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Abstract

This dissertation develops simple and practical learning algorithms from first prin-

ciples for long-lived agents. Formally, the algorithms are developed within the rein-

forcement learning framework for continuing (non-episodic) problems, in which the

agent-environment interaction goes on ad infinitum, with the goal of maximizing the

average reward obtained per step. The average-reward formulation is under-studied

in reinforcement learning with several important open problems.

The first contribution of this dissertation involves the development of foundational

one-step average-reward learning methods for prediction and control. The central idea

involves using the TD error to estimate the average reward, which enables proofs for

convergence in both the on- and off-policy tabular settings. Experimental results

show that the algorithms’ performance is robust to the values of their parameters.

Next, we extend the above one-step prediction algorithm to make multi-step up-

dates using eligibility traces, because multi-step methods can be more sample-efficient.

Based on the analysis of a related algorithm, we prove convergence in the on-policy

setting with linear function approximation. We also show the first convergence proof

in the off-policy setting for a multi-step tabular average-reward prediction algorithm.

Finally, we show that standard discounted algorithms can be significantly im-

proved if their rewards are centered by subtracting out the rewards’ empirical av-

erage, which could be changing with time in the control problem. We discuss two

ways of estimating the average reward that can be used with any standard discounted

algorithm and demonstrate the benefits of reward centering with tabular, linear, and

non-linear function approximation.
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Preface

The main chapters of this dissertation are based on papers that are either published

in conference proceedings, presented at workshops, or are under review.

In particular, some contents of Chapters 1 and 3 have appeared in:

• Wan, Y., Naik, A., & Sutton, R. S. (2021a). Learning and Planning in Average-

Reward Markov Decision Processes. International Conference on Machine Learning.

The three of us jointly developed the algorithms and wrote the manuscript, of which

Yi Wan and I were joint first authors. Yi worked out all the convergence proofs in

the paper; those are not included in this dissertation. I performed all the experiments

and have included them here. We worked on the literature survey together and have

both included it in our dissertations. The algorithm derivations and some additional

analysis are new to this dissertation and do not appear in the paper.

Some contents of Chapter 4 have appeared in or will appear in:

• Naik, A., & Sutton, R. S. (2022). Multi-Step Average-Reward Prediction via

Differential TD(λ). Conference on Reinforcement Learning and Decision Making.

• Naik, A., Yu, H., & Sutton, R. S. (2024). Multi-Step Off-Policy Average-Reward

Prediction with Eligibility Traces. In preparation for submission to a journal.

I developed all the algorithms and performed all the experiments in both manuscripts.

I worked out all the proofs in the first manuscript. The second manuscript builds on

the first and contains an additional new family of algorithms which I analyzed with

Huizhen (Janey) Yu. I primarily wrote both manuscripts with suggestions from Janey

and Rich.
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Some contents of Chapter 5 appear in:

• Naik, A., Wan, Y., Tomar, M., & Sutton, R. S. (2024). Reward Centering. Under

review.

Yi, Rich, and I were involved in the initial conception of the idea. I fleshed out the idea

in its current form and performed all the experiments. I also analyzed the resulting

algorithms; Yi Wan provided the formal theorem statement. I wrote the manuscript

with suggestions from Rich and Yi. Manan performed additional experiments that

are not part of this dissertation.

While performing the research presented in this dissertation, I also worked on other

projects. In the following list, the first three are directly related to my dissertation

topic while the other two are not:

• Naik, A., Shariff, R., Yasui, N., Yao, H., & Sutton, R. S. (2019). Discounted Re-

inforcement Learning Is Not an Optimization Problem. Optimization Foundations

for Reinforcement Learning Workshop at the Conference on Neural Information

Processing Systems. Also ArXiv:1910.02140.

• Naik, A., Abbas, Z., White, A., & Sutton, R. S. (2021). Towards Reinforcement

Learning in the Continuing Setting. Never-Ending Reinforcement Learning work-

shop at the International Conference on Learning Representations.

• Wan, Y., Naik, A., & Sutton, R. S. (2021b). Average-Reward Learning and Plan-

ning with Options. Advances in Neural Information Processing Systems.

• Kudashkina, K., Wan, Y., Naik, A., Sutton, R. S. (2021). Planning with Expec-

tation Models for Control. ArXiv:2104.08543

• Naik, A., Chang, B., Karatzoglou, A., Mladenov, M., Chen, M., & Chi, E. H.

(2023). Investigating Action-Space Generalization in Reinforcement Learning for

Recommendation Systems. Workshop on Decision Making for Recommendation

Systems at the World Wide Web conference (oral presentation).
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“What you get by achieving your goals is not as important as

what you become by achieving your goals.”

-Zig Ziglar
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Chapter 1

Introduction

The high-level goal of this dissertation is to develop simple and practical learning

algorithms from first principles for long-lived agents. By agents, I mean any kind

of artificial autonomous decision-making systems having a physical manifestation or

a virtual existence; the key is their actions have measurable consequences and that

they learn to make decisions from their experience. The formal framework that I am

using for my research is that of reinforcement learning (RL), which formalizes the

interaction of decision-making systems and the world with the goal of maximizing a

reward signal. I want to study agents that make decisions throughout their lifetimes,

so my focus is what are called continuing problems in RL. In particular, I consider

the average-reward formulation, which is an important way to formalize the objective

of long-lived agents in RL.

Continuing problems are ones in which the time span of an agent’s decisions’ con-

sequences can potentially be of the order of the agent’s lifetime. We frequently make

such decisions in our lives—choosing academics over a career in sports, choosing re-

search over software engineering, choosing one life partner over another. Now imagine

a rover exploring the surface of Mars: if in one expedition it hits a big rock and dam-

ages one of its sensors, in subsequent excursions the rover has to continue using the

damaged sensor. A common theme in the above problems is that the learning system

lives with the consequences of its decisions over its lifetime.
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The continuing problem setting is distinct from the more commonly studied episodic

problem setting, which better models problems in which the span of decisions’ con-

sequences are bound within episodic boundaries. The game of chess is a prototypical

example of an episodic problem: each game starts afresh; the consequences of moves

are restricted to a single game.

Continuing problems are interesting because the learning systems that I envision

inhabit the world we live in and make decisions whose consequences can span arbitrary

time spans. Many problems around us are continuing in spirit, and if we intend to

build intelligent systems that have general learning abilities, we expect them to solve

continuing problems in addition to episodic ones.

In the sequential decision-making literature, continuing problems have been com-

monly modeled using two formulations: the discounted-reward and the average-

reward formulation. In the discounted formulation, the agent is expected to learn to

make decisions that maximize the discounted sum of future rewards. An exponentially-

decaying weight per time step makes the potentially infinite sum of rewards finite.

As a result, rewards further in the future following a decision are discounted in favor

of more immediate rewards. In the average-reward formulation, the objective for the

agent is to maximize the rate at which reward is obtained over the long term, which

translates to a large sum of rewards over time. There is no discounting; the reward

at each time step is weighted equally.

Classically, sequential decision-making problems are cast as Markov decision pro-

cesses (MDPs), which can then be solved exactly using a rich literature of dynamic-

programming (DP) techniques. For continuing problems, the average-reward for-

mulation and solution methods are well-established in the DP literature. However,

in reinforcement learning, the average-reward formulation is not as prevalent as the

discounted-reward formulation. This is likely because the discounted formulation is

also applicable in episodic problems, which are the focus of a vast majority of the RL

community (and for which we now have several landmark demonstrations of RL!).
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The average-reward formulation for RL is under-studied and has a variety of exciting

open problems. My goal for this dissertation was to advance the frontiers of RL re-

search on continuing problems by developing algorithms based on the average-reward

formulation.

In the following section I outline the existing research in average-reward RL and

discuss the gaps filled by the contributions of this dissertation.

Contextualizing the Average-Reward Literature

The average-reward RL literature builds on the well-established methods in the DP

literature. Methods that use models of MDPs to compute solutions are often called

planning methods. Howard first studied average-reward MDPs in 1960 and introduced

policy iteration. Based on Bellman’s (1957) value iteration, White (1963) proposed

relative value iteration (RVI) for average-reward MDPs. These methods involve sub-

steps whose complexity is of order the number of states or more, and hence are not

well-suited for large problems. Jalali and Ferguson (1989, 1990) were among the

first to explore more incremental methods, though their algorithms are limited to

special-case MDPs and require referencing the value of a special state–action pair.

When I started my Ph.D. in late 2018, the best average-reward planning algorithm

appeared to be the planning variant of Abounadi et al.’s (2001) RVI Q-learning: an

incremental planning algorithm that is guaranteed to converge when applied to a

stream of experience generated from a model. However, RVI Q-planning also relies

on specifying a function over state–action pairs. In our paper (Wan, Naik, & Sutton,

2021a), we built on these advances to introduce average-reward planning methods

that are convergent without a special reference function.1

A major focus in the field of RL are methods that do not assume access to a

complete model of an underlying MDP. Such model-free methods are often called

1We focus on model-free methods in this dissertation. For an extended discussion on planning
methods, please refer to the paper.
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learning methods, while those that also learn a model and plan with it are called

combined methods. It is also convenient to classify the problems that we want to

solve. Recall that in the average-reward formulation, agents seek to maximize the

average reward per step, or the reward rate—this is called the control problem. As

a sub-step, agents also need to evaluate the average reward of a target policy and

the corresponding average-reward value function, which we call the differential value

function. This problem is called the prediction problem. Agents that use learning

and combined methods collect their own data. If the agent behaves according to the

target policy to collect data, we say the agent is solving the on-policy setting of the

prediction or control problem; if the behavior policy is different from the target policy,

we call it the off-policy setting.

The on-policy setting is typically easier than the off-policy setting and hence has so-

lution methods with better capabilities and guarantees than their off-policy variants.

For instance, on-policy average-reward prediction algorithms include Average-Cost

TD(λ) (Tsitsiklis & Van Roy, 1999), LSTD(λ) (Konda, 2002), and LSPE(λ) (Yu &

Bertsekas, 2009), all of which are guaranteed to converge with linear function ap-

proximation. In particular, the three algorithms maintain a running average of the

observed rewards, which converges to the true average reward of the target policy;

further, the convergence of the value estimates is limited by function approximation,

but there are strict bounds on the quality of the estimated solution (e.g., Tsitsiklis

and Van Roy, 1999).

Off-policy learning is more challenging and convergence results only exist for the

tabular case without any function approximation. In this case, a running average

of the observed rewards according to the behavior policy does not converge the true

average reward of the target policy. Existing methods for off-policy prediction instead

try to estimate the ratio of the steady-state distributions induced by the target and

the behavior policies to estimate the average reward (e.g., Liu et al., 2018; Tang et

al., 2019; Mousavi et al., 2020; Zhang et al., 2020a,b). Notably, they do not estimate
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the differential value function. In addition, these methods operate on a batch of data.

The first contribution of this dissertation is a tabular average-reward off-policy

prediction method that converges to both the true average reward of the target policy

and its differential value function. The key idea involves a rearrangement of the

differential Bellman equations (which shall be defined shortly) that yields a form

of the average reward that can be estimated using the TD error even in the off-

policy setting (without explicitly estimating any steady-state distributions). Called

Differential TD-learning, this method is fully online—it makes updates as soon as

new data is available, without any batching.

For on-policy control, there are several algorithms with various guarantees under

different conditions: asymptotic convergence, sub-linear regret, or probably approx-

imately correct. These include tabular learning algorithms (e.g., Wheeler & Naren-

dra, 1986; Abbasi-Yadkori et al., 2019), tabular combined algorithms (e.g., Kearns &

Singh, 2002; Brafman & Tennenholtz, 2002; Auer & Ortner, 2006; Jaksch et al., 2010),

and policy-gradient algorithms (e.g., Sutton et al., 1999b; Marbach & Tsitsiklis, 2001;

Kakade, 2001a; Konda, 2002).

Off-policy control is also more challenging, with theoretical guarantees existing

only in the tabular case. The earliest tabular average-reward off-policy learning con-

trol algorithms that we know of were those introduced (without convergence proofs)

by Schwartz (1993) and Singh (1994). Bertsekas and Tsitsiklis (1996) and Das et

al. (1999) introduced algorithms with function approximation, but also did not pro-

vide convergence proofs. The most important prior algorithm is RVI Q-learning, by

Abounadi, Bertsekas, and Borkar (1998, 2001; more on this algorithm shortly). They

also introduced SSP Q-learning, which is limited to MDPs with a special state that is

recurrent under all stationary policies, whereas RVI Q-learning is shown to be conver-

gent for more general MDPs. Ren and Krogh (2001) presented a tabular algorithm

and proved its convergence, but their algorithm requires knowledge of properties of

the MDP which are not in general known. Gosavi (2004) and Yang et al. (2016)
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separately introduced two algorithms and claimed to proved their convergence, but

their proofs are not correct (see Wan’s (2023) Section 3.5 for details about the former

and Appendix D of our paper (Wan et al., 2021a) for the latter).

RVI Q-learning (Abounadi et al., 2001) is actually a family of off-policy algorithms

that estimates the average reward by referencing the estimated values of specific

state–action pairs. Each different reference function over state–action pairs creates

an instance of the algorithm, for instance, a weighted average of the value estimates

of all state–action pairs, or in the simplest case, the estimate of a single state–action

pair’s value. For best results, the referenced state–action pairs should be frequently

visited; otherwise convergence can be unduly slow. However, if the behavior policy

is linked to the target policy (as in ϵ-greedy behavior policies), then knowing which

state–action pairs will be frequently visited may be akin to knowing a substantial part

of the problem’s solution. This motivates the search for a general learning algorithm

that does not require a reference function.

Our Differential Q-learning is an online off-policy control algorithm that does not

involve the specification of a reference function. Like Differential TD-learning, it

maintains an explicit average-reward estimate (like Schwartz, 1993; Singh, 1994)

which is updated using the TD error. This enables convergence proofs by slightly

generalizing the theory of RVI Q-learning.

Most of the algorithms we have discussed so far are one-step methods that update

their estimates using only the data from a single time step. Algorithms that make

multi-step updates can be more sample efficient (see, e.g., Sutton & Barto’s Chapters 7

and 12). Tsitsiklis and Van Roy’s (1999) Average-Cost TD(λ)—mentioned earlier—is

a multi-step on-policy prediction algorithm that uses eligibility traces and has strong

convergence results with linear function approximation. Building on their theory,

we show that a multi-step extension of our one-step Differential TD-learning is also

convergent under the same conditions with linear function approximation.

In the average-reward literature thus far, there was no convergent multi-step al-
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gorithm for the off-policy setting, even in the tabular case. In this dissertation, we

propose a family of multi-step prediction algorithms for the off-policy setting. Using

Borkar’s (2009) analysis, we show this family of algorithms converges in the off-policy

setting to the true reward rate of the target policy and its differential value function.

These are the first multi-step average-reward algorithms that are proved to converge

in the off-policy setting.

Mathematically, the average-reward formulation is closely related to the discounted-

reward formulation. As far back as in 1962, Blackwell pointed out the relation between

the discounted value function of a policy, its average reward, and its differential value

function. Based on this relation, Tsitsiklis and Van Roy (2002) noted that as the

discount factor approaches one, the corresponding discounted value function contains

the exact same information as the average reward and the differential value func-

tion, combined. Kakade (2001b) also noted that if the discount factor γ is large

enough, an optimal policy corresponding to that discount factor (also called a γ-

optimal policy) may also obtain the most average reward. In fact, for finite MDPs,

an implication of Blackwell’s work is that there exists a critical discount factor γ∗ such

that ∀γ ∈ [γ∗, 1), the γ-optimal policy also maximizes the average reward (see Grand-

Clément & Petrik’s (2023) Theorem 4.6 and Puterman’s (1994) Theorem 10.1.4). The

critical discount factor is different for each problem, though, and may be arbitrarily

large.

In theory, a discounted-reward algorithm can learn the average-reward-optimal

policy with a discount factor that is large enough (in the tabular case). However, the

variance of methods like Q-learning grows unbounded with a polynomial power of

1/(1−γ) (Devraj & Meyn, 2021; Qu & Wierman, 2020; Wainwright, 2019; Even-Dar

et al., 2003). RL practitioners are all too familiar with the considerable instability

issues that tend to occur when using these algorithms with large discount factors.

Devraj and Meyn (2021) noted from Blackwell’s decomposition of the discounted

value function that the large constant (r(π)/(1− γ), where r(π) denotes the average
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reward of the target policy π) in each of the standard discounted values is inconse-

quential to, say, picking the argmax action. So they suggested that estimating the

standard discounted values is unnecessary and proposed that it is enough to estimate

relative discounted values. They postulated that their Relative Q-learning algorithm

has bounded variance (that does not depend on γ).

We explore the extreme version of this idea of learning the relative discounted

values instead of the standard discounted values: if the rewards are mean-centered

(that is, have mean zero), there is no constant in the discounted values that scales

with 1/(1− γ). We propose two ways in which the average reward can be estimated

to mean-center the rewards. We show that using these reward-centering techniques

significantly improves the performance of standard discounted methods such as TD-

learning and Q-learning in continuing problems. In particular, their performance does

not degrade even with discount factors tending to one.2

For more comprehensive and excellent surveys of the average-reward literature,

please refer to Wan (2023) or Dewanto et al. (2020); Mahadevan’s (1996) review is

also a timeless resource.

Layout of the Dissertation

This dissertation has six chapters (including this one). In Chapter 2, I introduce most

of the notation and the particular ideas from the average-reward formulation that are

important to understand the contributions of this dissertation.

In Chapter 3, I discuss our first set of contributions: tabular one-step algorithms

for prediction and control that are convergent in both the on- and off-policy settings

without a reference function. I show the theory behind the derivations of Differential

TD-learning and Differential Q-learning and compare their updates to existing work.

The same chapter contains experiments that show the performance of both algorithms

2When γ = 1, TD-learning (or Q-learning) with reward centering is equivalent to our average-
reward Differential TD-learning (or Differential Q-learning) algorithm.
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is quite robust to their parameters.

In Chapter 4, I present our second set of contributions. At first, I propose a multi-

step variant of one-step Differential TD-learning and show its convergence proof in

the on-policy setting with linear function approximation. Next, I show that a simple

extension of this new multi-step algorithm to the off-policy setting may not converge

even in the tabular case. Finally, I propose a family of multi-step algorithms and show

their convergence proofs the tabular off-policy setting. The chapter also contains

experiments that validate the theoretical results and intuitions.

In Chapter 5, I show that standard discounted algorithms can perform significantly

better if they center their rewards by subtracting out the rewards’ empirical average.

I propose two straightforward ways of reward centering that can be used with any

existing discounted algorithm. Through a series of experiments, I demonstrate the

benefits of reward centering with tabular, linear, and non-linear function approxima-

tion.

At the ends of Chapters 3, 4, 5, I discuss follow-up research directions specific

to each topic. Finally, in Chapter 6, I summarize the contributions and outline my

recommendations for future work.
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Chapter 2

The Average-Reward Formulation

This chapter briefly introduces ideas and notations of the average-reward formulation

that are relevant to this dissertation. In particular, I will present definitions of the

average reward and the corresponding value function, and show the corresponding

Bellman equations. I will also provide examples to illustrate nuances that are specific

to the average-reward formulation, such as unichain Markov chains and communicat-

ing Markov decision processes.

To define the concepts more precisely, we will need the notation of Markov decision

processes. The agent-environment interaction within a continuing sequential decision-

making problem can be formulated as a finite Markov decision process (MDP): M .
=

(S,A,R, p), where S is a set of states, A is a set of actions, R is a set of rewards, and

p : S ×R×S ×A → [0, 1] is the dynamics of the environment. At each of a sequence

of discrete time steps t = 0, 1, 2, . . . , the agent receives an indication of a state of

the MDP, St ∈ S, and selects, using a Markov behavior policy b : A× S → [0, 1], an

action, At ∈ A, then receives from the environment a reward, Rt+1 ∈ R, and the next

state, St+1 ∈ S, and so on. The transition dynamics are such that p(s′, r | s, a) .
=

Pr(St+1 = s′, Rt+1 = r | St = s, At = a) for all s, s′ ∈ S, a ∈ A, and r ∈ R. The key

feature of the continuing problem is that the agent-environment interaction goes on

forever. We consider policies in the set of stationary Markov policies throughout this

dissertation, and denote this set by Π.
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Figure 2.1: Example showing the average reward of a policy can depend on the
starting state. Consider a policy that takes the blue action in all states. There are
two resulting reward rates: 1 if the agent starts in the left loop; -1 if the agent starts
in the right loop.

In general, the average reward per step—or the reward rate—of a policy can de-

pend on the start state. Consider the MDP in Figure 2.1 and a policy πblue that

deterministically takes the blue action in every state. If the agent starts in one of the

states on the left and follows πblue thereafter, it will observe a reward of +1 per step;

if it starts in one of the states on the right, −1. Mathematically, the reward rate of

a policy π can be defined for every state s as:

r(π, s)
.
= lim

n→∞

1

n

n∑︂
t=1

E[Rt | S0 = s, A0:t−1 ∼ π]. (2.1)

It is convenient to rule out the possibility of the reward rate of the target policy

depending on the start state. In particular, we assume that under the target policy

there is only one possible limiting distribution for the resulting Markov chain, dπ :

S → [0, 1], independent of the start state. This is known as the Markov chain being

unichain. Let the set of policies that induce a unichain be denoted by Πu.

Under the unichain assumption,

r(π)
.
= lim

n→∞

1

n

n∑︂
t=1

E[Rt | A0:t−1 ∼ π], (2.2)

=
∑︂
s

dπ(s)
∑︂
a

π(a|s)
∑︂
r

p(r | s, a) r. (2.3)

The average-reward state-value function vπ : S → R for a policy π ∈ Πu is:

vπ(s)
.
= lim

n→∞

1

n

n∑︂
k=1

k∑︂
t=1

E [Rt − r(π) | S0 = s, A0:t−1 ∼ π] , ∀s ∈ S. (2.4)
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Figure 2.2: Examples of periodic and aperiodic Markov chains. For the 3-state MDP
on the left, the first policy induces a periodic Markov chain, while the second policy
induces an aperiodic Markov chain.

There is a simpler form of the value function when the Markov chain induced by the

policy π in the MDP is aperiodic. A Markov chain is periodic if there is at least one

state s for which the probability of returning to it, Pr(Sk = s|S0 = s), is non-zero

only for multiples of k ≥ 2 (Figure 2.2 has an example with k = 3). Otherwise, the

Markov chain is aperiodic, and the value function then is:

vπ(s)
.
=

∞∑︂
t=1

E
[︁
Rt − r(π) | S0 = s, A0:∞ ∼ π

]︁
, ∀s ∈ S. (2.5)

Since the average-reward value function involves differences of the rewards with

the reward rate, it is often referred to as the differential value function.

For the aperiodic case we can define a differential return:

Gt
.
= Rt+1 − r(π) + Rt+2 − r(π) + Rt+3 − r(π) + . . . ,

so that, vπ(s)
.
= E[Gt | St = s, At:∞ ∼ π], ∀s ∈ S.

Analogous to the discounted formulation, the differential state-value function and

the reward rate satisfies a recursive Bellman equation:

v(s) =
∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r|s, a)
(︁
r − r̄ + v(s′)

)︁
, ∀ s ∈ S, (2.6)

where v : S → R and r̄ ∈ R are free choices. The Bellman equation can also be
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compactly represented in vector-matrix notation:

v = rπ − r̄ 1+Pπv, (2.7)

where rπ is the expected one-step reward from each state under policy π, Pπ is the

state-to-state transition matrix under policy π, 1 is a vector of all ones, and the vector

v and scalar r̄ are free variables. The vector notation can express ideas concisely and

hence will be used throughout the dissertation. Unless specified otherwise, lower-case

bold letters signify vectors and upper-case bold letters signify matrices.

The Bellman equations for the differential value function specify an under-determined

system: for any solution
(︁
v, r(π)

)︁
, there are infinitely many solutions of the form(︁

v + c1, r(π)
)︁
for c ∈ R. Note that v denotes a general solution to the differential

Bellman equation of which vπ—the vector form of (2.5)—is a specific solution.

Intuitively, the average-reward formulation separates the infinite stream of rewards

into two components: a long-term and a short-term component. The long-term rate

of reward is captured by the average-reward term; the short-term sum of rewards in

excess of average reward is captured by the aptly named differential value function.

Together, these two quantities summarize the infinite stream of rewards.

Lemma 2.1. The average of the differential value function weighted by the steady-

state distribution is zero, that is, d⊤
π vπ = 0.

Proof. The proof is a simpler version of the proof of Wan et al.’s (2021a) Lemma

B.11.

First, note a property of the steady-state distribution dπ:∑︂
s

dπ(s)pπ(s
′|s) = dπ(s

′), or, d⊤
πPπ = d⊤

π . (2.8)

As a result, d⊤
πP

n
π = d⊤

π for all non-negative integers. Now, re-write the definition of

the value function (2.5) in vector form1:

vπ
.
=

∞∑︂
t=1

[︁
Pt−1

π rπ − r(π)1
]︁
. (2.9)

1The same proof applies to the more general periodic case.
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Multiplying d⊤
π on both sides:

d⊤
π vπ = d⊤

π

∞∑︂
t=1

[︁
Pt−1

π rπ − r(π)1
]︁

=
∞∑︂
t=1

[︁
d⊤
πP

t−1
π rπ − r(π)d⊤

π 1
]︁

=
∞∑︂
t=1

[︁
d⊤
π rπ − r(π)

]︁
=

∞∑︂
t=1

[︁
r(π)− r(π)

]︁
= 0

This property makes intuitive sense: the differential value of a state is the sum

of rewards obtained in excess of the average reward, starting from the given state.

The differential values are positive in some states and negative in others—on average,

zero.

Lemma 2.2 (Based on Tsitsiklis and Van Roy’s (1999) Lemma 3). All the solutions

(v, r̄) of the differential Bellman equations: v = rπ − r̄ 1 + Pπv are of the form(︁
vπ + c1, r(π)

)︁
.

Proof. See Tsitsiklis and Van Roy’s (1999) proof for their Lemma 3.

The differential action-value function is defined for unichain and aperiodic Markov

chains as:

qπ(s, a)
.
=

∞∑︂
t=1

E
[︁
Rt − r(π) | S0 = s, A1:∞ ∼ π

]︁
, ∀s ∈ S, a ∈ A. (2.10)

All the properties of the differential state-value function also apply to the differential

action-value function.

In a finite Markov chain, if the probability of a state occurring infinitely often is

one, such states are called recurrent states; otherwise, transient.
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So far we have considered the average reward or the reward rate corresponding

a particular policy. Let us now consider the best reward rate for an MDP. For an

unconstrained MDP, the best reward rate depends on the start state. For example,

the MDP may have two disjoint sets of states with no policy that passes from one to

the other; in this case there are effectively two MDPs, with unrelated rates of reward.

A learning algorithm would have no difficulty with such cases—it would optimize

for whichever sub-MDP it found itself in—but it is complex to state formally what is

meant by an optimal policy. To remove this complexity, it is commonplace to rule out

such cases by assuming that the MDP is communicating, which just means that there

are no states from which it is impossible to get back to the others. As an example,

the MDP in Figure 2.1 is not communicating.

Under the communicating assumption, there exists a unique optimal reward rate

r∗ that does not depend on the start state: r∗ = r(π∗, s), ∀s, where π∗ denotes a

policy corresponding to the best reward rate. There can be multiple optimal policies.

The value function corresponding to such a policy also satisfies a recursive Bellman

equation. This Bellman optimality equation corresponding to the differential action-

value function is:

q(s, a) =
∑︂
s′,r

p(s′, r | s, a)
[︁
r − r̄ +max

a′
q(s′, a′)

]︁
, ∀s, a. (2.11)

where q, r̄ are free variables. As with the Bellman evaluation equation (2.6), there

are infinite solutions of the Bellman optimality equation of the form (qπ∗ + c1, r∗) for

c ∈ R.

