TD()\) Networks:
Temporal-Difference Networks with Eligibility Traces

Brian Tanner BTANNER@CS.UALBERTA.CA
Richard S. Sutton SUTTON@CS.UALBERTA.CA

Reinforcement Learning and Artificial Intelligence Laboratory, University of Alberta, Canada

Abstract

Temporal-difference (TD) networks have been
introduced as a formalism for expressing and
learning grounded world knowledge in a predic-
tive form (Sutton & Tanner, 2005). Like con-
ventional TD(0) methods, the learning algorithm
for TD networks uses 1-step backups to train
prediction units about future events. In conven-
tional TD learning, the TDX) algorithm is often
used to do more general multi-step backups of
future predictions. In our work, we introduce a
generalization of the 1-step TD network speci-
fication that is based on the TB)Y learning al-
gorithm, creating TDX) networks. We present
experimental results that show TH(networks
can learn solutions in more complex environ-
ments than TD networks. We also show that in
problems that can be solved by TD networks,
TD(A) networks generally learn solutions much
faster than their 1-step counterparts. Finally, we
present an analysis of our algorithm that shows
that the computational cost of TDY networks is
only slightly more than that of TD networks.

2004).

Predictive representations represent the state of a dynami-
cal system as a vector of predictions about future action—
observation sequences. The hypothesis that important
knowledge about the world can be represented strictly in
terms of predictions of relationships between observable
guantities is a novel idea that distinguishes predictive rep-
resentations from other approachesptedictive state rep-
resentationdPSRs) introduced by Littman et al. (2002),
each prediction is an estimate of the probability of some
sequence of observations given a sequence of actions. TD
networks generalize PSRs; in TD networks each prediction
is an estimate of the probability or expected value of some
function of future predictions and observations. The pre-
dictions are thought of as “answers” to a set of “questions”
represented within the TD network.

The essential idea of TD learning can be described as learn-
ing a guess from a guess. Before TD networks, the two
guesses involved were predictions of the same quantity at
two points in time, for example, of the discounted future
reward at successive time steps. TD networks generalize
TD methods by allowing the second guess to be different
from the first. The current TD network learning algorithm
uses 1-step backups; the target for a prediction comes from

the subsequent time step. In conventional TD learning,

Temporal-difference (TD) networks are a formalism for ex- .)
P (TD) g_he TD(\) algorithm is often used to do more general, n-

pressing and learning grounded knowledge about dynam

cal systems (Sutton & Tanner, 2005). TD networks are on tepkbackups. Rather:tth dan asingle :‘(uftutre predlgfu?_n, n-step
approach that can be used to learn a predictive repres;entt ac lt”]fs Ll'se a_welgs tet avfézgge OT uture plrle ctions as a
tion of state (Littman et al., 2002; Jaeger, 1998; Rivest & arget for learning (Sutton,). TEis really a spec-

Schapire, 1990). Predictive representations are one of sedd™M ?f ?\Igorghlms,T%or)l\t_rglled by me conlt_lnutous V"?‘tl)lljed ba-
eral approaches to learning generative models of dynamic:S.m.e er eh[1. E‘ _I) uses eht_alar_lres 1p055| er|]ore—
systems that can be used for planning and/or reinforceme ction as the target for learning while TBX1) uses the

learning. Predictive representations can be learned frorJr‘?‘t(aSt possible prediction as the target. For other values of

data (Wolfe et al., 2005), and have been shown to havé" the targets for learning are distributed among all of the
richer representational power than competing approache%red'Ctlons along the way.

like POMDPs anch!"*-order Markov models (Singh et al., A worthwhile contribution to the work on predictive rep-
resentations would be a least-squares algorithm for learn-
ing TD networks similar to LSTD (Boyan, 2002). We feel
that TD networks are still not well understood and that

Appearing inProceedings of th&2™¢ International Conference
on Machine LearningBonn, Germany, 2005. Copyright 2005 by
the author(s)/owner(s).

