
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Off-Policy Prediction Learning: An Empirical Study
of Online Algorithms

Sina Ghiassian , Banafsheh Rafiee , and Richard S. Sutton

Abstract— Off-policy prediction—learning the value function
for one policy from data generated while following another
policy—is one of the most challenging problems in reinforcement
learning. This article makes two main contributions: 1) it empir-
ically studies 11 off-policy prediction learning algorithms with
emphasis on their sensitivity to parameters, learning speed, and
asymptotic error and 2) based on the empirical results, it proposes
two step-size adaptation methods called Step-size Ratchet and
Soft Step-size Ratchet that help the algorithm with the lowest
error from the experimental study learn faster. Many off-policy
prediction learning algorithms have been proposed in the past
decade, but it remains unclear which algorithms learn faster
than others. In this article, we empirically compare 11 off-policy
prediction learning algorithms with linear function approxima-
tion on three small tasks: the Collision task, the Rooms task,
and the High Variance Rooms task. The Collision task is a small
off-policy problem analogous to that of an autonomous car trying
to predict whether it will collide with an obstacle. The Rooms
and High Variance Rooms tasks are designed such that learning
fast in them is challenging. In the Rooms task, the product of
importance sampling ratios can be as large as 214. To control
the high variance caused by the product of the importance
sampling ratios, step size should be set small, which, in turn,
slows down learning. The High Variance Rooms task is more
extreme in that the product of the ratios can become as large as
214 × 25. The algorithms considered are Off-policy TD(λ), five
Gradient-TD algorithms, two Emphatic-TD algorithms, Vtrace,
and variants of Tree Backup and ABQ that are applicable to the
prediction setting. We found that the algorithms’ performance
is highly affected by the variance induced by the importance
sampling ratios. Tree Backup(λ), Vtrace(λ), and ABTD(ζ) are
not affected by the high variance as much as other algorithms,
but they restrict the effective bootstrapping parameter in a way
that is too limiting for tasks where high variance is not present.
We observed that Emphatic TD(λ) tends to have lower asymptotic
error than other algorithms but might learn more slowly in
some cases. Based on the empirical results, we propose two
step-size adaptation algorithms, which we collectively refer to as
the Ratchet algorithms, with the same underlying idea: keep the
step-size parameter as large as possible and ratchet it down only
when necessary to avoid overshoot. We show that the Ratchet
algorithms are effective by comparing them with other popular
step-size adaptation algorithms, such as the Adam optimizer.

Manuscript received 24 February 2022; revised 6 June
2023 and 11 November 2023; accepted 25 February 2024. This work
was supported in part by DeepMind, in part by Alberta Machine Intelligence
Institute, in part by the Natural Sciences and Engineering Research Council
of Canada, and in part by Canadian Institute for Advanced Research.
(Corresponding author: Sina Ghiassian.)

Sina Ghiassian was with the Department of Computing Science, University
of Alberta, Edmonton, AB T6G 2R3, Canada. He is now with Spotify, Toronto,
ON M5H 1W7, Canada (e-mail: ghiassia@ualberta.ca).

Banafsheh Rafiee is with the Reinforcement Learning and Artificial Intel-
ligence (RLAI) Laboratory, University of Alberta, Edmonton, AB T6G 2R3,
Canada (e-mail: rafiee@ualberta.ca).

Richard S. Sutton is with the Department of Computing Science, University
of Alberta, Edmonton, AB T6G 2R3, Canada (e-mail: rsutton@ualberta.ca).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNNLS.2024.3373749, provided by the authors.

Digital Object Identifier 10.1109/TNNLS.2024.3373749

Index Terms— Empirical study, off-policy learning, online
learning, reinforcement learning.

I. INTRODUCTION

IN REINFORCEMENT learning, it is not uncommon to
learn the value function for one policy while following

another policy. For example, Q-learning learns the value of the
greedy policy, while the agent selects its actions according to
a different, more exploratory policy [1], [2]. The policy whose
value function is being learned is called the target policy, while
the more exploratory policy generating the data is called the
behavior policy. When the two policies are different, as they
are in Q-learning, the problem is said to be one of off-policy
learning, whereas if they are the same, the problem is said
to be one of on-policy learning. Off-policy learning is more
difficult than on-policy learning and subsumes it as a special
case.

There are various reasons for interest in off-policy learning.
One reason is that it has been the core of many of the
great successes that have come out of deep reinforcement
learning in the past few years. The deep Q-networks (DQN)
architecture [3] and its successors such as Double DQN [4]
and Rainbow [5] rely on off-policy learning. Recent research
used some modern off-policy algorithms such as Vtrace and
Emphatic-TD within deep reinforcement learning (RL) archi-
tectures [6], [7].

Another reason for interest in off-policy learning is that it
provides a clear way of intermixing exploration and exploita-
tion. The dilemma is that an agent should always exploit what
it has learned so far, but it should also always explore to find
actions that might be superior. No agent can simultaneously
behave in both ways. However, an off-policy algorithm can,
in a sense, pursue both goals at the same time. The behavior
policy can explore freely, while the target policy can converge
to the fully exploitative, optimal policy independent of the
behavior policy’s explorations.

Another appealing aspect of off-policy learning is enabling
learning about many policies in parallel. Once the target policy
is freed from behavior, there is no reason to have a single
target policy. Parallel off-policy learning of value functions
has even been proposed as a way of learning general, policy-
dependent, world knowledge [8], [9], [10]. Finally, numerous
ideas in machine learning rely on off-policy learning, including
learning temporally abstract world models [11], predictive
representations of state [12], [13], auxiliary tasks [14], life-
long learning [9], and learning from historical data [15]. Other
than these, off-policy learning has had many use cases that go
beyond the classic online prediction case, such as in control
systems and optimization [16], [17], [18].

Many off-policy learning algorithms have been explored
in the history of reinforcement learning. Q-learning is per-
haps the oldest [1], [2]. In the 1990s, it was realized that
combining off-policy learning, function approximation, and

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://orcid.org/0000-0001-5853-5049
https://orcid.org/0000-0003-4641-7349
https://orcid.org/0000-0002-3679-3415

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

temporal-difference (TD) learning risked instability [19]. Off-
policy algorithms with importance sampling and eligibility
traces, as well as tree backup algorithms, were introduced, but
they did not include a practical solution to the risk of instabil-
ity [20]. Gradient-TD methods (see [21], [22]) assured stability
by following the gradient of an objective function, as suggested
by Baird [23]. Emphatic-TD methods [24] reweighted updates
in such a way as to regain the convergence assurances of
the original on-policy TD algorithms. These convergent algo-
rithms were later developed further to learn faster resulting in
algorithms such as Proximal GTD2(λ) [25], TDRC(λ) [26],
and Emphatic TD(λ , β) [27]. These methods had convergence
guarantees but no assurances for efficiency in practice. Other
algorithms, such as Retrace [28], Vtrace [6], and ABQ [29],
were developed recently to overcome difficulties encountered
in practice.

As more off-policy algorithms were developed, there was
a need to compare them systematically. Unfortunately, due
to the computational burden, it is impossible to conduct
a large comparative study in a complex environment such
as the arcade learning environment (ALE). In a DQN-like
architecture, many elements work together to solve a task.
Each element has one or more parameters that need tuning.
On the one hand, not all these parameters can be tuned
systematically due to the computational cost, and on the other
hand, tuning parameters carefully and studying performance
over many parameters are necessary for a fair comparative
study. In the original DQN work, for example, the parameters
were not systematically tuned. Moreover, the original DQN
agent [3] was trained for one run. A detailed comparative
study, however, needs at least 30 runs and typically includes a
dozen algorithms, each of which has its own parameters. For
example, to compare ten algorithms on the ALE, each with
100 parameter settings, for 30 runs, we need 30 000 times
more compute than what was used to train the DQN agent
on an Atari game. One might think that given the increase in
available compute since 2015, such a study might be feasible.
Moore’s law states that the available compute approximately
doubles every two years. This means that compared to 2015,
eight times more computing is at hand today. Taking this into
account, we still need 30 000/8 = 3750 times more compute
than what was used to train one DQN agent. This is simply
not feasible now or in the foreseeable future.

Let us now examine the possibility of conducting a compar-
ative study in a state-of-the-art domain, similar to Atari, but
smaller. MinAtar [30] simplifies the ALE environment consid-
erably but presents many of the same challenges. To evaluate
the possibility of conducting a comparative study in MinAtar,
we compared the training time of two agents. One agent used
the original DQN architecture [3], and another used the much
smaller neural network (NN) architecture used for training in
MinAtar [30]. Both agents were trained for 30 000 frames on
an Intel Xeon Gold 6148, 2.4-GHz CPU core. On average,
each MinAtar training frame took 0.003 s, and each ALE train-
ing frame took 0.043 s. To speed up training, we repeated the
same procedure on an NVidia V100SXM2 (16-GB memory)
graphics processing unit (GPU). Each MinAtar training frame
took 0.0023 s, and each ALE training frame took 0.0032 s.
The GPU sped up the process that used a large NN (in the
ALE) but did not provide much of a benefit on the smaller
NN used in MinAtar. This means that, assuming that we
have enough GPUs to train on, using MinAtar and ALE will
not be that different. Given these data, detailed comparative

studies in an environment such as MinAtar are still far out of
reach.

The most meaningful empirical comparisons have been
in small domains. Geist and Scherrer [31] presented the
first study that compared off-policy prediction learning algo-
rithms. Their results were complemented by Dann et al. [32]
with an extra algorithm and new problems. Both studies
included quadratic and linear computation algorithms. White
and White [33] followed with a study on prediction learning
algorithms but narrowed down the space of algorithms to the
ones with linear computation, which, in turn, allowed them to
go into greater detail in terms of sensitivity to parameters.

In this article, we conduct a comparative study of
off-policy learning algorithms similar to previous stud-
ies. (The code for the experiments is made available
at https://github.com/sinaghiassian/OffpolicyAlgorithms.) We
reduce the amount of required computation in this study in
three ways. First, we focus on comparing off-policy algorithms
and remove other confounding factors from the comparison.
The comparison will not include elements such as complex
optimizers, target networks, or experience replay buffers. Sec-
ond, we focus on linearly learning the value function from
fixed given features. While nonlinear learning systems are
of special interest, sometimes, it is fruitful when performing
careful comparisons between algorithms to focus on the linear
case and simple problems, as, for example, was done in the
original work on TD learning, recursive least squares, and
eligibility traces. This is often appropriate when the issue
involved is a basic one that does not strongly interact with the
nonlinear aspect, which we believe is the case for our study
of off-policy learning. Focusing on linearly learning the value
function through fixed features is also justified through the
two-timescale view of NNs [34]. In this view, it is assumed
that the features are learned using the first n − 1 layers of
the NN at their own timescale, and then, the features are
used by the last layer to linearly learn the value function.
Third, we focus on fully incremental online algorithms. Many
algorithms referred to as the off-policy evaluation (OPE)
family of algorithms assume access to data beyond what the
agent experiences at each time step. This article focuses on
the fully incremental setting, in which the agent makes one
interaction with the environment, receives a reward, learns
from it, and then discards the sample and moves to the next
step. This is in contrast to the setting in which the agent has
access to historical data. Not having access to historical data,
the agent is more limited in what it can learn.