In this dissertation we discuss several algorithms to estimate the differential (state-

or action-)value function. The problems we are interested in are assumed to have an

underlying MDP with a potentially large but finite set of states and actions. The

algorithms do not have direct access to the underlying transition or reward dynamics,

only the stream of agent-environment interactions. If the observation stream includes

the state of the MDP, the agent can approximate the value of each state separately—in
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a table. This case is referred to as the tabular case. More often, the number of

unique states may be too many, and/or the observation stream may only include

a lossy encoding of states. In this case, the approximate value function may be

represented as a parameterized functional form instead of a table—aptly called the

function approximation case.

With this background, we can begin understanding the contributions in this dis-

sertation.
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Chapter 3

One-step Differential Methods

This chapter establishes the foundational algorithms for the average-reward formula-

tion: one-step tabular model-free methods (a) for the prediction and control problems

that are (b) guaranteed to converge in both the on- and off-policy settings.

Tabular one-step methods are the foundational solution methods for any problem

formulation. The foundations of average-reward solution methods were laid just over

two decades ago. The methods proposed in this chapter strengthen the foundations

by improving the generality of existing average-reward methods. In particular,

1. Our Differential TD-learning is the first tabular one-step off-policy prediction

algorithm that is proved to converge to the average reward and the differential

value function of the target policy,

2. Our Differential Q-learning is the first general tabular one-step control algo-

rithm that is proved to converge in the off-policy setting without any reference

states.

The methods use the TD error to estimate the average reward—a central idea across

the chapters of this dissertation.

Much of the contents of this chapter have appeared in a paper that my collabora-

tor—Yi Wan—and I published as joint first authors with Rich Sutton (Wan, Naik, &

Sutton, 2021a). Yi worked out all the convergence proofs and included those in his
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dissertation. I performed all the experiments, which I have included here along with

the algorithm derivations and some analysis that does not appear in the paper.

3.1 Prediction: Theory

In the prediction problem, the goal is to estimate the differential value function and

reward rate of a target policy while behaving according to a behavior policy.

Let us first consider how to estimate the reward rate r(π) from the agent’s stream

of experience: S0, A0, R1, S1, . . . St, At, Rt+1, St+1, . . ..

The most obvious approach is to average all the rewards seen so far. That is, at

time step t, after observing rewards R1, R2, . . . , Rt, the estimate of the reward rate,

R̄t, can be:

R̄t =
1

t

t∑︂
k=1

Rk. (3.1)

Indeed, this sample average approach is guaranteed to converge to the true reward

rate. To see why, consider the definition of the reward rate (2.3) when we expand the

expectation term:

r(π) =
∑︂
s

dπ(s)
∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r|s, a) r,

where dπ(·) denotes the limiting distribution over states. If the actions are taken

according to the policy π, then the law of large numbers guarantees that R̄t converges

to r(π).

An incremental version of the sample-average approach (3.1) is the following update

at every time step t ≥ 0:

R̄t+1
.
= R̄t + βt(Rt+1 − R̄t), (3.2)

where βt = 1/(t+1). More generally, (3.2) converges to r(π) as long as the step sizes

{βt} follow the standard Robbins-Monro conditions:∑︂
t

βt = ∞,
∑︂
t

β2
t < ∞. (3.3)
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A general way to estimate an expectation using samples

Say we want to estimate x̄ = E[X] from samples of X : X1, X2, . . . Xn. Then

the estimator X̄ t updated at each time step t as:

X̄ t+1
.
= (1− αt)X̄ t + αtXt

= X̄ t + αt(Xt − X̄ t)

is guaranteed to converge to x̄ if the step sizes follow the Robbins-Monro con-

ditions.

Intuitively, the general rule is:

new estimate = old estimate+ step size(new target− old estimate) (3.4)

An example of this general rule in use is the TD-learning update. The

expectation form of the discounted value function is given by the Bellman

equation:

vγπ(s) =
∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r | s, a)
(︁
r + γv(s′)

)︁
, ∀ s ∈ S.

The update for the value estimates V after a sample (St, At, Rt+1, St+1):

V γ
t+1(St)⏞ ⏟⏟ ⏞

new estimate

.
= V γ

t (St)⏞ ⏟⏟ ⏞
old estimate

+ αt⏞⏟⏟⏞
step size

(︁
Rt+1 + γV γ

t (St+1)⏞ ⏟⏟ ⏞
new target

− V γ
t (St)⏞ ⏟⏟ ⏞

old estimate

)︁
.

Assuming the Robbins-Monro conditions for the step sizes, Sutton (1988a)

showed the convergence of this sample-based update to the true discounted

value function vγπ(·) for all the states that are recurrent under the policy π.

Given a sample-based update for the reward-rate estimate, how should we update

the value estimates? Let us consider the differential Bellman equation (2.6) again:

v(s) =
∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r | s, a)
(︁
r − r̄ + v(s′)

)︁
, ∀ s ∈ S,
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corresponding to the unichain assumption from Chapter 2 (unless otherwise specified,

the assumptions in Chapter 2 are used throughout this dissertation). To estimate this

expectation, we can use the general rule outlined in the previous box to get a sample-

based update for the estimates V :

Vt+1(St)
.
= Vt(St) + αt

(︁
Rt+1 − R̄t + Vt(St+1)− Vt(St)

)︁
.
= Vt(St) + αtδt. (3.5)

Combined with the update for the reward-rate estimate, we get a complete algorithm

for estimating the different value function and the reward rate. Tsitsiklis and Van

Roy (1999) proved the convergence for an algorithm very similar to this one under

mild technical conditions. Following their naming convention, we call this the Average

Cost TD-learning algorithm.

Average Cost TD-learning

At time step t, with the knowledge of (St, At, Rt+1, St+1), update the value and

reward-rate estimates as:

Vt+1(St)
.
= Vt(St) + αtδt,

R̄t+1
.
= R̄t + βt(Rt+1 − R̄t),

where, δt
.
= Rt+1 − R̄t + Vt(St+1)− Vt(St).

However, this algorithm is restricted to the on-policy case. Multiplying the importance-

sampling (IS) ratio in both the updates is not enough to extend this algorithm to

the off-policy case. The reason is that the IS ratio only corrects the mismatch in

the action distribution of the target and behavior policies given a state, but does not

correct the state distribution. Let us see this mathematically.

Consider the reward-rate update (3.2), now with an IS ratio, ρt =
π(At|St)

b(At|St)
,

R̄t+1
.
= R̄t + βtρt(Rt+1 − R̄t). (3.6)
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In expectation, after taking actions according to the behavior policy b for a long time,

the reward-rate estimate R̄t would converge to (the following box explains why):

R̄∞ =
∑︂
s

db(s)
∑︂
a

b(a|s)
∑︂
s′,r

p(s′, r|s, a)

[︄
π(a|s)
b(a|s)

r

]︄
=

∑︂
s

db(s)
∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r|s, a) r

̸=
∑︂
s

dπ(s)
∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r|s, a) r = r(π).

Hence, the reward-rate update (3.2) restricts Average-Cost TD to the on-policy case,

even in the tabular setting.

Equivalent placements of the importance-sampling ratio

Suppose we want to estimate the mean of a random variable X. The probability

distribution forX is p, however, we only observe values of X from a distribution

q. Then we can use the importance-sampling (IS) ratio to estimate the mean

x̄ of X:

x̄
.
=

∑︂
x

p(X = x) x = Ex∼p[X]

=
∑︂
x

q(X = x)
p(X = x)

q(X = x)
x

=
∑︂
x

q(X = x)ρxx = Ex∼q[ρXX],

where, ρx = p(X = x)/q(X = x). Now suppose the samples of X arrive in a

stream, one at each time step t: Xt. Then the following two update rules for

estimates X̄ t both lead to an unbiased incremental estimate of x̄ if the step

sizes following the Robbins-Monro conditions:

X̄ t
.
= X̄ t−1 + αtρt(Xt − X̄ t−1), (3.7)

X̄ t
.
= X̄ t−1 + αt(ρtXt − X̄ t−1), (3.8)

where ρt is the IS ratio corresponding to Xt. The reason is that given the
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update rules and a stream of data (X0, X1, X2, . . . , Xt−1),

Eq[ρt(Xt − X̄ t−1)] = Eq[ρtXt − ρtX̄ t−1]

= Eq[ρtXt]− Eq[ρtX̄ t−1]

= Eq[ρtXt]− X̄ t−1Eq[ρt]

= Eq[ρtXt]− X̄ t−1

= Eq[ρtXt − X̄ t−1].

Hence, we can interchangeably use (3.7) or (3.8).

A different reward-rate update extends Average-Cost TD to the tabular off-policy

setting, and is the essence of the ‘Differential’ family of algorithms:

R̄t+1
.
= R̄t + βtρt

(︁
Rt+1 − R̄t + Vt(St+1)− Vt(St)

)︁
.

Let us now derive why this update leads to an unbiased estimate of the target

policy’s reward rate. The reason is that this update originates from a form of the

reward rate that does not involve the state distribution. Recall that the previous

reward-rate update did not extend to the off-policy because the IS ratio does not

correct the mismatch in the state distribution of the target and behavior policies.

We get a new form of the reward rate by rearranging the Bellman equation:

v(s) =
∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r | s, a)
(︁
r − r̄ + v(s′)

)︁
, ∀ s ∈ S

v(s) =
∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r | s, a)
(︁
r + v(s′)

)︁
− r̄

r̄ + v(s) =
∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r | s, a)
(︁
r + v(s′)

)︁
r̄ =

∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r | s, a)
(︁
r + v(s′)

)︁
− v(s)

r̄ =
∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r | s, a)
(︁
r + v(s′)− v(s)

)︁
(3.9)

This form of the reward rate does not involve the probability distribution over states.
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Before considering the sample-based off-policy update corresponding to this ex-

pectation (3.9), let us first examine the on-policy version. Using the general rule of

estimating an expectation via samples, we get:

R̄t+1
.
= R̄t + βt

(︁
Rt+1 + Vt(St+1)− Vt(St)⏞ ⏟⏟ ⏞

new target

−R̄t

)︁
= R̄t + βtδt. (3.10)

We have obtained an update for the reward-rate estimate that involves the TD error,

just like the update for the value estimates (3.5)!

The off-policy variant is similar:

R̄t+1
.
= R̄t + βt

(︁
ρt
[︁
Rt+1 + Vt(St+1)− Vt(St)

]︁⏞ ⏟⏟ ⏞
new target

−R̄t

)︁
.

From the previous box, we know that multiplying an additional importance-sampling

term ρt to the rightmost term results in an equivalent update:

R̄t+1
.
= R̄t + βt

(︁
ρt
[︁
Rt+1 + Vt(St+1)− Vt(St)− R̄t

]︁)︁
= R̄t + βtρtδt. (3.11)

Combined with the off-policy updates to the value estimates, we get a tabular average-

reward prediction algorithm that is applicable in both the on- and off-policy settings.

We refer to this algorithm as Differential TD-learning.

Differential TD-learning

At time step t, with the knowledge of (St, At, Rt+1, St+1), update the value and

reward-rate estimates as:

Vt+1(St)
.
= Vt(St) + αtρtδt, (3.12)

R̄t+1
.
= R̄t + ηαt⏞⏟⏟⏞

βt

ρtδt, (3.13)

where, δt
.
= Rt+1 − R̄t + Vt(St+1)− Vt(St).
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My collaborator, Yi Wan, proved the convergence of tabular Differential TD under

mild technical conditions. I state an informal but complete version of the theorem

here. The formal theorem statement and its proof are in our paper (Wan, Naik, &

Sutton, 2021a) and Section 3.8.2 of Yi’s dissertation (Wan, 2023).

Theorem 3.1 (Informal). If 1) the Markov chain induced by the target policy π is

unichain, 2) every state–action pair for which π(a|s) > 0 occurs an infinite number of

times under the behavior policy, 3) the step sizes, specific to each state, are decreased

appropriately, and 4) the ratio of the update frequency of the most-updated state to the

update frequency of the least-updated state is finite, then the Differential TD-learning

algorithm (3.12–3.13) converges, almost surely, R̄t to r(π) and Vt to a solution of v

of the Bellman equations (2.6).

Also note that we replace βt with ηαt without loss of generality for η > 0. This

makes notation simpler for the mathematical analysis. In addition, relating the step

sizes for the reward-rate and value estimates in this manner with a scale factor can

make it more intuitive for practitioners to set the value of η (e.g., one-tenth, half, or

double the step size of the value estimates).

3.2 Prediction: Experiments

In this section I empirically test Differential TD in both the on- and off-policy settings,

with Average-Cost TD as a baseline.

The goal of the prediction problem is to estimate the target value function as

accurately as possible. One way to quantify the difference is through the mean squared

value error of the value estimates v̂ w.r.t. the value function of the target policy vπ:

MSVE(v̂) =
∑︁

s dπ(s)
[︁
vπ(s) − v̂(s)

]︁2
= ∥vπ − v̂∥2dπ , where dπ is a distribution over

states induced by the target policy π.

In the average-reward setting, MSVE by itself is not enough. Obviously, we have

to evaluate the estimated reward rate as well, which we can via a reward-rate error:
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RRE(R̄) =
(︁
r(π) − R̄

)︁2
. But more importantly, the MSVE requires a modification

to be meaningful. Recall that there are infinitely many solutions to the differential

Bellman equations (2.6) of the form
(︁
vπ + c1, r(π)

)︁
for c ∈ R. However, MSVE

penalizes an arbitrary solution by a factor of c2, which is undesirable. Tsitsiklis and

Van Roy (1999) first encountered this issue and resolved it by comparing the estimate

values with the closest solution: infc ∥(vπ + c1)− v̂∥2dπ . Thankfully we do not require

a costly infimum operation in the tabular case. It is simple to compute the offset c

in the value estimates and simply subtract it out from the value estimates before

computing the MSVE. In particular, thanks to Lemma 2.1,

d⊤
π v̂ = d⊤

π (vπ + c1)

= d⊤
π vπ + cd⊤

π 1

= 0 + c = c.

Given the connection to Tsitsiklis and Van Roy’s work, I call this metric: MSVE

(TVR).

For both the on- and off-policy experiments, I use the Two Loop task shown in the

upper right of Figure 3.1, which is a common illustrative problem (cf. Mahadevan,

1996, Naik et al., 2019). It is a simple continuing MDP with only one action in every

state except state 0. Action left in state 0 gives an immediate reward of +1 and

action right leads to a delayed reward of +2 after five steps.

The first experiment was on-policy, with the policy π to be evaluated being the

one that randomly picks left or right in state 0 with probability 0.5. The reward

rate corresponding to this policy is 0.3.

For both Average-Cost TD and Differential TD, I tested combinations of step-size

parameters α and η in {0.025, 0.05, 0.1, 0.2, 0.4} and {0.125, 0.25, 0.5, 1, 2} respec-

tively. The step size α was decayed by a factor of 0.9995 at each step. The value

estimates and the reward-rate estimate for both algorithms were initialized to zero.

For each parameter setting, I performed 30 runs of 10,000 steps each.
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Timesteps

Differential  
TD-learning  
(on-policy)

Average Cost 
TD-learning

Reward
Rate 
Error 

(30 runs)

left right

Figure 3.1: Learning curves for Differential TD-learning and Average Cost TD-
learning on the Two Loop problem (inset top-right). Exemplary learning curves
show all three algorithms tend to zero errors in terms of RMSVE (TVR) and RRE.
The standard errors are thinner than width of the solid lines.

The left panel in Figure 3.1 shows the learning curves of the two algorithms (blue

and orange) corresponding to the parameters that minimized the root MSVE (TVR)

averaged over the training period (which reflects the algorithms’ rate of learning).

The solid line represents the mean and the error bars indicate one standard error

(which in many cases was less than the width of the solid lines).

We saw that the RMSVE (TVR) went to zero in a few thousand steps for both

on-policy Differential TD-learning and Average Cost TD-learning. The right panel

shows the learning curves of the two algorithms (blue and orange) in terms of RRE,

which also went to zero for both algorithms.

The plots in Figure 3.2 indicate the sensitivity of the performance of these two

algorithms to the two step-size parameters α and η. The average RMSVE (TVR)

over all the 10k time steps was equal or lower for Differential TD-learning than Av-

erage Cost TD-learning across the range of parameters tested. In addition, on-policy

Differential TD-learning was less sensitive to the values of both α and η than Average

Cost TD-learning.

For the off-policy experiment I used a behavior policy that picks the left and

right actions with probabilities 0.9 and 0.1 respectively to evaluate the same target

policy as before (that picks both the actions with probability 0.5). The parameter
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η = 0.125

Figure 3.2: Parameter studies for Differential TD-learning and Average Cost TD-
learning on the Two Loop problem. The performance of Differential TD-learning in
terms of average RMSVE (TVR) (top) and average RRE (bottom) is less sensitive to
the choice of parameters α and η than Average Cost TD-learning. The black circles
in the top row denote the parameter configurations for which the RMSVE learning
curves are shown in Figure 3.1.

settings and initializations for off-policy Differential TD were the same as the previous

on-policy experiment.

The green learning curves in Figure 3.1 correspond to the off-policy Differential TD.

Again, both RMSVE (TVR) and RRE went to zero for off-policy Differential TD-

learning within a reasonable amount of time. Figure 3.3 shows the sensitivity of both

RMSVE (TVR) and RRE of off-policy Differential TD-learning w.r.t. its parameters

α and η. Firstly, the off-policy algorithm is more sensitive to its parameters than

its on-policy version on this problem. Secondly, the rate of convergence is affected if

the parameters are too high or too low, but otherwise it is relatively insensitive to

different choices of η. Note that in the tabular setting, the average-reward estimate
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Figure 3.3: Parameter studies for off-policy Differential TD-learning on the Two Loop
task. Performance in terms of both metrics is sensitive to the choice of step size α
but does not depend much on η.

is updated at every step while the value of a particular state (or state–action pair)

is updated relatively less frequently. This might explain why η < 1 typically leads to

better performance in the tabular setting.

These experiments show that on- and off-policy Differential TD-learning algorithms

can accurately estimate the value function and the reward rate of a given target policy,

as expected from Theorem 3.1. In addition, on-policy Differential TD-learning can

be easier to use than Average Cost TD-learning.

Before moving to the control problem, let us take a moment to reflect. Differential

TD uses the TD error to update its average-reward estimate because it enables an

unbiased estimate of the average reward even in the off-policy setting. However, in the

on-policy setting, is there any benefit to using the TD error? Or perhaps a drawback?

Characterizing the difference due to the TD error and the
conventional error

The only difference between Differential TD learning and Average-Cost TD learning

is how the average-reward estimate is updated:

Average-Cost TD: R̄t+1
.
= R̄t + ηαt

(︁
Rt+1 − R̄t

)︁
,

Differential TD: R̄t+1
.
= R̄t + ηαt

(︁
Rt+1 − R̄t + Vt(St+1)− Vt(St)

)︁
.
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We know that in the on-policy setting, both updates result in an unbiased estimate

of the true average reward r(π) of the target policy π. The difference would then

manifest in the learning process: perhaps one update leads to faster convergence or

lower asymptotic variance.

Given that Average-Cost TD only uses the observed rewards to update the average-

reward estimate, it is reasonable to hypothesize that it may estimate the average re-

ward faster. Meanwhile, Differential TD uses the values to update the average-reward

estimate, and since the values are also being estimated in parallel, their inaccuracies

may cause the average-reward estimation to be relatively slower. On the other hand,

for a similar reason, we expect Differential TD to have lower asymptotic variance:

the per-state expected TD error is zero but the per-state expected error between the

one-step reward and the true average reward is not zero.

For intuition, consider the case when both the reward-rate estimate and the value

estimates are accurate (learned or otherwise), that is, R̄ = r(π) and V (s) = vπ(s), ∀s.

The error per time step—for every (St, At, Rt+1, St+1)—in the two cases is:

Conventional error: ∆A
t

.
= Rt+1 − r(π),

TD error: ∆T
t

.
= Rt+1 − r(π) + vπ(St+1)− vπ(St).

It is hard to infer anything directly from these per-step errors; the expected error

per step—given the current state s—is more informative. In case of the conventional

error,

E[∆A
t | St = s, At ∼ π] =

∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r|s, a) r − r(π)

= rπ(s)− r(π), (3.14)

where rπ(s) denotes the expected one-step reward from state s.1 The expected per-

1Recall that r(π) =
∑︁

s dπ(s) rπ(s) under the unichain assumption.
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step conventional error is non-zero. On the other hand, in case of the TD error,

E[∆T
t | St = s, At ∼ π] =

∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r|s, a)
[︁
r − r(π) + vπ(s

′)
]︁
− vπ(s)

= 0, (3.15)

where the last equality holds due to the differential Bellman equation (2.6). Stated

differently, the average TD error is zero per step (unsurprisingly) whereas in general

the average conventional error is not.

A natural extension is the hypothesis that the per-step variance of the TD error is

lower than that of the conventional error, that is,

V[∆T
t | St = s, At ∼ π] ≤ V[∆A

t | St = s, At ∼ π]. (3.16)

This property is true for MDPs where the reward and transition dynamics are fully

deterministic. When the value estimates are accurate, the per-step TD error is zero

(its expectation is equal to its sample value). On the other hand, the per-step con-

ventional error is non-zero in general even with fully deterministic dynamics.

However, I found a counterexample that shows this hypothesis is not true in general.

The key idea is if the induced Markov chain is stochastic, the per-step variance of

the TD error may be larger than that of the conventional error, despite the per-step

expected TD error being zero. I first derive the general expressions for the variance

of the two errors and then present the counterexample.

First, I compute the general expression for the variance of the conventional error.

V[∆A
t | St = s, At ∼ π] = Vπ[∆

A
t | St = s]

= Vπ[Rt+1 − r(π) | St = s]

= Eπ

[︂(︁
Rt+1 − r(π)− Eπ[Rt+1 − r(π)|St = s]

)︁2 | St

]︂
= Eπ

[︂(︁
Rt+1 − r(π)− [rπ(s)− r(π)]

)︁2 | St

]︂
(from (3.14))

=
∑︂
s

dπ(s)
∑︂
s′,r

pπ(s
′, r | s)

(︁
r − rπ(s)

)︁2
,
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where, pπ denotes the joint distribution induced by the policy π over the next state

and reward given a state. Next, the expression for the variance of the TD error:

V[∆T
t | St = s, At ∼ π] = Vπ[∆

T
t | St = s]

= Vπ[Rt+1 − r(π) + vπ(St+1)− vπ(St) | St = s]

= Eπ

[︂(︁
Rt+1 − r(π) + vπ(St+1)− vπ(St)

− Eπ[Rt+1 − r(π) + vπ(St+1)− vπ(St) | St = s]
)︁2 | St

]︂
= Eπ

[︂(︁
Rt+1 − r(π) + vπ(St+1)− vπ(St)

)︁2 | St

]︂
(from (3.15))

=
∑︂
s

dπ(s)
∑︂
s′,r

pπ(s
′, r | s)

(︁
r − r(π) + vπ(s

′)− vπ(s)
)︁2

Figure 3.4: The three-state coun-
terexample.

Consider the three-state Markov chain with re-

wards (also called a Markov reward process, or

MRP) shown in the adjoining Figure 3.4. The

average reward r(π) for the policy π that in-

duced this MRP is 0. The steady-state distri-

bution and the differential values of the three

states are respectively dπ = [1/2, 1/4, 1/4]⊤ and

vπ = [0,−1, 1]⊤. Then,

V[∆A
t | St = s, At ∼ π] =

1

2

(︂1
2
(1)2 +

1

2
(−1)2

)︂
+

1

4
02 +

1

4
02

=
1

2
,

V[∆T
t | St = s, At ∼ π] =

1

2

(︂1
2

(︁
− 1− 0 + (−1)− 0

)︁2
+

1

2

(︁
1− 0 + 1− 0

)︁2)︂
+

1

4
02 +

1

4
02

=
1

2

(︂1
2
4 +

1

2
4
)︂
= 2.

Thus, on this problem, V[∆T
t | St = s, At ∼ π] > V[∆A

t | St = s, At ∼ π], which

disproves the hypothesis (3.16).

To conclude, in general, the per-step variance of the TD error is not lower than

that of the conventional error in the on-policy setting. However, we may expect lower

variance if the underlying dynamics of the problem are more deterministic.
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3.3 Control: Theory

We now consider the control problem, where the objective is to find the optimal

policy. Recall that optimal policies are defined as those corresponding to the reward

rate r∗, and that r∗ does not depend on the starting state in a communicating MDP.

We seek a learning algorithm that achieves r∗.

Having established the essentials in the prediction section, it is easy to see what

the control version of the Differential family of algorithms would be. We begin by

writing the expectation forms of the action values and the reward rate, and use

sample-based updates to estimate them (the action values are preferred for control

over state values because action values enable faster action selection). We begin by

restating the Bellman optimality equation for differential action values:

q(s, a) =
∑︂
s′,r

p(s′, r|s, a)
[︁
r − r̄ +max

a′
q(s′, a′)

]︁
, ∀s, a. (3.17)

We can rearrange the terms to get an expectation form of the reward rate:

r̄ =
∑︂
s′,r

p(s′, r|s, a)
[︁
r +max

a′
q(s′, a′)− q(s, a)

]︁
, ∀s, a. (3.18)

Using our general rule to use samples to estimate expectations, we arrive at the

Differential Q-learning algorithm.

Differential Q-learning (tabular)

At time step t, with the knowledge of (St, At, Rt+1, St+1), update the value and

reward-rate estimates as:

Qt+1(St, At)
.
= Qt(St, At) + αtδt, (3.19)

R̄t+1
.
= R̄t + ηαtδt, (3.20)

where, δt
.
= Rt+1 − R̄t +max

a′
Qt(St+1, a

′)−Qt(St, At). (3.21)
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As with Differential TD-learning, my collaborator, Yi Wan, has proved the con-

vergence of Differential Q-learning under mild technical conditions.2 Again, I present

the informal but complete theorem statement here; please refer to our paper (Wan,

Naik, & Sutton, 2021a) or Section 3.8.3 of Yi’s dissertation (Wan, 2023) for more

details.

Theorem 3.2 (Informal). If 1) the MDP is communicating, 2) the solution of q

in (2.11) is unique up to a constant, 3) the step sizes, specific to each state–action

pair, are decreased appropriately, 4) all the state–action pairs are updated an infinite

number of times, and 5) the ratio of the update frequency of the most-updated state–

action pair to the update frequency of the least-updated state–action pair is finite, then

the Differential Q-learning algorithm (3.19–3.21) converges, almost surely, R̄t to r∗,

Qt to a solution of q in 2.11, and r(πt) to r∗, where πt is any greedy policy w.r.t. Qt.

The off-policy control problem is particularly challenging, and theoretical results

are available only for the tabular, discrete-state setting without function approxima-

tion. The earliest tabular average-reward off-policy learning control algorithms that

we know of were those introduced (without convergence proofs) by Schwartz (1993)

and Singh (1994). Both of their algorithms are similar to Differential Q-learning

with key differences. The former does not update the reward-rate estimate after ex-

ploratory actions, citing a skew in the approximation of the true reward rate due to

the mismatch in the exploratory and exploitative actions. However, this fear is un-

founded. (3.18) is true for all actions, so there is no need to waste useful information

obtained via exploratory actions. Singh (1994) noted this and proposed his algorithm

to update the reward-rate estimate at each step. However, he added the constraint

that the value of a reference state-action pair is always grounded to zero, citing the

2Note that there is no importance-sampling ratio ρt involved in Differential Q-learning even
though it is guaranteed to converge in the off-policy setting. The reason is that the action At—coming
from the behavior policy—is already taken and hence there is no question about correcting its
effect. This is same reason why discounted Q-learning (Watkins & Dayan, 1992) does not have any
importance-sampling ratio.
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concern that the estimated values might potentially be quite large (in particular, the

offset c). This is a fair concern, but this technique may or may not help depending on

the choice of the reference state-action pair. Moreover, our work (Wan et al., 2021a)

provides a convergence proof for the algorithm and proposes a technique so that there

is no offset in the learned estimates (that is, c = 0).

The most important prior algorithm is RVI Q-learning, introduced by Abounadi,

Bertsekas, and Borkar (1998, 2001). RVI Q-learning is actually a family of off-policy

algorithms, a particular member of which is determined by specifying a function that

references the estimated values of specific state–action pairs and produces an estimate

of the reward rate. The update at time step t is:

Qt+1(St, At)
.
= Qt(St, At) + αt

(︁
Rt+1 − f(Qt) + max

a′
Qt(St+1, a

′)−Qt(St, At)
)︁
.