TD()\) Networks : Temporal-Difference Networks with Eligibility Traces

the TD(\) algorithm still remains of widespread interest, what is the probability that the next observatign; will
leaving LSTD networks an interesting possibility for future be 1?” Similarly, the question asked by the node labgfed
work. at timet is “If the next action isa2, what is the expected

- . o
In this work, we present an extension to the TD networkValue of the prediction from nodg’ at imet + 1°

learning algorithm that uses n-step backups of future preEach node in a TD network can be thought of as a func-
dictions and observations. We call our approachX)t- tion approximator. The inputs to each node is defined by
works. In this work we show that TDJ networks gener- a set of interconnections called thaswer network The
alize the previous approach; that the TD network specifiprediction made by each node is a function of these in-
cation is identical to a TD(=0) network. From this point put features. These predictions provide the answers to the
forward, we refer to both 1-step and n-step TD networksquestions asked by the question network.

simply as TD networks. When the distinction is impor-
tant, we will refer to the previous specification as TD(0)
networks and our new specification as Tpfetworks.

In Section 1 we review the TD(0) networks specification.
We present and discuss the new learning algorithm in Sec-
tions 2 and 3 respectively. In Section 4 we compare the
performance of TDX) networks for various values of,
including TD(\=0) networks. In Section 5 we have in-
cluded a detailed cost analysis of our implementation the
algorithm. Finally, we conclude and discuss our results in
Section 6.

Figure 1. Symmetric action-conditional question network. The
1. TD Networks network forms a symmetric tree, with a branching factor equal
|A|. This example has depth= 4. Some of the labels have been
We present a brief review of the details of TD networks eft out of this diagram for clarity, each of these nodes should have
here, for further details please consult the original TD net-a labely® and each is conditioned on some action.
works paper (Sutton & Tanner, 2005).

TD networks learn to predict future observations that will Formally, the prediction for nodeat time steg is denoted
t €[0,1],% = 1,...,n. The column vector of predic-

be generated by their environment (a dynamical system)"?syt | 7
At each of a series of discrete time stepshe environ- UONSY: = (¥, .-, y1")" is updated by:
ment generates an observatigne O, and the agent takes
an actiona; € A. The action and observation events oc-
Cur in sequenceg;_i, 0, G, Ot+1, Grr1, Orr2, With each
event potentially dependent only on those preceding i
in the sequence. This sequence will be calegeri- 1

ence In this work, we will use the TD networks to pre- o(5) = Tye==-

dict action-conditional functions of future experience in The feature vector is a function of the preceding action,
partially-observable environments. Throughout this papebbservation, and node values.

we consider the observation to be a single bit, either O or 1.

In general, with more observations, can be represented Xt = X(at—1,0t,Y,_1) € R 2

as a vector of bits.

Y, = o (WiXt) 1)

Wherext € R™ is a feature vectolW, is an x m matrix of
modifiable weights, and is the S-shaped logistic function

In our experimentsy, has one component for each unique

A TD network is a network of nodes each of which rep- ombination of the current observation and previous action
resents a single scalar prediction. Each node has links ';f) inatl u vatl previou '

other nodes and/or the observation from the environment® '© of which isl, the rest0), .al’.ldn continuous valued
These links represent the targets for learning — what thgomponents equal to the predictios ;.

node should predict. Each of these nodes is some que§rom this description, the operation of the question and
tion about the system, and accordingly this set of nodeanswer network may not be completely clear. At a high
and links is called thguestion network level, the operation of a TD network can be explained in

Figure 1 is an example of the type of question network Weﬂve steps:

use in this paper. In this example, the question being asked

by the node labeleg! at timet is “If the next action is:1, 1. Choose an action;_; and receive an observation
from the environmeng,