This article is similar to previous studies in that it treats
prediction with linear function approximation and similar to
the study by White and White [33] in restricting attention to
linear complexity algorithms. Our study differs from earlier
studies in that it treats more algorithms and does a deeper
empirical analysis. The additional algorithms are the prediction
variants of Tree Backup(λ) [35], Retrace(λ) [28], ABQ(ζ)
[29], and TDRC(λ) [26]. Our empirical analysis is deeper
primarily in that we examine the dependence of all 11 algo-
rithms’ performance on all of their parameters individually.
Our results, though limited to relatively small tasks, are a
significant addition to what is known about the comparative
performance of off-policy learning algorithms.

The focus of our study is on one of the most important
challenges of off-policy learning: the problem of slow learning.
Slow learning and high variance are sometimes used inter-
changeably in off-policy learning. The reason is that when

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GHIASSIAN et al.: OFF-POLICY PREDICTION LEARNING: AN EMPIRICAL STUDY OF ONLINE ALGORITHMS 3

large importance sampling ratios are used, small step-size
parameters are needed to control the high variance induced by
these ratios, which, in turn, results in slow learning. We con-
sider three tasks with the product of importance sampling
ratios increasing from each task to the next. We explore the
whole parameter space of algorithms and conclude that the
problem variance heavily affects the algorithm performance.
We propose two step-size adaptation algorithms that help the
algorithm with the lowest error level learn faster.

II. FORMAL FRAMEWORK
We simulate the agent-environment interaction using the

MDP framework. An agent and an environment interact at
discrete time steps, t = 0, 1, . . . At each time step the
environment is in a state St ∈ S and chooses an action, At ∈ A
under a behavior policy b: A × S → [0, 1]. For a state and
an action (s, a), the probability that action a is taken in state
s is denoted by b(a|s) where “|” means that the probability
distribution is over a for each s. After choosing an action, the
agent receives a numerical reward Rt+1 ∈ R ⊂ R, and the
environment moves to the next state St+1. The transition from
St to St+1 depends on the MDP’s transition dynamics.

In off-policy learning, the policy the agent learns about is
different from the policy the agent uses for behavior. The
policy that the agent learns about is denoted by π and is termed
the target policy, whereas the policy that is used for behavior
is denoted by b and is termed the behavior policy. The goal
is to learn the expectation of the sum of the future rewards,
the return, under a target policy. Both target and behavior
policies are fixed in prediction learning. The return includes
a termination function, which can be also thought of as a
generalized notion of discounting: γ : S × A × S → [0, 1]

G t
def
= Rt+1 + γ (St , At , St+1)Rt+2

+ γ (St , At , St+1)γ (St+1, At+1, St+2)Rt+3 + · · · .

If, for some triplet, Sk, Ak, and Sk+1, the termination function
returns zero, the accumulation of the rewards is terminated.

The expectation of the return when starting from a spe-
cific state and following a specific policy thereafter is called
the value of the state under the policy. The value function
under policy π is defined as vπ (s) def

= Eπ [G t |St = s], where
Eπ [G t |St] is the conditional expectation of the return given
that the agent starts in St = s and follows π thereafter. Because
the agent is following b not π , we will need to correct for
the difference between the behavior and target policies. These
corrections are often done using importance sampling ratios

ρt
def
=

π(At |St)

b(At |St)
. (1)

At time steps where the target and behavior policies have the
same distribution and in on-policy learning, the ratio is one.

For any random variable X t+1 that is generated using the
behavior policy and depends on the state–action–next state
triplet, the expectation under the target policy can be computed
using importance sampling ratios

Eb
[
ρt X t+1

∣∣St = s
]
=

∑
a

b(a|s)
π(a|s)
b(a|s)

X t+1

= Eπ

[
X t+1

∣∣St = s
]
∀s ∈ S.

In many problems of interest, the state space is large
and the value function should be approximated using limited
resources. We use linear functions to approximate vπ (s). The
approximate value function, v̂(·, w), is a linear function of a

weight vector w ∈ Rd . Corresponding to each state s, there is a
d-dimensional vector, x(s), where d ≪ |S|. The approximate
value for a state is v̂(s, w)

def
= w⊤x(s) ≈ vπ (s).

III. ALGORITHMS

We briefly introduce the 11 algorithms used in our empirical
study. These 11 are intended to include all the best candidates
for off-policy prediction learning with linear function approx-
imation. The complete update rules of all algorithms and
additional technical discussion can be found in Appendices
A and B, respectively (see the Supplementary Material).

Off-policy TD(λ) [20] is the off-policy variant of the orig-
inal TD(λ) algorithm [36] that uses importance sampling to
reweight the returns and account for the differences between
the behavior and target policies. This algorithm has just one
set of weights and one step-size parameter.

We include five algorithms from the Gradient-TD family.
GTD(λ) and GTD2(λ) are based on algorithmic ideas intro-
duced by Sutton et al. [22] and then extended to eligibility
traces [21]. Proximal GTD2(λ) [25], [37] is a “mirror descent”
version of GTD2 using a saddle point objective function.
These algorithms approximate stochastic gradient descent
(SGD) on an alternative objective function, the mean squared
projected Bellman error (MSPBE). HTD(λ) [33], [38] is a
“hybrid” of GTD(λ) and TD(λ), which becomes equivalent
to classic TD(λ) where the behavior policy coincides with the
target policy. TDRC(λ) [26] is a recent variant of GTD(λ) that
adds regularization. All these methods involve an additional set
of learned weights (beyond that used in v̂) and a second step-
size parameter, which can complicate their use in practice.
TDRC(λ) offers a standard way of setting the second step-
size parameter, which makes this less of an issue. All of these
methods are guaranteed to converge with an appropriate setting
of their two step-size parameters.

We include two algorithms from the Emphatic-TD family.
Emphatic-TD algorithms attain stability by upweighting or
downweighting the updates made on each time step by Off-
policy TD(λ). If this variation in the emphasis of updates
is done in just the right way, stability can be guaranteed
with a single set of weights and step size. Emphatic TD(λ)
was introduced by Sutton et al. [24]. The variant Emphatic
TD(λ , β) [27] has an additional parameter, β ∈ [0, 1], intended
to reduce variance.

The final three algorithms in our study—ABTD(ζ),
Vtrace(λ), and the prediction variant of Tree Backup(λ)—
can be viewed as attempts to address the problem of large
variations in the product of importance sampling ratios. If this
product becomes large, the step-size parameter must be set
small to prevent overshoot, and then, learning may be slow. All
these methods attempt to control the importance of sampling
products by changing the bootstrapping parameter from step to
step [39]. Munos et al. [28] proposed simply putting a cap on
the importance sampling ratio at each time step; they explored
the theory and practical consequences of this modification
in a control context with their Retrace algorithm. Vtrace(λ)
[6] is a modification of Retrace to make it suitable for
prediction rather than control. Mahmood et al. [29] developed
a more flexible algorithm that achieves a similar effect. Their
algorithm was also developed for control; to apply the idea
to prediction learning, we had to develop a nominally new
algorithm, ABTD(ζ), which naturally extends ABQ(ζ) from
control to prediction. [ABTD(ζ) is developed in Appendix D
(see the Supplementary Material).] Finally, Tree Backup(λ)
[35] reduces the effective λ by the probability of the action

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Collision task. When the forward action is taken in the last state,
a collision is said to occur and a reward of 1 is received.

taken at each time step. Each of these algorithms has been
shown to be effective on specific problems.

IV. COLLISION TASK

The Collision task is an idealized off-policy prediction-
learning task. A vehicle moves along an eight-state track
toward an obstacle with which it will collide if it keeps
moving forward. In the first four states, forward is the only
possible action, whereas, in the last four states, two actions
are possible: forward and turnaway (see Fig. 1). The
forward action always moves the vehicle one state further
along the track; if it is taken in the last state, then a collision is
said to occur, the reward becomes 1, and the vehicle transitions
into one of the first four states at random equiprobably. The
turnaway action causes the vehicle to “turn away” from
the wall, which also causes the vehicle to transition into one
of the first four states with equal probability, except with a
reward of zero. The reward is also zero on all other transitions.
The termination function returns 0.9 at all transitions except
for when transitioning from the last state with the forward
action and transitioning from any state when the turnaway
action is taken. The task is continuing. The target policy is to
always take the forward action, π(forward|s) = 1,∀s ∈
S . The behavior policy is to take the two actions with equal
probability, b(forward|s) = b(turnaway|s) = 0.5,∀s ∈
{5, 6, 7, 8}. We are seeking to learn the value function for the
target policy, which, in this case, is vπ (s) = γ 8−s .

This idealized task is roughly analogous to and involves
some similar issues as real-world autonomous driving prob-
lems, such as exiting a parallel parking spot without hitting the
car in front of you, or learning how close you can get to other
cars without risking collisions. In particular, if these problems
can be treated as off-policy learning problems, then solutions
can potentially be learned with fewer collisions. In this article,
we are testing the efficiency of various off-policy prediction-
learning algorithms to maximize how much they learn from
the same number of collisions.

Similar problems have been studied using mobile robots.
White [9] and Rafiee et al. [40] used off-policy learning
algorithms running on an iRobot Create to predict collisions
as signaled by activation of the robot’s front bumper sensor.
Modayil and Sutton [41] trained a custom robot to predict
motor stalls and turn off the motor when a stall was predicted.

We artificially introduce function approximation into the
Collision task. Although a tabular approach is entirely feasible
on this small problem, it would not be on the large problems
of interest. In real applications, the agent would have sensor
readings, which will go through an artificial NN to create
feature representations. We simulate such representations by
randomly assigning to each state a binary feature vector x(s) ∈
{0, 1}d ,∀s ∈ {1, . . . , 8}. We chose d = 6 so that was not
possible for all eight of the feature vectors (one per state)
to be linearly independent. In particular, we chose all eight
feature vectors to have exactly three 1s and three 0s, with the
location of the 1s for each state being chosen randomly.

Because the feature vectors are linearly dependent, it is not
possible in general for a linear approximation, v̂(s, w) = w⊤x,
to equal to vπ (s) at all eight states of the Collision task.

(See Appendix F (Supplementary Material) for a comparison
between vπ (s) and its linear approximations with linearly
dependent features.)