(3.22)

Assuming f—which we call the reference function—follows certain conditions, Ab-

nounadi et al. guarantee that f(Q∞) = r∗ and the corresponding argmax policy is an

optimal policy. Examples of valid f functions include a weighted average of the value

estimates of all state–action pairs, or in the simplest case, the estimate of a single

state–action pair’s value. For best results, the referenced state–action pairs should

occur frequently, otherwise convergence can be unduly slow (illustrated in the next

section).

However, as mentioned in Chapter 1, if the behavior policy is linked to the target

policy (as in ϵ-greedy behavior policies), then knowing which state–action pairs will

be frequently visited may be to know a substantial part of the problem’s solution. For

example, in learning an optimal path through a maze from diverse starting points, the

frequently visited state–action pairs are likely to be those on the shortest paths to the

goal state. To know these would be tantamount to knowing a priori the best paths to

the goal. This observation motivates the search for a general learning algorithm that

does not require a reference function. And that is exactly the void that Differential

Q-learning fills.
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Interestingly, RVI Q-learning and Differential Q-learning make the same updates

to Qt in special cases. For RVI Q-learning, the special case is when the reference

function is the mean of all state–action pairs’ values. For Differential Q-learning,

the special case is when η = 1
|S||A| . These special cases are not particularly good for

either algorithm, and therefore their special-case equivalence tells us little about the

relationship between the algorithms in practice. In RVI Q-learning, it is generally

better for the reference function to emphasize state–action pairs that are frequently

visited rather than to weight all state–action pairs equally (see the next section for

an example). In Differential Q-learning, the special-case setting of η = 1
|S||A| would

often be much too small on problems with large state and action spaces.

3.4 Control: Experiments

In this section I present empirical results for Differential Q-learning. I first compared

the performance of Differential Q-learning with that of RVI Q-learning in the tabular

setting, in which both algorithms have convergence results. I found that Differential

Q-learning performs as well as RVI Q-learning and is more robust to its parameters

compared to RVI Q-learning. These trends also hold in the results with linear function

approximation (for which there are no convergence results yet).

Tabular experiments

The first experiment uses the Access-Control Queuing task (Sutton & Barto, 2018).

This task involves customers queuing up to access to one of 10 servers. The customers

have differing priorities (1, 2, 4, or 8), which are also the rewards received if and when

their service is complete. At each step, the customer at the head of the queue is either

accepted and allocated a free server (if any) or is rejected (in which case a reward of

0 is received). This decision is made based on the priority of the customer and the

number of currently free servers, which together constitute the state of this average-

reward MDP. The rest of the details of this test problem are exactly as described by
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Sutton and Barto (2018: Section 10.3).

I applied tabular Differential Q-learning and RVI Q-learning to this task, each for 30

runs of 80,000 steps, and each for a range of step sizes α ∈ {0.0015625, 0.00625, 0.025,

0.1, 0.4}.3 For Differential Q-learning, η was chosen from {0.125, 0.25, 0.5, 1, 2}. RVI

Q-learning was run with three kinds of reference functions suggested by Abounadi

et al. (2001): (1) the value of a single reference state–action pair, for which we

considered all possible 88 state–action pairs, (2) the maximum value of the action-

value estimates, and (3) the mean of the action-value estimates. Both algorithms

used an ϵ-greedy behavior policy with ϵ = 0.1 and no annealing.

Reward 
rate 

(30 runs)

Timesteps

Differential Q-learning

Figure 3.5: A typical learn-
ing curve for the Access-Control
Queuing task.

A typical learning curve is shown in Figure 3.5.

A point on the solid line denotes reward rate over

the last 2000 time steps, and the shaded region

indicates one standard error. While this learn-

ing curve is for Differential Q-learning, the learn-

ing curves for both algorithms typically started

at around 2.2 and plateaued at around 2.6, with

different parameter settings leading to different

rates of learning. A reward rate of 2.2 corre-

sponds to a policy that accepts every customer irrespective of their priority or the

number of free servers—with positive rewards for every accept action, such a policy is

learned rapidly in the first few time steps starting from a zero initialization of value

estimates (i.e., a random policy). The optimal performance was close to 2.7.

Figure 3.6 shows parameter studies for each algorithm. Plotted is the reward

rate averaged over all 80,000 steps, reflecting their rates of learning. The error bars

3Note that constant step sizes do not follow the Robbins-Monro conditions, and hence the condi-
tions of Theorem 3.2 are violated. However, we explicitly made this choice in the control experiments
within this dissertation because this line of work is motivated by the “big-world” perspective in which
agents must continually learn and adapt to changes of a vastly complex world (Sutton et al., 2022).
Constant step sizes can help in tracking the best solution as opposed to converging to it (Sutton et
al., 2007).
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indicate one standard error, which at times is less than the width of the solid lines.

α
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η = 1

η = 0.5
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α

RVI Q-learning

Ref: s-a#43
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Figure 3.6: Parameter studies showing the sensitivity of the two algorithms’ perfor-
mance to their parameters. Left: Differential Q-learning’s rate of learning varied
little over a broad range of its parameter η. Right: RVI Q-learning’s rate of learning
depended strongly on the choice of the reference function. The solid greyed-out lines
mark the performance for each of the 88 state–action pairs considered individually as
the single reference pair, with a few representative ones highlighted (labelled as ‘Ref:
s-a’). The dotted lines correspond to the reference function being the mean or the
max of all the action-value estimates.

We saw that Differential Q-learning performed well on this task for a wide range

of parameter values (left panel). Its two parameters did not interact strongly; the

best value of α was independent of the choice of η. Moreover, the best performance

for different η values was roughly the same.

RVI Q-learning also performed well on this task for the best choice of the reference

state–action pair, but its performance varied significantly for the various choices of

the reference function and state–action pairs (right panel).

A closer look at the data revealed a correlation between the performance of a

particular reference state–action pair and how frequently it occurs under an optimal

policy. For example, state–action pairs 55 and 54 occurred frequently and also resulted

in good performance. They correspond to states when only two servers are free and

the customer at the front of the queue has priority 8 and 4 respectively, and the action

is to accept. This is the optimal action in this state. In contrast, the performance

was poor with state–action pairs 43 and 87, which occurred rarely. They correspond
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to states when all 10 servers are free, a condition that rarely occurs in this problem.

Finally, the mean of value estimates of all state–action pairs performs moderately

well as a reference function. These observations lead us to a conjecture: an important

factor determining the performance of RVI Q-learning with a single reference state–

action pair is how often that pair occurs under an optimal policy. This is problematic

because knowing which state–action pairs occur frequently under an optimal policy

is tantamount to knowing the solution of the problem we set out to solve.

The conjecture might lead us to think that the reference function that is the max

over all action-value estimates would always lead to good performance because the

corresponding state–action pair would occur most frequently under an optimal policy,

but this is not true in general. For example, consider an MDP with a state that

rarely occurs under any policy. Let all rewards in the MDP be zero except a positive

reward from that state. Then the highest action value among all state–action pairs

is corresponding to this rarely-occurring state.

To conclude, our experiments with the Access-Control Queuing task show that

the performance of RVI Q-learning can vary significantly over the range of reference

functions and state–action pairs. On the other hand, Differential Q-learning does not

use a reference function and can be significantly easier to use.

Linear experiments

The second set of experiments involve the linear variants of Differential Q-learning

and RVI Q-learning, that is, in which the action-value function is estimated as a

linear combinations of the features of the states and actions. We consider the setting

in which at each time step t, the agent observes a feature vector xt ∈ Rd representing

the state of the environment, takes a discrete action At, observes the next feature

vector xt+1 and the scalar reward signal Rt+1. The agent approximates the action-

value function at time step t as: q̂t
.
= (wA

t )
⊤xt, where wA denotes d-dimensional

learnable weights corresponding to the A-th action.
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Differential Q-learning (linear)

At time step t, with the knowledge of (xt, At, Rt+1,xt+1), update the reward-

rate estimate and the per-action weights as:

wAt
t+1

.
= wAt

t + αt δt xt, (3.23)

R̄t+1
.
= R̄t + η αt δt, (3.24)

where, δt
.
= Rt+1 − R̄t +maxa(w

a
t )

⊤xt+1 − (wAt
t )⊤xt.

Compared to Differential Q-learning, extensions of the tabular version of RVI Q-

learning (Abounadi et al. 2001) to function approximation are not as straightforward,

even for linear function approximation. RVI Q-learning requires the value of a ref-

erence function f to be computed at every time step t, where f is a function over

the current estimates of the value estimates q̂t. Some difficulties that arise with the

first attempts of extending the reference functions suggested by Abounadi et al. to

the function approximation setting:

• Reference function is the mean of all action-value estimates: f(q̂t)
.
= 1

|S||A|
∑︁

s,a q̂t(s, a)

It is easy to see why the computation of this quantity is problematic in the func-

tion approximation setting: unlike the tabular setting, the agent does not have

access to the underlying states.4

• Reference function is the max of all action-value estimates: f(q̂t)
.
= maxs,a q̂t(s, a)

In the tabular setting, it is straightforward to compute the max of the action-

value function over all state–action pairs. In the function approximation setting,

computing this quantity would again require access to all the underlying states,

which the agent does not have.

4An alternative problem setting when function approximation is used is when the agent does
have access to the underlying states, but they are too many to enumerate (e.g., in a table). In this
case |S| is either unknown, or too large (making 1

|S| too small).
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• Reference function is the action-value estimate of a single reference state–action

pair (s0, a0): f(q̂t)
.
= q̂t(s0, a0)

Again, the agent does not have access to any underlying state in the function

approximation setting. Instead, one might consider using a value of a reference

feature vector with an action as the reference function. The question then

becomes what the reference feature vector should be, among the infinite choices

in Rd.

Based on the observations in the tabular setting, an obvious hypothesis is that

the performance of RVI Q-learning with a reference feature vector would depend

on the frequency with feature vectors similar to the reference feature vector

occur under the optimal policy for the given problem.

Based on the above discussion, we can attempt creating a couple of reference func-

tions for the function approximation setting, for instance, the action-value estimate

corresponding to the first feature vector the agent observes along the action of mov-

ing left. There is no way to compute the max exactly, but perhaps we can try using

the maximum of the set of estimated action values corresponding to the feature vec-

tors when they are observed. These are just some first attempts; further research

is required to develop theoretically-grounded reference functions for the function ap-

proximation setting.

If we have good ways of computing such reference functions at each time step, the

linear function approximation version of RVI Q-learning would update the weights

similar to linear Differential Q-learning with δt
.
= Rt+1 − f(q̂t) + maxa(w

a
t )

⊤xt+1 −

(wA
t )

⊤xt (and no update to a reward-rate estimate).

I performed some preliminary experiments in the linear function approximation

setting using the PuckWorld and Catcher domains from the PyGame Learning Envi-

ronment (Tasfi, 2016).

In the PuckWorld problem, the agent needs to reach the position marked by the
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green circle, which moves to a different location after every few time steps. A still

of the environment is shown in the top-left panel of Figure 3.7. At every time step,

the agent can take one of four actions — left, right, up, down — which move the

agent in that direction by a small amount. Repeated actions in the same direction

build some velocity in that direction, which decays at an exponential rate at every

time step. At every time step, the agent gets a reward proportional to its distance to

the goal position. This reward is typically negative and becomes zero when the agent

reaches the goal position. At every time step, the agent observes a six-dimensional

feature vector of its horizontal position, vertical position, horizontal velocity, vertical

velocity, target’s horizontal position, target’s vertical position. The positions and

velocities are scaled to lie in [0, 1] and [−1, 1] respectively. After a regular interval of

time steps, the goal position is uniform-randomly initialized in the two-dimensional

space.

We applied the linear function approximation versions of Differential Q-learning

and RVI Q-learning on this problem. RVI Q-learning used the two reference functions

discussed earlier in this section: (1) the action-value estimate corresponding to the

first feature vector the agent observed when moving left, and (2) the maximum action

value corresponding to the feature vectors observed so far, tracked online without

storing all the previously observed feature vectors. Both algorithms used tile coding

(Sutton & Barto 2018: Section 9.5.4) with 16 symmetric tilings of 2 × 2 × 2 × 2 ×

2× 2 tiles each. The weight vectors of both algorithms and the reward-rate estimate

of Differential Q-learning was initialized to zero. The step-size parameter α was

varied for both algorithms in the range {0.00125, 0.0025, 0.005, 0.01, 0.02, 0.04}. The

parameter η for Differential Q-learning was varied in {0.1, 0.5, 1.0}. Each instance of

parameters was applied for 10 runs of 400,000 time steps each. Both algorithms used

an ϵ-greedy policy with ϵ = 0.1 and no annealing.

The top-right panel of Figure 3.7 shows a typical learning curve on an instance of

this problem where the goal positions is changed after every 100 time steps. Using
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Figure 3.7: A learning curve and parameter studies for the linear function approx-
imation versions of Differential Q-learning and RVI Q-learning on the PuckWorld
problem. The shaded region and the error bars in the plots represent one standard
error. Top-left: A still of the PuckWorld domain showing the agent and the goal
position. Top-right: A typical learning curve started roughly at a reward rate of -0.4
and rose to about -0.19. Bottom-left : Parameter studies showing the performance
of Differential Q-learning in terms of average reward rate was not very sensitive to
the choice of η. Bottom-right : Parameter studies showing the performance of RVI
Q-learning is relatively good when the reference function is the first observed feature
vector, and relatively worse for the other reference function for a broad range of step
sizes.

an ϵ-greedy policy with ϵ = 0.1, the agent learns a policy that obtains a reward rate

(computed over the last 10k steps) of about -0.19. The reward rate of a random

policy is around -0.4. This learning curve corresponds to Differential Q-learning with

α = 0.02, η = 1.0. The learned policy was visualized and seen to be good everywhere

except at the very edges of the two-dimensional space, which was probably an artifact

of tile-coding.

We evaluated the performance of the agents across all the different parameter

settings in terms of the average reward rate across the entire 400k time steps of
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interaction. This is an indicator of the rate of learning. We observed that Differential

Q-learning’s rate of learning was quite robust to the parameter η. Its two parameters

did not interact strongly; the best value of α was independent of the choice of η.

Moreover, the best performance for different η values was roughly the same. These

observations were similar to those in the tabular case.

RVI Q-learning also performed well on this problem for one choice of the refer-

ence function—the value estimate corresponding to the first feature vector the agent

observes (with the ‘left’ action). The performance corresponding to the other refer-

ence function tested—tracking the maximum value of the observed feature vectors

online—was not as good. This might be because unlike the tabular setting, updat-

ing the weights corresponding to one feature vector also modifies the estimate for

other feature vectors, making the max hard to track. The best rate of learning cor-

responding to the better-performing reference function was slightly lower than that

with Differential Q-learning.

We now move on to the second experiment in the linear function approximation

setting. In the Catcher problem, the agent needs to catch as many falling fruits as

possible. A still of the environment is shown in the top-left panel of Figure 3.8.

‘Fruits’ fall vertically down from a uniformly-random horizontal position starting at

the top of the frame. The agent can control the position of a ‘crate’ at the bottom of

the frame using two actions — left and right — which move the crate in that direction

by a small amount. If the fruit falls on/in the crate, the agent gets a reward of +40;

if the fruit falls anywhere outside at the bottom of the frame, the agent gets -40. The

next fruit starts falling only after the previous fruit has reached the bottom of the

frame. A fruit takes roughly 40 time steps to reach the the bottom starting from the

top. Hence, the maximal reward rate on this problem is 1. At every time step, the

agent observes a four-dimensional feature vector of the crate’s horizontal position,

the crate’s horizontal velocity, the fruit’s horizontal position, and the fruit’s vertical

position. The positions and velocity are scaled to lie roughly in [0, 1] and in [−1, 1]

43



respectively.

All the experimental details are the same as for PuckWorld, the only difference

being that both algorithms used tile coding with 8 symmetric tilings of 4× 4× 4× 4

tiles each.

The top-right panel of Figure 3.8 shows a typical learning curve on this problem.

Using an ϵ-greedy policy with ϵ = 0.1, the agent learns a policy that obtains a reward

Falling 
fruit

Crate

Reward 
rate 

(10 runs)

Timesteps

Differential Q-learning

α

η = 0.1

η = 1.0

η = 0.5

Differential Q-learning
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Figure 3.8: A learning curve and parameter studies for the linear function approxima-
tion versions of Differential Q-learning and RVI Q-learning on the Catcher problem.
The shaded region and the error bars in the plots represent one standard error. Top-
left: A still of the Catcher domain showing a falling fruit and the crate that the agent
controls along the horizontal dimension at the bottom. Top-right: A typical learning
curve started close to a reward rate of 0 and rose to about 0.9. Bottom-left : Param-
eter studies showing the performance of Differential Q-learning in terms of average
reward rate was not very sensitive to the choice of parameters. Bottom-right : Pa-
rameter studies showing the performance of RVI Q-learning is relatively good when
the reference function is the first observed feature vector, and relatively worse for the
other reference function for a broad range of step sizes.
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rate of about 0.85, which is close to the optimal reward rate of 1. The reward rate of

a random policy is around -0.3. The learning curve shown corresponds to Differential

Q-learning with α = 0.02, η = 1.0.

Again, we evaluated the rate of the learning of the agents across different parameter

settings. We again observed that Differential Q-learning’s rate of learning did not vary

much across a broad range of its parameter values. It was also especially robust to η.

The linear function approximation version of RVI Q-learning also performed well for

one choice of the reference function, not as much with the other. The learned policies

corresponding to good parameter values for both algorithms successfully catch almost

every fruit.

For RVI Q-learning, using the estimate of the first observed feature vector as a

reference value worked better in Catcher than in PuckWorld. This might be because

the agent might be observing feature vectors similar to the first one quite frequently,

given that the crate has to move across the whole one-dimensional horizontal plane

under any optimal policy. On the other hand, the agent moves in a relatively larger

two-dimensional space in PuckWorld. In a finite number of agent-environmental

interactions, the agent might not visit its starting location that frequently. This

suggests that the choice of the reference feature vector can affect the performance

of RVI Q-learning differently in different problems. Additionally, in both cases, the

other reference function did not result in good performance; this was probably because

tracking the maximum action value in the function approximation setting is a poor

approximation to the maximum action value across all state–action pairs.

The two experiments showed that the simple extension of the tabular Differential

Q-learning to the linear function approximation setting can work rather well in terms

of the final performance as well as robustness to different parameter values. The

extension of the notion of reference functions to the linear function approximation

setting is not as straightforward.
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3.5 Discussion and Conclusion

In this chapter, I proposed one-step average-reward learning algorithms for on- and

off-policy prediction and control.

• The key idea behind the Differential algorithms is the explicit estimation of

the average reward of the target policy, in particular, with an update that uses

the TD error instead of, say, the sample average of the observed rewards. As

a result, Differential TD-learning and Differential Q-learning are applicable in

the off-policy setting and do not require any special reference function.

• Through a series of experiments, I found that Differential TD-learning and

Differential Q-learning lead to good performance for a large range of their pa-

rameter values, making them relatively easy to use.

Together, the two algorithms improve the generality and applicability of average-

reward methods, and hence hold great promise for average-reward reinforcement

learning.

An important way in which the work in this chapter is limited is that it primarily

treats the tabular case, with some extensions to linear function approximation. The

tabular case is important to build intuitions and understand the ideas deeply, but

some form of function approximation is necessary for large-scale applications and the

larger ambitions of artificial intelligence. Indeed, the need for function approximation

is a large part of the motivation for studying the average-reward setting. In this

dissertation, we take a few steps in this direction. In Chapter 4, we extend the theory

of Differential TD-learning to the case of linear function approximation. Further, in

Chapter 5, we (indirectly) assess variants of Differential Q-learning with both linear

and non-linear function approximation.

Besides handling spatial abstraction via function approximation, it is also impor-

tant to extend these algorithms to handle temporal abstraction. Yi Wan, Rich Sutton,
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and I extended the options framework (Sutton et al., 1999a) for temporal abstraction

from discounted MDPs to average-reward MDPs. The work was led by Yi and is part

of his Ph.D. dissertation (Wan, 2023).

Finally, the algorithms in this chapter are also limited to one-step updates. Multi-

step algorithms have been shown to propagate information faster over longer temporal

spans that one-step algorithms (see, e.g., Sutton & Barto’s (2018) Chapters 7 and

12). In the next chapter we present the multi-step versions of Differential TD-learning

that use eligibility traces for efficient and online updates.
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Chapter 4

Multi-step Differential Methods for
Prediction with Eligibility Traces

A discussion of foundational average-reward algorithms for RL is incomplete without

multi-step algorithms. Multi-step algorithms have been shown to propagate informa-

tion faster over longer temporal spans than one-step algorithms (see, e.g., Sutton &

Barto, 2018). Eligibility traces are typically used to implement multi-step updates on-

line and independent of the temporal span of predictions (Sutton, 1988a; van Hasselt

& Sutton, 2015).

This chapter presents the first multi-step average-reward prediction algorithm that

is guaranteed to converge in the off-policy case. Tsitsiklis and Van Roy (1999) took

the first and biggest step in developing the first multi-step algorithm for the average-

reward formulation. They established the convergence of their Average-Cost TD(λ)

algorithm for on-policy linear function approximation at a time when there was no

multi-step prediction result even in the tabular case. They achieved this by clev-

erly extending proof techniques that they had recently developed for the discounted-

reward formulation (Tsitsiklis and Van Roy, 1997).

However, Average-Cost TD(λ) is limited to the on-policy case. It cannot be ex-

tended to the off-policy case because the update for the average-reward estimate does

not generalize to the off-policy setting (this was also explained in Chapter 3’s Sec-

tion 3.1). Differential TD uses a different average-reward update that is proven to
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converge appropriately in the off-policy case, which motivates an extension to the

multi-step case.

In this chapter, I present multi-step versions of the tabular Differential TD-learning

methods discussed in Chapter 3. In particular, I present two prediction algorithms

that use eligibility traces, analyze their stability and convergence, and present empir-

ical results that validate the theoretical results. The two algorithms are two attempts

to develop a single algorithm that can be proved to converge for both the on- and

off-policy settings in the tabular case of the average-reward formulation:

1. Algorithm 1 converges in the on-policy setting even with linear function ap-

proximation.

2. Algorithm 2 belongs to a family of algorithms that converges in the off-policy

setting in the tabular case.

Algorithm 1 and 2 have subtle differences. Algorithm 1 is restricted to the on-policy

setting; I show that a simple extension of it to the off-policy setting can diverge even

in the tabular case. Before diving into the algorithms, I introduce some mathematical

notation.

4.1 Multi-step Notation

Throughout the previous chapter, we considered one-step algorithms. That is, the

information in the single transition at time step t—(St, At, St+1, Rt+1)—is used to

update the value estimates vt(St) by creating a target: Rt+1− r(π)+vt(St+1), where

vt ∈ R|S| denotes the vector of value estimates at time step t. Such a target con-

structed from the information of one time step is called a one-step target, which we

denote by Gt:t+1.

Just like how Sutton and Barto (2018) defined general n-step targets for the

discounted-reward formulation, we can define n-step targets Gt:t+n for the average-
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reward formulation using data from n transitions:

Gt:t+n
.
= Rt+1 − r(π) + Rt+2 − r(π) + . . .+Rt+n − r(π) + vt(St+n).

The λ-return for the average-reward formulation is also defined with an exponen-

tially decaying weight per step, parameterized by λ ∈ [0, 1):

Gλ
t
.
= (1− λ)

[︁
Gt:t+1 + λGt:t+2 + λ2Gt:t+3 + . . .

]︁
= (1− λ)

∞∑︂
n=1

λn−1Gt:t+n,

with the (1− λ) factor ensuring that the weights sum to one.

Iteratively updating the estimates based on such targets obtained from samples of

experience is the basis of sample-based algorithms. In the tabular case, these model-

free RL algorithms exactly estimate the true value function and the reward rate if

the noise in the individual targets is averaged out slowly.

If a full model of the reward and transition dynamics is available, we can construct

targets based on the expected outcomes of all possible transitions. As a result, for

instance, the value estimates of all the states can be updated together. For one-step

targets, the expected updates for a given reward rate r̄ and policy π is:

vt+1(s)
.
=

∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r|s, a)
[︁
r − r̄ + vt(s

′)
]︁
, ∀s,

or, vt+1
.
= rπ − r̄1+Pπvt = T 1

πvt,

where rπ denotes the expected one-step reward when taking actions from π, Pπ denotes

the state-to-state transition matrix of the Markov chain induced by π, and T 1
π : R|S| →

R|S| is a linear transformation matrix. The iterative update resembles the average-

reward Bellman equation (2.6) and T 1
π is aptly called the one-step Bellman operator.
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The operators corresponding to n-step targets and the λ-return respectively are:

T n
π v

.
=

n∑︂
k=1

Pk−1
π (rπ − r̄1) +Pn

π v,

T λ
π v

.
= (1− λ)

∞∑︂
n=1

λn−1 T n
π v,

= (1− λ)
∞∑︂
n=1

λn−1
(︂ n∑︂

k=1

Pk−1
π (rπ − r̄1) +Pn

π v
)︂
.

Again, as in the discounted-reward formulation, iteratively applying the Bellman

operators leads a sequence of estimates v1,v2, . . . that eventually converge to v∞ = v,

which is a solution of the Bellman equations. Consider the example with the operator

for the λ-return, which we call the multi-step Bellman operator. After a sequence of

updates:

T λ
π v = v (4.1)

or, v = T λ
π v

= (1− λ)
∞∑︂
n=1

λn−1
(︂ n∑︂

k=1

Pk−1
π (rπ − r̄1) +Pn

π v
)︂

= (1− λ)
∞∑︂
n=1

λn−1
(︂ n∑︂

k=1

(︁
Pk−1

π rπ − r̄ 1
)︁
+Pn

πv
)︂

= (1− λ)
∞∑︂
n=1

λn−1
(︂ n∑︂

k=1

(︁
Pk−1

π rπ − r̄ 1
)︁)︂

+ (1− λ)
∞∑︂
n=1

λn−1Pn
πv

= (1− λ)
∞∑︂
n=1

λn−1
(︂ n∑︂

k=1

(︁
Pk−1

π rπ − r̄ 1
)︁)︂

+Pλ
πv (4.2)

= (1− λ)
∞∑︂
n=1

λn−1
(︂ n∑︂

k=1

(︁
Pk−1

π rπ
)︁
− n r̄ 1

)︂
+Pλ

πv

= (1− λ)
∞∑︂
n=1

λn−1
(︂ n∑︂

k=1

Pk−1
π rπ

)︂
− r̄

1− λ
1+Pλ

πv (sum of AGP)

=
∞∑︂
n=1

λn−1Pn−1
π rπ −

r̄

1− λ
1+Pλ

πv

v =
∞∑︂
k=0

λkPk
πrπ −

r̄

1− λ
1+Pλ

πv, (4.3)

where AGP refers to an arithmetic-geometric progression, and the second-to-last
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equality is a result of a nifty rearrangement of the terms of summation. (4.3) is

a form of the multi-step Bellman equation for the average-reward formulation. Note

that λ = 0 gives the familiar one-step Bellman equation (2.6). Further, recall that

the average-reward Bellman equation has infinite solutions for (v, r̄) of the form

(vπ + c1, r(π)) in unichain MDPs, where c ∈ R and vπ denotes the differential state-

value function corresponding to a policy π and r(π) denotes the average reward per

step obtained using π.

4.2 On-policy: Theory

We begin with the presentation of the on-policy multi-step prediction algorithm. It

extends Chapter 3’s one-step tabular Differential TD-learning in two ways:

1. it estimates the multi-step λ-return online and incrementally,

2. it is proved to converge with linear function approximation.

