R

y8

L

0

0

0

0

0

0
0

Figure 6. 8-state version of the ring world. On the left is a repre-
sentation of the ring world. One of the states has an observation
bit of 1, all of the others are 0. There are two actions in this
world, one that moves the agent clockwise (call it ‘right’ or just
R) and one that moves the agent counter-clockwise (’left’ or L).
The question network on the right side of this figure is a sparse
action conditional network that can represent a solution to this
world. This question network has 8 levels, at each level there is a
question about action L and a question about action R.

2002).

Complexity of the cycle and ring worlds

The domains we test in this work behave deterministically,
but have extreme state aliasing. It is conceivable that these
environments are trivial, and that our success is not en-
couraging. To test this theory, we have attempted to learn
POMDP models of these three environments using the EM
(Baum-Welch) algorithm.1

RMSE (amount of data)
Problem EM TD(1)

6 State Cycle .313 (10 000) .05 (5 000)
5 State Ring .37 (10 000) .05 (5 000)
8 State Ring .28 (250 000) .05 (125 000)

Table 1. RMSE of EM and TD(1) algorithm on the 6-state cycle,
5-state ring, and 8-state ring worlds. Error is calculated by com-
paring the learned POMDP observation predictions to the true
probabilities over a 1000 step test sequence.

For each domain, we provided EM with the correct number
of nominal states and ran 100 trials of 20 iterations each.
In each case we provided the EM algorithm with more data
than the TD(1) learning algorithm required. In Table 1 we
compare the minimum RMSE error achieved of any of the
100 trials with the EM algorithm to our TD(1) results. The

1Code graciously provided for us by James et al. who modified
code from Murphy (Wolfe et al., 2005; Murphy, 2004).

TD(λ) Networks : Temporal-Difference Networks with Eligibility Traces

0

0.15

0.3

0.45

500 10500 20500 30500 40500

λ=0

λ=.25

λ=.5

λ=1

λ=.75

Time Steps

RMSE

Figure 7. Learning curves of our algorithm for various values ofλ
on the 5-state ring world. This chart represents the average RMSE
over all of the nodes in the TD(λ) network. The question network
used is of the form seen in Figure 1, a full, symmetric, action-
conditional question network with depthd = 3. Each data point
in this graph is the average error of the network over 500 time
steps. These results are the average of 50 trials.

TD network model does considerably better than the model
learned with EM in all cases. The results strongly suggest
that the cycle and ring worlds we have used are not trivial.
Note that very little time was spent tuning the parameters
of the EM algorithm; these results are not meant in any way
to suggest TD networks are superior or inferior to learning
POMDPs with EM.

5. The Cost ofλ

The benefits that are gained by using TD(λ) over TD(0)
must come at a cost. In our algorithm, memory and com-
putation resource usage grows at approximately the same
rate, we will refer to them collectively as “cost”. In this
section, we will consider two different families of question
network that hilight the additional cost of TD(λ) networks
over TD(0) networks.

First, consider an unconditioned question network like the
one shown in Figure 4, but of an arbitrary depth,d. We will
call this the “chain” question network. Second, consider
an action-conditional question network like that in Figure
1, but with arbitrary branching factor (number of actions) b
and depth d. We call this the “tree” question network.

The largest computational cost of either algorithm is the
number of weight updates that are performed at each time
step. Other book-keeping costs are negligible and are not
included in our analysis.

With an unconditional “chain” question network, the num-
ber of updates for TD(λ) at each step will bed(d+1)

2 where
d is the depth of the chain. In a TD(0) network of the same

0

0.2

0.4

5 255 505 755 1005 1255

RMSE

Time Steps (x 1000)

λ=1

λ=0

λ=.25
λ=.5

λ=.75

λ=.9

Figure 8. Learning curves of our algorithm for various values of
λ on the 8-state ring world. The question network used is of the
form in Figure 6 with depthd = 8. This chart represents the
average RMSE over all of the nodes in the TD(λ) network. Each
data point in this graph is the average error of the network over
5000 time steps. These results are the average of 50 trials.

depth, the number of updates at each step isd. The ratio of
the cost of TD(λ) over TD(0) gives us a measure of the fac-
tor of additional cost of TD(λ). This additional cost factor
is:

Computation(TD(λ))
Computation(TD(0))

=
d(d + 1)

2d
=

d + 1
2

This is an upper bound on the additional cost that will be
incurred by TD(λ) networks for anysingle-targetquestion
network. Note that this is a degenerate case, where the
length of the longest question is equal to the number of
nodes in the network, and every prediction always has a tar-
get. In practice, we will ask a variety of action-conditional
questions of different lengths, and they will not always have
an answer. For this reason, our primary interest is not the
“chain” network, it is the “tree” question network. We have
derived that the factor of additional work in this case is:

Computation(TD(λ))
Computation(TD(0))

=
b

b− 1
− d

bd − 1

whereb is the number of actions andd is the depth of the
question network. This equation holds as long asb > 1 and
d >= 1. Whenb = 2, this ratio quickly rises from 1.0 at
d = 1 to 2.0 as the depth of the network increases. In the
other dimension, asb increases, this ratio quickly goes to
1.0 + ε, a negligible amount of extra work.