Given a feature representation x : S → Rd , a linear
approximate value function is determined by its weight vector
w ∈ Rd , the quality of which is assessed by its squared error
at each state weighted by how often each state occurs

VE(w) =
∑
s∈S

µb(s)
[
v̂(s, w)− vπ (s)

]2
(2)

where µb(s) is the state distribution approximated from visita-
tion counts from one million sample time steps of the behavior
policy.

V. COLLISION TASK EXPERIMENTAL SETUP AND RESULTS
The Collision task, in conjunction with its behavior policy,

was used to generate 20 000 time steps, comprising one run,
and then, this was repeated for a total of 50 independent runs.

Each run also used a different feature representation ran-
domly generated as described in Section IV. Focusing on
one-hot representations, we decided to choose a different
random representation for each of the 50 runs to study the
performance of algorithms across various representations. The
11 algorithms were then applied to the 50 runs, each with
a range of parameter values; each combination of algorithm
and parameter settings is termed an algorithm instance. (See
Appendix F (Supplementary Material) for a sample learning
curves.)

A list of all parameter settings used can be found in
Appendix G (Supplementary Material). They included 12 val-
ues of λ , 19 values of α, 15 values of η (for the Gradient-TD
family), six values of β, and 19 values of ζ , for approximately
20 000 algorithm instances in total. In each run, the weight
vector was initialized to w0 = 0 and then updated at each
step by the algorithm instance to produce a sequence of wt .
At each step, we also computed and recorded VE(wt).

A. Main Results
As an overall measure of the performance of an algorithm

instance, we take its learning curve over 50 runs and then
average it across the 20 000 steps. In this way, we reduce all
the data for an algorithm instance to a single number that
summarizes performance. These numbers appear as points in
our main results figure (see Fig. 2). Each figure of the figure
is devoted to a single algorithm.

For example, performance numbers for instances of Off-
policy TD(λ) are shown as points in the left figure of the
second row of Fig. 2. This algorithm has two parameters: the
step-size parameter, α, and the bootstrapping parameter, λ .
The points are plotted as a function of α, and the points with
the same λ value are connected by lines. The blue line shows
the performances of the instances of Off-policy TD(λ) with
λ = 1, the red line shows the performances with λ = 0, and
the gray lines show the performances with intermediate λ s.
Note that all the lines are U-shaped functions of α, as is to
be expected; at small α, learning is too slow to make much
progress; and at large α, there is overshoot and divergence,
as in the blue line in Fig. 19 in Supplementary Material. For
each point, the standard error over the 50 runs is also given
as an error bar though these are too small to be seen in all
except the rightmost points of each line where the step size
was highest and divergence was common.

The first focus on the blue line (of the left figure on the
second row of Fig. 2), representing the performances of Off-
policy TD(λ) with λ = 1. There is a wide sweet spot,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GHIASSIAN et al.: OFF-POLICY PREDICTION LEARNING: AN EMPIRICAL STUDY OF ONLINE ALGORITHMS 5

Fig. 2. Performance of all algorithms on the Collision task as a function of their parameters α and λ . The red curves show the performance with λ = 0;
the blue curves show the performance with λ = 1; and the gray curves show the performance with intermediate values of λ . The top tier algorithms (top
row) attained a low error (≈0.1) at all λ values. The middle tier of six algorithms attained a low error for λ = 1, but not for λ = 0. The bottom tier of three
algorithms was unable to reach an error of ≈0.1 at any λ value.

that is, there are many intermediate values of α at which
good performance (low average error) is achieved. Note that
the step-size parameter α is varied over a wide range, with
logarithmic steps. The minimal error level of about 0.1 was
achieved over four or five powers of two for α. This is the
primary measure of good performance that we look for: low
error over a wide range of parameter values.

Now, contrast the blue line with the red and gray lines
for Off-policy TD(λ) (see Fig. 2, the second row left figure).
Recall that the blue line is for λ = 1, the red line is for λ = 0,
and the gray lines are for intermediate values of λ . First note
that the red line shows generally worse performance; the error
level at λ = 0 was higher, and its range of good α values
was slightly smaller (on a logarithmic scale). The intermediate
values of λ all had performances that were between the two
extremes. Second, the sweet spot consistently shifted right,
toward higher α, as λ was decreased from 1 to 0.

Now, armed with a thorough understanding of the Off-policy
TD(λ) figure, consider the other figures of Fig. 2. Overall,
there are a lot of similarities between the algorithms and how
their performances varied with α and λ . For all algorithms,
error was lower for λ = 1 (the blue line) than for λ = 0
(the red line). Bootstrapping apparently confers no advantage
in the Collision task for any algorithm.

The most obvious difference between algorithms is that
the performance of the two Emphatic-TD algorithms varied
relatively little as a function of λ ; their blue and red lines
are almost on top of one another, whereas those of all the
other algorithms are qualitatively different. The Emphatic
algorithms generally performed as well as or better than
the other algorithms. At λ = 1, the Emphatic algorithms
reached the minimal error level of all algorithms (≈0.1),
and their ranges of good α values were as wide as that of
the other algorithms, while at λ = 0, the best errors of
the Emphatic algorithms were qualitatively better than those
of the other algorithms. The minimal λ = 0 error level
of the Emphatic algorithms was about 0.15 compared to
approximately 0.32 (shown as a second thin gray line) for all
the other algorithms (except Proximal GTD2, a special case
that we consider later). Moreover, for the Emphatic algorithms,

the sweet spot for α shifted a little as λ varied. The shift
was markedly less than for the six algorithms in the middle
two rows of Fig. 2. The lack of an interaction between the
two parameter values is another potential advantage of the
Emphatic algorithms.

The lowest error level for 8 of the algorithms was ≈0.1
(shown as a thin gray line), and for the other three algorithms,
the best error was higher, ≈0.16. The differences between
8 and 3 were highly statistically significant, whereas the
differences within the two groups were negligible. The three
algorithms that performed worse than the others were Tree
Backup(λ), Vtrace(λ), and ABTD(ζ)—shown in the bottom
row of Fig. 2. The difference was only for large λ s; at
λ = 0, these three algorithms reached the same error level
(≈0.32) as the other non-Emphatic algorithms. The three
worse algorithms’ range of good α values was also slightly
smaller than the other algorithms (with the partial exception,
again, of Proximal GTD2(λ)). A mild strength of the three
is that the best α value shifted less as a function of λ than
for the other six non-Emphatic algorithms. Generally, the
performances of these three algorithms in Fig. 2 look very
similar as a function of parameters. An interesting difference
is that for ABTD(ζ), we only see three gray curves, whereas
for the other two algorithms, we see seven. For ABTD(ζ),
there is no λ parameter, but the parameter ζ plays the same
role. In our experiment, ABTD(ζ) performed identically for
all ζ values greater than 0.5; four gray lines with different ζ
values are hidden behind ABTD’s blue curve.

In summary, our main result is that on the Collision task, the
performances of the 11 algorithms fell into three tiers. In the
top tier are the two Emphatic-TD algorithms, which performed
well and almost identically at all values of λ and significantly
better than the other algorithms at low λ . Although this
difference did not affect the best performance here (where
λ = 1 is best), the ability to perform well with bootstrapping
is expected to be important on other tasks. In the middle tier
are Off-policy TD(λ) and all the Gradient-TD algorithms, all
of which performed well at λ = 1 but less well at λ = 0.
Finally, in the bottom tier are Tree Backup(λ), Vtrace(λ), and
ABTD(λ), which performed very similarly and not, as well

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

as the other algorithms at their best parameter values. All of
these differences are statistically significant, albeit specific to
this one task. In Fig. 2, the three tiers are the top row, the two
middle rows, and the bottom row.

The reason why Emphatic TD algorithms reached a lower
error level than some others might be the objective function
that they minimize. Emphatic TD algorithms minimize the
Emphatic weighted MSPBE. This is in contrast to all other
algorithms studied in this article, which minimize the behavior
policy-weighted MSPBE. In our results, the error measure is
the mean squared value error (VE): the difference between
the true value function and the value function found by an
algorithm. Our results suggest that the distance between the
minimums of Emphatic weighted MSPBE and VE is smaller
than the distance between the minimums of behavior-weighted
MSPBE and VE.

The reason why ABTD, Tree Backup, and Vtrace did not
perform and others is probably that they cut off the importance
sampling ratio, which in turn introduces bias into the solution
and causes the algorithm to converge to a higher error level.
On the other hand, one can expect that these algorithms
perform better than others on problems where importance
sampling ratios are really large.

B. Emphatic-TD
So far, we looked at performance as a function of α and

λ . We now set λ = 0 and study the effect of β on the
performance of Emphatic TD(λ , β). We focus on the full
bootstrapping case (λ = 0) because the largest differences
were observed in this case. The curves shown in Fig. 2 are for
the best values of β, meaning that, for each λ , we found the
combination of α and β that resulted in the minimum average
error, fixed β, and plotted the sensitivity for that fixed β over
α. Here, we show how varying β affects performance.

The errors of Emphatic TD(0) and Emphatic TD(0, β) for
various values of α and β are shown in Fig. 3. Both algorithms
performed similarly well on the Collision task, meaning that
they both had a wide sensitivity curve and reached the same
(≈0.1) error level. Notice that, as β increased, the sensitivity
curve for Emphatic TD(0, β) shifted to the left and the error
overall decreased. With β = 0, Emphatic TD(λ , β) reduces
to TD(λ). With β = 0.8 and β = 1, Emphatic TD(λ , β)
reached the same error level as Emphatic TD(λ). With β = γ ,
Emphatic TD(λ , β) reduces to Emphatic TD(λ). This explains
why the red curve is between the β = 0.8 and β = 1 curves.

The results make it clear that the superior performance
of Emphatic methods is almost entirely due to the basic
idea of emphasis; the additional flexibility provided by β of
the Emphatic TD(λ , β) was not important on the Collision
problem.

C. Gradient-TD
To study Gradient-TD algorithms in more detail, we set λ =

0 and analyze the effect of η on performance, where α = η∗αv
and αv is the second step size. Previously, in Fig. 2, we looked
at the results with the best values of η for each λ ; meaning
that, for each λ , first, the combination of α and η that resulted
in the lowest average VE was found, and then, sensitivity to
step size was plotted for that specific value of η. Sensitivity to
step size for various values of η with λ = 0 is shown in Fig. 4.
Each figure shows the result of two Gradient-TD algorithms
for various ηs: one main algorithm, shown with solid lines,
and another additional algorithm shown with dashed lines for
comparison. The first focuses on the upper left figure. The

Fig. 3. Detail on the performance of Emphatic TD(λ , β) at λ = 0. Note
that Emphatic TD(λ) is equivalent to Emphatic TD(λ , γ), and, here, γ = 0.9.
The flexibility provided by β does not help on the Collision task.

upper left figure shows the parameter sensitivity for GTD2(0)
for four values of η, and in addition, it shows GTD(0) results
as dashed lines for comparison (for results with more values
of η, see Appendix H (Supplementary Material)). The color
for each value of η is consistent within and across the four
figures, meaning that, for example, η = 256 is shown in green
in all figures, either as dashed or solid lines. For all parameter
combinations, GTD errors were lower than (or similar to)
GTD2 errors. With two smaller values of η (1 and 0.0625),
GTD had a wider and lower sensitivity curve than GTD2,
which means that GTD was easier to use than GTD2.