We first introduce the terminology for function approximation and the special case

of linear function approximation. In Chapter 3 we dealt with the tabular case in

which the true value function can be approximated exactly with a parameter per

state or state–action pair. In general, this is not possible. The world in which every

learning agent resides is much larger than any individual agent. So in general the

agent does not observe the true state of the world, but just a tiny fraction of it

through its sensory inputs. Mathematically, if the true state of the world evolves in

state space S, an agent just observes a vector x ∈ Rd where d << |S|. Based on

this small observation vector, the agent approximates the value function with a set of

parameters w ∈ Rl. In the general function approximation setting, the approximate

values can never exactly match the true values. The goal of the prediction problem

is then to estimate the true values as closely as possible.

Linear function approximation is a kind of function approximation where the esti-

mated values are linear function of the parameters (also called the weight vector) w.
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In particular, corresponding to an observation vector x, we consider a linear value

estimate of the form w⊤x, where l = d << |S|. For simplicity, we assume that we

know the exact state of the world at all times but the agent only has access to a small

portion of it. That is, for every state s ∈ S, the agent observes x(s) ∈ Rd, and the

corresponding value estimate is v̂(s) = w⊤x(s).

Convergence Theorem

We are now ready to understand the on-policy linear case. I first present the algo-

rithm. Its analysis is based on the Tsitsiklis and Van Roy’s (1999) analysis of their

Average-Cost TD(λ) algorithm, so we also follow the same assumptions.

Assumption 4.1. The Markov chain corresponding to the target policy is irreducible

and aperiodic.

This ergodicity assumption simplifies the presentation. Extension to the more

general unichain case would require mild modifications to some of the analysis and

a specification of convergence to states that are recurrent under the target policy.

For the most general multichain case, we would have to repeat the same analysis

for every chain. Aperiodicity is important for the unique existence of a steady-state

distribution over states.

It follows that there is a unique stationary distribution dπ and a unique reward

rate r(π) for the Markov chain induced by the target policy π:

r(π) =
∑︂
s

dπ(s)
∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r|s, a) r.

Let X denotes a |S| × d matrix whose ith row is the d-dimensional feature vector

corresponding to state si ∈ S. Π denotes a projection matrix that projects a vector

onto the subspace spanned by the feature vectors: Π = X(X⊤DπX)−1X⊤Dπ, where

Dπ is a |S|× |S| diagonal matrix with elements of dπ along the diagonal. And let ∥·∥

denote the Euclidean norm for vectors — ∥v∥ .
=

√
v⊤v — and the Euclidean-induced

norm on matrices — ∥M∥ .
= maxv∋∥v∥=1 ∥Mv∥.
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Assumption 4.2. Features in X are linearly independent and bounded. Additionally,

Xw ̸= 1 for any w ∈ Rd.

The features need to be linearly independent for the linear-algebra-based analysis

to work; their boundedness implies the boundedness of the trace vector, which is

important for the analysis. The second part of the assumption basically means that

the constant vector is not representable by the linear value approximator. Tsitsiklis

and Van Roy used this to eliminate the possibility of multiple solutions (recall that

the differential Bellman equations have infinite solutions).

Our first algorithm is a straightforward extension of the one-step tabular on-

policy Differential TD-learning. Recall from Chapter 3 that on-policy Differential

TD-learning updates its tabular estimates V : S → R and its reward-rate estimate

R̄ ∈ R after every transition (St, At, St+1, Rt+1) as:

Vt+1(St)
.
= Vt(St) + αtδt,

R̄t+1
.
= R̄t + ηαtδt,

where, δt = Rt+1 − R̄t + Vt(St+1)− Vt(St).

On-policy multi-step linear Differential TD-learning has an additional trace vector

z ∈ Rd which is updated at every step along with the weight vector w ∈ Rd and the

reward-rate estimate R̄ (see Appendix A for the complete pseudocode).

Linear on-policy Differential TD(λ) (Algorithm 1)

After observing xt, taking At according to π, observing xt+1 and Rt+1:

wt+1
.
= wt + αtδtzt, (4.4)

R̄t+1
.
= R̄t + ηαtδt, (4.5)

where, zt
.
= λzt−1 + xt, (4.6)

and, δt
.
= Rt+1 − R̄t +w⊤

t xt+1 −w⊤
t xt. (4.7)
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For the convergence theorem, we need the standard assumption for stochastic-

approximation algorithms regarding step sizes.

Assumption 4.3. The step sizes αt are positive, deterministic, and satisfy
∑︁∞

t=0 αt =

∞ and
∑︁∞

t=0 α
2
t < ∞.

We are now ready for the convergence theorem.

Theorem 4.1. Under Assumptions 4.1, 4.2, 4.3, on-policy linear Differential TD(λ)

(Algorithm 1) converges for all λ ∈ [0, 1) with probability one:

1. R̄ converges to the unique reward rate of the target policy r(π).

2. w converges to the unique solution, w∗, of ΠT λ(Xw) = Xw.

The following error bound holds w.r.t. the centered differential value function vπ:

inf
c∈R

∥Xw∗ − (vπ + c1)∥dπ
≤ 1√︁

1− τ 2λ
inf

c∈R,w∈Rd
∥Xw − (vπ + c1)∥dπ

,

where τλ is a function of λ such that τλ ∈ [0, 1) and limλ→1 τλ = 0;

Here, ∥·∥p denotes the weighted Euclidean norm for vectors — ∥v∥p
.
=

√︁∑︁
i piv2

i .

Convergence Proof

The convergence proof is based on Tsitsiklis and Van Roy’s (1999) analysis of their

Average-Cost TD(λ) algorithm, which is also an on-policy multi-step average-reward

prediction algorithm. We discussed how its one-step version differs from our differ-

ential style of algorithms in Chapter 3. To reiterate, the two algorithms differ in

how the reward-rate estimate is updated: Differential TD(λ) updates it using the TD

error while Average-Cost TD(λ) maintains an exponential-recency-weighted average

of the observed rewards.
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Linear on-policy Average-Cost TD(λ)(Tsitsiklis and Van Roy, 1999)

After observing xt, taking At according to π, observing xt+1 and Rt+1:

wt+1
.
= wt + αt(Rt+1 − R̄t +w⊤

t xt+1 −w⊤
t xt)zt,

R̄t+1
.
= R̄t + ηαt(Rt+1 − R̄t),

zt+1
.
= λzt + xt.

Our analysis mirrors that of Tsitsiklis and Van Roy’s for Average-Cost TD(λ). In

particular, we use the ODE approach to show that the sequence of estimates generated

by the algorithm resembles the solution to an ODE which has a unique asymptotically

stable equilibrium point. For this purpose, Tsitsiklis and Van Roy used a specific

instance of a general stochastic-approximation result and showed that Average-Cost

TD(λ) satisfies all the conditions for the result to apply. We do the same for Algorithm

1.

We begin by rewriting the update equations as:

R̄t+1
.
= R̄t + ηαt

[︁
Rt+1 − R̄t − (xt − xt+1)

⊤wt

]︁
, (4.8)

wt+1
.
= wt + ztαt

[︁
Rt+1 − R̄t − (xt − xt+1)

⊤wt

]︁
(4.9)

Now we can combine the learnable parameters R̄ ∈ R and w ∈ Rd into a single vector

u ∈ Rd+1 for a more compact notation, such that u0 = R̄ and u1:d = w:

ut
.
=

⎡⎢⎢⎢⎣
R̄t

wt(1)
...

wt(d)

⎤⎥⎥⎥⎦
(d+1)×1

=

[︃
R̄t

wt

]︃
(d+1)×1

.

The updates can now be written as:

ut+1
.
= ut + αt

(︁
b(Yt) +A(Yt)ut

)︁
, (4.10)
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where, Yt
.
= (zt, St, At, Rt+1, St+1),

b(Yt) = bt
.
=

[︃
ηRt+1

ztRt+1

]︃
(d+1)×1

, (4.11)

A(Yt) = At
.
=

[︃
−η η(xt+1 − xt)

⊤

−zt zt(xt+1 − xt)
⊤

]︃
(d+1)×(d+1)

. (4.12)

{Yt} is a Markov chain: the next state and reward are determined by the current

state and action, and the trace vector evolves as zt+1 = λzt + x(St+1). Note that in

this on-policy setting each element of the trace vector is bounded (by xmax/(1−λ)+k,

where xmax is the maximum absolute feature value and k is the largest element of

the trace vector’s initialization: z−1 ∈ Rd). Since S,A,R are finite discrete sets, the

chain {Yt} evolves in a closed and bounded space Y . Based on Yu’s (2012, 2017)

analysis, {Yt} has a unique invariant probability measure d.

A sufficient (but not necessary) condition for stability is that matrix A should be

negative definite1, where A denotes the long-term expected value of At according to

d: A = Ed[At]. We now derive the expression for A and show that it is indeed a

negative definite matrix.

Like Tsitsiklis and Van Roy (1999), we construct an alternative stationary Markov

chain to compute the expected values instead of taking the limit of the expectations

as t goes to infinity. Consider a double-ended stationary Markov chain {Yt} evolving

in Y such that for integers t ∈ (−∞,∞), Pr(zt ∈ B, St = s, At = a, St+1 = s′) =

d(B, s, a, s′), where B is any Borel subset of Y . Let Ed also denote the expectations

w.r.t. the double-ended stationary Markov chain.

Lemma 4.1. Under Assumption 4.1, the following hold:

1. Ed[Rt+1] = r(π)

2. Ed[xt] = X⊤Dπ1

3. Ed[zt] =
1

1−λ
X⊤Dπ1

1Strictly speaking, only symmetric matrices can be positive/negative-definite. Here, we use the
term loosely to imply the same property for non-symmetric matrices.
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4. Ed[xt−kRt+1] = X⊤Dk
πrπ

5. Ed[ztRt+1] =
∑︁∞

k=0 λ
kX⊤Dk

πrπ

6. Ed[xt−kx
⊤
t ] = X⊤DπP

k
πX

7. Ed[zt x
⊤
t ] =

∑︁∞
k=0 λ

kX⊤DπP
k
πX

8. Ed[zt(xt+1 − xt)
⊤] =

∑︁∞
k=0 λ

kX⊤DπP
k
π(Pπ − I)X

9. Ed[xt+1 − xt] = 0

Proof. 1. Ed[Rt+1] =
∑︁

s dπ(s)
∑︁

a π(a|s)
∑︁

s′,r p(s
′, r|s, a) r = r(π), by definition.

2. Ed[xt] = Ed[x(St)] =
∑︁

s dπ(s)x(s) = X⊤dπ = X⊤Dπ1

3. Note that the expressions are the same for any time step t because they are

expectations of functions of Y under the invariant probability measure d. So

without loss of generality, we compute the expressions for t = 0. Now, based

on Yu’s (2012, 2017) analysis, we can write z0 =
∑︁0

k=−∞ λ−kxk almost surely,

where xk denotes the feature vector at the k-th time step. Next, note that the

trace parameter does not affect the evolution of the original Markov chain {St}

induced by the behavior policy b, hence the marginal distribution of states in

Y is the same as db from the original Markov chain.

Ed[z0] = Ed

[︂ 0∑︂
k=−∞

λ−kxk

]︂
=

0∑︂
k=−∞

λ−kEd[xk]

=
∞∑︂
k=0

λkX⊤Dπ1

=
1

1− λ
X⊤Dπ1.

58



4.

Ed[xt−kRt+1] =
∑︂
s

dπ(s)
∑︂
s′

Pr(s′|s, k, π)
∑︂
a′

π(a′|s′)
∑︂
r′

p(r′|s′, a′)[r′ x(s)]

=
∑︂
s

dπ(s)x(s)
∑︂
s′

Pr(s′|s, k, π) rπ(s′)

= X⊤DπP
k
πrπ

5. As in part 3, we can consider the case when t = 0:

Ed[z0R1] = Ed[
0∑︂

k=−∞

λ−kxkR1] = Ed[
∞∑︂
k=0

λkx−kR1]

=
∞∑︂
k=0

λkEd[x−kR1]

=
∞∑︂
k=0

λkX⊤DπP
k
πrπ

6.

Ed[xt−k x
⊤
t ] =

∑︂
s

dπ(s)
∑︂
s′

Pr(s′ | s, k, π)x(s)x(s′)⊤

= X⊤DπP
k
πX

7. Again, we consider the case when t = 0: Ed[zt x
⊤
t ] = Ed[

∑︁0
k=−∞ λ−kxkx

⊤
0 ] =

Ed[
∑︁∞

k=0 λ
kx−kx

⊤
0 ] =

∑︁∞
k=0 λ

kEd[x−kx
⊤
0 ] =

∑︁∞
k=0 λ

kX⊤DπP
k
πX

8.

Ed[zt(xt+1 − xt)
⊤] = Ed[ztx

⊤
t+1]− Ed[ztx

⊤
t ]

=
∞∑︂
k=0

λkX⊤DπP
k+1
π X−

∞∑︂
k=0

λkX⊤DπP
k
πX

=
∞∑︂
k=0

λkX⊤DπP
k
π(Pπ − I)X

9. Ed[xt − xt+1] = Ed[xt]− Ed[xt+1] = 0
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Lemma 4.2. Under Assumption 4.1, the steady-state expectations b = Ed[bt] and

A = Ed[At] are given by:

b =

[︃
η r(π)∑︁∞

k=0 λ
kX⊤DπP

k
πrπ

]︃
(d+1)×1

(4.13)

A =

[︃
−η 0⊤

−1
1−λ

X⊤Dπ1
∑︁∞

k=0 λ
kX⊤DπP

k
π(Pπ − I)X

]︃
(d+1)×(d+1)

(4.14)

Proof. b and A are given by:

b =

[︃
Ed[ηRt+1]
Ed[ztRt+1]

]︃
A =

[︃
Ed[−η] Ed[η(xt+1 − xt)

⊤]
Ed[−zt] Ed[zt(xt+1 − xt)

⊤]

]︃
The result follows from Lemma 4.1.

It turns out that the expression for A corresponding to Algorithm 1 is the same

as that of Average-Cost TD(λ), despite the expressions of At being different.

So we can directly apply their Lemma 7 to show the negative definiteness of A.

Lemma 4.3. There exists a diagonal matrix L with positive diagonal entries such

that LA is negative definite.

Proof. Because A here is the same as Tsitsiklis and Van Roy’s (1999), the result

follows from their Lemma 7.

Tsitsiklis and Van Roy scale the matrix A with a diagonal matrix L having the

first element as some positive number l > 0 and the other diagonal entries as one.

This is because for every A of the above form, there exists a sufficiently large l such

that LA is negative definite.

Lemma 4.4. There exists a constant C such that for all t ≥ 0 in {Yt} starting with

any S0 ∈ S and z−1 ∈ Rd:

1. ∥b(Yt)∥ ≤ C

2. ∥A(Yt)∥ ≤ C
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Proof. Given S0 and z−1, St evolves according to Pπ, resulting in St+1, Rt+1, and

zt = λzt−1 + x(St).

1. We know that:

b(Yt)
.
=

[︃
ηRt+1

ztRt+1

]︃
.

Then,

∥b(Yt)∥ =
√︂
η2R2

t+1 + zt(1)2R2
t+1 + . . .+ zt(d)2R2

t+1

= |Rt+1|
√︁

η2 + zt(1)2 + . . .+ zt(d)2

≤ Rmax

√︃
η2 + d(

1

1− λ
x2
max + k2) = C1

where Rmax is the maximum absolute value of rewards, xmax is the maximum

absolute feature value, and k is the largest element of z−1.

2. Next,

A(Yt)
.
=

[︃
−η η(xt+1 − xt)

⊤

−zt zt(xt+1 − xt)
⊤

]︃
.

∥A(Yt)∥ = maxv∋∥v∥=1 ∥A(Yt)v∥. Let v∗ be the vector in the subspace ∥v∥ = 1

for which the maximum is obtained. Then A(Yt)vmax is finite because (a) each

element of vmax is finite and (b) each element of A(Yt) is finite. To see the

latter, note that zt and xt+1 − xt are bounded. As A(Yt)vmax is finite, so is its

norm ∥A(Yt)vmax∥ = C2.

Thus, there exists constant C = max{C1, C2} such that the two conditions are true

for all t ≥ 0 and any starting conditions {S0, z−1}.

Lemma 4.5. There exist constants ρ ∈ (0, 1) and C such that for any initial condi-

tions Y0 ∈ Y:

1. ∥Ed[b(Yt) | Y0]− b∥ ≤ Cρt,

2. ∥Ed[A(Yt) | Y0]−A∥ ≤ Cρt.
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Proof. 1. b(Yt) in (4.11) is same as Tsitsiklis and Van Roy’s (1999), so the first

condition is true according to their Lemma 6.

2. A(Yt) in (4.12) is slightly different than Tsitsiklis and Van Roy’s (1999), so

their Lemma 6 cannot be applied directly.

Before we begin the proof, we state a property that shall be used repeatedly in

this proof: for scalars γ1 < 1, γ2 < 1, p, q, there exist scalars γ3 < 1 and r such

that:

p γt
1 + q γt

2 ≤ r γt
3 ∀ t ≥ 0. (4.15)

Let us re-write the A(Yt) matrix for both algorithms.

A(Yt)
Diff .

=

[︃
−η η(xt+1 − xt)

⊤

−zt zt(xt+1 − xt)
⊤

]︃
from (4.12)

A(Yt)
Avg .

=

[︃
−η 0⊤

−zt zt(xt+1 − xt)
⊤

]︃
from Tsitsiklis & Van Roy’s (5)

Note that A(Yt)
Diff = A(Yt)

Avg + Ft, where Ft =

[︃
0 η(xt+1 − xt)

⊤

0 00⊤

]︃
. Now,

E[A(Yt)
Diff | Y0] = E[A(Yt)

Avg | Y0] + E[Ft | Y0]

E[A(Yt)
Diff | Y0]−A = E[A(Yt)

Avg | Y0]−A+ E[Ft | Y0]⃦⃦
E[A(Yt)

Diff | Y0]−A
⃦⃦
≤

⃦⃦
E[A(Yt)

Avg | Y0]−A
⃦⃦
+ ∥E[Ft | Y0]∥

Tsitsiklis and Van Roy’s (1999) Lemma 6 proves that there exist scalars C0

and ρ0 such that
⃦⃦
E[A(Yt)

Avg|S0]−A
⃦⃦
≤ C0ρ

t
0 for any t ≥ 0 and any S0 ∈ S.

Hence,

⃦⃦
E[A(Yt)

Diff | Y0]−A
⃦⃦
≤ C0ρ

t
0 + ∥E[Ft | Y0]∥ . (4.16)

Now consider the second term on the RHS. In particular, consider its non-zero

part:
⃦⃦
E[η(xt+1 − xt)

⊤ | Y0]
⃦⃦
. Let dt

π(i) = Pr(St = si|S0, π). Then,

E[η(xt+1 − xt) | Y0] = ηX⊤(dt+1
π − dt

π).
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Now, ∥dt+1
π − dt

π∥ ≤ ∥dt+1
π − dπ∥+ ∥dt

π − dπ∥. A well-known result for ergodic

Markov chains is ∥dt
π − dπ∥ ≤ C1ρ

t
1 for scalars ρ1 ∈ (0, 1) and C1 (e.g., Levin

& Peres, 2017: Theorem 4.9). So ∥dt+1
π − dt

π∥ ≤ C2ρ
t
2 for scalars ρ2 < 1 and

C2. Using that,

⃦⃦
X⊤(dt+1

π − dt
π)
⃦⃦
≤ ∥X∥

⃦⃦
dt+1
π − dt

π

⃦⃦
≤ K · C2ρ

t
2.

The final inequality follows from the property ∥Qr∥ ≤ ∥Q∥ ∥r∥, and ∥X∥ is less

than or equal to some constant K as all elements of X are bounded. Finally,

∥E[Ft | Y0]∥ = ∥η(xt+1 − xt)∥. Substituting this in (4.16) and using (4.15), we

get:

⃦⃦
E[A(Yt)

Diff | Y0]−A
⃦⃦
= ∥E[A(Yt) | Y0]−A∥ ≤ Cρt,

for some scalars ρ ∈ (0, 1) and C, for any t ≥ 0 and any Y0 ∈ Y .

The proof is complete.

We are now ready to state Tsitsiklis and Van Roy’s (1999) stochastic-approximation

result to show the convergence of Algorithm 1.

Theorem 4.2. (Based on Tsitsiklis and Van Roy’s (1999) Theorem 2 and Corollary

1) Consider the iterative algorithm of the form ut+1
.
= ut + αt(b(Yt) + A(Yt)ut).

Suppose the following conditions are satisfied:

1. The Markov chain {Yt} evolving in a state space Y has a unique steady-state

distribution. Let Ed[·] denote the expectation according to this distribution.

2. Let A
.
= Ed[A(Yt)]. There exists a diagonal matrix L with positive diagonal

entries such that LA is negative definite.

3. There exists a constant C such that ∥A(Y )∥ ≤ C and ∥b(Y )∥ ≤ C for any

Y ∈ Y.
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4. There exist scalars C and ρ ∈ (0, 1) such that ∀ t ≥ 0 and Y0 ∈ Y:

∥E[A(Yt) | Y0]−A]∥ ≤ Cρt,

∥E[b(Yt) | Y0]− b]∥ ≤ Cρt, where, b
.
= Ed[b(Yt)].

5. The step sizes αt are positive, deterministic, and satisfy
∑︁∞

t=0 αt = ∞ and∑︁∞
t=0 α

2
t < ∞.

Then ut converges to u∗ with probability one, where u∗ is the unique vector satisfying

Au∗ + b = 0.

We now verify that Algorithm 1 satisfies all the conditions of Theorem 4.2. As men-

tioned earlier, Condition 1 is satisfied by Yu’s (2012, 2017) general analysis which is

applicable for our joint chain {Yt} here. Lemma 4.3, 4.4, 4.5 establish that conditions

2, 3, and 4 are satisfied. Condition 5 is satisfied by Assumption 4.3.

Hence, Theorem 4.2 applies to Algorithm 1 and it converges to the unique fixed

point u∗ that satisfies Au∗ = b.

Characterizing the fixed point

We now characterize the fixed point u∗. Let us consider the reward-rate scalar and

the weight vector separately. Recall that the first term of the combined parameter

vector u ∈ Rd+1 is the scalar reward-rate estimate and the rest is the weight vector.

From Lemma 4.2, b0 = η r(π) and A0 = [−η,0⊤]⊤. Hence, u∗
0 = r(π). This proves

part (1) of Theorem 4.1.

Proving part (2) takes a few more steps. Let us call u∗
1:d = w∗. Solving for

A1:dw
∗ + b1:d = 0, we have:

r(π)

1− λ
X⊤Dπ1⏞ ⏟⏟ ⏞

Term 1

+
∞∑︂
k=0

λkX⊤DπP
k
π(I−Pπ)Xw∗

⏞ ⏟⏟ ⏞
Term 2

=
∞∑︂
k=0

λkX⊤DπP
k
πrπ⏞ ⏟⏟ ⏞

Term 3

. (4.17)
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Let us consider the second term. Recall from (4.2) that we defined Pλ
π

.
= (1 −

λ)
∑︁∞

n=1 λ
n−1Pn

π. Now,

∞∑︂
k=0

λkPk
π(I−Pπ) = (I−Pπ) + (λPπ − λP2

π) + (λ2P2
π − λ2P3

π) + . . .

= I+
λ

1− λ
Pλ

π −
1

1− λ
Pλ

π

= I−Pλ
π.

Thus, the second term can be written as X⊤Dπ(I − Pλ
π)Xw∗. Substituting this in

(4.17),

r(π)

1− λ
X⊤Dπ1+X⊤Dπ(I−Pλ

π)Xw∗ =
∞∑︂
k=0

λkX⊤DπP
k
πrπ.

On re-arranging, we get:

X⊤DπXw∗ =
∞∑︂
k=0

λkX⊤DπP
k
πrπ −

r(π)

1− λ
X⊤Dπ1+X⊤DπP

λ
πXw∗

= X⊤Dπ

(︂ ∞∑︂
k=0

λkPk
πrπ −

r(π)

1− λ
1+Pλ

πXw∗
)︂

= X⊤DπT
λ
π (Xw∗) (from (4.3))

Multiplying both sides by X(X⊤DπX)−1,

Xw∗ = X(X⊤DπX)−1X⊤DπT
λ
π (Xw∗)

= ΠT λ
π (Xw∗)

This shows part (2) of Theorem 4.1.

We have shown parts 1 and 2 of Theorem 4.1, that Algorithm 1 converges with

probability one: R̄ to r(π), and w to a solution of Xw = ΠT λ
(︁
Xw

)︁
.

Finally, the error bound is same as Tsitsiklis and Van Roy’s (1999) Lemma 3

because the fixed points of on-policy linear Differential TD(λ) and Average-Cost

TD(λ) are the same. □
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4.3 On-policy: Experiments

In this section, we present experiments to test the efficacy of the proposed on-policy

Differential TD(λ) algorithm. In particular, we would like to validate that the algo-

rithm indeed converges to the fixed point predicted by the theory. We would also

like to validate a straightforward hypothesis from the discounted-reward formulation:

an intermediate value of λ typically leads to the faster rate of learning compared to

values close to either extreme. Finally, it is pertinent to compare the performance of

Differential TD(λ) with Average-Cost TD(λ) since they are both algorithms for the

on-policy average-reward prediction problem.

We ran a set of experiments on a random-walk domain. Consider an MDP with

N states and two actions—left and right—available in each state. The states are

arranged in a chain such that the left and right actions lead deterministically to the

previous and next states respectively (see Figure 4.1). The right action in the right-

most state and the left action in the left-most state lead to the middle-most state

with a reward of +1 and −1 respectively. All the other transitions result in zero

reward. This problem is a continuing variant of the episodic random-walk problem

used often by Sutton and Barto (2018) to demonstrate the effects of n-step and multi-

step methods in the episodic setting.

Figure 4.1: A continuing N -state random-walk problem.

For this on-policy experiment, we evaluated a policy that takes the right and left

actions in each of the N = 19 states with equal probability. The average reward

corresponding to this policy is zero. The agent observed a one-hot representation of

the state (a vector of the size of the state space with all zeros except 1 at the position

of the current state), which made it easy to evaluate convergence as the differential
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value function was completely representable. We applied Differential TD(λ) and

Average-Cost TD(λ) to this problem with α ∈ {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9, 1.0}, η ∈ {0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.0}, and λ ∈ {0, 0.1,

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99}. Each parameter configuration was run

for 10,000 steps and repeated 100 times. The step sizes were decayed by a factor of

0.99975 at each time step. The weight vector, trace vector, and the average-reward

estimate were initialized to zero.

As with the one-step prediction experiments in Chapter 3, we evaluated the quality

of the reward-rate estimate by the squared error w.r.t. the true reward rate of the

target policy; for value estimates, we computed the root mean squared error of the

estimated value function w.r.t. the nearest solution of the Bellman equations, which

we also referred to as ‘RMSVE (TVR)’ in Chapter 3.

Figure 4.2 shows some learning curves corresponding to different values of λ on

the 19-state random-walk problem. Each point on the solid lines represent the mean

error across the 100 runs for a particular time step; the shaded region represents one

standard error. The errors are not smoothed or binned. The learning curves for each

λ correspond to the step size α that resulted in the fastest learning (measured by the

area under the RMSVE curve) for a fixed value of η = 0.03; the trends were similar

Figure 4.2: Learning curves corresponding to different values of λ on the 19-state
random-walk problem using Algorithm 1.
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for other values of η.

We saw that an intermediate value of λ resulted in fast learning as well as low

asymptotic error. The learning curves all approached zero after about 30k steps,

except for λ = 0.99, which took longer; only 10k steps are shown here to focus on

the differences in the early part of learning. Note that in all cases the average-reward

estimate converged to the true average reward of zero; however, those learning curves

are uninteresting given the estimates are initialized to zero and hence are omitted

here. For all the multi-step methods, the value-error-reduction rate in the beginning

was higher than that of the one-step method (λ = 0). However, the rate of learning

was much lower for larger values of λ because of increasing variance (which is reflected

in the roughness of curves).