TD()\) Networks : Temporal-Difference Networks with Eligibility Traces

2. Calculate the input vectog; as a function of the pre- attimet has a TD target that may become available at time
vious predictiony,_,, the action just takea;_;, and ¢ + 1. This TD target may itself be a prediction of some
the new observatioo, other value that will be available at timer 2. In this case

it is possible to “unroll” the first prediction, to ask a ques-

tion at timet about an event at time}-2. A question can be

4. Calculate the targets_, for the previous predictions Unrolled step by step until it is asking a question about the
y,_, usingy, and the observatios, according to the data, the observation bit. Each prediction made at tise

question network’s links and the action conditions indirectly predicting several events at different moments in
time and therefore has a different target for each moment.

3. Create the new predictions = o (W X;)

5. Update the weightd” according toz;—; —y,_;)

t t+1 t+2 t+3 t+4 t+5

We turn our attention back to the question network. In the
most general case, the definition of a question is very loose; ° ° ° °
guestions can be any function of future predictions or ob-
servations. In this paper we consider the special case of
guestion network in which each nodéhas a single tar-
get, either some other prediction or the observation at the
next time step. We call this type of question network a
single-targetquestion network. This special case includes
all question networks that have been considered in previous
work. We refer to the target of nodes the “parent” of or

p(i). The later parents of node {p(p(7)), p(p(p(3))), ...}
are written in the short fornp? (i), p3(4), ...}

In Figure 1 the parent of Node 9 is Node #9) = 4.
The parent of Node 4 is Node 2(@) = 1), sop(p(9)) =
p?(9) = 4. The third parent of Node % (p(p(9)))
p3(9) = o, the observation bit.

Figure 2. Extended target flow diagram for nodgk 4,9} of ques-

tion network in Figure 1. The links in this diagram show the flow
of target values back toward the original predictions. The solid
links are the 1-step TD targets for these predictions. The dashed

Formally, the target for nodeis z*: links are a sample of the unrolled multi-step targets. We have left
out the action-condition labeling on the dashed links to reduce the
o — yffrl) orog4q If c; =1 3) clutter.
' Yy if ¢ =0

Using the parent functiom(:), the relationship between
whereaq; is the next action, and, € {0, 1} corresponds to targets follows the structure of the question network. The
whether the action condition fof was met at time. first target fory: comes directly from the 1-step TD rela-
tionship in the question network, and is simplyy The

ij i ; .
Each component;” of W is updated by the learning rule: second target is recursively defined, it is the next tar-

y dy get of the parent of node z, +’1) Following this pro-
wiy —w? = a2} - yi) Dl (4) cess, we can derive & step sequence of targets fof:
t p(i) _p*(9) pFT(E)

2120405 e s 21 » Wherep® (i) is the observation
whereq is a step-size parameter. Notice thatif= 0, then bit.

i 20 wi . .
the error(y; — y;) will be zero. In order to keep notation a simple as we can, for the follow-

In this paper we analyze this learning rule directly so it ising section we will consider a single nodeand a single
useful to simplify it as much as possible. starting time step. Under these conditions, the first tar-
et of a prediction can be written ag0). The subsequent

Using the prediction update equation from Equation 1, th argets are (1), 2(2), 2(3), ..., 2(k — 1),

exact weight update rule is:
To make this concrete, consider the prediction néde

Awf = a(zi —yh)yi(1 — yb)a] (5) Figures 1 and 2. In this case(0) = vy}, 2(1) = yi,.,
andz(2) = o;+3. Although each target in this sequence
2. TD()\) Networks is a prediction of the same evemt, 5, each was calculated

using different information. Our intuition is that the targets
The target function described in Equation 3 is only cor-generated later in time may sometimes be more accurate
rect for single-step TD(0) updates. Each prediction madé¢han the earlier targets. Some combination of the targets