Let us now move on to the upper right figure of Fig. 4.
Proximal GTD2 had the most distinctive behavior among
all Gradient-TD algorithms. With λ = 0, in some cases,
it converged to a lower error than all other Gradient-TD
algorithms. Proximal GTD2 was more sensitive to the choice
of α than other Gradient-TD algorithms except for GTD2.
Proximal GTD2 had a lower error and a wider sensitivity curve
than GTD2. To see this, compare the dotted and solid lines in
the upper right figure of Fig. 4.

In the lower left figure, we see that GTD and HTD per-
formed similarly. Sensitivity curves were similarly wide but
HTD reached a lower error in some cases. We see this by
comparing the dotted and solid pink curves in the lower left
figure.

The fourth figure shows sensitivity to the step-size parame-
ter for HTD and TDRC. Notice that TDRC has one sensitivity
curve, shown in dashed blue. This is because η is set to
one (also its regularization parameter was set to one) as
proposed in the original paper. HTD’s widest curve was with
η = 0.0625, which was as wide as TDRC’s curve. For a more
in-depth study of TDRC’s extra parameters, see Appendix H
(Supplementary Material).

On the one hand, among the Gradient-TD algorithms,
TDRC was the easiest to use. On the other hand, in the case
of full bootstrapping, Proximal GTD2 reached the lowest error
level. The fact that Proximal GTD2 converged to a lower error
level might be due to a few different reasons. One possible
reason is that it might not have converged to the minimum of
the MSPBE, such as other Gradient-TD algorithms. Another
reason might be that it converged to a minimum of the
projected Bellman error that was different from the minimum
the other algorithms converged to. Further analysis is required
to investigate this.

VI. ROOMS TASK

The Rooms task uses a variant of the four-room environment
MDP [11]: a gridworld with 104 states, roughly partitioned
into four contiguous areas called rooms (see Fig. 5). These
rooms are connected through four hallway states. Four deter-
ministic actions are available in each state: left, right,
up, and down. Taking each action results in moving in the
corresponding direction except for cells neighboring a wall in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GHIASSIAN et al.: OFF-POLICY PREDICTION LEARNING: AN EMPIRICAL STUDY OF ONLINE ALGORITHMS 7

Fig. 4. Detail on the performance of Gradient-TD algorithms at λ = 0. Each
algorithm has a second step-size parameter, scaled by η. A second algorithm’s
performance is also shown in each figure, with dashed lines, for comparison.

Fig. 5. Four-room environment. Four actions are possible in each state. Two
hallway states are shown with arrows. Four subtasks are also schematically
shown. The four shaded states are the ones where the Rooms and High
Variance Rooms tasks have different policies.

which the agent will not move if it takes the action toward the
wall. The task is continuing.

The Rooms task consists of eight subtasks. Solving a subtask
corresponds to learning the value function for the target policy
corresponding to the subtask. Under the corresponding target
policy, the agent follows the shortest path to one of the room’s
hallways, which we refer to as the corresponding hallway.
If two actions are optimal in a state, one of the two is taken
randomly with equal probability. The termination function
returns 0.9, while the agent is in the room. Once the agent
reaches the corresponding hallway, the termination function
returns 0, without affecting the actual trajectory of the behavior
policy. The termination function remains 0 for all states that
are not part of the subtask. When the agent reaches the
corresponding hallway, it receives a reward of 1. The reward
for all other transitions is 0. In the same room, another target
policy is defined under which the agent follows the shortest
path to the other hallway. Therefore, there are exactly two
subtasks defined for each state, including the hallways.

The Rooms task is designed to be a high-variance problem.
By a high-variance problem, we mean that the product of
importance sampling ratios can vary between small and large
values during learning and can cause large changes in the
learned weight vector that might make learning unstable.
Under the target policy, the agent follows the shortest path to
a hallway, and the behavior policy is equiprobable random.
If the agent is in the top left state of the upper right room,
chooses the right action twice, and then chooses the down
action six times, the product of the importance sampling
ratios will become 214 because the importance sampling ratio
is 2 at the first two time steps, and it is 1/(1/4) = 4 for a
total of six steps.

The agent learns about two subtasks at each time step.
For Emphatic TD, this will be automatically enforced with
the interest function set to 0 for all states that are not part
of the active subtask. Other algorithms do not natively have
interest, so we enforce this manually by making sure that at
each time step, the agent knows what subtasks are active and
only updates weight vectors corresponding to those subtasks.

We used linear function approximation to solve the task.
To represent states, (x, y) coordinates were tile coded. The x
and y coordinates both ranged from 0 to 10, where x = 0 and
y = 0 represent the far left and bottom cells, respectively.
We used four tilings, each of which was 2 × 2 tiles. The
features used to solve the task can be produced using any
system, for example, an NN. Our focus, in this article, is on
learning the value function linearly using known features, the
task that is typically carried out by the last layer of the NN.

To assess the quality of the value function found by an
algorithm, we used the mean squared value error

VE(w) =

∑
s∈S µb(s)i(s)

[
v̂(s, w)− vπ (s)

]2∑
s∈S µb(s)i(s)

where i(s), the interest function, i : S → {0, 1}, defines
a weighting over states and µb(s) is an approximation of
the stationary distribution under the behavior policy, which
was calculated by having the agent start at the bottom left
corner and follow the behavior policy for a hundred million
time steps and computing the fraction of time the agent spent
in each state. The true value function was calculated by
following each of the target policies from each state to their
corresponding hallway once. The interest function is one for
all states where the target policy is defined. Setting i(s) in the
error computation ensures that prediction errors from states
outside of a room do not contribute to the error computed
for each subtask. We computed the square root of VE for
each policy separately and then simply averaged the errors of
the eight approximate value functions to compute an overall
measure of error, which we denote by AVE: AVE(w)

def
=

(1/8)
∑8

j=1(VE(w j))1/2.

VII. ROOMS EXPERIMENTAL SETUP AND RESULTS

The task and the behavior policy were used to generate
50 000 steps, comprising one run. This was repeated for a
total of 50 runs. The algorithm instances applied to the task
were the same as the Collision task. At the beginning of each
run, the weight vector was initialized to w0 = 0 and then was
updated at each step by the algorithm instance. At each time
step, AVE was computed and recorded.

A. Main Results
The performance of an algorithm instance is summarized by

AVE averaged over runs and time steps and shown for many
algorithm instances in Fig. 6.

The measure of good performance that we look for in the
data is low error over a wide range of parameters. For Off-
policy TD(λ), the bottom of the U-shaped curves was at about
0.14 (shown as a thin gray line). The instances that reached
this error level were in a sweet spot. This sweet spot was large
for Off-policy TD(λ).

There are lots of similarities between the algorithms. All
algorithms had their best performance with intermediate values
of λ , except for Tree Backup(λ), Vtrace(λ), and ABTD(ζ).
All algorithms except the three reached about 0.14 error level.
With all algorithms, except for Emphatic TD(λ), the sweet
spot shifted to the left, as λ increased from 0 to 1. Between
the five Gradient-TD algorithms, GTD2 and Proximal GTD2
were more sensitive to α, and their U-shaped curves were less
smooth than some others.

One of the most distinct behaviors was observed with
Emphatic TD(λ) whose performance changed little as a func-
tion of λ . Its best performance was a bit worse than 0.14 and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 6. Error as a function of α and λ for all algorithms on the Rooms task. All algorithms reached the 0.14 error level except Tree Backup(λ), Vtrace(λ),
and ABTD(ζ). Proximal GTD2(λ) and Emphatic TD(λ) were more sensitive to α than other algorithms. Emphatic TD(λ) was less sensitive to λ than other
algorithms.

was achieved with λ = 0. Emphatic TD(λ) was more sensitive
to α than other algorithms. Notice how its U-shaped curve is
less smooth and narrower at its bottom than many others.

Tree Backup, Vtrace, and ABTD behaved similarly. They did
not reach the 0.14 error level and had their best performance at
λ = 1. ABTD(ζ) was less sensitive to its bootstrapping param-
eter, ζ , and only had three gray curves, whereas Vtrace(λ) and
Tree Backup(λ) had more gray curves. Many of the ABTD(ζ)
gray curves are hidden behind the blue curve.

Overall, on the Rooms task, we divide the algorithms
into two tiers. All algorithms except Tree Backup, Vtrace,
and ABTD had an error close to 0.14 and are in the first
tier. Tree Backup, Vtrace, and ABTD are in the second tier
because, regardless of how their parameters were set, they
never reached the 0.14 error level. These conclusions are
in some cases similar to the ones from the Collision task.
When applied to the Collision task, algorithms were divided
into three tiers: Emphatic-TD algorithms were in the top tier,
Gradient-TD and Off-policy TD(λ) were in the middle tier,
and Tree Backup, Vtrace, and ABTD were in the bottom tier.
Similar to the Collision task, Tree Backup, Vtrace, and ABTD
did not perform as well as other algorithms when applied to
the Rooms task. Unlike the Collision task, Emphatic TD’s
best performance was similar to Gradient-TD algorithms’ best
performance, but not better.

B. Emphatic-TD
We now set λ = 0 and study the effect of β on the

performance of Emphatic TD(λ , β). Errors for various βs are
plotted in the left figure of Fig. 7.

The best performance was achieved with an intermediate
β and was statistically significantly lower than the error of
Emphatic TD. This is in contrast to the results on the Collision
task in which no improvement was observed by varying β.
It seems like varying β might only be useful in cases where
the problem variance is high.

Two learning curves and two dashed straight lines are
shown in the right figure of Fig. 7. The learning curves
correspond to algorithm instances of Emphatic TD(0) and
Emphatic TD(0, β) that minimized the area under the learning
curve (AUC). The dashed lines show the approximate solutions

of Emphatic TD(0) and Off-policy TD(0). These solutions are
found using all the data over 50 000 time steps and 50 runs
and least-squares algorithms for which the update rules are
provided in Appendix A (see the Supplementary Material).
These solutions show the error level these algorithms would
converge to if they were applied to the task with a small
enough α and were run for long enough.