The sensitivity plots in Figure 4.3 further corroborate these trends. Each point

denotes the value error averaged over the first 2000 steps of training (to reflect the

initial rate of learning) and the error bars represent one standard error over the 100

independent runs of each parameter setting. From the plot on the left corresponding

to Algorithm 1, we saw that λ = 0 resulted in slow learning across the range of step

size α tested. Large values of λ resulted in slow learning or numerical divergence

of values due to large magnitudes of the trace parameter. Intermediate values of λ

Figure 4.3: Parameter studies showing the sensitivity of the two algorithms’ perfor-
mance to their parameters α and λ.
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resulted in the fastest learning, but for different values of α. The sensitivity plots in

Figure 4.3 correspond to η = 0.03; the trends were similar for other values of η.

Figure 4.3 also helped us compare the performance of Algorithm 1 with that of

Average-Cost TD(λ) in the on-policy setting. We found that the performance of the

two on-policy algorithms was quite similar, with Average-Cost TD(λ) slightly more

sensitive to large values of α. Figure 4.4 shows another slice of the comparison between

the two, now for a fixed value of λ = 0.7. The y-axis corresponds to the value error

averaged over the entire training period. Both algorithms behaved similarly across

values of α, however, Average-Cost TD(λ) was less sensitive to larger values of η.

This is likely because the average-reward update for Average-Cost TD(λ) does not

depend on the values and hence can tolerate a larger step size relative to the value

updates. The trends were not very different for other values of λ.

Figure 4.4: Parameter studies showing the sensitivity of the two algorithms’ perfor-
mance to their parameters α and η.

From these simple experiments we conclude that Algorithm 1 works as intended:

in the tabular case, the value and average-reward estimates converge to a solution

of the differential Bellman equations (2.6). Further, an intermediate value of λ can

be a sweet spot in trading off the speed of learning and the variance in updates.

The performance of Algorithm 1 was comparable to Average-Cost TD(λ). This was

good to know because the differential style of TD-error update was adapted for the

off-policy setting, which I investigate next.
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4.4 Off-policy: An Unsuccessful Attempt

In Section 4.2 we proved the convergence of Algorithm 1, which is a straightforward

extension of one-step tabular Differential TD-learning from Chapter 3. Algorithm 1

and Average-Cost TD(λ) are two multi-step prediction algorithms that are proved to

converge in the on-policy setting with linear function approximation. However, the

main reason for extending the one-step differential algorithms to the multi-step case

was to obtain the first multi-step average-reward algorithm that is convergent in the

off-policy setting. Unfortunately, Algorithm 1 is restricted to the on-policy setting;

it cannot be extended to the off-policy setting even in the tabular case.

Note that our aim for the off-policy setting is the simplest tabular case. Off-policy

RL with general function approximation is an open problem even in the well-studied

discounted-reward formulation. Even the special case of linear function approxima-

tion is unresolved. The main challenge of off-policy learning with function approxima-

tion comes from two kinds of mismatches: (1) the mismatch in the state distribution

as a result of following the behavior policy instead of the target policy, and (2) the

mismatch in the rewards obtained due to the differences in action-selection prob-

abilities in a given state. In the tabular discounted case, the former mismatch is

not a concern because the value of each state is estimated independently, and using

importance-sampling ratios appropriately corrects the latter mismatch and leads to

an unbiased estimate of the values in each state (Rubinstein, 1981; Precup et al.,

2000). However, with general function approximation, the values of different states

depend on each other and hence addressing the mismatch in state distributions is

relevant. This is an active area of research.

The methods developed in the last few years either try to correct the state-

distribution mismatch (e.g., Hallak & Mannor, 2017; Gelada & Bellemare, 2019;

Zhang et al., 2020b) or embrace the mismatch in favor of a different objective (e.g.,

Maei, 2011; Hackman, 2012; White & White, 2016; Sutton et al., 2016). Each of these
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methods involves significant conceptual and algorithmic complexity. In this work, we

focus on the simpler tabular case; extensions to general function approximation for

the off-policy setting would be a complete dissertation in itself.

While we consider the extension of Algorithm 1 to the tabular off-policy setting,

we continue using the linear terminology and notation for the sake of brevity. The

observation vectors are now a one-hot representation of the index of each state. That

is, if each state s ∈ S is identified by a number from 0 to |S|−1, then the observation

vector corresponding to the i-th state Si is the vector x(si) = 1i, which is a |S|-

dimensional vector with a 1 at the i-th index and zeros everywhere else. The state-

value estimate of the i-th state is then just the value of the i-th index of the weight

vector w ∈ R|S|: v̂(si)
.
= w⊤x(si) = w⊤1i = wi.

Recall that the tabular version of Algorithm 1 updates the weight vector and the

reward-rate estimate after each transition (St, At, Rt+1, St+1) as:

wt+1
.
= wt + αtδtzt,

R̄t+1
.
= R̄t + ηαtδt,

where, zt
.
= λzt−1 + x(St),

and, δt
.
= Rt+1 − R̄t +w⊤

t x(St+1)−w⊤
t x(St).

To extend this algorithm to the tabular off-policy setting, we just have to correct the

mismatch of targets due to the difference in actions taken by the target and behavior

policies. So the straightforward extension of Algorithm 1 to the tabular off-policy

case—let us call it Algorithm 1-off—updates its parameters as:

wt+1
.
= wt + αtδtzt, (4.18)

R̄t+1
.
= R̄t + ηαtρtδt, (4.19)

where, zt
.
= ρt(λzt−1 + x(St)), (4.20)

δt
.
= Rt+1 − R̄t +w⊤

t x(St+1)−w⊤
t x(St),

and, ρt
.
=

π(At|St)

b(At|St)
.
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This algorithm looks promising. One might rightly point out that the trace param-

eter updated in this way is unbounded in general (see, e.g., Yu’s (2012) Proposition

3.1). However, there is a deeper issue even after we bound the trace parameter (by,

say, limiting the choice of λ such that λρmax < 1, where ρmax is the largest importance-

sampling ratio given the target and behavior policies).

The issue is that this algorithm is not stable. That is, for certain problems, the

algorithm will diverge from any initialization. This is not obvious. It took me several

months of attempting to prove the convergence of this algorithm before realizing it is

impossible. In particular, I showed that this algorithm satisfies all the conditions of

Theorem 4.2 that was used to prove the convergence of Algorithm 1 (and Tsitsiklis

and Van Roy’s Average-Cost TD(λ)) except that A or the diagonally scaled version

of A is negative definite.

However, negative definiteness is a sufficient and not a necessary condition for

for stability. The necessary condition is that the real parts of all the eigenvalues of a

matrix should be negative for stability—such a matrix is also called a Hurwitz matrix.

So despite being unable to prove that A was negative definite, I had hope. At that

time, I was attributing my lack of success to a lack of formal training in theory. But

I realized I could numerically test the hypothesis that A is Hurwitz.

For the tabular off-policy version of Algorithm 1, I derived:

A =

[︃
−η ηd⊤

b (Pπ − I)
−1
1−λ

Db1
∑︁∞

k=0 λ
kDbP

k
π(Pπ − I)

]︃
(d+1)×(d+1)

(4.21)

One way to test if A is Hurwitz or not is to generate arbitrary db and Pπ and check

the eigenvalues of the resulting A matrices for different values of η and λ. This is easy

with standard libraries such as numpy. Indeed, I found that for many combinations

of randomly generated state distribution vectors db and stochastic matrices Pπ, the

matrix A has eigenvectors with positive real parts. In other words, there exist off-

policy prediction problems for which the simple extension of Algorithm 1 to the

off-policy setting diverges for any initial conditions even in the tabular case.
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As a result, I had to go back to the drawing board in the quest for a multi-step

average-reward prediction off-policy algorithm for the tabular case.

4.5 Off-policy: Theory

The previous failure was puzzling. The off-policy problem is hard, but its tabular ver-

sion should be relatively straightforward. Precup, Sutton, and Singh (2000) showed

that in the discounted reward setting, the tabular multi-step algorithm is the obvious

extension of the one-step algorithm using eligibility traces. There did not appear to

be an obvious reason why the average-reward variant would be more complicated.

What could have been the issue?

It turned out that Algorithm 1 was not the most faithful extension of one-step

Differential TD-learning to the multi-step setting with eligibility traces. By creating

a version that was, we showed the convergence of a multi-step off-policy tabular

average-reward prediction algorithm. I now discuss in detail what the shortcoming of

Algorithm 1 was and how we fixed it.

Recall the updates of one-step off-policy Differential TD-learning, now expressed

in terms of vector updates:

vt+1
.
= vt + αtρtδt1St ,

R̄t+1
.
= R̄t + ηαtρtδt,

where, δt
.
= Rt+1 − R̄t + vt(St+1)− vt(St),

and, ρt
.
=

π(At|St)

b(At|St)
,

where 1St is a vector of all zeros with 1 at the index of the St-th state. Starting from

arbitrary initial values of the value estimates—v0—and the reward-rate estimate—R̄0,

the following relation is preserved for all t > 0:

R̄t − R̄0 = η
[︂∑︂

s

vt(s)−
∑︂
s

v0(s)
]︂
,

or, R̄t − R̄0 = η1⊤(vt − v0). (4.22)
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This is because both the reward-rate estimate and the value estimates are updated

by the same quantity, so the total change in both sets of estimates at any point of

time is the same (scaled by η). This is important because the reward rate can then

be estimated as a linear or affine function of the value estimates. Such an implicit

estimation enables using the techniques that are used to analyze the relative-value-

iteration-style (RVI) algorithms. In particular, Abounadi et al. (2001) analyzed this

self-referential mechanism of estimating the reward rate for their tabular one-step RVI

Q-learning algorithm (discussed in Chapter 3) using Borkar’s (2009) ODE approach.

Yi Wan then generalized such an analysis for one-step Differential Q-learning in our

paper (Wan, Naik, & Sutton, 2021a).

Without loss of generality, we can assume that the average-reward estimate and the

value estimates to be initialized to zero, in which case the relation in (4.22) simplifies

to R̄t = η1⊤vt. Now, note that Algorithm 1-off does not maintain this relation

because, for λ > 0, the updates to the values estimates have more components due

to the trace:

vt+1
.
= vt + αtδtzt,

R̄t+1
.
= R̄t + ηαtρtδt,

where zt
.
= ρt(λzt−1 + 1St) and δt

.
= Rt+1 − R̄t + vt(St+1)− vt(St).

We can build upon the body of RVI-style methods if the average-reward estimate

is a function of the value estimates. One way to ensure (4.22) still holds is to have a

trace parameter for the reward-rate estimate, which is just a scalar trace of 1.
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Tabular off-policy Differential TD(λ) (Algorithm 2)

In addition to the usual trace vector z ∈ R|S|, consider a scalar zR̄ ∈ R. After

observing St, taking At according to b, observing St+1 and Rt+1:

vt+1
.
= vt + αtδtzt, (4.23)

R̄t+1
.
= R̄t + ηαtδtz

R̄
t , (4.24)

where, zt
.
= ρt(λzt−1 + 1St), (4.25)

zR̄t
.
= ρt(λz

R̄
t−1 + 1), (4.26)

with the usual δt
.
= Rt+1 − R̄t + vt(St+1)− vt(St) and ρt

.
=

π(At|St)

b(At|St)
.

Note that in the on-policy setting, zR̄ saturates to 1/(1 − λ), which can be inter-

preted as a scaling of the step size which makes it equivalent to Algorithm 1 (and

further to on-policy Differential TD(0) from Chapter 3 when λ = 0). However, in the

off-policy case, it is different from Algorithm 1-off in that it ensures (4.22) is satisfied

for all t > 0.

More generally, there is a larger family of algorithms that maintains R̄t = f(vt),

that is, where the reward-rate estimate is a function f : R|S| → R of the current

values estimates:

vt+1
.
= vt + αt

[︁
Rt+1 − f(vt) + vt(St+1)− vt(St)

]︁
zt, (4.27)

where, zt
.
= ρt(λzt−1 + 1St), (4.28)

and, ρt
.
= π(At|St)/b(At|St). (4.29)

We prove the stability and convergence of a general family of algorithms where f

is of the form f(vt) = η g⊤vt, with η > 0 and g ∈ R|S| according to the following

assumption.
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Convergence Theorem

Assumption 4.4. g ∈ R|S| is a non-negative vector with at least one positive element.

Note that Algorithm 2 is a specific instance of this family with g = 1.

Assumption 4.5. The behavior policy has coverage, that is, b(a|s) > 0 wherever

π(a|s) > 0, ∀s, a.

This assumption—often referred to as the coverage assumption in the off-policy

literature—guarantees that all the states that occur under the target policy also

occur under the behavior policy b. Let db denote unique steady-state distribution

over the states in the Markov chain induced by the behavior policy.

The trace parameter zt can in general become unbounded in the off-policy setting

for arbitrary target and behavior policies (see, e.g., Yu’s (2012) Proposition 3.1). Our

proof technique requires boundedness for all t > 0, which we impose with a simple

condition.

Assumption 4.6. λρmax < 1, where ρmax is the largest importance-sampling ratio.

Theorem 4.3. Under Assumptions 4.3–4.6, for a given λ > 0, there exists a suffi-

ciently small η for which the family of tabular off-policy Differential TD(λ) algorithms

(4.27–4.29) converges almost surely to a solution v∞ of the differential Bellman equa-

tions (4.3), with f(v∞) = r(π), where r(π) denotes the reward rate of the target policy

π.

Convergence Proof

We use the ordinary-differential-equation (ODE) approach in the style of Borkar

(2009) to prove the stability and convergence of this family of algorithms. In partic-

ular, we show the sequence of estimates generated by the algorithm is (1) bounded

and (2) asymptotically converges to the solutions of an ODE. We further show that

the key matrix involved in the analysis is Hurwitz, which implies that the ODE has a

stable unique equilibrium point and that the algorithm converges to it asymptotically.
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Preliminaries

We begin by casting the algorithmic updates in the form of a general stochastic-

approximation algorithm. To (4.27), add and subtract r(St, At, St+1)zt, where, r(St, At, St+1)
.
=∑︁

r p(r |St, At, St+1) r,

vt+1 = vt + αt zt
(︁
r(St, At, St+1)− η g⊤vt + vt(St+1)− vt(St)

+Rt+1 − r(St, At, St+1)
)︁

= vt + αt

[︁
h(vt, Yt) +mt+1

]︁
, (4.30)

where Yt
.
= (zt, St, At, St+1),

mt+1
.
=

(︁
Rt+1 − r(St, At, St+1)

)︁
zt, (4.31)

h(vt, Yt)
.
= bt +Atvt, (4.32)

with, bt
.
= r(St, At, St+1) zt, (4.33)

and, At
.
= zt(1St+1 − 1St − η g)⊤. (4.34)

Note that the joint chain {Yt} is Markov: the states evolve according to the transi-

tion dynamics of the original MRP, the actions are taken according to a Markov policy

b, and zt evolves as zt = ρt(λzt−1 + xt), where ρt = π(At|St)/b(At|St). Furthermore,

Yu (2012, 2017) showed (for the more general case without bounded traces) that {Yt}

is a weak Feller Markov chain that has a unique invariant probability measure d.

The stability and convergence of the general algorithm depends on the expected

values of At and bt (and hence h(v, Yt)) w.r.t. d. We first show that the matrix key

to the analysis, A = Ed[At], is Hurwitz for sufficiently small η, which implies the

ODE u̇ = Au + b converges to a unique stable solution u∗ of Au + b = 0 from

any initial condition (Khalil, 2002), where b = Ed[bt]. Then we show the properties

of h and m such that asymptotic sequence of discrete iterates {vt} generated by

(4.30) is bounded and converges to the unique stable equilibrium point of the ODE

(Borkar, 2009). At the end, we show that the equilibrium point u∗ indeed satisfies

the differential Bellman equations.
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The corresponding ODE has a unique equilibrium point

To compute the expectations A and b, we again consider a double-ended stationary

Markov chain (like in the on-policy analysis). {Yt} evolving in Y such that for all

integers t ∈ (−∞,∞), Pr(zt ∈ B, St = s, At = a, St+1 = s′) = d(B, s, a, s′), where B

is any Borel subset of Y . Let Ed also denote the expectations w.r.t. the double-ended

stationary Markov chain.

We now derive some expressions of interest.

Lemma 4.6. Under Assumptions 4.1 and 4.5,

1. Ed[zt] =
1

1−λ
Db1,

2. Ed[zt r(St, At, St+1)] =
∑︁∞

k=0 λ
kDbP

k
πrπ,

3. Ed

[︁
zt(1St+1 − 1St)

⊤]︁ = Db(P
λ
π − I).

Proof. First, note that the expressions are the same for any time step t because they

are expectations of functions of Y under the invariant probability measure d. So,

without loss of generality, we compute the expressions for t = 0. Now, based on

Yu’s (2012, 2017) analysis, we can write z0 =
∑︁0

k=−∞ ρk:0λ
−kxk almost surely, where

ρk:0
.
= Π0

i=kρi and xk denotes the feature vector at the k-th time step. Next, note

that the trace parameter does not affect the evolution of the original Markov chain

{St} induced by the behavior policy b, hence the marginal distribution of states in Y

is the same as db from the original Markov chain.

1. We now compute Ed[z0].

Ed[z0] = Ed

[︂ 0∑︂
k=−∞

λ−kρk:0xk

]︂
=

0∑︂
k=−∞

λ−kEd[ρk:0xk]

Note that the form of z0 =
∑︁0

k=−∞ ρk:0λ
−kxk enables swapping the expectation

and the summation and to compute the individual expectations of quantities of
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finite lengths. In particular, for k < 0, Ed[ρk:0xk] simply is
∑︁

sk
db(sk)

(︂
x(sk)

)︂
=

db = Db1. Then,

Ed[z0] =
0∑︂

k=−∞

λ−kEd[ρk:0xk]

=
0∑︂

k=−∞

λ−kDb1 =
∞∑︂
k=0

λkDb1

=
1

1− λ
Db1.

2. We again compute the value at t = 0:

Ed[z0 r(S0, A0, S1)] = Ed[
0∑︂

k=−∞

λ−kρk:0xk r(S0, A0, S1)]

=
0∑︂

k=−∞

λ−kEd[ρk:0xk r(S0, A0, S1)].

Computing the general form of the individual terms:

Ed[ρk:0xk r(S0, A0, S1)] =
∑︂
sk

db(sk)
∑︂
ak

b(ak|sk)
∑︂
sk+1

p(sk+1|sk, ak)
∑︂
ak+1

b(ak+1|sk+1) . . .∑︂
s0

p(s0|s−1, a−1)
∑︂
a0

b(a0|s0)
∑︂
r

p(r|s0, a0)(︂π(ak|sk)
b(ak|sk)

π(ak+1|sk+1)

b(ak+1|sk+1)
. . .

π(a0|s0)
b(a0|s0)

r x(sk)
)︂

=
∑︂
sk

db(sk)
∑︂
ak

π(ak|sk)
∑︂
sk+1

p(sk+1|sk, ak)
∑︂
ak+1

π(ak+1|sk+1) . . .∑︂
s0

p(s0|s−1, a−1)
∑︂
a0

π(a0|s0)
∑︂
r

p(r|s0, a0)
(︂
r x(sk)

)︂
=

∑︂
sk

db(sk)x(sk)
∑︂
s0

Pr(s0|sk,−k, π)rπ(s0)

= X⊤DbP
−k
π rπ

= DbP
−k
π rπ (in the tabular case).
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Now,

Ed[z0 r(S0, A0, S1)] =
0∑︂

k=−∞

λ−kEd[ρk:0xk r(S0, A0, S1)]

=
0∑︂

k=−∞

λ−kDbP
−k
π rπ

=
∞∑︂
k=0

λkDbP
k
πrπ.

3. This derivation is very similar to the previous one and uses the definition of Pλ
π

(4.2).

Lemma 4.7. Under Assumptions 4.1 and 4.5, the steady-state expectations A =

Ed[At] and b = Ed[bt] are:

A = Db(P
λ
π − I− η

1− λ
1g⊤),

b =
∞∑︂
k=0

λkDbP
k
πrπ.

It follows that EY∼d[h(v, Y )] = Av + b.

Proof. These follow directly from Lemma 4.6 and the expressions in (4.33) and (4.34).

Lemma 4.8. If η is sufficiently small such that the off-diagonal elements of A are

positive, then A is a Hurwitz matrix.

Proof. In this proof, we first use a property of irreducible non-negative matrices and

then that of the differential Bellman equations.

For any λ > 0, all elements of Pλ
π are positive under Assumption 4.1. If η is

sufficiently small, then the off-diagonal elements of A are positive while the diagonal

elements are negative. Adding lI toA with a large positive l ensures that the diagonal

elements are also positive, making A+ lI a positive matrix. Since A+ lI is irreducible
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and positive, by the Perron-Frobenius theorem (Horn & Johnson, 1985: Theorem

8.4.4), its spectral radius—the maximum magnitude of its eigenvalues—κ is a positive

eigenvalue corresponding to a positive eigenvector u. Now if {λA
j } denotes the set of

all (possibly complex) eigenvalues of A, then the eigenvalues of A+ lI are {λA
j + l}.

From the Perron-Frobenious theorem (and in particular, Horn & Johnson’s (1985)

Problem 9 at the end of Section 8.3):

κ ≥ |λA
j + l|, ∀j

= |(Re(λA
j ) + l) + i Img(λA

j )|

≥ |Re(λA
j ) + l|

≥ Re(λA
j ) + l

=⇒ κ− l ≥ Re(λA
j ), ∀j. (4.35)

Now we show that κ− l is negative. We know that:

(A+ lI)u = κu,

Au = (κ− l)u,

Db(P
λ
π − I− η

1− λ
1g⊤)u = (κ− l)u,

(Pλ
π − I− η

1− λ
1g⊤)u = (κ− l)D−1

b u,

=⇒ −(κ− l)D−1
b u− η

1− λ
1g⊤u+Pλ

πu− u = 0. (4.36)

Note that this is the Bellman equation (2.7). The general form of the Bellman equa-

tion is v = rπ − r̄1+Pπv and the solutions of (v, r̄) are of the form (vπ + c1, r(π)).

Since Pλ
π is a transition matrix, the property of the average reward r(π) = d⊤

π rπ

implies:

d⊤
π [−(κ− l)D−1

b u] =
η

(1− λ)
g⊤u.

We know that u is a positive vector; we assumed η > 0 and that g is a non-negative

vector with at least one positive element; Assumptions 4.1 and 4.5 imply dπ and db
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are positive vectors. This implies κ− l < 0. Substituting this in (4.35),

0 > κ− l ≥ Re(λA
j ), ∀j.

Thus, we have shown the real parts of all the eigenvalues of A are negative. In

other words, A is a Hurwitz matrix.

Since A is Hurwitz, Khalil’s (2002) Theorem 4.5 implies the ODE u̇ = Au + b

converges to the unique stable solution of Au + b = 0 from any initial condition. It

also implies the ODE u̇ = Au has the origin as the globally asymptotically stable

equilibrium point.

The iterates are bounded and the algorithm converges

We now use general results from stochastic approximation theory by Borkar to show

that sequence of discrete iterates {vt} generated by (4.30) is stable and asymptotically

tracks the solutions of the ODE. Theorem 4.4 is a specific instance of very general

results by Borkar (2009).

Theorem 4.4 (Based on Borkar’s (2009: Chapter 6) Theorem 9 and Corollary 8).

Consider an iterative algorithm of the form: vt+1
.
= vt+αt

[︁
h(vt, Yt)+mt+1

]︁
. Suppose

the following conditions are satisfied:

1. The process {Yt} is a weak Feller Markov chain in a compact state space Y and

has a unique invariant probability measure d.

2. The function h(v, y) is jointly continuous in (v, y) and is Lipschitz in v uni-

formly w.r.t. y ∈ Y.

3. Define h̃(v)
.
= Ed

[︁
h(v, Y )

]︁
. The limit ĥ(v)

.
= limc→∞ h̃(cv)/c exists uniformly

on compact subsets of v. The ODE u̇ = ĥ(u) is well posed and has the origin

as the unique globally asymptotically stable solution.

4. The sequence {mt+1} is a martingale difference sequence w.r.t. the increasing

σ-fields Ft
.
= σ(vk, Yk,mk, k ≤ t), t ≥ 0 (that is, E[∥mt+1∥ | Ft] < ∞ and
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E[mt+1 | Ft] = 0 almost surely, ∀t ≥ 0), and E[∥mt+1∥2 | Ft] < K(1 + ∥vt∥2)

almost surely, ∀t ≥ 0, for some constant K > 0.

5. The step sizes {αt} are positive with
∑︁

t αt = ∞ and
∑︁

t α
2
t < ∞.

Then,

(i) the algorithm is stable, that is, supt ∥vt∥ < ∞, almost surely,

(ii) the algorithm converges almost surely to a compact internally chain transitive

invariant set of the ODE u̇ = h̃(u).

We now verify that the family of Differential TD(λ) algorithms satisfies the condi-

tions of Theorem 4.4.

As mentioned earlier, it follows from Yu’s (2012, 2017) analysis that the joint pro-

cess {Yt} underlying Differential TD(λ) (4.30) is a weak Feller process with a unique

invariant distribution. With the trace evolving in a bounded space due to Assumption

4.6, the overall process {Yt} evolves in a closed and bounded—compact—space (note

that the states and actions sets S and A are finite discrete sets). Taken together, {Yt}

evolves in a compact space Y with a unique invariant distribution d. This satisfies

Condition 1.

It is easy to see that the function h(v, y) in (4.32) is jointly continuous in its

arguments v and y. h is also Lipschitz in v uniformly w.r.t. y ∈ Y because we

assumed the trace is bounded (Assumption 4.6). Hence, Condition 2 is satisfied.

For Condition 3, h̃(v) = Av+b from Lemma 4.7. Then, ĥ(v) = limc→∞
A(cv)+b

c
=

Av. From Lemma 4.8, there exists values of η > 0 such that the ODE u̇ = Au has

the origin as the globally asymptotically stable equilibrium point. Hence, Condition

3 is satisfied.

With the first three conditions, Borkar’s (2009) Theorem 8 guarantees that the

iterates vt are bounded, that is, supt ∥vt∥ < ∞, almost surely.

For Condition 4, note that Ft contains all the history of Yk and mk for k ≤ t.
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Then,

E[mt+1 | Ft] = E
[︁(︁
Rt+1 − r(St, At, St+1)

)︁
zt | Ft

]︁
= E[Rt+1 | Ft] zt − r(St, At, St+1) zt

= 0, ∀t ≥ 0.

Next, because the rewards are bounded, the expected norm and the expected squared

norm is bounded. Furthermore, we just showed the iterates {vt} are bounded, so there

exists some K > 0 such that E[∥mt+1∥2 | Ft] < K(1 + ∥vt∥2) almost surely, ∀t ≥ 0.

Hence, Condition 4 is satisfied.

Condition 5 is satisfied by Assumption 4.3.

Hence, the family of Differential TD(λ) algorithms (of which Algorithm 2 is an

instance) satisfies all the conditions of Theorem 4.4. Because the matrix A in h̃(v) =

Av+b is a Hurwitz matrix, the compact internally chain transitive invariant set (see

Borkar’s (2009) Chapter 2 for precise definitions) of the ODE h̃(v) = Av + b is just

a single point satisfying Av + b = 0. As a result, we conclude that the family of

algorithms converges almost surely to that unique point v∞.

The fixed point is a solution of the Bellman equations

We now check that the fixed point is a solution of the differential multi-step Bellman

equations (4.3):

0 = Av∞ + b

=
(︂
Db(P

λ
π − I− η

1− λ
1g⊤)

)︂
v∞ +

(︂ ∞∑︂
k=0

λkDbP
k
πrπ

)︂
= (Pλ

π − I− η

1− λ
1g⊤)v∞ +

∞∑︂
k=0

λkPk
πrπ

=⇒ v∞ =
∞∑︂
k=0

λkPk
πrπ −

η

1− λ
1g⊤v∞ +Pλ

πv∞.

The last equation is the multi-step differential Bellman equation (4.3). Hence, v∞ is

a solution of the differential Bellman equation with η g⊤v∞ = r(π) = f(v∞).
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This concludes the proof of Theorem 4.3. □

4.6 Off-policy: Experiments

In this section, we test the efficacy of Algorithm 2 (4.23–4.26), which is an instance

of the family of off-policy Differential TD(λ) algorithms. In particular, we would

like to validate that the algorithm converges. From the theory, we also expect the

benefit of multi-step methods to decrease as the extent of the problems’ off-policy-

ness increases. I use the term ‘off-policy-ness’ to mean the difference between the

behavior and target policies. As the behavior policy becomes increasingly different

from the target policy, the magnitude of the largest importance-sampling (IS) ratio

increases, which can increase the variance of the multi-step updates.