TD()\) Networks : Temporal-Difference Networks with Eligibility Traces

from this sequence may then be better than any particular 17races — {}

single target in the sequence. fort=0toT do
newTraces — {}

While the conditions of the predictions match the experi- a — chooseAction()

ence of the agent, this sequence of targets is available and getObservation(a)
valid. If the agent’s experience diverges from the condi- 2 — 2(a,0,yi—1)

tions of the question network, no further updates are per- yr — o (Wxy)

formed. If multiple targets become available, we can imag- for (i, k) € Traces do

ine using any (or all) of these targets for learning. As with if checkCondition(pt~*~1(i),a) == TRUE
TD()), we propose an exponentially weighted average of then
these targets. The multi-step weighted target for prediction if p'=% (i) # observation then
y; is denoted as;, where: 2y [pt R ()]
else
Z <=0
Z Az(n)) + AFz(k—1) (6) end if

P Yo [pF(9)]
for w? € W{i] do .
w/+ = a(z — p)p(1 — p)zg At —F1
end for
if p'=% (i) # observation then
newTraces — newTraces U (i, k)

The one-step target is given the largest weight \), the
two-step target is giveil — A)J, the three-step target is
given (1 — M\)\2, etc. The last item in this sequence will
receive all of the remaining weighk).

Ideally, we would like to use the blended targétin an end if
update rule such as: end if
end for
Awy = a(v] — yi)yi(1 - y)a? (7 fori € ydo
newTraces — newTraces U (i,1)
end for

We desire an online, incremental algorithm where the value
of vy will not be available at time¢. We can use some stan-
dard (and novel) tricks to implement this learning rule in-

crementally using a variation of eligibility traces.as with Figure 3. Pseudo-code for TD\) learning algorithm. The algo-
TD(}). Pseudo-code for our TR networks learning al- ithm uses a boolean functiameckCondition(i, a) which will

gorithm is in Figure 3. The weight update rule in this algo- return true if the actiom is consistent with the action condition
rithm achieves the behavior of Equation 7 using incremenof nodei, and false otherwise.

tal updates of successive targets.

Traces < newTraces
end for

Because the predictions made within TD networks are of

different events, implementing eligibility traces is not asIf A = 0, the first target of a prediction will get weigt =
simple as with conventional TDJ. Each predictiony! 1, meaning that this first target will get the full weight of the
needs its own eligibility trace. This makes our algorithm update. For subsequent targéfs;*~! = 0 resulting in the

slightly more complicated than traditional TE)(update having no effect. This behavior is exactly the same
as the previous 1-step TD network learning algorithm.
3. TD(\) Algorithm Discussion If A = 1, each target available gets the full weight of

the update, becausé = 1. Each subsequent temporal-

In a nutshell, our algorithm keeps a record of predictions dn‘ference effectively overwrites the update made by the

and whether the conditions of the unrolled definition of
those predictions are consistent with later experience of
the agent. At each time step, new targets become availab
for past predictions. By combining the temporal-difference
Y, — ¥,_, Wwith historic information about the inputs to the
answer networkx;_), the weight vectoiW is updated
(scaled byA*—*~1) towards the new target to improve the
past predictiory,_,.

et receives the full weight of the update and the interme-
iate targets receive no weight. If the prediction’s condi-
tions match exactly with the stream of experience, all of
the weight will go to the grounded, unrolled target. If the
stream of experience diverges from the conditions of the
prediction, the weight of the update will go to some inter-
mediate TD target. This behavior is analogous to a Monte
This algorithm has some interesting properties, controlledCarlo style of update, with one important difference. In a
by the particular value of that is used. Monte Carlo approach, an update would only occur if the

TD()\) Networks : Temporal-Difference Networks with Eligibility Traces

conditions of the completely unrolled definition of a pre- time. This oracle is not used for anything other than eval-
diction were met. This would mean that nodes at deepeuation. In each experiment, a variety of values were used
depths would be exponentially less likely to receive up-for the step size parametersand the results presented are
dates, because the exact sequence of the conditions woulor whichever value of performed best. In general, if any
be less likely to occur. With TD(1), these predictions will value ofa could solve the problem, then all valuesothat
always receive an update as long as their first condition isve tried{.5, .25, .125, .062bwere able to solve the prob-
met, using more of the available data. lem. Loweringa increased the amount of data required to
learn a solution of the same quality. In each of these exper-

Finally, if an intermediate value ok is used, then the iments, the initial weights in the answer network were set
weight of the updates are divided among the targets thal " ' g

become available. The remainder of the weight will alwaysumform.ly’ Wij = Wll Each environment (discussed further
be assigned to the final available target. below) is started in the state whesg= 1.