Emphatic TD(0) learned slower than Emphatic TD(0, β).
In fact, Emphatic TD(λ) learned slower than all other algo-
rithms. Learning curves for algorithm instances with the
smallest AUC for all algorithms for general λ are shown in
Fig. 8. However, if Emphatic TD had enough time to learn,
it would converge to a lower asymptotic solution than other
algorithms, as shown by the straight dashed lines in Fig. 7.

The results from the Collision and Rooms task collectively
show that Emphatic TD(λ) tends to have a lower asymptotic
error level but is more prone to problem variance. On the
Collision task, Emphatic TD(λ) had a lower asymptotic error
level and learned faster than other algorithms. Moving on
to the Rooms task, Emphatic TD learned slower than other
algorithms but still had a lower asymptotic error.

C. Gradient-TD
We now turn to studying the Gradient-TD algorithms in

more detail. Errors for λ = 0 for various η are plotted in
Fig. 9.

All algorithms solved the problem fairly well. According
to the upper right figure, Proximal GTD2 had the lowest
error among all algorithms but only with one of its parameter
settings. Proximal GTD2 had a lower error than GTD2 for
small η. For larger η, the reverse was true. According to
the lower left figure, GTD had a slightly lower error than
HTD; however, HTD was less sensitive to α, specifically with
η = 0.0625. According to the lower right figure, TDRC’s bowl
was almost as wide as HTD’s widest bowl.

Although Proximal GTD2 performed better than others,
it did so with only one parameter setting, and thus, the
improvement it provides is not of much practical importance.
HTD, GTD, and TDRC all performed well and were robust to
the choice of α. TDRC, specifically, with one tuned parameter,
is the easiest-to-use algorithm for solving the Rooms task.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GHIASSIAN et al.: OFF-POLICY PREDICTION LEARNING: AN EMPIRICAL STUDY OF ONLINE ALGORITHMS 9

Fig. 7. Detail on the Emphatic TD(λ , β) performance on the Rooms task at
λ = 0 is shown on the left. The best learning curves for each algorithm are
shown on the right. The β parameter helped Emphatic TD(λ , β) learn faster.

VIII. HIGH VARIANCE ROOMS TASK

With a slight modification to the Rooms task, we increased
its variance. We changed the behavior policy in four states
such that one action is chosen with 0.97 and the three other
actions with 0.01 probability. These states are shaded in blue
in Fig. 5. In the two left rooms, the left action is chosen
with 0.97 probability and, in the two right rooms, the right
action. This means that if the down action is chosen in the
blue state in the upper right room, the importance sampling
will be 1/(1/100). The new task is called the High Variance
Rooms task. If the agent starts from the upper left state in the
upper right room and takes two right actions and then six
down actions, the product of importance sampling ratios will
be 214

× 25. In addition to more extreme importance sampling
ratios, this small change in the behavior policy largely changes
the state visitation distribution compared to the Rooms task.
The states to the left of the blue states in the two left rooms
and the states to the right of the blue states in the two right
rooms are visited more often.

IX. HIGH VARIANCE ROOMS EXPERIMENTAL SETUP AND
RESULTS

The experimental setup for this task was the same as the
Rooms task. The number of time steps, the number of runs,
and the algorithm instances applied to the task were all the
same.

A. Main Results
The main results for the High Variance Rooms task are

plotted in Fig. 10. The variance caused by the importance
sampling ratio impacted all algorithms except Tree Backup(λ),
Vtrace(λ), and ABTD(ζ). These three algorithms reached an
error of 0.2 (shown as a thin gray line), which was the
lowest error achieved on this task. Similar to the Rooms
and the Collision tasks, these three algorithms had their best
performance with λ = 1.

Now, let us focus on the rest of the algorithms in the three
first rows of Fig. 10. All algorithms except Emphatic TD(λ),
Proximal GTD2(λ), and GTD2(λ) reached the 0.23 error level
(shown as a thin gray line). These three algorithms were
sensitive to α and did not perform well. Emphatic TD(λ)
reached an error of about 0.45, which was significantly higher
than the error achieved by any other algorithm.

In this task, we divide the algorithms into three tiers. The
top tier comprises Tree Backup(λ), Vtrace(λ), and ABTD(ζ)
whose error was the lowest. The behavior of these was similar
across Collision, Rooms, and High Variance Rooms tasks.
In the middle tier are Off-policy TD(λ), GTD(λ), HTD(λ),
and TDRC(λ). These algorithms achieved a slightly higher
error than the top-tier algorithms but still reasonably solved the
task. The bottom tier comprises Emphatic TD(λ), GTD2(λ),
and Proximal GTD2(λ) whose best error level was even higher
than second-tier algorithms.

Fig. 8. Learning curves for the best algorithm instances of each learning
algorithm in the Rooms task.

Fig. 9. Error as a function of α and η at λ = 0 on the Rooms task. Proximal
GTD2 had the lowest error but was more sensitive to α than other algorithms.
TDRC and HTD had the lowest sensitivity to α.

B. Emphatic-TD

We now set λ = 0 and study the behavior of Emphatic
TD(λ , β) with varying β. Errors for various values of β are
shown in the left figure of Fig. 11. The best performance was
observed with small values of β. The bowl was nice and wide
with β = 0 and β = 0.2. After that, with increasing β, the
error consistently increased.

These results show that varying β significantly improves
Emphatic TD(λ , β)’s performance. Without β, Emphatic
TD(0) performed quite poorly on the High Variance Rooms
task due to large variance. These results and the results from
the Rooms task show that β’s role becomes more salient
as the problem variance increases. On the Collision task,
no improvement was observed when varying β. On the Rooms
task, intermediate values of β resulted in the best performance
and, in the High Variance Rooms task, small values. The trend
shows that as the problem variance increases, the magnitude
of β that results in the best performance becomes smaller.

Learning curves for best algorithm instances of Emphatic
TD(0) and Emphatic TD(0, β) are shown in the right figure
of Fig. 11. These learning curves correspond to algorithm
instances that resulted in minimum AUC. Emphatic TD(0, β)
learned significantly faster than Emphatic TD. Emphatic TD(0)
did not learn a reasonable approximation of the value function,
probably due to being affected by the problem variance. The
two dashed lines in the right figure of the figure show the
approximate solutions for Emphatic TD(0) and Off-policy
TD(0). Emphatic TD’s solution had a significantly smaller
AVE than Off-policy TD. This means that if the high variance
was not present, Emphatic TD would find a solution with lower
error than other algorithms such as Off-policy TD(λ).

In Rooms, High Variance Rooms, and Collision tasks,
Emphatic TD had a lower asymptotic error than other
algorithms. This has also been observed in some previous
studies [42]. However, as the problem variance increases,
Emphatic TD(λ) tends to learn slower. On the Collision task,
it learned the fastest; on the Rooms task, it learned slower
than other algorithms; it failed to learn a good approximation
of the value function in the High Variance Rooms task. The

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 10. Error as a function of α and λ for all algorithms on the High Variance Rooms task. Tree Backup(λ), Vtrace(λ), and ABTD(ζ) reached the lowest
error level (0.2) and were in the top tier. All other algorithms except for Emphatic TD(λ), Proximal GTD2(λ), and GTD2(λ) reached the 0.23 error level
and were in the middle tier. Emphatic TD(λ), Proximal GTD2(λ), and GTD2(λ) had a higher error than the rest of the algorithms, were more sensitive to
α, and were grouped into the bottom tier.

Fig. 11. Error as a function of α and β at λ = 0 on the High Variance
Rooms task is shown on the left. The two best learning curves for Emphatic
TD(λ , β) and Emphatic TD(λ) on the right show that Emphatic TD(λ , β)
learned faster.

trend shows that Emphatic TD has a smaller asymptotic error
across tasks but might overall be more prone to the variance
issue than other algorithms. It also seems to be the case that
the β parameter introduced by ETD(λ , β) helps mitigate the
high-variance issue of ETD(λ). This is shown clearly as we
move from the Collision task to the Rooms and High-Variance
Rooms tasks.

C. Gradient-TD
We now turn to a more detailed analysis of Gradient-TD

algorithms. Errors for λ = 0 for various η are plotted in
Fig. 12.

According to the upper left figure, GTD2 generally per-
formed worse than GTD. Based on the upper right figure,
Proximal GTD2 had a significantly larger error than GTD2.
According to the two lower figures, TDRC, HTD, and GTD all
performed similarly and were relatively robust to the choice
of α.

Let us now summarize the performance of Gradient-TD
algorithms across tasks. On the Collision and Rooms tasks,
Proximal GTD2 had the lowest error of all Gradient-TD
algorithms. On the High Variance Rooms task, however, it had
a higher error than all Gradient-TD algorithms. The trend
across problems shows that Proximal GTD2 might be able to
reach a lower error level than other Gradient-TD algorithms
but is more prone to high variance than other Gradient-TD
algorithms. In addition, the lower error level that it achieves
does not seem to be of much practical utility because it is rare.
GTD(λ), HTD(λ), and TDRC(λ) all seem to work well across
tasks. HTD(λ) seems to be easier to tune across problems (see
how its various bowls are smoother and wider than GTD in the

lower left figure of Fig. 12). TDRC seems to be the easiest-to-
use Gradient-TD algorithm because it has one tuned parameter
and works, as well as HTD across tasks.

X. LARGE-SCALE EXPERIMENTAL RESULTS
The results on the Collision, Rooms, and High Variance

Rooms environments suggest that: 1) emphatic TD(λ) tends
to have a lower asymptotic error level, but it is more sensitive
to the problem variance and 2) Tree Backup(λ), Vtrace(λ), and
ABTD(ζ) are most robust to the problem variance. To examine
whether this thesis holds in problems with larger state spaces
as well, we designed an experiment where we gradually
increased the size of the state space from 16 to 65 536.

We used empty gridworlds with 4 × 4, 8 × 8, 16 × 16, 32 ×
32, and 256 × 256 states. Note that as the size of the state
space increases, the product of the importance sampling ratios
increases; as a result, the variance of the problem increases as
well. The action space and the transition probabilities are the
same as the Rooms task. The reward is 0 everywhere except
upon transitioning to the bottom right cell where it is 1. The
termination function returns 0 when transitioning to the bottom
right cell. Otherwise, it returns 1 − (1/2x) where x is the
square root of the size of the grid. This allows the expected
time horizon of the prediction to be about 2x , which is the
number of steps that it takes to go from the top left state
to the bottom right state. The target policy is to follow the
shortest path to the bottom right state. The behavior policy is
to go down or right with 0.27 probability and to go up and
left with 0.23 probability. We used tile coding with one, two,
four, eight, and 64 tilings each with 2 × 2 tiles for 4 × 4, 8 ×
8, 16 × 16, 32 × 32, and 256 × 256 gridworlds, respectively.