We created several off-policy problems using the 19-state random-walk domain

from Section 4.3. The target policy took both the left and right actions with equal

probability. Five different behavior policies took the right action with probabilities

b[right|·] ∈ {0.5, 0.45, 0.4, 0.35, 0.3} to create a set of five problems with increasing

off-policy-ness. Table 4.1 shows the value of the largest IS ratio for each of the five

problems and the corresponding largest value of λ for which Theorem 4.3 guarantees

convergence (recall Assumption 4.6).

We applied Algorithm 2 to all five problems with the same experimental setting

as in Section 4.3. That is, we tested α ∈ {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

Table 4.1: The largest importance-sampling ratio corresponding to each off-policy
problem and the corresponding largest value of λ for which Theorem 4.3 guarantees
convergence.

b[right|·] ρmax λmax

0.5 1 1
0.45 10/9 0.9
0.4 10/8 0.8
0.35 10/7 0.7
0.3 10/6 0.6
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0.9, 1.0}, η ∈ {0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.0}, and λ ∈ {0, 0.1, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99}. Each parameter configuration was run for

100 independent runs of 10,000 time steps. The step sizes were decayed by a factor

of 0.99975 at each time step. The weight vector, trace vector, average-reward trace

parameter, and the average-reward estimate were all initialized to zero. We also used

the same evaluation metric: root-mean-squared value error w.r.t. the nearest solution

of the Bellman equations, referred to as ‘RMSVE (TVR)’.

Figure 4.5 shows the sensitivity plots of Algorithm 2 in comparison to Algorithm 1.

The sensitivity plot of Algorithm 1 is replicated from Figure 4.3 for ease of comparison.

Each point denotes the value error over the first 2000 steps averaged across the 100

independent runs; the error bars denote one standard error of the mean.

Figure 4.5: Sensitivity of the performance of Algorithm 1 and Algorithm 2 w.r.t. their
parameters α and λ on the on-policy 19-state random-walk problem.

The performance of both algorithms was quite similar on this problem, which

indicates that Algorithm 2—designed for the off-policy setting—works well even in

the on-policy setting. This is not surprising because in the on-policy setting the

scalar reward-rate trace saturates quickly to 1/(1 − λ), in effect, scaling the step-

size parameter η in the reward-rate update. Such a scaling would not affect the

performance much, just like we observed. The plot for Algorithm 2 corresponds to a

smaller η than that of Algorithm 1 to account for the scaling factor; the trends were

not too different for other values of η.
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Figure 4.6 shows learning curves corresponding to different values of λ across three

problems. The leftmost plot is for the on-policy problem; the other two plots cor-

respond to increasing disparity between the behavior and the target policies. We

plotted the learning curves for five values of λ for each problem: λ = 0 as a baseline,

the largest value of λ that did not result in divergence, and three values in between.

The curves correspond to the values of α and η that resulted in the lowest value error

across the training period.

Figure 4.6: Learning curves for Algorithm 2 on different problems corresponding to
five values of λ.

The algorithm approached convergence for several values of λ on each problem

(approaching zero error took about 30k steps; only 10k steps are shown here to

highlight the difference in early performance). The average-reward estimate also

converged to its true value of zero; as before, its learning curves from an initialization

of zero are relatively uninformative and hence not shown here. Again, an intermediate

value of λ resulted in a good balance of learning speed and variance in updates.

In addition, the largest value of λ that did not result in divergence decreased from

0.99 to 0.95 to 0.9 as the behavior policy became increasingly different from the

target policy. Note that these values of λ are larger than the ones for which Theorem

4.3 guarantees convergence (see Table 4.1). This is because the convergence result

accounts for the worst-case scenario which may not always occur in practice.
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Figure 4.7: Learning curves for Algorithm
2 corresponding to λ = 0.6 on the five dif-
ferent off-policy problems.

Another thing to note is the rate of

convergence for a particular value of λ as

the problems’ off-policy-ness increases.

For example, from left to right in Fig-

ure 4.6, for λ = 0.9, it takes longer to

reach an error rate of 0.1. The differ-

ence in the rate of learning compared to

the λ = 0 case also decreased from left

to right. This difference indicates that

the increased variance due to the eligibility trace in off-policy problems counters the

trace’s potential benefits of multi-step credit assignment. Figure 4.7 further high-

lights this trend for λ = 0.6 (corresponding to the values of α and η that resulted in

the lowest value error across the training period). The value error decreased quickly

at first along the states that occur frequently under the behavior policy (the left side

of the 19-state chain) but the rate of reduction became lower as the off-policy-ness

increased.

Finally, Figure 4.8 shows the sensitivity of the average performance of Algorithm 2

w.r.t. its parameters α and η for a fixed value of λ = 0.6. From left to right, we again

saw that for a given value of η, the rate of learning was slower as the off-policy-ness

increased. Furthermore, the value of η with low value error across step sizes was

Figure 4.8: Sensitivity of the performance of Algorithm 2 w.r.t. its parameters α and
η on three of the off-policy problems.
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relatively larger for the on-policy problem than the off-policy problems.

From these simple experiments, we noted that Algorithm 2—an instance of the

family of off-policy Differential TD(λ) methods—works as intended: the value and

average-reward estimates to a solution of the differential Bellman equations (2.6).

Like in the on-policy setting, an intermediate value of λ can lead to a good trade-

off between the speed of learning and the variance in updates. However, such a

good value of λ shifts closer towards zero as the problems’ degree of off-policy-ness

increases.

4.7 Discussion and Conclusion

In this chapter, I introduced two multi-step average-reward prediction algorithms

that extend the one-step differential methods introduced in Chapter 3 and use the

TD error to update their average-reward estimates. In addition, I showed:

1. Algorithm 1 converges in the on-policy setting with linear function approxima-

tion.

2. The family of algorithms of which Algorithm 2 is a member converges in the

tabular off-policy setting.

The latter family of algorithms is the first set of multi-step average-reward algorithms

that are proved to converge in the off-policy setting, and hence represent an important

addition to the average-reward RL literature.

I validated the theoretical results through simple but pointed experiments. The

experimental results also show that the intuitions about trace-decay parameter λ

carry over from the total- or discounted-reward settings: an intermediate value of λ

typically results in a good balance between increased speed of learning and increased

variance of updates.

The work in this chapter constitutes key initial steps in completely fleshing out

multi-step algorithms for the average-reward formulation. There are several directions
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in which future research can proceed. The first and most obvious need is the extension

of the off-policy proof (of Theorem 4.3) to include the λ = 0 case. To show that the

key matrix A is Hurwitz, we used the property that all elements of the matrix Pλ
π are

positive, which may not in general be true when λ = 0. Hence the theorem statement

considers specifies λ > 0. An extension to the λ = 0 case should be straightforward,

though it is not obvious. Such an extension may also enable the choice of η to

be arbitrary rather than being “sufficiently small”, as is required now for A to be

Hurwitz.

Speaking of conditions of the proof, the convergence result is likely applicable

to a broader family of algorithms than the ones we specified. Our proof (in its

current form) applies to cases where the self-referential function f is of the form

f(vt) = ηg⊤vt, with η > 0 and g ∈ R|S| is a non-negative vector with at least one

positive element (Assumption 4.4). However, we only require f(u) to be positive,

where u is a positive vector. So f can be a non-linear function of u, such as max or

min. It would be useful to flesh out all the complete family of algorithms for which

the convergence proof applies in the off-policy setting.

The family of algorithms developed in this chapter is similar to the family of

Abounadi, Bertsekas, and Borkar’s (2001) RVI Q-learning algorithms. As with the

latter family, it is not clear which member of the former family should a practitioner

use for off-policy average-reward problems. Algorithm 2 is just one instance of the

family. We highlighted it because it has a clear and elegant interpretation in terms

of a trace parameter, which may not be possible for other members of the family. It

is pertinent to investigate other members of the family, in terms of performance as

well as computational-efficiency considerations.

The convergence proof for Algorithm 2 and its family is restricted to the tabu-

lar case. An important direction of future work involves developing algorithms and

convergence proofs for the multi-step off-policy average-reward setting with (at least

linear) function approximation. As discussed in Section 4.4, this is an active area
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of research in the discounted-reward formulation. Zhang et al. (2021) extended the

one-step version of Gradient TD (Maei et al., 2010) to the average-reward formula-

tion. He et al. (2022) have worked on preliminary average-reward extensions of the

Emphatic-TD approach (Sutton et al., 2016). Much work remains.

This chapter takes some of the first steps in developing the multi-step average-

reward literature to the extent of the discounted-reward literature. It would be in-

teresting to explore equivalents of True Online TD(λ) (van Seijen et al., 2016) and

Tree-Backup(λ) (Precup et al., 2000), or extensions to the variable-λ case (e.g., Yu,

2012). Extensions of the proposed algorithms to the control case are simple (e.g., we

present the pseudocode for Differential Sarsa(λ) in Appendix A), however, conver-

gence proofs are expected to be more challenging.
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Chapter 5

Reward Centering

So far we have discussed the average-reward formulation for continuing problems.

The discounted-reward formulation offers another way to make a sum of infinite re-

wards finite in continuing problems.1 The formulation is also applicable in episodic

problems, where it has been used extensively, including within several impressive

demonstrations of RL (e.g., Mnih et al., 2015; Silver et al., 2018; Bellemare et al.,

2020; Wurman et al., 2022; Kaufmann et al., 2023).

In this chapter, we show that the simple idea of estimating and subtracting the

average reward from the observed rewards can lead to a significant improvement in

performance when using standard discounting methods such as TD-learning or Q-

learning on continuing problems. The improvement becomes larger as the discount

factor approaches one. The underlying theory dates back to 1962 with Blackwell’s

seminal work on dynamic programming in discrete MDPs. However, we are still

realizing some of its deeper implications. I discuss two in particular:

1. Mean-centering the rewards removes a state-independent constant (that scales

inversely with 1 − γ) from the value estimates, enabling the value-function

approximator to focus on the differences between the states (or actions within

states). As a result, values corresponding to discount factors arbitrarily close

1We specifically mean geometric discounting in which a reward n steps from now is weighted γn

lower than the current reward, where γ ∈ [0, 1). The sum of rewards may not be finite with other
forms of discounting such as hyperbolic discounting (Fedus et al., 2019), which are applicable only
in terminating episodic problems.
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to 1 can be estimated relatively easily (e.g., without any numerical instability).

2. Furthermore, mean-centering the rewards (unsurprisingly) makes standard meth-

ods robust to any constant offset in the rewards. This can be useful when ap-

plying RL algorithms in problems where the properties of the reward signal are

unknown or changing.

In the simpler prediction problem, we first consider the most obvious mechanism

of reward centering: maintain a running average of the observed rewards. This simple

idea is highly effective. However, it is limited to the on-policy setting. For the off-

policy setting, we take inspiration from Chapter 3 where we showed that the average

reward can be estimated in the off-policy setting using the TD error. We then assess

the effects of reward centering in the control problem via an empirical case study using

the tabular, linear, and non-linear variants of the Q-learning algorithm. Towards the

end, I discuss the connections between reward centering and related approaches that

modify the rewards or consider some kind of decomposition.

5.1 The Idea

Reward centering is a simple idea: subtract the average reward from the observed

rewards. Doing so makes the rewards appear mean-centered. The average reward can

be estimated empirically.

This idea is not new. The effect of centered rewards is well known in the ban-

dit setting. For instance, Sutton and Barto (2018: Section 2.8) demonstrated that

estimating and subtracting the average reward from the observed rewards can signif-

icantly affect the rate of learning.

The core idea behind centering is revealed by the Laurent-series decomposition

of the discounted value function. In the tabular case, the discounted value function

vγπ : S → R for a policy π corresponding to a discount factor γ ∈ [0, 1) can be

93



decomposed as:

vγπ(s) =
r(π)

1− γ
+ ṽπ(s) + eγπ(s), ∀s, (5.1)

where, r(π) is the average reward obtained by policy π (that induces a unichain; see

Chapter 2), ṽπ : S → R denotes the differential value function,2 and eγπ(s) denotes

an error term that goes to zero as the discount factor goes to one (Blackwell, 1962:

Theorem 4a; also see Puterman’s (1994) Corollary 8.2.4). This decomposition for

state values (5.1) also implies a similar decomposition for action values:

qγπ(s, a) =
r(π)

1− γ
+ q̃π(s, a) + eγπ(s, a), ∀s, a. (5.2)

The Laurent-series decomposition shows that the discounted value function in-

cludes a constant state(–action)-independent term. This term explains the improve-

ments in the bandit setting (see Sutton & Barto’s (2018) Figure 2.5). The action

value estimates (of the single state) are initialized to zero and the true values are

close to +4. Even though the relative values of the actions is all that matters for ac-

tion selection, each action-value estimate has to learn the action-independent offset.

Approximation errors in estimating the offset can easily mask the relative differences

in actions. This is especially true when we consider the full RL problem with a

non-zero discount factor because the offset scales inversely with (1 − γ).

To build some intuition, let us start with the prediction setting. Consider the

three-state Markov reward process (MRP) depicted in Figure 5.1 induced by a policy

π in some MDP. There is a reward of +3 on going from state sA to sB; 0 otherwise.

The average reward r(π) is 1. The discounted state values for three discount factors

are shown in Figure 5.1. Note the magnitude of the values and especially the jump

when the discount factor is increased. Now consider the values with the constant

offset subtracted from each state, vγπ(s) − r(π)/(1 − γ), which we call the centered

discounted values: ṽγπ. The magnitudes of the centered values are much smaller, and

2Note that we are now using ṽπ to denote the differential value function instead of vπ as the
previous chapters. The reason will be evident shortly.
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sA sB sC

Standard
discounted values

γ = 0.8 6.15 3.93 4.92
γ = 0.9 11.07 8.97 9.96
γ = 0.99 101.01 98.99 99.99

Centered
discounted values

γ = 0.8 1.15 -1.07 -0.08
γ = 0.9 1.07 -1.03 -0.04
γ = 0.99 1.01 -1.01 -0.01

Differential values 1 -1 0

Figure 5.1: Comparison of the standard discounted values and the centered discounted
values on a simple three-state problem.

differ only slightly when the discount factor is increased. The differential values are

also shown for reference. These trends hold in general: for a given problem, the

magnitude of the discounted values shoots up as the discount factor approaches 1;

meanwhile, the centered discounted values do not change much and approach the

differential values.

Formally, the centered discounted value function is the expected discounted sum

of mean-centered rewards:

ṽγπ(s)
.
= E

[︄
∞∑︂
t=0

γt
(︁
Rt+1 − r(π)

)︁
| St = s, At:∞ ∼ π

]︄
, (5.3)

where γ ∈ [0, 1]. When γ = 1, the centered discounted values are the same as the

differential values, that is, ṽγπ(s) = ṽπ(s), ∀s. More generally, the centered discounted

values are the differential values plus the error terms from the Laurent-series decom-

position (5.1):

vγπ(s) =
r(π)

1− γ
+ ṽπ(s) + eγπ(s)⏞ ⏟⏟ ⏞

ṽγπ(s)

, ∀s,

Reward centering thus enables partitioning the information contained in the dis-

counted value function into two parts: the state-independent average reward and the

centered discounted value function. Such a partition can be useful:

a. As γ → 1, the discounted values tend to explode but the centered discounted

values remain small and tractable.
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b. If the problems’ rewards are shifted by a constant c, the magnitude of the

discounted values increases by c/(1 − γ). The centered discounted values are

unchanged; the average reward increases by c.

Another intriguing implication is if we want to increase discount factor (which is an

algorithm parameter here) within the lifetime of a learning agent. The discounted

values can change massively (see, e.g., Figure 5.1); the centered discounted values

would not change much, and the changes become minuscule as the discount factor

approaches 1.

The prerequisite to these potential benefits is the estimation of the average reward

from data. Even the simplest idea can take us quite far.

5.2 Simple Reward Centering

The simplest way to estimate the average reward is to maintain a running average of

the rewards observed so far. That is, if R̄ ∈ R denotes the estimate of the average

reward, after t time steps, R̄t =
∑︁t

k=1 Rk. More generally, the estimate can be

updated with a step-size parameter βt:

R̄t+1
.
= R̄t + βt(Rt+1 − R̄t). (5.4)

As discussed in Chapter 3, this is an unbiased estimate of the average reward corre-

sponding to the policy π with which the data is generated (that is, in the on-policy

setting).

To estimate the centered discounted values for a given policy π, we can use stan-

dard algorithms such as TD-learning (Sutton, 1988a), with the rewards centered

using the current estimate of the average reward. For example, after the transition

(St, At, Rt+1, St+1), the centered value estimates Ṽ
γ
: S → R can be updated as:

Ṽ t+1(St)
.
= Vt(St) + αt

[︁
(Rt+1 − R̄t) + γṼ

γ

t (St+1)− Ṽ
γ

t (St)
]︁
. (5.5)
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Let us call the algorithm that updates the value and average-reward estimates as in

(5.4) and (5.5) as TD-learning with reward centering. I conjecture that a convergence

proof for this on-policy setting should be straightforward: under a two-timescale

argument, convergence of the average-reward estimate would imply the convergence

of the value estimates under the same conditions as Sutton’s TD-learning.

Tabular on-policy TD(0) learning with reward centering

At time step t, with the knowledge of (St, At, Rt+1, St+1), update the value and

average-reward estimates as:

Ṽ
γ

t+1(St)
.
= Ṽ

γ

t (St) + αt

(︁
Rt+1 − R̄t + γṼ

γ

t (St+1)− Ṽ
γ

t (St)
)︁
,

R̄t+1
.
= R̄t + ηαt(Rt+1 − R̄t),

where, like in Chapter 3, η > 0 is a step-size parameter for the average-reward

estimate.

We tested the efficacy of this simple approach to reward centering. Primarily, we

wanted to check if learning the average reward and the value estimates separately

indeed results in a higher rate of learning. Secondarily, we wanted to test if the

benefits increase as the discount factor approaches 1.

We began our investigation on a variant of the RandomWalk domain used in Chap-

ter 4. There are seven states; the right action from the rightmost state leads to the

middle state with reward +7 and the left action from the leftmost state leads to the

middle state with reward +1. The target policy is the one that takes both actions

in each state with equal probability, that is, π(left|·) = π(right|·) = 0.5. The average

reward corresponding to this policy is 0.25.

In the first on-policy experiment, we tested three variants of the TD-learning al-

gorithm: (1) standard TD-learning, (2) TD-learning with rewards that are centered

by an oracle (i.e., the average reward is somehow known—not estimated), (3) TD-
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learning with reward centering using (5.4). We performed the same experiment with

two discount factors, γ = 0.9 and 0.99. Each algorithm was run for 50,000 steps and

repeated 50 times each. The step size α was decayed by 0.99999 at each step. The val-

ues estimates for all variants and the average-reward estimate for TD-with-centering

were initialized to zero.

We evaluated the root mean-squared value error of the estimates and the true

discounted values w.r.t. the steady-state distribution of the states induced by the

target policy π. The centering and oracle-centered methods estimate the centered

discounted value function ṽγ
π, so for a one-to-one comparison, we added R̄/(1− γ) to

the centered estimates to compute the uncentered values.

Figure 5.2 shows the learning curves for this on-policy experiment, one plot each

for the two different values of γ. We tested α ∈ {0.01, 0.02, 0.04, 0.08, 0.16, 0.32} and

picked the one which resulted in the lowest average RMSVE across the training period

for standard uncentered approach (α = 0.04 for γ = 0.9 and α = 0.08 for γ = 0.99).

Corresponding to these step sizes, we plotted the learning curves for the simple cen-

tering approach for two values of η out of the four tested (1/640,1/160,1/40, 1/10).

Each solid point represents the RMSVE averaged over the 50 independent runs; the

Figure 5.2: Learning curves demonstrating the performance of standard TD-learning
(blue), TD-learning with rewards that are centered by an oracle (orange), and TD-
learning with centering (green) on a seven-state variant of the continuing Ran-
domWalk problem. Note the difference in the scales of two axes.
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shaded region denotes one standard error.

Let us first consider the plot on the left corresponding to γ = 0.9. For the un-

centered and the centering approach, the learning curve starts at just over 2.5. One

can verify this by computing the true discounted values for γ = 0.9. Alternatively,

we can get a quick estimate using the Laurent-series decomposition (5.1) which says

that all the values have a state-independent constant of r(π)/(1 − γ)—in this case,

0.25/(1− 0.9) = 2.5. The oracle-centered learning curve starts much lower because it

magically has a fixed average-reward estimate of 0.25 from the start. The first thing

to note is that standard TD-learning eventually converges to the same error rate as

the oracle-centered version, which is expected. Learning the average reward and sub-

tracting it indeed helps reduce the RMSVE much faster in the beginning compared

to when there is no centering. However, the eventual error rate is higher. This is

also expected because the average-reward estimate is changing over time, leading to

more variance in the updates compared to the uncentered or oracle-centered version.

Similar trends hold for the larger discount factor (right of Figure 5.2), where the

uncentered approach now appears much slower in comparison.

One important observation from the plot on the right is when η is larger, the

RMSVE reduction is higher in the beginning; however, this also results in a larger

asymptotic error rate. This suggests the use of a step-size adaptation technique for the

average-reward estimate, which sets a larger step size when the errors are large and

prevalent and scales them down otherwise. We do not explore step-size adaptation

in this chapter; this is an appealing direction for future work. However, we verified

that the reward-centering approaches indeed learn an average-reward estimate that

is around 0.25 on average in both experiments.

These simple experiments verify that the simple reward-centering technique can be

quite effective in the on-policy setting, and the effect is more pronounced for larger

discount factors.
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The off-policy setting

What about the off-policy setting? We know that (5.4) leads to an unbiased estimate

of the behavior policy’s average reward. In the off-policy setting, the behavior policy

b is different from the target policy π, which implies that R̄ will converge to r(b), not

to r(π). We also know that using the appropriate importance-sampling ratio in the

update is not enough to guarantee convergence to r(π) (see Section 3.1).

Let us analyze the impact of an inaccurate average-reward estimate. First, note

that the centered discounted value function also satisfies a recursive Bellman-like

equation:

ṽγ(s) =
∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r|s, a)
[︁
r − r̄ + γṽγ(s′)

]︁
,

or, in vector notation, ṽγ = rπ − r̄1+ γPπṽ
γ, (5.6)

where, ṽγ denotes a vector in R|S|, rπ is a vector of the expected one-step reward from

each state, r̄ is a scalar variable, 1 is a vector of all ones, and Pπ is the state-to-state

transition matrix induced by the policy π. It is easy to verify that the solutions of

(5.6) are of the form
(︁
ṽγ
π+c1, r(π)−c(1−γ)

)︁
, ∀c ∈ R, where ṽγ

π denotes the centered

differential value function (5.3) corresponding to policy π and discount factor γ.

We can equivalently write the family of solutions as
(︁
ṽγ
π + k

1−γ
1, r(π) − k

)︁
, ∀k ∈

R. This shows that if the average-reward estimate is off by k, then the centered

discounted values each have a constant offset of k/(1− γ). This is undesirable. The

primary motivation of reward centering is to eliminate the state(–action)-independent

offset from the estimates.3 So we are motivated to find a way to estimate the target

policy’s average reward while behaving according to a different behavior policy.

However, note that an inaccurate estimation of the average reward is not a deal-

breaker: standard algorithms that do not center the rewards can be perceived as using

3Consider the case when the average-reward estimate is zero, that is k = r(π). The corresponding

solution of the value estimates is then ṽγ
π+

r(π)
1−γ , which is the standard (uncentered) discounted value

function vγ
π.
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a fixed inaccurate estimate of the average reward (zero), yet they are guaranteed (at

least in the tabular case) to converge to the values of the target policy. So the

issue is less about convergence and more about the rate of learning. Estimating the

average reward accurately may yield better sample-complexity bounds when using

standard methods than simply estimating the uncentered values (e.g., the bounds

for Q-learning involve powers of 1/(1− γ) (Qu & Wierman, 2020; Wainwright, 2019;

Even-Dar et al., 2003)).

We have seen in Figure 5.1 that when the rewards are centered by an oracle, the rate

of learning is much higher compared to when there is no centering. If R̄ = r(π) is the

ideal value that results in the highest (relative) rate of learning, then R̄ ∈
(︁
0, 2r(π)

)︁
should roughly result in a higher rate of learning than the baseline rate of uncentered

algorithm that sets R̄ = 0 (assuming r(π) > 0 without loss of generality). Of course,

the average reward is estimated from data, which might nullify increases in the rate

of learning at the edges of above boundaries.

In summary, the simple method of reward centering (5.4) can be highly effective

when the average reward of the behavior policy is close to that of the target policy.

Generally speaking, this may be true when the two policies are similar, like a greedy

target policy and an ϵ-greedy behavior policy with a relatively small value of ϵ. How-

ever, the benefits of reward centering in terms of rate of learning may reduce and

even disappear as the difference in the two policies increases. In the next section, we

consider an alternative method to estimate the average reward more accurately in the

off-policy setting.

5.3 Value-based Reward Centering

The problem of estimating the average reward in the off-policy setting is a familiar

one by now—we encountered it in the previous chapters. We showed in Chapter

3 that we can obtain an unbiased estimate of the average reward in the off-policy

setting by updating the average-reward estimate with the current differential TD
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error—δt—instead of the error between the current reward and the current average-

reward estimate—(Rt+1 − R̄t).

It turns out that this TD-error idea from the average-reward formulation is quite

effective even in the discounted-reward formulation, which is the focus of the current

chapter. In particular, we can obtain a relatively accurate estimate of r(π) as long

as the behavior policy b has coverage (recall Assumption 4.5 in Chapter 4). The

estimation is not completely accurate; however, the estimation approaches the true

value as the number of state–action pairs in the problem increases. Before we precisely

characterize the quality of this approximation (in the next section), let us consider

the approach in more detail.

The TD error for the discounted-reward formulation with centering is, at time step

t, δt
.
=

(︁
Rt+1 − R̄t + γṼ

γ

t (St+1)− Ṽ
γ

t (St)
)︁
. The idea is to update the average-reward

estimate R̄t using this TD error instead of the conventional error Rt+1 − R̄t. Since

this centering approach now involves values in addition to the reward, we call it

value-based centering.

Tabular TD(0) with value-based reward centering

At time step t, with the knowledge of (St, At, Rt+1, St+1), update the value and

average-reward estimates as:

Ṽ
γ

t+1(St)
.
= Ṽ

γ

t (St) + αtρtδt, (5.7)

R̄t+1
.
= R̄t + ηαtρtδt, (5.8)

where, δt
.
= Rt+1 − R̄t + γṼ

γ

t (St+1)− Ṽ
γ

t (St), and ρt
.
=

π(At|St)

b(At|St)
.

We present the convergence result for the control variant of this algorithm in the

next section: Q-learning with value-based reward centering. The convergence result

for this prediction algorithm should be relatively straightforward.
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We can gain some interesting insights about centering in the off-policy setting with

simple experiments. Using the same continuing RandomWalk domain as in the previ-

ous section, we created the off-policy problem of evaluating the target policy that takes

random actions in each state with equal probability: [π(left|·), π(right|·)] = [0.5, 0.5].

We used two behavior policies: [b1(left|·), b1(right|·)] = [0.7, 0.3], [b2(left|·), b2(right|·)] =

[0.3, 0.7]. The evaluation metric was the same as in the on-policy experiment—the

root mean-squared value error (RMSVE) of the estimates and the target policy’s val-

ues w.r.t. the state distribution induced by the target policy. We tested off-policy

TD-learning (5.7) with both kinds of reward centering: the simple kind with an

importance-sampling ratio in the update (5.4), and value-based centering (5.8). Each

parameter configuration was run for 50,000 steps and repeated 50 times. As baselines,

we also ran standard off-policy TD (a) without centering, and (b) with rewards cen-

tered by an oracle. In addition, we also tried value-based centering in the on-policy

experiments from the previous section.