The first experimental results (Figure 5) that we present are
4. The effect of)\ in TD networks for the 6-state cycle world in Figure 4 (Tanner & Sutton,

2005). The question network used for this experiment was
There are certain partially-observable environments for chain of 5 predictions like that one in Figure 4. In pre-
which a TD network solution exists, but the TD(0) learn- vious work, we have reported that this problem cannot be
ing algorithm cannot find it (Tanner & Sutton, 2005). The solved with TD(0) networks unless the input veciois
recursive nature of TD networks allow the occurrence of in-expanded to include recent history. We tested N)Diet-
formation flow dependencies between the question and amworks on this problem for a variety of values for
swer networks. When the predictigf critically depends
on an input feature in; that corresponds tg/_,, and the
targetz-z_1 depends op}, a “chicken or egg” type dilemma
can occur. The TD(0) solution to this problem that we have
previously proposed is to augment the input vestby in-
cluding recent actions and observations in addition to the
immediately previous action and observation. This recent
history allows the TD(0) learning algorithm to solve prob-
lems that could not be solved without history. History also
allows the TD(0) learning algorithm to solve existing prob-
lems faster than before.

ot+ 1

Our hypothesis is that for some values’of- 0, the TD(\) 0
network learning algorithm can solve this information flow e
dependency problem without adding additional informa-

tion to the input vector. Cycle World Question Network

These two distinct approaches are both trying to solve the

same general problem, allowing TD networks to modelFigure 4. A counterexample for TD(0) network learning. On the
more complex dynamical systems. Although we do not redeft is a representation of the cycle world. This environment has
port results here, we expect that these two techniques caix states that are cycled through deterministically. On the right

be combined to solve even more difficult problems. is the associated question network. There are no actions in this
world.

9.0,0,0,0:0

In this work we report the results of comparing our P(

networks to TD(0) networks in three domains. Itisn’t clear .

exactly what is the best metric to compare one TD network0r all values ofA > 0, the TD(\) network learning al-
learning algorithm to another; we will report the average er-90rithm is able to find a solution. As increases, the
ror of the answer network vs. amount of data to learn tha@Mount of data required for leaming decreases. A good
model. This will illustrate both the speed of learning andModel (RMSE< .05) is found withA = 1 in under 5 000
the relative error of the models that are learned. Average eft€Ps. Toleam an equivalent modek= .75 requires 7 000

ror of the answer network at tintés defined as the average S€PSA = .5 requires 32 000 steps, and= .25 requires
root mean-square error (RMSE) of all of the nodes in thel89 000 steps.

network. To evaluate the success of our algorithm, the erour second experimental domain is the n-state ring world
ror of an individual prediction is found by asking an oracle (Tanner & Sutton, 2005). The general structure of the ring
what the unrolled answer to each question would be if thQNo”d is shown in Figure 6. This domain is more Comp|ex
node’s action sequence were performed from the currenhan the cycle world because it has multiple actions. The