The error for Emphatic TD(λ) and Vtrace(λ) relative to
Off-policy TD(0) as a function of the size of the state space
is shown in Fig. 13. A relative error of 1 suggests the same
error level as Off-policy TD(0). The solid and dashed curves
correspond to λ = 0 and λ = 0.9, respectively. Emphatic
TD(λ) had a lower error than Off-policy TD(0) only in the
4 × 4 gridworld. As the size of the state space increased,
the performance of Emphatic TD(λ) deteriorated drastically.
Vtrace(λ) error level was similar to that of Off-policy TD(0)
consistently as the size of the state space increased. These
results confirm our conclusions from the previous sections

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GHIASSIAN et al.: OFF-POLICY PREDICTION LEARNING: AN EMPIRICAL STUDY OF ONLINE ALGORITHMS 11

Fig. 12. Error as a function of α and η at λ = 0 on the High Variance Rooms
task. The error of Proximal GTD2 (solid lines in the upper right figure) was
higher than others.

suggesting that Emphatic TD(λ) tends to be more sensitive
to the problem variance.

XI. SPEEDING UP EMPHATIC TD(λ)
This section introduces a step-size adaptation algorithm

that increases Emphatic TD(λ)’s learning speed. Remember
that Emphatic TD(λ) tends to have lower asymptotic error
than other algorithms, but it can be slow on problems with
high variance. The algorithms presented in this section adapt
the step-size parameter of Emphatic TD(λ) and significantly
increase its learning speed.

Two algorithms are introduced in this section: Step-size
Ratchet and Soft Step-size Ratchet. The main idea behind
both algorithms is to keep the step-size parameter as large
as possible and ratchet it down when there is a possibility
of overshoot. To show that the new algorithms are effective,
we combine them with Emphatic TD(λ) and apply them
to the Collision, Rooms, and High Variance Rooms tasks.
Remember that Emphatic TD(λ) with constant step sizes could
not learn a good approximation of the value function in the
High Variance Rooms task and learned slowly on the Rooms
task. We show that not only the combination of Emphatic
TD(λ) and Ratchet algorithms learns a good approximation
of the value function on all three problems but also they learn
faster than the combination of Emphatic TD(λ) with other
step-size adaptation algorithms such as Adam.

XII. EMPHATIC TD(λ) + STEP-SIZE RATCHET
In this section, we introduce the first step-size adaptation

algorithm and combine it with Emphatic TD(λ). The main
idea is to choose at each time step a step-size parameter
that is as large as possible (or a fraction of it) without
overshooting the target. Depending on how close the target of
the update is to the current estimation of the value function,
the step-size parameter is reduced only when necessary. The
step-size parameter is never increased during learning.

At each time step, we compute the magnitude of the
step-size parameter that, if used, will result in the estimate
of the value function being equal to the target of the update.
This means that we want to find the step size that, if used, the
following equation would hold:

wt+1
⊤xt = Rt+1 + γt+1w⊤t xt+1. (3)

In TD-style algorithms, the target of the update is the reward
plus the discounted value of the next state. The update rules
for Emphatic TD(λ) are

δt
def
= ρt

(
Rt+1 + γt+1w

⊤

t xt+1 − w
⊤

t xt

)
(4)

Ft ← ρt−1γt Ft−1 + It with F0 = I0

Mt
def
= λt It +

(
1− λt

)
Ft

Fig. 13. Emphatic TD(λ) and Vtrace(λ) errors relative to Off-policy TD(0)

as a function of the size of the state space.

zt ← ρt−1γt λzt−1 + Mt xt with z−1 = 0 (5)
wt+1 ← wt + αtδt zt . (6)

We now replace wt+1 on the left-hand side of (3) with the
update rule provided for wt+1 in (6) and solve for αt

(wt + αtδt zt)
⊤xt = Rt+1 + γt+1w⊤t xt+1

αtδt z⊤t xt = Rt+1 + γt+1w⊤t xt+1 − w⊤t xt︸ ︷︷ ︸
δt
ρt

▷αt =
1

ρt z⊤t xt
. (7)

We refer to the αt that has the magnitude computed above
in (7) as the normalized step-size parameter. We use a param-
eter κ to take a fraction of a normalized step toward the target
at each time step: αt = (κ/(ρt z⊤t xt)).

It makes intuitive sense for the step-size parameter to be
large at the beginning of learning and shrink down as learning
goes on. The following minimization at each time step assures
that the step-size parameter shrinks or remains the same

αt ← min
(

αt−1,
κ

ρt z⊤t xt

)
. (8)

At the first time step, αt−1 is set to a large number, maybe
∞. This completes the specification of the Step-size Ratchet
algorithm. (See Appendix A (Supplementary Material) for the
complete update rules of Emphatic TD(λ) augmented with
Step-size Ratchet.)

XIII. EMPHATIC TD(λ) + SOFT STEP-SIZE RATCHET

In this section, we introduce the second step-size adaptation
algorithm Soft Step-size Ratchet and combine it with Emphatic
TD(λ). The goal of Soft Step-size Ratchet is to relax the strict
requirement of Step-size Ratchet that the step-size parameter
can only become smaller or remain the same size at each time
step. We will show that we are able to increase the magnitude
of the step-size parameter at times while maintaining the main
idea of the Step-size Ratchet algorithm. We show that this
change will result in increasing the learning speed.

The Soft Step-size Ratchet algorithm works as follows.
At each time step, first, the step-size parameter is computed
using (8); the same update rule is used for Step-size Ratchet.
Second, the step-size parameter, αt , is used to update the
weight vector wt , again the same as what the Step-size Ratchet
algorithm does. The Step-size Ratchet algorithm, at this point,
will go back to the first step and continue from there. The
Soft Step-size Ratchet algorithm, instead, uses αt and αt−1
to compute a new αt−1 that will be used in the next round
of the updates once the execution of the algorithm goes back
to the first step. This means that the only difference between
the Step-size Ratchet and Soft Step-size Ratchet algorithms is
that the αt−1 used in (8) will be updated before moving on
to the next time step, pretending that the previous step-size

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

parameter was, in fact, larger than what was used to update
w. The update rule that we use for computing the new αt−1 is

αt−1 ← αt + (αt−1 − αt)× τ (9)

where τ is a tunable parameter in (0, 1), which we set to 0.5 in
all our experiments. After executing (9), the agent moves on
to the next time step, goes back to the first step, and continues
from there.

Let us now examine (9) more closely. Remember that
before executing (9), the step-size parameter, αt , is calculated
using (8) at each time step, from which it immediately follows
that αt−1 ≥ αt for ∀t . It then follows that the term (αt−1−αt)
in (9) is always greater than or equal to zero. Let us first
consider the case when it is zero. The difference being zero
means αt = αt−1, meaning that αt−1 will not change after
executing (9) because the term (αt−1 − αt) is equal to zero.
If the difference is not zero, it means that αt−1 > αt , in which
case the value of αt−1 after performing update (9) will become
larger proportional to τ . Let us, for example, assume that
αt−1 = 1, and the new step-size parameter computed by (8)
is αt = 0.5 and τ = 0.5. In this case, αt−1 for the next round
of updates will be αt−1 = 0.5+ (1− 0.5) × 0.5 = 0.75.

The magnitude of increase in αt−1 is proportional to the
difference between αt−1 and αt and is also proportional to
the magnitude of τ . At the first time step, we set α−1 =

(κ/(z⊤t xt)). We call this new algorithm Soft Step-size Ratchet
because ratcheting down the step-size parameter is soft,
in which the step-size parameter can sometimes become a
little larger. (See Appendix A (Supplementary Material) for
the complete update rules of Emphatic TD(λ) augmented with
Soft Step-size Ratchet.)

A. Experimental Setup and the Results
We applied the combination of Emphatic TD(λ) with Step-

size Ratchet and Soft Step-size Ratchet to the Collision,
Rooms, and High Variance Rooms tasks. We will present
the results on the Rooms and High Variance Rooms tasks in
this section as the difference across the step-size adaptation
algorithms is more pronounced in these tasks. (See Appendix
K (Supplementary Material) for the results of the Collision
task.) We included Emphatic TD(λ) with constant step size
and Emphatic TD(λ) with multiple step-size adaptation meth-
ods for comparison: 1) AlphaBound; 2) Adam; 3) AdamW;
4) AMSGrad; and 5) AdaGrad. Often, we refer to these
combinations by the step-size adaptation algorithm name,
leaving out Emphatic TD(λ) from the name because it is
common across all combinations.

The AlphaBound algorithm [43] is similar to the Step-size
Ratchet algorithm in that it has a single step-size parameter
(rather than a vector of step-size parameters one for each
direction) that only decreases in value over the course of learn-
ing. The schedule by which the step-size parameter shrinks is
different from the schedule used by Step-size Ratchet. The
intuition behind the AlphaBound algorithm is to make sure
that the TD error at time step t gets closer to 0 after each
update. (The derivation of Emphatic TD(λ) with AlphaBound
can be found in Appendix A (Supplementary Material).)

Adam, or adaptive moment estimation algorithm, is one
of the most commonly used step-size adaptation algorithms
used in deep reinforcement learning [44]. Adam is often used
with NN function approximation to increase learning speed.
It uses statistics from the gradient vector to compute the
direction and size of the update, in each dimension of the
space, at each time step. Adam computes a vector of step

sizes at each time step, one step-size scalar for each element of
the weight vector, whereas the Ratchet algorithms compute a
universal step-size parameter at each time step, one scalar step
size for all elements of w. (See Appendix K (Supplementary
Material) for the derivation of Emphatic TD(λ) with Adam.)
There have been improvements to Adam resulting in the AMS-
Grad [45] and AdamW algorithms, which we include in our
experiments. We also include AdaGrad [46], which, similar
to Adam, uses statistics to compute the direction and size of
the update.

All of the experimental setup remains the same as what was
discussed before other than the parameters of the step-size
adaptation algorithms, which we will discuss shortly.

Similar to Section V, we use the term algorithm instance to
refer to an algorithm with a specific set of parameters. The param-
eters of algorithms that we tried included all combinations of
two values of λ (0, 0.9), 19 values of α for constant step-size
parameters (α = 2−x where x ∈ {0, 1, 2, . . . , 17, 18}), 19 val-
ues of α0 for AlphaBound and Adam algorithms (α0 = 2−x

where x ∈ {0, 1, 2, . . . , 17, 18}), 19 values of κ for Step-
size Ratchet and Soft Step-size Ratchet (κ = 2−x where
x ∈ {0, 1, 2, . . . , 17, 18}), one value of τ for Soft Step-size
Ratchet (τ = 0.5), and three values of β1 and β2 for Adam
(0.9, 0.99, 0.999). Finally, for Adam, we set ϵ = 10−8.