Figure 5.3: Learning curves demonstrating the performance of standard TD-learning
(blue), TD-learning with rewards that are centered by an oracle (orange), TD-learning
with simple centering (green), and TD-learning with value-based centering (red) on
on- and off-policy problems for two discount factors.
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Figure 5.3 shows learning curves for these experiments: each column shows the

plots for a particular on- or off-policy problem; the two rows correspond to two

discount factors.

First, consider the on-policy plots. Value-based centering appears as good as simple

centering; more importantly, it does not hurt in the on-policy setting.

Next, consider the off-policy plots. The two different behavior policies are symmet-

ric but result in different trends. Recall that the left side has the smaller reward. The

rightmost state (with the larger reward) has the highest value, so it contributes more

to the RMSVE compared to the leftmost state (note the two extreme states have the

same weighting and the initial estimates are zero). b1 results in the agent spending

more time in the left side of the Markov chain, hence the reduction in RMSVE is

relatively slower compared to when behaving with b2.

Corresponding to b1, we saw that value-based centering reached a lower RMSVE

faster than simple centering, but the final error rate was the same for both centering

approaches. This is expected; in the previous section we discussed that the centered

discounted value function has infinite solutions corresponding to different values of

the average-reward estimate. Something more interesting happened with b2. The

RMSVE reduced rapidly at first with simple centering, then rose, and reduced again.

This is because the average-reward estimate was initialized to zero and it converged

to around 0.5 corresponding to b2 which skews the agent’s state distribution towards

the right. When the estimate passed the true value of 0.25, the RMSVE was quite

low, however, the estimate quickly climbed to 0.5, resulting in the peak in RMSVE.

Eventually the value estimates settled to values corresponding to an average-reward

estimate of around 0.5. In contrast, value-based centering learned an average-reward

estimate of just over 0.2, resulting in a smoother learning curve. In both the off-policy

problems, value-based reward centering resulted in a higher rate of learning compared

to the uncentered version, for both values of γ.

Overall, we saw that reward centering can improve the rate of learning of discounted-
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reward prediction algorithms such as TD-learning, especially for large discount fac-

tors. While the simple way to center rewards is quite effective, value-based reward

centering is better suited for general off-policy problems. We now consider the control

problem.

5.4 Case Study: Q-learning with Centering

In this section, we examine the effects of reward centering used alongside the Q-

learning algorithm (Watkins & Dayan, 1992). In particular, we highlight important

related work and analyze the convergence as well as the fixed point of tabular Q-

learning with value-based reward centering. Beyond the theory, we empirically study

the effects of the tabular, linear, and non-linear variants of Q-learning with reward

centering on various control problems.

Theory

We begin by specifying how to use Q-learning with reward centering. Q-learning is

one of the oldest and most prevalent control algorithms. One of the reasons for its

prevalence is that it is an off-policy algorithm: in the tabular case, it is guaranteed to

converge to the value function of optimal policy while collecting data from an arbitrary

behavior policy—even a random policy. Given its off-policy nature, we augment Q-

learning with value-based reward centering. Since we use tabular, linear, and non-

linear versions of this algorithm, we present a general form of its updates. At each

time step, given an observation, the agent converts it into a feature vector xt ∈ Rd,

selects an action At, observes the reward signal Rt+1 and the next observation, which

it converts in to xt+1, and so on. In the tabular case, xt is a one-hot vector of the

size of the state space; in the linear case, xt may be a tile-coding representation;

in the non-linear case, xt is the output of the last non-linear layer of an artificial

neural network. In each case, the agent linearly combines the feature vector with an

action-specific weight vector wa ∈ Rd, ∀a to obtain the action-value estimate q̂.
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Q-learning with value-based reward centering

At time step t, with the knowledge of (xt, At, Rt+1,xt+1), update the average-

reward estimate and the per-action weights as:

wAt
t+1

.
= wAt

t + αt δt ∇wt q̂(xt, At), (5.9)

R̄t+1
.
= R̄t + η αt δt, (5.10)

where, δt
.
= Rt+1 − R̄t + γmax

a
(wa

t )
⊤xt+1 − (wAt

t )⊤xt. (5.11)

Since the average-reward update now involves the values and not just the rewards,

we cannot analyze its convergence separately from that of the value estimates. For-

tunately, we can leverage some recent work to show that Q-learning with value-based

reward centering converges almost surely in the tabular case. For the formal theorem

and its proof (done by my collaborator—Yi Wan), please refer to the paper. I state

the informal theorem statement here and analyze the fixed point.

Theorem 5.1. If the Markov chain induced by the stationary behavior policy is irre-

ducible, and a per-state-action step size is reduced appropriately, tabular Q-learning

with value-based reward centering (5.9–5.11) converges almost surely: R̄t and Qt con-

verge to a particular solution (q̃γ, r̄) of the following Bellman equations:

q̃γ(s, a) =
∑︂
s′,r

p(s′, r|s, a)
(︁
r − r̄ + γmax

a′
q̃γ(s′, a′)

)︁
. (5.12)

The convergence proof is a consequence of important recent work by Devraj and

Meyn (2021). They showed that subtracting a particular quantity from the rewards

in Q-learning results in a significantly stronger bound on asymptotic covariance. De-

pending on the quantity that is subtracted, there is a whole family of Q-learning

variants that they call Relative Q-learning.

In particular, the general Relative Q-learning algorithm updates its tabular esti-
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mates Q̃
γ
: S ×A → R at time step t using (St, At, Rt+1, St+1) as (in our notation):

Q̃
γ

t+1(St, At)
.
= Q̃

γ

t (St, At) + αt

[︁
Rt+1 − f(Q̃

γ

t ) + γmax
a′

Q̃
γ

t (St+1, a
′)− Q̃

γ

t (St, At)
]︁
,

(5.13)

where, f(Q̃
γ

t )
.
= κ

∑︁
s,a µ(s, a)Q̃

γ

t (s, a), κ > 0 is a scalar, and µ : S × A → [0, 1] is a

probability mass function.

Devraj and Meyn showed that tabular Relative Q-learning converges almost surely

to the value estimates Q̃
γ

∞ = qγ
∗ − k/(1 − γ)1, where Q̃

γ

∞ denotes the vector of

asymptotic value estimates, qγ
∗ denotes the discounted action-value function of the

optimal policy π∗
γ corresponding to the discount factor γ,4 and k depends on κ, µ and

qγ
∗ . Recall that the standard (uncentered) discounted value function qγ

∗ has a state–

action-independent offset of r(π∗
γ)/(1− γ). Relative Q-learning can remove k/(1− γ)

of it, which is very promising. Devraj and Meyn left the choice of µ and κ as open

questions.

We show that Q-learning with value-based reward centering is a member of the

large family of Relative Q-learning algorithms with particular choices of µ and κ such

that k is very close to r(π∗
γ). In particular, recall from Chapters 3 and 4 that updating

both the average-reward and value estimates using the TD error results in:

R̄t − R̄0 = η
(︂∑︂

s,a

Qt(s, a)−
∑︂
s,a

Q0(s, a)
)︂
.

Without loss of generality, we can assume R̄0 = 0 and Q0 = 0. As a result, R̄t =

η
∑︁

s,a Q̃
γ

t (s, a). We can then combine the updates (5.9–5.10) in the tabular case:

Q̃
γ

t+1(St, At)
.
= Q̃

γ

t (St, At) + αt

(︁
Rt+1 − η

∑︂
s,a

Q̃
γ

t (s, a) + max
a′

Q̃
γ

t (St+1, a
′)− Q̃

γ

t (St, At)
)︁
.

(5.14)

Comparing (5.13) and (5.14), we can see that Q-learning with value-based reward

4Recall that in the tabular case, there are optimal policies corresponding to each discount factor
in [0, 1), however, they may not maximize the average reward. Consider the case of γ = 0 for
intuition. The optimal policy corresponding to γ = 0 does not in general maximize the total reward
in an full-RL episodic problem or the average reward in a full-RL continuing problem.
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centering is an instance of Relative Q-learning with:

µ(s, a) =
1

|S||A|
∀s, a, and κ = η|S||A|.

Devraj and Meyn’s (2021) convergence result then applies. That is,

Q̃
γ

t → Q̃
γ

∞
.
= qγ

∗ −
κ

1− γ + κ
µ⊤qγ

∗1

= qγ
∗ −

η

1− γ + η|S||A|
∑︂
s,a

qγ∗ (s, a)1. (5.15)

And,
R̄t → R̄∞

.
= η

∑︂
s,a

qγ∗ (s, a)−
η2|S||A|

1− γ + η|S||A|
∑︂
s,a

qγ∗ (s, a)

=
η(1− γ)

1− γ + η|S||A|
∑︂
s,a

qγ∗ (s, a). (5.16)

We now verify that (Q̃
γ

∞, R̄∞) satisfy the Bellman equations (5.12). Recall that the

solutions of the Bellman equation are of the form
(︁
q̃γ
∗ +

k
1−γ

1, r(π∗
γ)− k

)︁
. Since q̃γ

∗ =

qγ
∗−

r(π∗
γ)

1−γ
, we can re-write the solution class in terms of the discounted value function:(︁

qγ
∗ +

(k−r(π∗
γ))

1−γ
1, r(π∗

γ) − k
)︁
, or

(︁
qγ
∗ − d

1−γ
1, d

)︁
. For d = η(1−γ)

1−γ+η|S||A|
∑︁

s,a q
γ
∗ (s, a), we

can see that (Q̃
γ

∞, R̄∞) is a solution tuple of the Bellman equations.

We can now characterize how close R̄∞ is to r(π∗
γ). In general the expression

for R̄∞ (5.16) is cryptic. However, a special case can shed some light. We know

that the average of the discounted value function for a policy w.r.t. that policy’s

steady-state distribution is:
∑︁

s,a dπ(s, a)q
γ
π(s, a) = r(π)

1−γ
. Now suppose the steady-

state distribution over state–action pairs is constant—1/(|S||A|), ∀s, a. For that pol-

icy, 1
|S||A|

∑︁
s,a qγπ(s, a) =

r(π)
1−γ

. Substituting this in (5.16), we get:

R̄∞ =
η|S||A|

1− γ + η|S||A|
r(π∗

γ). (5.17)

We can see that R̄∞ approaches the true reward rate from below when η|S||A| >>

1− γ. We have to keep in mind, though, that this insight comes from a special case.

More generally, we cannot concretely say where R̄∞ (and hence Q̃
γ

∞) converges to.

This is a shortcoming we wish to resolve in future work. However, this relation can

serve as a rule of thumb.
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Separately, Schneckenreither (2020) realized the Laurent series decomposition (5.2)

suggests that an explicit estimate of the average reward can completely remove the

offset. So they proposed an algorithm to estimate and subtract the average reward,

with two important differences: (a) the average-reward estimate is updated only after

non-exploratory actions, and (b) the algorithm has two discount factors to aim for

the strongest optimality criterion—Blackwell optimality. Schneckenreither did not

provide any convergence result for their algorithm. However, they analyzed that if

the algorithm converged to the desired fixed point, then the resulting policy would

be (Blackwell-)optimal. In our paper (Wan, Naik, & Sutton, 2021a), we showed

that the average-reward estimate can be updated at every time step, including ones

with exploratory actions, and showed almost-sure convergence of such algorithms.

Combining those insights with Devraj and Meyn’s, we could show the convergence of

Q-learning with value-based reward centering.

Experiments

Note: If γ = 1, then Q-learning with value-based reward centering (5.9–5.11) is ex-

actly Differential Q-learning (3.19–3.21). If γ ∈ [0, 1), η = 0, and the average-reward

estimate is initialized to zero, then we get back the standard Q-learning algorithm

(Watkins & Dayan, 1992).

In this section, we present results on a set of control problems with tabular, lin-

ear, and non-linear function approximation to assess the benefits of reward centering.

Most of the problems are included in Google DeepMind’s CSuite (Zhao et al. 2022),

which I have modified and added to at github.com/abhisheknaik96/csuite. We pro-

vide high-level descriptions here; see the repository documentation for all the details.

We begin with the Access-Control Queuing domain (Sutton & Barto, 2018: Chap-

ter 10). This continuing problem was used in Chapter 3 as well and we repeat the

high-level details here. The agent controls a server queue, where, at each time step,

a job arrives at the front of the queue with one of four priorities {1, 2, 4, 8}. The
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agent has to decide whether to accept or reject the job based on the number of free

servers left (out of 10). If accepted, the agent gets a positive reward equal to the

job’s priority; if rejected, the job is removed from the queue and the agent gets zero

reward. Occupied servers get free with a probability 0.06 at each time step. At each

time step, the agent can observe the number of servers that are currently free and

the priority of the job at the front of the queue.

We applied both the standard discounted Q-learning algorithm with and without

centering on this problem, each for 50 independent runs of 50,000 steps. We tested

various discount factors and step sizes as well as different values of the additional

step-size parameter η for centering. All the learnable parameters were initialized

to zero and both algorithms used an ϵ-greedy behavior policy with a fixed value of

ϵ = 0.1. While we are using discounted-reward algorithms, we are interested in the

sum of undiscounted rewards obtained by the agents. For continuing problems, we

consider the average reward obtained by the agents over a moving window of time

steps. In all the plots in this section, the error bars or the shaded region indicates one

standard error. The complete experimental details (for all the experiments in this

section, particularly the exact values of the parameters tested) are in Appendix B.

Figure 5.4: Learning curves corresponding to a range of discount factors for Q-learning
with and without centering on the Access-Control Queuing problem. The x-axis
denotes the number of agent-environment interactions and the y-axis denotes the
rate of reward obtained by the agent over a moving window. The shaded region
denotes one standard error. More details in-text.
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Figure 5.4 shows the online performance for both algorithms (there is no sepa-

rate testing period). For Q-learning without centering, the curves correspond to the

step-size parameters that resulted in the fastest learning over the training period

(quantified by the area under the learning curve); with centering, they correspond

to the best step-size parameters for a fixed value of η (shown in grey in the figure).

This does not always mean the best (α, η) pair for Q-learning with centering but that

is okay since the results were robust to the choice of η. Throughout this section we

followed this same practice of picking hyperparameters to plot learning curves.

We saw that the performance without centering first improved as the discount

factor increased, then degraded; with centering, the performance did not degrade

when the discount factor was close to one. For each discount factor, the performance

with centering matched or exceeded that without centering.

To verify if centering indeed helped remove the potentially large state-independent

term, we checked the magnitude of the learned values. One way is to compute the

average value across all state-action pairs. However, this approach would typically

lead to a poor approximation of the magnitude of learned values because many states

(especially ones with low true values) may not occur frequently in the agent’s ϵ-greedy

interactions with the environment and hence their estimated values may stay close to

their initialization. Instead, we checked the values of the states that actually occur

in the agent’s stream of experience, in particular the maximum action value (used

to choose the argmax action) of the last 10% states that occurred during training.

Table 5.1 shows these values for the parameters that resulted in Figure 5.4’s learning

Table 5.1: Magnitude of learned values in Access-Control Queuing

Discount factor γ Q-learning Q-learning with centering

0.5 4.78 0.17
0.8 12.95 0.17
0.9 26.57 0.12
0.99 267.91 0.42
0.999 1434.47 0.51
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Figure 5.5: Parameter studies showing the sensitivity of the two algorithms’ perfor-
mance to their parameters on the Access-Control problem. The error bars indicate
one standard error, which at times is less than the width of the lines. Far left: With-
out centering, rate of learning deteriorated with large discount factors for a broad
range of the step-size parameter α. Center to right: For each discount factor, the
performance with centering was better across a broad range of α. Moreover, the per-
formance was robust across a large range of its second parameter η.

curves. As γ increased, the magnitude of learned values increased sharply without

centering but remained small with centering.

These trends are quite general across the range of parameter values tested. Figure

5.5 shows the performance sensitivity to the methods’ parameters. In particular, the

x-axis denotes the step-size parameter α and the y-axis denotes the average reward

obtained during the entire training period (which reflects the rate of learning). For

both methods, the different curves correspond to different discount factors. The three

plots on the right correspond to different values of the centering step-size parameter

η. We saw the performance of Q-learning without centering deteriorated with large

discount factors for a broad range of the step-size parameter α. In contrast, the

performance with centering did not degrade; in fact, it improved all the way till

γ = 1 for a wide range of η values. In addition, its performance was not sensitive to

the choice of η.

We also observed the rate of learning of standard algorithms is significantly affected

by a constant shift in the problems’ rewards. Note that adding a constant to all the

rewards does not change the ordering of the policies according to the total-reward or

the average-reward criterion in continuing problems. Figure 5.6 shows the behavior

of Q-learning with and without centering when applied to five problem variants with
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Figure 5.6: Learning curves with and without centering on slight variants of the
Access-Control Queuing problem in which all the rewards shifted by a constant inte-
ger. The y-axis is shifted to compare learning curves for all the variants on the same
scale. More details in-text.

one of {−8,−4, 0, 4, 8} added to all the rewards. To compare the resulting rate of

rewards across the problems, the plots are shifted post-hoc (so for instance, for the

agent that operated in the problem variant that had rewards shifted by 8, the same

number is subtracted from all the rewards that the agent obtained before plotting).

The behavior of Q-learning without centering was substantially different on all the

problem variants. Reward centering, unsurprisingly, results in similar behavior across

the variants; we verified that the average-reward estimate indeed learns the average

reward for every variant quickly. Figure 5.7 shows that these trends were also consis-

tent across values of the step-size parameters. The plots are corresponding to γ = 0.9;

Figure 5.7: Parameter studies showing the performance sensitivity of Q-learning with
and without centering to variants of the Access-Control problem. Far left: The
performance of standard Q-learning’s differed significantly on the different variants
over a broad range of the step-size parameter α. Center to right: With centering, the
performance was about the same across the problem variants, and was quite robust
to the choice of its parameter η.
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the trends did not differ much for different values of γ.

The next experiment was with PuckWorld and linear function approximation. In

PuckWorld, the agent controls a puck-like object in a square rink where goal positions

occur randomly. The agent can push the puck in any of the four cardinal directions.

Repeated actions in a direction gives the puck some velocity that is upper-bounded

due to friction. The agent observes six real numbers at each time step—the puck’s

position and velocity and the goal position in x and y directions—and gets a reward

proportional to the negative distance to the goal. The goal position moves to a new

random location every 300 time steps. The best policy takes the puck to the goal

position as soon as possible.

We trained linear function approximators on this problem by tile-coding the 6-

dimensional observation vector with 32 tilings of 4 tiles in each dimension. Each

experiment was repeated for 20 runs of 300,000 steps each. We tested a range of step-

size parameters and discount factors for both algorithms, which started from zero

initializations of the weights and the scalar average-reward estimate. The behavior

policy was ϵ-greedy with ϵ = 0.1.

The trends were similar to but more dramatic than the previous tabular experi-

Figure 5.8: Learning curves corresponding to a range of discount factors for Q-learning
with and without centering on the PuckWorld problem. With centering, the rate of
learning of Q-learning was higher for each discount factor and did not degrade as
γ → 1.
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ment. Figure 5.8 shows learning curves corresponding to the step-size parameter that

resulted in the best performance for Q-learning without centering and the best step-

size parameter for a fixed value of η for Q-learning with centering (the trends were

consistent across the values of η tested; see the sensitivity plots in Appendix B). The

x-axis denotes the number of agent-environment interactions while the y-axis denotes

the rate of reward obtained by the agent over a moving window. The performance

of Q-learning without centering suffered as γ increased; with centering, it did not. In

fact, Q-learning with reward centering resulted in a better policy in shorter time for

discount factors all the way to 1. The higher starting points of the learning curves

also indicate that reward centering led to faster rate of learning with each of the

discount factors tested.

Additionally, we observed similar trends when the rewards in the problem were

shifted by a constant (Figure 5.9): Q-learning’s rate of learning was highly sensitive

to the shift, whereas with centering it was virtually unaffected. These trends were

consistent across values of γ. We also found that the performance of Q-learning with

centering was robust to a large range of its two parameters (sensitivity plots are in

Appendix B).

Figure 5.9: Learning curves for Q-learning with and without reward centering cor-
responding to γ = 0.99 on variants of the PuckWorld problem. The performance of
Q-learning without centering was different on each variant while that with centering
was roughly the same. Reward centering also resulted in relatively faster learning.
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The results with non-linear function approximation on the Pendulum domain fol-

lowed the same trends when we tested DQN (Mnih et al., 2015) and DQN with

value-based reward centering. The agent controls the torque at the base of a one-link

pendulum and gets a reward at each time step proportional to the negative angular

distance of the pendulum from the upright position. The pendulum starts at rest

pointing down. The agent can only apply a discrete amount of torque of {−1, 0, 1}

unit at each time step after observing three real numbers: the sine and cosine of the

pendulum’s angle w.r.t. pointing downwards, and the pendulum’s angular velocity.

There are no resets or timeouts; the agent must learn to keep the pendulum in the

upright position. The pendulum repeatedly falls because the upright position is an

unstable equilibrium and any exploratory actions can upset the pendulum.

We tested DQN with and without centering to estimate the action values in this

problem. The artificial neural networks had two hidden layers with 64 units each

with tanh activation functions, with the networks’ weights trained using the Adam

optimizer (Kingma & Ba, 2015) and the semi-gradient mean-squared-error loss. The

weights were initialized in the standard way to small values around zero and the

average-reward estimate was initialized to zero. The agents followed an ϵ-greedy

behavior policy with ϵ = 0.1 without annealing. Each experiment was run for 100,000

steps and repeated 15 times. See Appendix B for the rest of the implementation

details, including the various deep-learning parameters.

One important difference in the non-linear implementation compared to the tabular

or linear variants is that the updates are no longer fully online. Experience is collected

at every time step and added to a buffer. After every few time steps, a batch of

transitions is sampled from the buffer. The numerous parameters of the artificial

neural network are then updated using the gradients computed via backpropagation

(Rumelhart et al., 1986). Notably, the scalar average-reward estimate is updated

using the mean of the TD errors computed across the sampled batch. The frequency

and magnitude of the updates to the average-reward estimate are hence significantly
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Figure 5.10: Learning curves corresponding to a range of discount factors for DQN
with and without reward centering on the Pendulum problem. Notably, the rate of
learning with centering did not degrade when γ → 1. More details in-text.

lower than the fully online updates in tabular and linear implementations. As a result,

the values of η tested for centering in the non-linear case are larger in comparison.

Figure 5.10 shows that the performance of DQN with and without centering corre-

sponding to various discount factors. The curves correspond to step-size parameters

that resulted in the best performance for DQN without centering and to those that

resulted in the best performance for DQN with centering for a fixed value of η.

From the learning curves, we can infer that a discount factor of 0.5 was too small to

solve the problem. The agents learned a good policy using DQN with discount factors

0.8 or 0.9 but failed to learn anything meaningful in 100k steps for discount factors

0.99 and larger. In contrast, with centering, the rate of learning did not degrade even

with discount factors all the way up to 1.

We observed similar trends when the algorithms were tested on reward-shifted

variants of the Pendulum problem. In Figure 5.11, we see that DQN’s rate of learning

was highly sensitive to the shift compared to when there was centering. We also found

that the performance of DQN with centering was robust across a broad range of its

parameters (see Appendix B).

We also performed a series of experiments with the Catch domain, using both linear

and non-linear function approximators. In Catch, the agent controls a crate at the

bottom row of a 2D pixel grid to catch falling fruits. The agent gets a +1 reward on
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Figure 5.11: Learning curves for DQN with and without centering with γ = 0.8 on
variants of the Pendulum problem. The performance of DQN without centering was
different on each variant while that with centering was roughly the same.

successfully catching a fruit, -1 on dropping one, and 0 otherwise. At each time step,

a new fruit is spawned with 10% probability in the top row, in a random column.

More than one fruit may be falling at any point of time, and each fruit falls one pixel

in one time step. The agent can choose among three actions: move the crate one

pixel right, left, or stay put. There are two kinds of observation vectors available to

an agent: a 3-dimensional real vector containing the x coordinate of the crate and

the (x, y) coordinates of the lowermost fruit; a 50-dimensional binary vector which is

the flattened version of the entire 10 × 5 pixel grid.

Figure 5.12 shows the learning curves of linear Q-learning with and without center-

ing when applied to the Catch problem by tile-coding the 3D real-valued observation

Figure 5.12: Learning curves for linear Q-learning with and without centering for
various discount factors on two variants of Catch. Left: On the original problem,
both algorithms performed well for all discount factors tested. Right: On the problem
variant with all rewards shifted by -2, the rate of learning without centering was much
lower for larger discount factors while that with centering was virtually unaffected.
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vectors. The two plots on the left show learning curves on the original problem. In

both cases, the learned policies were relatively good for all the discount factors tested,

including a relatively low discount factor of 0.5. But as soon as the problem’s rewards

were shifted, the performance of Q-learning without centering suffered significantly

for larger discount factors. The two plots on the right of Figure 5.12 show the per-

formance on a variant of the Catch problem which had 2 subtracted from all the

rewards. Recall that shifting the rewards by a constant does not change the ordering

of the policies—the best policy remains unchanged. Without centering, the rate of

learning was much lower for discount factors larger than 0.9 for all values of the step

sizes tested; on the other hand, with centering, Q-learning continued to perform well.

These trends are further supported by the two plots on the left of Figure 5.13,

where we show the sensitivity of the two algorithms to different problem variants. We

created five problem variants by adding each of {−4,−2, 0, 2, 4} to all the rewards one

at a time. When the rewards are shifted by zero, we get the original problem; when

the rewards are shifted by -2, we get the other problem variant discussed in Figure

5.12. On the x-axis is the effective step size for the linear function approximators

and on the y-axis is the reward rate averaged over the entire training period. As

before, the y-axis is adjusted to compare the performance on all the problem variants

at the same scale. The plots in Figure 5.13 correspond to a discount factor of 0.8;

Figure 5.13: Parameter studies showing the sensitivity of the algorithms to their step-
size parameter and to variants of the Catch problem. Left: Without centering, the
rate of learning depended strongly on the problem variant and the step size, unlike
that with centering. Right: The rate of learning of DQN with centering was roughly
independent of the problem variant as well as the step-size parameter while that of
DQN without centering depended on both.

119



the trends were similar for other discount factors. We found that the performance

of Q-learning without centering was problem-dependent, whereas with centering the

rate of learning was roughly the same regardless of the problem variant.

We observed this general trend across problems: if the problem rewards are roughly

distributed around zero, then methods like Q-learning work quite well; if not, their

rate of learning suffers. This makes sense in light of the Laurent-series decomposition.

The results with non-linear function approximation also exhibited the same trends.

This time the agents observed the 50D binary vector and estimated the values of the

three actions with networks having a hidden layer of 128 units. Each experiment was

run for 80,000 steps and repeated 15 times, starting with the standard initialization

of all the weights to small values around zero and the average-reward estimate to

zero. The remaining agent details were same as those for Pendulum.

The two plots on the right of Figure 5.13 show that the rate of learning with

standard DQN varied significantly across the range of step sizes and across the range

of problem variants. In particular, the rate of learning was highest on the original

problem for a broad range of the step sizes, although the best step size for each

problem variant resulted in roughly the same rate of learning. With centering, the

rate of learning was almost independent of the problem variant, that too for a broad

range of the step size α.

5.5 Discussion and Conclusion

We saw a few positive trends across the set of experiments in the previous section:

• Reward centering can improve the performance of discounted methods for all

discount factors, especially as γ → 1.

• Reward centering can also make discounted methods robust to shifts in the

problems’ rewards.

• The parameter η for reward centering can be relatively easy to set.
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However, there are some caveats to consider. Reward centering adds an additional

element of non-stationarity to the learning problem because the average-reward es-

timate changes over time. As the result, the asymptotic variance of the updates is

larger compared to when there is no centering (see, e.g., Figure 5.2).

The increased variance of updates also ties in to how the average reward is esti-

mated. Ideally, the average reward is accurately estimated as quickly as possible and

does not change too much per step. The simple centering technique quickly estimates

the average reward but is affected by the per-step stochasticity. Value-based centering

additionally relies on changing values and hence is relatively slower, but because it

relies on the value estimates, per-step stochasticity in the problem dynamics may not

affect it as much.5 A step-size adaptation technique would be pertinent for estimating

the average reward: larger step sizes when the errors are consistently large, smaller

step sizes otherwise. Such an adaptation should be possible throughout the lifetime

of the agent, since it may encounter new parts of the world having different kinds of

reward signals.