TD()\) Networks : Temporal-Difference Networks with Eligibility Traces

0.45 -

Ring World Question Network

RMSE

0.3 1

0.15 A

100000 1000000

Time Steps

1000 10000

Figure 5. Learning curves of our learning algorithm for various Figure 6. 8-state version of the ring world. On the left is a repre-
values of on the 6-state cycle world. This chart represents theSentation of the ring world. One of the states has an observation
average RMSE over all of the nodes in the TPgetwork as the bit of 1, all of the others are 0. There are two actions in this
amount of data is increased. Each data point in this graph is th@0rld, one that moves the agent clockwise (call it ‘right’ or just
average error of the network over 500 time steps. Note that the x) @nd one that moves the agent counter-clockwise (left' or L).
axis (amount of data) is an exponential scale. The cycle world s '€ question network on the right side of this figure is a sparse

completely deterministic, so these results are for a single trainingction conditional network that can represent a solution to this
run. world. This question network has 8 levels, at each level there is a

question about action L and a question about action R.

actions used to generate experience for our experiments are

chosen randomly. The results from testing our algorithmzooz)'

for various value of on the 5-node and 8-node versions of

the ring world are shown in Figures 7 and 8 respectively. Complexity of the cycle and ring worlds

It is important to experiment with the 5-state ring world to The domains we test in this work behave deterministically,

investigate the effect of on a problem that can be solved but have extreme state aliasing. It is conceivable that these
with TD(\ = 0). For all of theX > 0 values that were used, €nvironments are trivial, and that our success is not en-
RMSE < .05 was achieved in under 10 000 time steps. Ascouraging. To test this theory, we have attempted to learn
before, increasing reduced the amount of data that was POMDP models of these three environments using the EM
required to reach a the same error level. In the extreméBaum-Welch) algorithnt.

TD(0) case, the model will not reach RMSE .05 until

over 150 000 time steps have passed. RMSE (amount of data)

))) Problem EM TD(1)
The number of nodes in fully symmetric question networks 6 State Cycle| .313 (10 000)| .05 (5 000)
rises exponentially with the depth of the network, making 5 State Ring| .37 (10 000) | .05 (5 000)
it quite costly to make longer predictions. Through ex- 8 State Ring | .28 (250 000)| .05 (125 000)

perimentation, we have found a smaller question network
that can represent the ring world. This question network isppje 1. RMSE of EM and TD(1) algorithm on the 6-state cycle,
shown in Figure 6, and scales linearly with the number ofs_state ring, and 8-state ring worlds. Error is calculated by com-
states in the ring. In this experiment, TD(0) could not find paring the learned POMDP observation predictions to the true
a solution to the 8-state ring world in any of the configura-probabilities over a 1000 step test sequence.

tions that we tried. Although not shown, we continued the

experiment and even after ten million steps the TD(0) net+or each domain, we provided EM with the correct number
works did not improve. TD{ > 0) was able to solve this of nominal states and ran 100 trials of 20 iterations each.
problem for all values oh that we tried. Again, increasing In each case we provided the EM algorithm with more data
A decreases the amount of data required by the algorithmthan the TD(1) learning algorithm required. In Table 1 we

Although not presented in detail here, we have seen simicompare the minimum RMSE error achieved of any of the

lar improvements with TDX) vs TD(0) on other problems 100 trials with the EM algorithm to our TD(1) results. The
Such as the partially-observable random Wa.lk WOI’|d and the 1C0de gracious|y provided for us by James et al. who modified
float-reset problem (Sutton & Tanner, 2005; Littman et al.,code from Murphy (Wolfe et al., 2005; Murphy, 2004).

TD()\) Networks : Temporal-Difference Networks with Eligibility Traces

0.45
0.4
RMSE |} 220
031\ RMSE
A=.25
0.2 1
0.15
0 : : : : : ‘ ‘ ‘
500 10500 20500 30500 40500 .
Time Steps 5 255 505 755 1005 1255

Time Steps (x 1000)
Figure 7. Learning curves of our algorithm for various values\of

on the 5-state ring world. This chart represents the average RMSII; s L . f lqorithm f . | f
over all of the nodes in the TDJ network. The question network)\Igur‘:h : 8eatrr1|ng_ curvesk;) _?Er a gorlt_ m o;\;llarll(ous \:ja_ues% ?h
used is of the form seen in Figure 1, a full, symmetric, action- on the o-stale ring world. the question network used IS of the

conditional question network with depth= 3. Each data point form in FFIegl\;ljrSeEe with Itlje?tt:i - 3 Th'tsh d];rt rit\)/rels(enEts t:e
in this graph is the average error of the network over 500 time2Verage RVISE over af ot the nodes in the boetwork. Eac
steps. These results are the average of 50 trials. data point in this graph is the average error of the network over

5000 time steps. These results are the average of 50 trials.