In future applications of TD(λ) networks, we expect that a
variety of question networks will be used. The topology of
these networks (on average) will fall somewhere between
the question networks that we have discussed above. In

TD(λ) Networks : Temporal-Difference Networks with Eligibility Traces

practice, when the question network is not a full tree, the
number of node updates per step will depend on the policy
being followed. For example, in some of our ring world ex-
periments, we used a network withd = 8 which had only
16 nodes. In this case, our formulae above predict that for
d = 8, the number of node updates will be 16 for a symmet-
ric tree and 36 for a chain network. In our experience the
average number of node updates per step for this question
network is 14.5, less than either of our estimates.

We propose one modification to our algorithm that would
mitigate the additional cost of TD(λ) (if required) in degen-
erate cases. In our algorithm, the targetvi

t is based on the
full parental hierarchy of the prediction, right up to the ob-
servation bit. One simple change to the algorithm could cut
off these traces after they have used some bounded number
of targets. This “bounded lookahead” parameter would al-
low the number of updates per step to be tuned betweend

and d(d+1)
2 easily to suit any particular situation.

6. Conclusions

In all of the experiments we have run, TD(λ) networks with
λ > 0 have learned faster than withλ = 0. This is strong
evidence that our generalized TD(λ) network learning al-
gorithm is an improvement over the existing TD(0) learn-
ing algorithm. TD(λ) networks have also solved problems
that were not solvable with the TD(0) learning algorithm.
We believe that these problems are solvable because the
multi-step backups of the TD(λ) learning algorithm help
eliminate information flow dependencies between the ques-
tion and answer networks. The cost of the TD(λ) network
learning algorithm is less than twice that of the TD(0) al-
gorithm for the types of questions that are important to rep-
resent a model of a controlled dynamical system (action-
conditional questions). For some other question networks
(the chain network) the additional cost is larger, but with
simple techniques such as adding a bounded lookahead pa-
rameter we can easily control this cost.

In the conventional TD(λ) learning algorithm, no single
value ofλ is always best. It is surprising that our exper-
iments suggestλ = 1 is better than any other value forλ.
This disparity may be related to the class of problems that
we are using, partially-observable (non-Markov) environ-
ments. In reinforcement learning, the value ofλ can be
thought of as a parameter to specify a mixture of TD and
Monte Carlo backups. TD is more data efficient and re-
quires less computation while Monte Carlo is more robust
in non-Markov environments. In our previous work we re-
ported that TD(0) backups were better than Monte Carlo
backups for TD network learning in certain Markov envi-
ronments (Sutton & Tanner, 2005). In our TD(λ) work, we
have only considered partially-observable environments, a
situation that favors Monte Carlo or TD(1) backups. It is

intuitive that in this case, learning favors higher values of
λ.

Acknowledgments

The authors gratefully acknowledge the ideas and encour-
agement they have received in this work from Satinder
Singh, Doina Precup, Michael Littman, Mark Ring, Eddie
Rafols, David Silver, Peter McCracken and all the mem-
bers of the rlai.net group. Special thanks to Britton Wolfe,
Michael James and Satinder Singh for sharing their EM
code for POMDP learning. This work was supported in
part by NSERC and iCORE.

References

Boyan, J. A. (2002). Technical update: Least-squares tem-
poral difference learning.Machine Learning, 233–246.

Jaeger, H. (1998).Discrete-time, discrete-valued observ-
able operator models: a tutorial(Technical Report).
German National Research Center for Information Tech-
nology.

Littman, M., Sutton, R. S., & Singh, S. (2002). Predictive
representations of state.Advances in Neural Information
Processing Systems 14. Cambridge, MA: MIT Press.

Murphy, K. (2004). Hidden markov model (hmm)
toolkit for matlab. http://www.cs.ubc.ca/ mur-
phyk/software/hmm/hmm.html.

Rivest, R. L., & Schapire, R. E. (1990). A new approach
to unsupervised learning in deterministic environments.
Machine learning: an artificial intelligence approach
volume III, 670–684.

Singh, S., James, M. R., & Rudary, M. R. (2004). Predic-
tive state representations: A new theory for modeling dy-
namical systems.Uncertainty in Artificial Intelligence:
Proceedings of the Twentieth Conference(pp. 512–519).

Sutton, R. S. (1988). Learning to predict by the methods of
temporal differences.Machine Learning, 3, 9–44.

Sutton, R. S., & Tanner, B. (2005). Temporal-difference
networks. Advances in Neural Information Processing
Systems 17(pp. 1377–1384). Cambridge, MA: MIT
Press.

Tanner, B., & Sutton, R. S. (2005). Temporal-difference
networks with history. Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence.

Wolfe, B., James, M. R., & Singh, S. (2005). Learning pre-
dictive state representations in dynamical systems with-
out reset.Proceedings of the 22nd International Confer-
ence on Machine Learning (ICML 2005).