The Rooms task results are shown in Fig. 14. The top row
shows the learning curves, and the bottom row shows the
parameter sensitivity curves.

Let us first focus on the learning curve for the full boot-
strapping case shown on the upper left figure of Fig. 14.
On the Rooms task, we see the positive effect of applying
the step-size adaptation algorithms to Emphatic TD(λ) clearly.
Emphatic TD(λ) with constant step sizes learned the slowest,
followed by AlphaBound, Adam, and AdamW, and AMSGrad
and AdaGrad. Emphatic TD(0) combined with the Step-
size Ratchet algorithm learned faster than all the baselines,
as shown in the upper left figure of Fig. 14. The Soft Step-
size Ratchet algorithm learned the fastest. In the case of full
bootstrapping, the Soft Step-size Ratchet algorithm converged
to the lowest asymptotic error level, followed by the Step-size
Ratchet algorithm. Interestingly, the worst asymptotic error
level was observed when Adam was used.

Let us now move on to consider the learning curves for
the minimal bootstrapping case shown in the upper right
figure of Fig. 14. Similar to the full bootstrapping case,
the Soft Step-size Ratchet algorithm was the fastest. These
were followed by Step-size Ratchet, AdaGrad, and AMSGrad.
Regarding the asymptotic error level, the results were similar
to the full bootstrapping case. The Soft Step-size Ratchet
converged to the lowest error level followed by Step-size
Ratchet, AdaGrad, and AMSGrad. The asymptotic error level
was similar when the step-size parameter was constant and
when Adam was used. With the AlphaBound algorithm, the
asymptotic error level was a little lower than constant but
statistically significantly higher than Soft Step-size Ratchet
and Step-size Ratchet algorithms.

Two parameter sensitivity plots are shown in the lower row
of Fig. 14. The sweet spot for the ratchet algorithms was
shifted to the right compared to other algorithms. These two
algorithms had the largest sweet spot at linear scale.

Overall, Step-size Ratchet and Soft Step-size Ratchet seem
to be effective in increasing the learning speed of Emphatic
TD(λ) when applied to the Rooms task. Moreover, at the
linear scale, they seem to have a larger sweet spot than other
algorithms.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GHIASSIAN et al.: OFF-POLICY PREDICTION LEARNING: AN EMPIRICAL STUDY OF ONLINE ALGORITHMS 13

Fig. 14. Results of applying the combination of Emphatic TD(λ) and multiple step-size adaptation algorithms including Step-size Ratchet and Soft Step-size
Ratchet to the Rooms task. The first row shows the learning curves, and the second row shows the parameter sensitivity curves. The Soft Step-size Ratchet
algorithm learned the fastest and converged to the lowest error level followed by the Step-size Ratchet algorithm. Step-size Ratchet and Soft Step-size Ratchet
algorithms had their U-shaped bowl shifted to the right compared to other algorithms. They had their minimum at around 2−2.

Fig. 15. Results of applying the combination of Emphatic TD(λ) and multiple step-size adaptation algorithms including Step-size Ratchet and Soft Step-size
Ratchet to the High Variance Rooms task. The first row shows the learning curves, and the second row shows the parameter sensitivity curves. The Soft
Step-size Ratchet algorithm learned the fastest followed by the Step-size Ratchet algorithm. The ratchet algorithms had their U-shaped bowl shifted to the
right compared to other algorithms. They had their minimum at around 2−2.

The High Variance Rooms task results are plotted in Fig. 15.
The top row shows the best learning curves, and the bottom
row shows the parameter sensitivity curves. Let us first focus
on the two learning curves for full and minimal bootstrapping.
The difference between the algorithms is more nuanced in the
High Variance Rooms task than the Rooms task. Emphatic
TD(λ) with a constant step-size parameter had difficulty
learning the value function due to the high variance of the
updates. Similar to the Rooms task, Soft Step-size Ratchet
converged the fastest and to the lowest asymptotic error. Step-
size Ratchet was the second fastest algorithm.

The parameter sensitivity curves show that all algorithms
(except when constant step sizes were used) were equally
sensitive to the value of their parameter at the logarithmic
scale. Soft Step-size Ratchet had a lower error over a range
of parameters compared to other algorithms.

Augmenting Emphatic TD(λ) with Step-size Ratchet and
Soft Step-size Ratchet helped it reach Emphatic TD(λ)’s
asymptotic solution. See Fig. 16; Emphatic TD(λ)’s asymp-
totic solution is shown with the horizontal dotted red line.
As shown earlier, Emphatic TD(λ) with constant step size
could not reach its asymptotic solution because the step size
had to be set small due to the problem’s high variance. The
ratchet algorithms made learning substantially faster, making it
possible for Emphatic TD(λ) to reach its asymptotic solution
within 50 000 steps.

Overall, the Step-size Ratchet and Soft Step-size Ratchet
algorithms were quite effective on the Rooms and High
Variance Rooms tasks while maintaining the good perfor-
mance of Emphatic TD(λ) on the Collision task. (For the
results of the Collision task, see Appendix K (Supplementary
Material).) The Soft Step-size Ratchet algorithm seems to be

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 16. Augmenting Emphatic TD(λ) with ratchet algorithms helped it
reach its asymptotic solution. The dashed lines are approximate solutions of
Emphatic TD(0) and TD(0), that is, the error level that these algorithms would
converge to if they were applied to the task for long enough with a small step
size.

the best algorithm across tasks consistently. On all tasks, the κ
parameter that resulted in the lowest error for Step-size Ratchet
and Soft Step-size Ratchet algorithms was around 2−2. It is
natural to ask whether it is easier to tune the parameters of
the ratchet algorithms than the parameters of other algorithms
across tasks. Given the data that we have from the three
tasks, the answer seems to be yes. For a definite answer, more
experimental results are, of course, necessary.

XIV. CONCLUSION AND LIMITATIONS
This study paints a detailed picture of algorithms’ per-

formance as a function of the problem variance. Regarding
the interplay of the algorithms’ performance and variance
of the problem, three main points were shown in this article
for the first time.

1) Emphatic TD(λ) tends to have a lower asymptotic error
level, but it is more prone to the high variance issue than
other algorithms.

2) Proximal GTD2(λ) seems to be prone to the variance
issue as well but less so than Emphatic TD(λ).

3) Tree Backup(λ), Vtrace(λ), and ABTD(ζ) are most
robust to the problem variance but perform suboptimally
on simple problems where high variance is not expected.

Our message for practitioners is to use Tree Backup, Vtrace,
or ABTD wherever high variance is expected. For a task with
moderate variance, an algorithm such as TD might be preferred
if convergence is not of special importance. If convergence is
of importance, an algorithm such as TDRC might be preferred.
For a task with minimal variance, Emphatic TD might be
preferred.

To achieve fast learning while benefiting from the lower
asymptotic error of Emphatic TD(λ), we proposed two new
step-size adaptation algorithms. We found that both algorithms
are quite effective in speeding up Emphatic TD(λ)’s learning
on the Rooms and High Variance Rooms tasks. We limited
the application of Step-size Ratchet and Soft Step-size Ratchet
algorithms to increase the learning speed of Emphatic TD(λ).
However, not only do we expect the Ratchet algorithms to be
applicable to other reinforcement learning algorithms but also
we consider this a fruitful future research direction.

One limitation of the Soft Step-size Ratchet algorithm is
that is has more than one tuned parameter. However, our
experiments suggest that Soft Step-size Ratchet is robust to the
choice of the τ parameter since with the one value of τ that
we used in our experiments, Soft Step-size Ratchet performed
well across tasks. It remains unclear how sensitive the Soft
Step-size Ratchet algorithm is to the choice of the τ parameter
and if tuning τ can provide a significant performance gain.

Another limitation of both the Step-size Ratchet and Soft
Step-size Ratchet algorithms is that they are not readily
applicable to nonstationary problems. These algorithms ratchet

down the step-size parameter over time, which means that if
the environment changes during learning, it might be hard
for the agent to adapt to the new setting, depending on how
small the step-size parameter is when the change happens.

Yet, another limitation of the proposed algorithms is that
the step-size parameter that they compute at each time step
is universal, meaning that a single step-size parameter is
computed, which is used to update the parameter vector in all
directions. Remember that, in principle, SGD is a component-
wise process in which the step size for each component can be
set separately. The Step-size Ratchet algorithm should ideally
follow this principle, and as a result, it will be applicable to
more flexible function approximators such as NNs.

Off-policy learning has come a long way but still has a long
way to go. Two of the most central challenges of off-policy
learning are stability and slow learning. The stability issue first
became evident through Baird’s counterexample [19]. Since
then, Baird’s counterexample has been used numerous times to
exhibit various algorithms’ stability in practice. In this article,
we exhibited the variance challenge. The tasks introduced
here can be used to assess algorithms’ capability in learning
in a high-variance setting. This article makes a step toward
gaining a more granular understanding of the degree to which
different off-policy prediction learning algorithms suffer from
the problem of high variance and proposes two approaches for
learning fast in the presence of high variance.

ACKNOWLEDGMENT
The authors would like to thank Ali Khalili for the help

in preparing the source code. They also thank Martha White
and Adam White for useful feedback throughout the course of
this project. The computational resources of Compute Canada
were essential to conducting this research.

REFERENCES
[1] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-

tion, King’s College, Univ. Cambridge, Cambridge, U.K., 1989.
[2] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,

pp. 279–292, May 1992.
[3] V. Mnih et al., “Human-level control through deep reinforcement learn-

ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.
[4] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning

with double Q-learning,” in Proc. AAAI Conf. Artif. Intell., 2016, vol. 30,
no. 1, pp. 1–7.

[5] M. Hessel et al., “Rainbow: Combining improvements in deep reinforce-
ment learning,” in Proc. AAAI Conf. Artif. Intell., 2018, vol. 32, no. 1,
pp. 1–8.

[6] L. Espeholt et al., “IMPALA: Scalable distributed deeP-RL with
importance weighted actor-learner architectures,” in Proc. Int. Conf.
Mach. Learn., 2018, pp. 1407–1416.

[7] R. Jiang, S. Zhang, V. Chelu, A. White, and H. van Hasselt, “Learning
expected emphatic traces for deep RL,” in Proc. AAAI Conf. Artif. Intell.,
2022, vol. 36, no. 6, pp. 7015–7023.

[8] R. S. Sutton et al., “Horde: A scalable real-time architecture for learning
knowledge from unsupervised sensorimotor interaction,” in Proc. 10th
Int. Conf. Auto. Agents Multiagent Syst., vol. 2, 2011, pp. 761–768.

[9] A. White, “Developing a predictive approach to knowledge,”
Ph.D. dissertation, Dept. Comput. Sci., Univ. Alberta, Edmonton, AB,
Canada, 2015.