TD network model does considerably better than the modediepth, the number of updates at each step Ehe ratio of
learned with EM in _aII cases. The results strongly suggesthe cost of TD4) over TD(0) gives us a measure of the fac-
that the cycle and ring worlds we have used are not trivialtor of additional cost of TDX). This additional cost factor
Note that very little time was spent tuning the parametergs:

of the EM algorithm; these results are not meant in any way .

to suggest TD networks are superior or inferior to learning Computation(TD(Y)) _ dd+1) _d+1

POMDPs with EM. Computation(T'D(0)) 2d 2

This is an upper bound on the additional cost that will be
5. The Cost of\ incurred by TDQ) networks for anysingle-targetquestion

))) network. Note that this is a degenerate case, where the
The benefits that are gained by using Rpover TD(0) |ength of the longest question is equal to the number of

must come at a cost. In our algorithm, memory and comy,,qes jn the network, and every prediction always has a tar-

putation resource usage grows at approximately the samg. | practice, we will ask a variety of action-conditional

rate, we will r_efer to them col!ectlvely as ‘fCOSt"- In th's questions of different lengths, and they will not always have
section, we will consider two different families of question 5 snswer. For this reason, our primary interest is not the

network that hilight the additional cost of TR networks «-nain” network. it is the “tree” question network. We have
over TD(0) networks. derived that the factor of additional work in this case is:

First, consider an unconditioned question network like the Computation(TD(\)) b d
one shown in Figure 4, but of an arbitrary depth\We will - = T g
call this the “chain” question network. Second, consider Computation(TD(0)) ~ b—1 b'—1
an action-conditional question network like that in Figure

1, but with arbitrary branching factor (number of actions) bwhere;b s the numbe_r of acti(_)ns antlis the depth of the
and depth d. We call this the “tree” question network. question network. This equation holds as long as1 and
d >= 1. Whenb = 2, this ratio quickly rises from 1.0 at

The largest computational cost of either algorithm is thed = 1 to 2.0 as the depth of the network increases. In the
number of weight updates that are performed at each timether dimension, as increases, this ratio quickly goes to
step. Other book-keeping costs are negligible and are nat.0 + ¢, a negligible amount of extra work.

included in our analysis.

In future applications of TDX) networks, we expect that a
With an unconditional “chain” question network, the num- variety of question networks will be used. The topology of
ber of updates for TDY) at each step will bé@ where these networks (on average) will fall somewhere between
d is the depth of the chain. In a TD(0) network of the samethe question networks that we have discussed above. In

TD()\) Networks : Temporal-Difference Networks with Eligibility Traces

practice, when the question network is not a full tree, theintuitive that in this case, learning favors higher values of
number of node updates per step will depend on the policy.

being followed. For example, in some of our ring world ex-

periments, we used a network with= 8 which had only Acknowledgments

16 nodes. In this case, our formulae above predict that for)
d = 8, the number of node updates will be 16 for asymmet-The authors gratefully acknowledge the ideas and encour-

ric tree and 36 for a chain network. In our experience the?9ement they have received in this work from Satinder

average number of node updates per step for this question"dh, Doina Precup, Michael Littman, Mark Ring, Eddie
network is 14.5. less than either of our estimates. Rafols, David Silver, Peter McCracken and all the mem-

o _ bers of the rlai.net group. Special thanks to Britton Wolfe,
We propose one modification to our algorithm that wouldMichael James and Satinder Singh for sharing their EM

mitigate the additional cost of T (if required) in degen- code for POMDP learning. This work was supported in
erate cases. In our algorithm, the targets based on the part by NSERC and iCORE.