Reward centering should be combined with approaches that deal with different

scales of rewards. Reward centering makes learning algorithms robust to shifts in the

rewards. In particular, it enables function approximators to focus on the essential dif-

ferences between the state–actions rather than the differences in addition to an offset.

However, the relative values themselves may have large magnitude. For instance, if

all the rewards in a problem are multiplied by a constant, then the relative values will

be scaled by the same constant. So it is pertinent to combine reward centering with

reward scaling. The general idea of scaling quantities to a tractable range is quite

common (e.g., van Hasselt et al., 2016; Pohlen et al., 2018). Building on this body

of work, Schaul et al. (2021) recently proposed a lightweight trick that re-scales TD

errors into an optimization-friendly range using problem-agnostic information in the

5Consider a fully deterministic tabular problem. The rewards are different at each step in general
and so the simple centering technique always involves an error to correct. On the other hand, the
per-step TD error would be zero in the value-based approach.
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agent’s data stream. With some care, their techniques can likely be extended from

the episodic to the continuing case.

Another pertinent direction of work is to design a centering method that is guar-

anteed to estimate the average reward accurately even in the off-policy setting. We

showed that value-based centering does not estimate the average reward exactly but

its estimation can become increasingly accurate as the size of the problems’ state–

action space grows. However, an accurate estimation is appealing because it would

completely remove the large state–action independent offset from the value estimates.

The answer might be straightforward—like somehow constraining the value estimates

to be mean zero which would constrain the R̄ parameter to the accurate average-

reward estimate—but has eluded me so far, much to my annoyance.

Finally, I would like to bring the reader’s attention back to one of the most promis-

ing implications of centering: we can compute the approximate value function cor-

responding to any discount factor on the fly when we learn the average reward and

the relative values separately. This opens the doors to an algorithm that adapts its

discount factor over its lifetime. For instance, start with a small discount factor when

there is a lot of uncertainty about the world, gradually increase it and adapt the rela-

tive values quickly, and perhaps reduce it again during another period of uncertainty.

Connections to other related approaches

The reward-centering idea is compatible with (and not a competitor of) approaches

like reward scaling and advantage estimation. In addition, reward centering is a

particular type of reward shaping. We briefly discuss these points now.

Dividing all the rewards with a (potentially changing) scalar number is typically

referred to as reward scaling (see, e.g., Engstrom et al., 2020). Just like reward center-

ing, reward scaling does not change the ordering of policies in a continuing problem.

Scaling reduces the spread of the rewards, centering brings them close to zero, both

of which can be favorable to complex function approximators such as artificial neural
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networks that are used for value estimation starting from a close-to-zero initialization.

The popular stable baselines3 repository scales (and clips6) the rewards by a run-

ning estimate of the variance of the discounted returns (github.com/DLR-RM/stable-

baselines3/blob/master/stable baselines3/common/vec env/vec normalize.py#L256).

Mean-centering the rewards as well would be beneficial for continuing domains.

Note that the mechanism of computing the mean and variance is trickier in the

off-policy setting than the on-policy setting. Our TD-error-based technique is likely

part of the final solution for the off-policy setting. Simply maintaining a running

estimate of the variance (as in the stable baselines’ approach) introduces a bias. As

mentioned earlier, Schaul et al.’s (2021) technique is a good starting point.

Reward centering and the advantage function have orthogonal benefits. The ad-

vantage function benefits the actor by reducing the variance of the updates in the

policy space (Sutton & Barto, 2018; Schulman et al., 2016). On the other hand,

reward centering benefits the critic’s or baseline’s estimation by eliminating the need

to estimate the large state-independent constant offset. Both the quantities involved

in the advantage function—aγπ(s, a) = qγπ(s, a) − vγπ(s) ∀s, a—have the large state-

independent offset r(π)/(1 − γ). The net effect of the offset is zero when they are

subtracted. But the key point is that both the state- and action-value estimates in-

clude the large offset. Reward centering removes the need to estimate the large offset

for both the state- and action-value function, which simplifies the critic-estimation

problem. The actor update is left unchanged with reward centering because the

advantage function itself remains unchanged: ãγπ(s, a) = q̃γπ(s, a) − ṽγπ(s), because

q̃γπ(s, a) = qγπ(s, a)− r(π)/(1− γ) and ṽγπ(s) = vγπ(s)− r(π)/(1− γ).

Hence, we expect reward centering to benefit all the algorithms that estimate

values, which include all actor-critic methods that involve advantage estimation. An

empirical study of centered variants of several common policy-based algorithms (like

6Reward clipping in general changes the problem. Blinding the agent from large rewards can
impose a performance ceiling or make some games impossible to solve (Schaul et al.’s (2021) Section
4.3 discusses this in the context of Atari problems).
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Schulman et al.’s (2015, 2017) TRPO and PPO) is a ripe avenue of future work.

Related to baselines is the idea of bias weight. In theory, if a bias weight (cor-

responding to a bias feature of one) is equal to the state–action-independent offset,

then the rest of the function-approximation capacity can estimate the relative values.

However, in our experiments we observed that the learned bias weight was rarely

close to true value of the offset. Moreover, it is more desirable to separate r(π) and

scaling effect of 1/(1−γ). Along these lines, Tsitsiklis and Van Roy (2002) suggested

setting a linear approximator’s bias feature proportional to 1/(1 − γ) and learning

the corresponding bias weight. Reward centering takes this idea forward. Since we

know what the corresponding bias weight is, we can have an explicit update rule for

it (à la Sutton (1988b)), which can lead to faster learning. Besides, in the control

problem, there is no need to estimate standard discounted values with the offset, as

Tsitsiklis and Van Roy propose doing. Instead, via reward centering, we can simply

estimate the centered (relative) values.

Reward centering can be seen as Ng et al.’s (1999) reward shaping with a constant

state-independent potential function: Φ(s) = r(π)/(1− γ) ∀s. Their Theorem 1 then

reiterates that reward centering does not change the optimal policy of the problem.

A possible drawback of reward shaping is that it can be tricky to fully specify the

potential-based shaping function, especially for problems with large state spaces. In

the case of reward centering, the specification is relatively easy: the potential function

is constant across the entire state space, and we know how to learn the average reward

reliably from data.

Conclusion

Reward centering is a simple idea with large benefits and should be used alongside

all the discounted algorithms. When combined with appropriate step-size adaptation

and reward-scaling techniques, I believe it will be a key enabler for agents to learn

quickly and continually over their lifetimes.
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Chapter 6

Conclusions and Future Work

In this concluding chapter of my dissertation, I summarize my contributions and

outline my recommendations for future work.

6.1 Contributions

The primary contributions of my dissertation are:

1. In Chapter 3, I presented one-step learning methods for on- and off-policy pre-

diction and control. The core idea is simple: estimate the average reward using

the TD error. As a result, Differential TD-learning and Differential Q-learning

are applicable in the off-policy setting and do not require any special reference

function. Additionally, the performance of the algorithms is quite robust to

their parameters, making the algorithms relatively easy to use.

2. In Chapter 4, I extended the one-step prediction algorithm to the case of multi-

step updates using eligibility traces. In the on-policy setting, I showed con-

vergence results with linear function approximation. I also presented the first

convergence results in the off-policy setting for a family of multi-step tabular

average-reward algorithms. I validated the theoretical results and intuitions

through careful experiments.

3. In Chapter 5, I showed that ideas from the average-reward formulation can also

improve solution methods for the discounted-reward formulation. In particu-
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lar, learning the average reward and subtracting it from the observed rewards

can improve the performance of discounted solution methods—especially as the

discount factor approaches one—and also make them more robust to shifts in

the problems’ rewards. Through a series of experiments, I demonstrated the

benefits of reward centering with tabular, linear, and non-linear function ap-

proximation.

The main ideas in this dissertation arise from first principles. From a rearrangement

of the differential Bellman equations, we realized that a sample average of the TD

error is an unbiased estimate of the average reward even in the off-policy setting. By

making the changes to the average-reward estimate proportional to the changes in the

value estimates, we showed the convergence of off-policy multi-step algorithms. From

the Laurent-series decomposition of the discounted value function, we inferred that

estimating the average reward separately can make the estimation of the discounted

values easier.

The resulting algorithms and techniques are simple and practical. The average

reward is estimated using information that the agent already has. Despite the differ-

ences in theory and analysis, the algorithms for average-reward prediction and control

are very similar to the prevalent discounted-reward algorithms. We also found that

the performance of average-reward algorithms and the methods for reward centering

are quite robust to their parameters: practitioners can achieve good performance

without spending a lot of time in tuning parameters.

Finally, all the contributions are applicable in the continuing setting, in which

the agent-environment interaction goes on ad infinitum. Taken together, the contri-

butions of this dissertation are clear steps based on first principles that advance the

frontiers of RL research on continuing problems based on the average-reward formula-

tion, and more generally towards developing simple and practical learning algorithms

for long-lived agents.
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Much work remains, however, to extend and combine this work with orthogonal

advances in reinforcement learning for the grander ambitions of AI.

6.2 Directions of Future Work

In this section, I outline pertinent directions of future work that go beyond the in-

dividual topics of this dissertation (the future work specific to each contribution is

discussed at the end of each chapter).

First of all, we need to systematically evaluate average-reward algorithms on a

wide range of continuing problems to get a more accurate assessment of the algo-

rithmic capabilities. The algorithms tested in this dissertation appear promising on

several problems with tabular, linear, and non-linear function-approximation (recall

that setting γ = 1 with reward centering results in an average-reward algorithm).

However, the evaluation here is focused on teasing apart specific properties of the

algorithms rather than testing them more generally. In particular, it is pertinent to

test the average-reward algorithms in this dissertation as well as others on a variety

of problems, preferably those that are not designed for RL research.

A wide-ranging empirical study requires a suite of continuing environments, which

is currently lacking in the RL literature. In the episodic setting, collections of prob-

lems such as Gym (Brockman et al., 2016) and ALE (Bellemare et al., 2013) have

accelerated research. Other popular libraries such as MuJoCo (Todorov et al., 2012),

DeepMind Lab (Beattie et al., 2016), PyGame Learning Environment (PLE: Tasfi,

2016), PyBullet (Coumans & Bai, 2016), DeepMind Control Suite (Tassa et al., 2020),

bsuite (Osband et al., 2020) are all primarily episodic, and have some naturally con-

tinuing problems that have been made episodic via timeouts. One exception is the

Jelly Bean World (Platanios et al., 2020). The lack of a collection of continuing

problems has limited research on the continuing setting (which further reduces the

interest in developing and collecting a set of continuing domains—a vicious cycle). I

started putting together continuing domains from the literature as well as new ones
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(Naik et al., 2021). Some colleagues at DeepMind’s former Alberta office then engi-

neered an extensive infrastructure to make what we started calling CSuite’s interface

as accessible and easy to contribute to as Gym’s. Unfortunately, the office shut down

after a preliminary release of CSuite with just a few illustrative problems (Zhao et al.,

2022). I continued working on CSuite, but much work needs to be done. It would be

great to get more help in creating a collection of problems that cover both illustrative

domains as well as ambitious real-world problems.

An important set of baselines in an empirical study of average-reward algorithms

are the equivalent discounted-reward algorithms. Discounted algorithms do not op-

timize the average-reward objective but are pertinent baselines nonetheless for con-

tinuing problems.1 The billion-dollar question is: for continuing problems, should we

use average-reward algorithms or discounted-reward algorithms? I really wanted to,

but I did not answer this question during my Ph.D. Nevertheless, I made concrete

progress towards answering it.

One of the things that I learned is that extra care needs to be taken when comparing

average-reward and discounted-reward algorithms. For instance, I found that the

range of the reward signal is a hidden parameter that can significantly influence the

performance of standard discounted methods. When I was testing continuing variants

of MinAtar problems (Young & Tian, 2019), I discovered through a bug in my code

that a DQN agent failed to learn anything if it observed rewards that had a constant

such as +1 added to all of them. On the other hand, the differential version of

DQN performed almost the same in both cases. After replicating the issue in smaller

problems, reward centering was conceived as an idea to make discounted methods

robust to any constant shifts in the problems’ rewards.

Having explored reward centering more deeply now, I have realized it has another

intriguing implication. Learning both the average reward and the centered discounted

1The discounted-reward problem is not well-defined for continuing control with function approx-
imation (Sutton & Barto, 2018: Section 10.4; Naik et al., 2019). However, discounting can be used
as a parameter within solution methods.
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estimates allows the agent to rapidly estimate the discounted value function corre-

sponding to any discount factor. Concretely, consider the agent has estimated the

average reward R̄ and the centered discounted value function ṽγ1 to some level of

accuracy. With just this information, the agent can form an estimate of the standard

discounted value function corresponding to another discount factor γ2 via
R̄

(1−γ2)
+ ṽγ1 .

This is an estimate, of course, but it can be improved quickly with a few samples of

experience—potentially with old experience from a buffer or a parameterized model.

In contrast, with standard methods, it would take comparatively longer to raise the

estimates to the new mean value and adapt the relative values. Hence, with reward

centering, we can imagine efficient methods that adapt their discount factors over

time: a low discount rate to learn quickly amidst a lot of uncertainty—like in the

beginning of training—and when the world is more predictable, a higher discount

rate to estimate the policy that maximizes the total amount of reward obtained by

the agent.

The interest in letting the agent set the discount factor on its own is not new.

Xu et al. (2018) started a line of work that changes the discount factor based on its

effect on the evaluation criteria. Such gradient-based meta-learning approaches are

quite general and have since been integrated with prevalent deep RL algorithms (e.g.,

Zahavy et al., 2020). On the other hand, specific knowledge about discounting can

inspire specific ways of changing the discount factor. For instance, Dong et al. (2022)

recently proposed a method to monotonically increase the discount factor over time

(and showed it has bounded regret). Similarly, Khetarpal et al. (2023) proposed

increasing the discount factor in the offline setting using a notion of model uncertainty

that reduces over time. However, since the world may appear to be changing to any

learning agent in the big-world perspective, it might be useful to reduce the discount

factor, say, when the agent is uncertain about the part of the world that it is in. I

would like to explore different ways of modeling uncertainty in RL (e.g., like Abbas

(2020)). With reward centering, this could result in a technique that is faster than
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an average-reward algorithm and more effective that a discounted algorithm with a

fixed discount factor. I am excited to explore this idea which could be key to efficient

long-lived learning systems.

There are also several directions of work to broaden the scope of the average-reward

formulation for RL, such as with exploration. Exploration is especially important in

continuing problems because—unlike in episodic problems—there are no resets (or

timeouts). Agents that learn from a single stream of experience may get ‘stuck’ for

long periods of time with simple exploration methods such as ϵ-greedy action selection

that do not explicitly take the agents’ experience into account (e.g., see Machado et

al.’s (2020) RiverSwim experiment or Sharma et al.’s (2022) Figure 3). Mahadevan

(1996) identified a related phenomenon: an agent using Schwartz’s (1993) R-learning

algorithm got stuck in “limit cycles”. As a result, Mahadevan recommended using

higher levels of exploration when using strategies such as ϵ-greedy action selection.

This is a strong reason to pursue principled exploration methods (like Machado, 2019)

beyond the prevalent dithering approaches, especially in the context of long-lived

agents.

This dissertation considers value-based methods; policy-based methods form an im-

portant class of RL algorithms. The standard policy gradient (Sutton et al., 1999b)

and the natural policy gradient (Kakade, 2001a) were both derived for the average-

reward formulation. However, there are lots of recent developments in policy-based

methods for the discounted-reward formulation that can be extended to the average-

reward formulation. Zhang and Ross (2021) recently took an important step in this

direction by analyzing the average-reward version of TRPO (Schulman, 2015). In-

terestingly, their experiments showed that average-reward TRPO significantly out-

performed discounted TRPO on continuing variants of MuJoCo problems. Such ex-

tensions for other kinds of policy-based methods would help make average-reward

algorithms applicable to a larger set of problems (particularly ones with continuous

action spaces).
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Finally, this dissertation deals exclusively with model-free learning approaches.

There is a rich body of RL literature that involves the agent learning a model of the

environment’s transition and reward dynamics, which it can then use to improve its

value estimates or its policy without additional interactions with the environment

(e.g., Sutton, 1990). There are several aspects of planning that work as is in the

average-reward formulation, but others need more care. For example, the planning

variants of all the differential-style learning algorithms are straightforward and are

analyzed in our one-step paper (Wan, Naik, & Sutton, 2021a). On the other hand,

the chain structure of the problem is relevant in average-reward planning: MDPs with

more than one chain—multichain MDPs—require average-reward estimates per state

and hence the planning algorithms are more involved (e.g., see Puterman’s (1994)

Chapter 9). Such ideas need to be fleshed out to integrate average-reward planning

into a complete learning agent that learns to achieve goals throughout its lifetime

(e.g., Sutton, 2022).
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Appendix A: Pseudocode

In this appendix, we provide the pseudocode of the average-reward algorithms pro-

posed in Chapters 3 and 4. We also provide the pseudocode of discounted algorithms

that use our proposed reward-centering idea from Chapter 5.

Algorithm 1: Differential TD-learning (one-step tabular off-policy predic-
tion)

Input: The target policy π, the behavior policy b
Algorithm parameters: step-size parameters α, η

1 Initialize V (s) ∀s, R̄ arbitrarily (e.g., to zero)
2 for each time step do
3 Take action A according to b, observe R, S ′

4 ρ = π(A|S)/b(A|S)
5 δ = R− R̄ + V (S ′)− V (S)
6 V (S) = V (S) + α ρ δ
7 R̄ = R̄ + η α ρ δ
8 S = S ′

9 end

Algorithm 2: Differential Q-learning (one-step tabular off-policy control)

Input: The behavior policy b (e.g., ϵ-greedy)
Algorithm parameters: step-size parameters α, η

1 Initialize Q(s, a) ∀s, a; R̄ arbitrarily (e.g., to zero)
2 Obtain initial S
3 for each time step do
4 Take action A according to b, observe R, S ′

5 δ = R− R̄ +maxa Q(S ′, a)−Q(S,A)
6 Q(S,A) = Q(S,A) + α δ
7 R̄ = R̄ + η α δ
8 S = S ′

9 end
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Algorithm 3: Linear Differential Q-learning

Input: The behavior policy b (e.g., ϵ-greedy)
Algorithm parameters: step-size parameters α, η

1 Initialize wa ∈ Rd ∀a, R̄ arbitrarily (e.g., to zero)
2 Obtain initial observation x
3 for all time steps do
4 Take action A according to b, observe R,x′

5 δ = R− R̄ +maxa w
⊤
a x

′ −wAx
6 wA = wA + α δ x
7 R̄ = R̄ + η α δ
8 x = x′

9 end

Algorithm 4: On-policy Linear Differential TD(λ) (“Algorithm 1”)

Input: The target policy π
Algorithm parameters: step-size parameters α, η; trace parameter

λ ∈ [0, 1)
1 Initialize w ∈ Rd, z ∈ Rd, R̄ ∈ R arbitrarily (e.g., to zero)
2 Obtain initial state features xS

3 for each time step do
4 Take action A according to π, obtain R,xS′

5 δ = R− R̄ +w⊤xS′ −w⊤xS

6 z = λz+ xS

7 w = w + α δ z
8 R̄ = R̄ + η α δ
9 xS = xS′

10 end

Algorithm 5: On-policy Linear Differential Sarsa(λ)

Input: The behavior policy π (e.g., ϵ-greedy)
Algorithm parameters: step-size parameters α, η; trace parameter

λ ∈ [0, 1)
1 Initialize wa ∈ Rd ∀a, z ∈ Rd, R̄ ∈ R arbitrarily (e.g., to zero)
2 Obtain initial state features xS, select first action A according to π
3 for each time step do
4 Take action A, obtain R,xS′ , compute action A′ according to π
5 δ = R− R̄ +w⊤

A′xS′ −w⊤
AxS

6 z = λz+ xS

7 wA = wA + α δ z
8 R̄ = R̄ + η α δ
9 xS = xS′ and A = A′

10 end
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Algorithm 6: Off-policy Tabular Differential TD(λ) (“Algorithm 2”)

Input: The target policy π, the behavior policy b
Algorithm parameters: step-size parameters α, η; trace parameter

λ ∈ [0, 1)
1 Initialize w ∈ R|S|, z ∈ R|S|, R̄ ∈ R, zR̄ ∈ R arbitrarily (e.g., to zero)
2 Obtain initial state features xS

3 for each time step do
4 Take action A according to b, obtain R,xS′

5 δ = R− R̄ +w⊤xS′ −w⊤xS

6 ρ = π(A|S)/b(A|S)
7 z = ρ(λz+ xS)

8 zR̄ = ρ(λzR̄ + 1)
9 w = w + α δ z

10 R̄ = R̄ + η α δ zR̄

11 xS = xS′

12 end

Algorithm 7: Tabular Q-learning with value-based reward centering

Input: The behavior policy b (e.g., ϵ-greedy)
Algorithm parameters: discount factor γ, step-size parameters α, η

1 Initialize Q(s, a) ∀s, a; R̄ arbitrarily (e.g., to zero)
2 Obtain initial S
3 for all time steps do
4 Take action A according to b, observe R, S ′

5 δ = R− R̄ + γmaxa Q(S ′, a)−Q(S,A)
6 Q(S,A) = Q(S,A) + α δ
7 R̄ = R̄ + η α δ
8 S = S ′

9 end

Algorithm 8: Linear Q-learning with value-based reward centering

Input: The behavior policy b (e.g., ϵ-greedy)
Algorithm parameters: discount factor γ, step-size parameters α, η

1 Initialize wa ∈ Rd ∀a, R̄ arbitrarily (e.g., to zero)
2 Obtain initial observation x
3 for all time steps do
4 Take action A according to b, observe R,x′

5 δ = R− R̄ + γmaxa w
⊤
a x

′ −wAx
6 wA = wA + α δ x
7 R̄ = R̄ + η α δ
8 x = x′

9 end
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Algorithm 9: (Non-linear) DQN with value-based reward centering

Input: The behavior policy b (e.g., ϵ-greedy)
Algorithm parameters: discount factor γ, step-size parameters α, η

1 Initialize value network, target network; initialize R̄ arbitrarily (e.g., to zero)
2 Obtain initial observation x
3 for all time steps do
4 Take action A according to b, observe R,x′

5 Store tuple (x, A,R,x′) in the experience buffer
6 if time to update estimates then
7 Sample a minibatch of transitions (x, A,R,x′)b

8 For every i-th transition: δi = Ri − R̄ + γmaxa q̂(x
′
i, a)− q̂(xi, Ai)

9 Perform a semi-gradient update of the value network parameters with
a loss function of δ2

10 R̄ = R̄ + η αmean(δ)
11 Update the target network occasionally

12 end
13 x = x′

14 end
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Appendix B: Additional
Experimental Details

In this appendix, we provide the additional results and experimental details for Chap-

ter 5.

Table B.1 contains a list of all the hyperparameters tested for the hyperparameters

that are common across all the domains: γ, α, η. Note that if we initialize the reward-

rate estimate to zero and set η = 0 when using Q-learning with reward centering, we

get the standard uncentered Q-learning algorithm. Also note that DQN with centering

(in its current form) requires a larger value of η compared to the the tabular or linear

versions because of how a minibatch is used in the implementation of this deep RL

algorithm. In line 11 of Algorithm 9, the mean of the TD errors of the minibatch

of transitions is taken. The mean can make the overall gradient for the reward-rate

update very small, so a large value of η can be used.

The number of timesteps, number of runs, initializations are reported in the main

text. The agent’s behavior policy was always ϵ-greedy with fixed ϵ = 0.1. We set

commonly used values for the various parameters of the deep RL (non-linear) exper-

iments: the batch size was 64, the value-network and reward-rate parameters were

updated every 32 steps, the target network was updated every 128 steps, the expe-

rience buffer size was 10,000. Apart for the main step-size parameter, the default

parameters (set by PyTorch (Paszke et al., 2019)) were used for the Adam optimizer.
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Table B.1: List of hyperparameters tested for each domain

γ α η

Access-Control Queuing
(tabular)

[0.5, 0.8, 0.9,
0.99, 0.999, 1]

[1/128, 1/64, 1/32,
1/16, 1/8, 1/4, 1/2, 1]

[0, 1/256, 1/64,
1/16, 1/4, 1]

PuckWorld
(linear)

[0.5, 0.8, 0.9,
0.99, 0.999, 1]

[0.01, 0.1, 0.3, 0.5,
0.7, 0.9, 1.0, 1.1]

[0, 1/256, 1/64,
1/16, 1/4, 1]

Catch
(linear)

[0.5, 0.8, 0.9,
0.99, 0.999, 1]

[1/128, 1/64, 1/32,
1/16, 1/8, 1/4, 1/2, 1]

[0, 1/256, 1/64,
1/16, 1/4, 1]

Catch
(non-linear)

[0.5, 0.8, 0.9,
0.99, 0.999, 1]

[1/512, 1/256, 1/128,
1/64, 1/32, 1/16, 1/8]

[0, 1, 2,
4, 8, 16]

Pendulum
(non-linear)

[0.5, 0.8, 0.9,
0.99, 0.999, 1]

[1/512, 1/256, 1/128,
1/64, 1/32, 1/16, 1/8]

[0, 1, 2,
4, 8, 16]

In our implementations we added two simple optimizations:

1. Make the reward-rate estimate completely independent of its initialization: this

can be done using the unbiased constant step-size trick (see Sutton & Barto’s

(2018) Exercise 2.7).

2. Propagate the changes to the reward-rate estimate faster: this can be done by

first computing the TD error, then updating the reward-rate estimate, then

recomputing the TD error with the new reward-rate estimate, and finally up-

dating the value estimate(s).

These optimizations did not affect the overall trends in the results but provided a small

yet noticeable improvement for a tiny computational cost, hence we recommend using

them.

For the experiments involving a shift in the problem rewards, the rewards obtained

on each problem variant are not directly comparable. For intuition, imagine the first

four rewards in the original problem be 2,0,3,1. In a variant of the problem with 5

added to all the rewards, the first four rewards may now appear to be 7,5,8,4. An

agent solving the latter problem might trivially appear better than one solving the
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Figure B.1: Parameter studies showing the performance sensitivity of the algorithms
to their parameters on the PuckWorld problem. Far left: Q-learning’s performance
was relatively poor for a large range of α. Center to right: For each discount factor,
the performance of Q-learning with centering was better across a broad range of α.
Moreover, performance only changed a little w.r.t. η.

Figure B.2: Parameter studies showing the performance sensitivity of the algorithms
to variants of the PuckWorld problem. The error bars indicate one standard error,
which at times is less than the width of the lines. Far left: Q-learning’s performance
differed significantly on the different variants over a broad range of the step-size
parameter α. Center to right: With centering, the performance was about the same
across the problem variants, and was quite robust to the choice of its parameter η. All
the curves correspond to γ = 0.99; the trends were consistent across other discount
factors.

former problem even though its fourth reward was relatively lower. To compare them

meaningfully, from the rewards obtained by an agent, we can subtract the constant

that was added in the first place to all the problem’s rewards. That is, we can shift

the rewards back to make fair comparisons across problem variants. This is what we

did when presenting the results of the shifting experiments; this is explicitly denoted

by the word “shifted” in the y-axis label.
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Figure B.3: Parameter studies showing the performance sensitivity of the two algo-
rithms to their parameters on the Pendulum problem. Far left: The performance of
DQN was not good for discount factors larger than 0.9. Center to right: For each
discount factor, the performance of Q-learning with centering was better across a
broad range of α, and the performance was not too sensitive to its second parameter
η. γ = 0.5 was too small to solve this problem.

Figure B.4: Parameter studies showing the performance sensitivity of the two al-
gorithms with γ = 0.8 to variants of the Pendulum problem. Far left: DQN’s
performance differed significantly on the different variants. Center to right: The
performance of DQN with centering was about the same across the problem variants
across a large range of the step size α, and was also quite robust to the choice of η.
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