[10] M. Ring, “Representing knowledge as predictions (and state as Knowl-
edge),” 2021, arXiv:2112.06336.

[11] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning,” Artif.
Intell., vol. 112, nos. 1–2, pp. 181–211, Aug. 1999.

[12] M. Littman and R. S. Sutton, “Predictive representations of state,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 14, 2001, pp. 1–14.

[13] B. Tanner and R. S. Sutton, “TD(λ) networks: Temporal-difference
networks with eligibility traces,” in Proc. 22nd Int. Conf. Mach. Learn.,
2005, pp. 888–895.

[14] M. Jaderberg et al., “Reinforcement learning with unsupervised auxiliary
tasks,” 2016, arXiv:1611.05397.

[15] P. S. Thomas, “Safe reinforcement learning,” Ph.D. dissertation, Dept.
Comput. Sci., Univ. Massachusetts Amherst, Amherst, MA, USA, 2015.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GHIASSIAN et al.: OFF-POLICY PREDICTION LEARNING: AN EMPIRICAL STUDY OF ONLINE ALGORITHMS 15

[16] Y. Xu and Z.-G. Wu, “Data-efficient off-policy learning for dis-
tributed optimal tracking control of HMAS with unidentified exosystem
dynamics,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 3,
pp. 3181–3190, Mar. 2024.

[17] C. Sun, X. Li, and Y. Sun, “A parallel framework of adaptive dynamic
programming algorithm with off-policy learning,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 32, no. 8, pp. 3578–3587, Aug. 2021.

[18] Y. Yang, Z. Guo, H. Xiong, D.-W. Ding, Y. Yin, and D. C. Wunsch,
“Data-driven robust control of discrete-time uncertain linear systems via
off-policy reinforcement learning,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 30, no. 12, pp. 3735–3747, Dec. 2019.

[19] L. Baird, “Residual algorithms: Reinforcement learning with func-
tion approximation,” in Machine Learning Proceedings. Amsterdam,
The Netherlands: Elsevier, 1995, pp. 30–37.

[20] D. Precup, R. S. Sutton, and S. Dasgupta, “Off-policy temporal-
difference learning with function approximation,” in Proc. ICML, 2001,
pp. 417–424.

[21] H. R. Maei, “Gradient temporal-difference learning algorithms,” Ph.D.
dissertation, Univ. Alberta, Edmonton, AB, Canada, 2011.

[22] R. S. Sutton et al., “Fast gradient-descent methods for temporal-
difference learning with linear function approximation,” in Proc. 26th
Annu. Int. Conf. Mach. Learn., 2009, pp. 993–1000.

[23] L. C. Baird, “Reinforcement learning through gradient descent,” Ph.D.
dissertation, School Comput. Sci., Carnegie Mellon Univ. Pittsburgh,
Pittsburgh, PA, USA, 1999.

[24] R. S. Sutton, A. R. Mahmood, and M. White, “An emphatic approach to
the problem of off-policy temporal-difference learning,” J. Mach. Learn.
Res., vol. 17, no. 73, pp. 1–29, 2016.

[25] S. Mahadevan et al., “Proximal reinforcement learning: A new the-
ory of sequential decision making in primal-dual spaces,” 2014,
arXiv:1405.6757.

[26] S. Ghiassian, A. Patterson, S. Garg, D. Gupta, A. White, and M. White,
“Gradient temporal-difference learning with regularized corrections,” in
Proc. Int. Conf. Mach. Learn., 2020, pp. 3524–3534.

[27] A. Hallak, A. Tamar, R. Munos, and S. Mannor, “Generalized emphatic
temporal difference learning: Bias-variance analysis,” in Proc. AAAI
Conf. Artif. Intell., 2016, vol. 30, no. 1, pp. 1–7.

[28] R. Munos, T. Stepleton, A. Harutyunyan, and M. Bellemare, “Safe and
efficient off-policy reinforcement learning,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 29, 2016, pp. 1–9.

[29] A. R. Mahmood, H. Yu, and R. S. Sutton, “Multi-step off-policy learning
without importance sampling ratios,” 2017, arXiv:1702.03006.

[30] K. Young and T. Tian, “MinAtar: An Atari-inspired testbed for thor-
ough and reproducible reinforcement learning experiments,” 2019,
arXiv:1903.03176.

[31] M. Geist and B. Scherrer, “Off-policy learning with eligibility traces: A
survey,” J. Mach. Learn. Res., vol. 15, pp. 289–333, Jan. 2014.

[32] C. Dann, G. Neumann, and J. Peters, “Policy evaluation with temporal
differences: A survey and comparison,” J. Mach. Learn. Res., vol. 15,
no. 1, pp. 809–883, 2014.

[33] A. White and M. White, “Investigating practical linear temporal differ-
ence learning,” in Proc. Int. Conf. Auto. Agents Multiagent Syst., 2016,
pp. 494–502.

[34] W. Chung, S. Nath, A. Joseph, and M. White, “Two-timescale networks
for nonlinear value function approximation,” in Proc. Int. Conf. Learn.
Represent., 2018, pp. 1–32.

[35] D. Precup, R. Sutton, and S. Singh, “Eligibility traces for off-policy
policy evaluation,” in Proc. 17th Int. Conf. Mach. Learn., 2000,
pp. 759–766.

[36] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Mach. Learn., vol. 3, no. 1, pp. 9–44, Aug. 1988.

[37] B. Liu, J. Liu, M. Ghavamzadeh, S. Mahadevan, and M. Petrik, “Prox-
imal gradient temporal difference learning algorithms,” in Proc. IJCAI,
2016, pp. 4195–4199.

[38] L. Hackman, “Faster gradient-TD algorithms,” M.S. thesis, Dept. Com-
put. Sci., Univ. Alberta, Edmonton, AB, Canada, 2012.

[39] H. Yu, A. R. Mahmood, and R. S. Sutton, “On generalized Bellman
equations and temporal-difference learning,” J. Mach. Learn. Res.,
vol. 19, no. 48, pp. 1–49, 2018.

[40] B. Rafiee, S. Ghiassian, A. White, and R. S. Sutton, “Prediction
in intelligence: An empirical comparison of off-policy algorithms on
robots,” in Proc. 18th Int. Conf. Auto. Agents MultiAgent Syst., 2019,
pp. 332–340.

[41] J. Modayil and R. S. Sutton, “Prediction driven behavior: Learning
predictions that drive fixed responses,” in Proc. Workshops 28th AAAI
Conf. Artif. Intell., 2014, pp. 1–7.

[42] S. Ghiassian, B. Rafiee, and R. S. Sutton, “A first empirical study of
emphatic temporal difference learning,” 2017, arXiv:1705.04185.

[43] W. Dabney and A. Barto, “Adaptive step-size for online temporal
difference learning,” in Proc. AAAI Conf. Artif. Intell., 2012, vol. 26,
no. 1, pp. 872–878.

[44] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[45] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of Adam and
beyond,” 2019, arXiv:1904.09237.

[46] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn. Res.,
vol. 12, no. 7, pp. 2121–2159, 2011.

[47] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[48] R. S. Sutton, C. Szepesvári, and H. R. Maei, “A convergent O (n)
algorithm for off-policy temporal-difference learning with linear function
approximation,” in Proc. Adv. Neural Inf. Process. Syst., 2008, vol. 21,
no. 21, pp. 1609–1616.

[49] A. Juditsky, A. Nemirovski, and C. Tauvel, “Solving variational inequali-
ties with stochastic mirror-prox algorithm,” Stochastic Syst., vol. 1, no. 1,
pp. 17–58, 2011.

[50] Y. Feng, L. Li, and Q. Liu, “A kernel loss for solving the Bellman
equation,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019,
pp. 1–12.

[51] B. Dai et al., “SBEED: Convergent reinforcement learning with non-
linear function approximation,” in Proc. Int. Conf. Mach. Learn., 2018,
pp. 1125–1134.

[52] X. Gu, S. Ghiassian, and R. S. Sutton, “Should all temporal difference
learning use emphasis?” 2019, arXiv:1903.00194.

[53] M. White, “Unifying task specification in reinforcement learning,” in
Proc. Int. Conf. Mach. Learn., 2017, pp. 3742–3750.

[54] A. Touati, P. L. Bacon, D. Precup, and P. Vincent, “Convergent tree
backup and retrace with function approximation,” in Proc. Int. Conf.
Mach. Learn., 2018, pp. 4955–4964.

Sina Ghiassian received the M.Sc. degree in super-
vised learning from the University of Alberta,
Edmonton, AB, Canada, in 2014, and the Ph.D.
degree from the University of Alberta in 2022, under
the supervision of Richard S. Sutton.

He is currently a Research Scientist with Spotify
Canada Inc., Toronto, ON, Canada. Before joining
Spotify, he was a Post-Doctoral Fellow with the Uni-
versity of Alberta, where he was advised by Richard
S. Sutton. During his Ph.D. degree, he worked on
off-policy and emphatic temporal-difference learning
algorithms.

Banafsheh Rafiee received the M.Sc. degree in
computer science from the University of Alberta,
Edmonton, AB, Canada, in 2018, where she is
currently pursuing the Ph.D. degree.

Her research interest is in investigating the prob-
lem of representation learning in reinforcement
learning.

Richard S. Sutton received the B.A. degree in
psychology from Stanford University, Stanford, CA,
USA, in 1978, and the Ph.D. degree in computer sci-
ence from the University of Massachusetts, Boston,
MA, USA, in 1984.

Prior to joining the University of Alberta, Edmon-
ton, AB, Canada, in 2003, he worked in industry
at AT&T Shannon Laboratory, Artificial Intelligence
Department, Florham Park, NJ, USA and Computer
and Intelligent Systems Laboratory, GTE Laborato-
ries, Waltham, MA, USA, and in academia at the

University of Massachusetts. He helped found DeepMind Alberta, Edmonton,
AB, Canada, in 2017 and worked there until its dissolution in 2023. At the
University of Alberta, he founded the Reinforcement Learning and Artificial
Intelligence Laboratory, which now consists of ten principal investigators and
about 100 people altogether. He is currently a Research Scientist with Keen
Technologies, Westminster Ave, Dallas, USA, a Professor with the Department
of Computing Science, University of Alberta, and a Chief Scientific Advisor of
the Alberta Machine Intelligence Institute (Amii), Edmonton. He is a coauthor
of the textbook Reinforcement Learning: An Introduction. His scientific
publications have been cited more than 140 000 times. He is also a libertarian,
a chess player, and a cancer survivor.

Dr. Sutton is a fellow of the Royal Society of London, the Royal Society of
Canada, the Association for the Advancement of Artificial Intelligence, Amii,
and Canadian Institute for Advanced Research (CIFAR).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