full parental hierarchy of the prediction, right up to the ob-
servation bit. One simple change to the algorithm could cu
off these traces after they have used some bounded numbe
of targets. This “bounded lookahead” parameter would alBoyan, J. A. (2002). Technical update: Least-squares tem-
low the number of updates per step to be tuned betwleen poral difference learninglachine Learning233-246.

and@ easily to suit any particular situation.

eferences

Jaeger, H. (1998)Discrete-time, discrete-valued observ-
) able operator models: a tutoria(Technical Report).
6. Conclusions German National Research Center for Information Tech-

In all of the experiments we have run, TDhetworks with nology.

A > 0 have learned faster than with= 0. This is strong Littman, M., Sutton, R. S., & Singh, S. (2002). Predictive
evidence that our generalized TH(network learning al- representations of statAdvances in Neural Information

gorithm is an improvement over the existing TD(0) learn- Processing Systems.1@ambridge, MA: MIT Press.

ing algorithm. TD@) networks have also solved problems)

that were not solvable with the TD(0) learning algorithm. Murphy, K. (2004). Hidden markov model (hmm)
We believe that these problems are solvable because the©0Clkit for matlab. http:/www.cs.ubc.ca/ mur-

multi-step backups of the TR learning algorithm help ~ Phyk/software/lhmm/hmm.html.

eliminate information flow dependencies between the quesRjvest, R. L., & Schapire, R. E. (1990). A new approach
tion and answer networks. The cost of the Rpetwork to unsupervised learning in deterministic environments.

learning algorithm is less than twice that of the TD(0) al- machine learning: an artificial intelligence approach
gorithm for the types of questions that are importantto rep- yolume 11|, 670—684.

resent a model of a controlled dynamical system (action- _
conditional questions). For some other question network$ingh, S., James, M. R., & Rudary, M. R. (2004). Predic-
(the chain network) the additional cost is larger, but with ~ tive state representations: A new theory for modeling dy-

simple techniques such as adding a bounded lookahead pa-namical systemsUncertainty in Artificial Intelligence:
rameter we can eas"y control this cost. Proceed|ngs of the Twentieth Conferel(lpp. 512—519)

In the conventional TDX) learning algorithm, no single Sutton, R. S. (1988). Learning to predict by the methods of
value of \ is always best. It is surprising that our exper- temporal differencesMachine Learning3, 9-44.

iments suggest = 1 is better than any other value far oy R 5. & Tanner, B. (2005). Temporal-difference
This disparity may be related to the class of problems that networks. Advances in Neural Information Processing

we are using, partially-observable (non-Markov) environ- Systems 17pp. 1377-1384). Cambridge, MA: MIT
ments. In reinforcement learning, the valueotan be Press ' ' ' '

thought of as a parameter to specify a mixture of TD and

Monte Carlo backups. TD is more data efficient and re-Tanner, B., & Sutton, R. S. (2005). Temporal-difference
quires less computation while Monte Carlo is more robust networks with history. Proceedings of the Nineteenth
in non-Markov environments. In our previous work we re- International Joint Conference on Atrtificial Intelligence

ported that TD(0) backups were better than Monte Carl . .
backups for TD network learning in certain Markov envi-cWOl_fe'_ B., James, M.R., & _Slngh, S, (200.5)' Learning pre-
dictive state representations in dynamical systems with-

ronments (Sutton & Tanner, 2005). In our T){work, we . .
have only considered partially-observable environments, a Zzitreeiﬁtl.\j;%ﬁr?:IESZrCr)\];r:ze(IZCZMnﬁ Iznégg;atlonal Confer-

situation that favors Monte Carlo or TD(1) backups. It is

