Acquiring a Broad Range of Empirical Knowledge
in Real Time by Temporal-Difference Learning

Joseph Modayil, Adam White, Patrick M. Pilarski, Richard S. Sutton
Reinforcement Learning and Artificial Intelligence Laboratory,
Department of Computing Science, University of Alberta, Canada

Abstract—Several robot capabilities rely on predictions about
the temporally extended consequences of a robot’s behaviour.
We describe how a robot can both learn and make many
such predictions in real time using a standard algorithm. Our
experiments show that a mobile robot can learn and make
thousands of accurate predictions at 10 Hz. The predictions
are about the future of all of the robot’s sensors and many
internal state variables at multiple time-scales. All the predictions
share a single set of features and learning parameters. We
demonstrate the generality of this method with an application
to a different platform, a robot arm operating at 50 Hz. Here,
learned predictions can be used to measurably improve the user
interface. The temporally extended predictions learned in real
time by this method constitute a basic form of knowledge about
the dynamics of the robot’s interaction with the environment.
We also show how this method can be extended to express more
general forms of knowledge.

I. INTRODUCTION

Predicting the temporally extended consequences of be-
haviour in real time provides a foundation for many robot
capabilities. Examples include collision avoidance (Fox et al.,
1997), model predictive control for stability (Abbeel et al.,
2010), and motion planning (LaValle, 2006). The conventional
approach to make these predictions is to manually construct a
small one-timestep model of the system dynamics offline, and
then, during real-time operation, to make temporally extended
predictions by simulating future trajectories with the model.
However, this approach requires a one-timestep model of the
dynamics to be available, and it requires computationally
expensive simulations with the model to predict quantities of
interest.

We propose an alternative approach for real-time predic-
tions, namely to learn to directly predict the temporally
extended consequences of a behaviour. This is the same
technique used with the critic’s value function in an actor-
critic based method. We demonstrate that this direct approach
scales well, and is a viable method for learning and making
many temporally extended predictions in parallel.

The main contribution of this work is an empirical demon-
stration that thousands of temporally extended predictions can
be learned online in real time with high accuracy. We demon-
strate that a mobile robot can both make and learn thousands
of predictions in real time. Predictions are made every 100ms,

This work was supported by grants from Alberta Innovates - Technology
Futures, the National Science and Engineering Research Council of Canada,
the Alberta Innovates Centre for Machine Learning, and the Glenrose Reha-
bilitation Hospital Foundation.

and the predictions are about the robot’s future sensor readings
and internal state variables either at the next timestep in
100ms, or over the next short time scale of 0.5, 2, or 8 seconds.
These predictions provide the robot with immediate knowledge
about many distinct, temporally extended consequences of its
behaviour. In a second experimental setting, we demonstrate
the generality of these predictions by evaluating how they can
improve the user interface for a robot arm.

The approach is novel in several respects. The predictions
have the benefit of scientific empiricism—the predictions can
be evaluated for their accuracy by comparison to the robot’s
future experience. Although directly learning the temporally
extended consequences of behaviour is not a common way of
representing knowledge in robotics, these predictions can also
be assembled to form a conventional one-timestep model of the
dynamics. The ease of acquiring knowledge, the generality of
the method, and known extensions to the prediction algorithm,
suggest this is a promising direction for further investigation.

The paper is structured as follows. First, we describe the
learning setting and present our method. Then, we show results
from our experimental evaluation of the method on a mobile
robot. We demonstrate the generality of this method with an
application to the completely different domain of predictions
for a human-guided robot arm. After describing related work,
we discuss how this method can be extended to more general
forms of prediction.

II. METHOD

The method relies on learning many temporally extended
predictions, so we first review the underlying temporal-
difference prediction algorithm TD(A) (Sutton and Barto,
1998). As input at each timestep t € N, the algorithm
receives the feature vector x; € R™ (typically binary-valued in
practice). The feature vector is the robot’s description of the
state of the environment s;. Note that the description provided
by x; will be restricted to features that the robot can readily
compute, and this is typically an incomplete characterization of
the state of the environment. Each predictive question pertains
to some signal 7, € R that is observed at each timestep. The
signal is called the reward in reinforcement learning, but here
it is an arbitrary target signal and does not indicate a quantity
that the robot wishes to maximize. We assume that the robot is
following a fixed behaviour and the question is to predict the
return, GGy, which is the discounted sum of the target signal



observed in the future,

oo

Ge=> V" re, (1)

k=1
where v is a constant. A particular choice of v will focus
the question on either the next timestep (note v = 0 implies
G = ry41) or over an extended temporal horizon for v €
(0,1). The linear TD()) algorithm learns to approximate the
expected return by a linear function of the feature vector xy,
with

G(w) = 0y,

where 0; € R™. Prediction is computationally efficient in that
the time and space requirements are linear in the feature vector
size. The TD()) algorithm adjusts the weight vector 6, at each
timestep to reduce the error between predictions on adjacent
timesteps with the following update rules.

6 = o1 + 70 w1 — 0]z 2
er = yAei_1 + 1y 3)
9t+1 = 0t + Oé&tet (4)

Here e, € R™ is called the trace (and is initialized to the
zero vector), and o € [0,1) is a step size parameter. The
value A € [0,1] is the trace decay parameter. When A\ = 1
and « is slowly decreased over time to zero, this algorithm
converges to a weight vector 6, that minimizes the squared
error between the predictions and the return. However, the
algorithm is often used with A < 1 for faster learning, and with
« set to a constant value to enable adaptation to a dynamic
environment. Note that the update at each timestep requires
time that is linear in the feature vector size.

Under common assumptions (Sutton and Barto, 1998), the
update rules will adapt ¢ to approximate g, a general value
function that is the expected value of the return when starting
at the environmental state s.

9(x(s)) = g(s) = E[G4|S; = 5]

A common oversight is to consider TD(\) as only ap-
propriate for learning a value function that describes the
robot’s behaviour. It is in fact a general algorithm for making
multistep predictions, and was described as such when intro-
duced (Sutton, 1988). Although this algorithm is often used
in reinforcement learning to pursue goal-directed behaviour, it
can be used for an arbitrary function r; of state.

We propose taking advantage of the computational effi-
ciency of the TD(X) algorithm to learn a set of m predictions,

{04 D), ., ()

that can be learned and predicted in parallel from the single
stream of robot behaviour. Each predictive question has its own
target signal r and constant . As the learning and prediction
algorithms are both linear in the n-dimensional feature vector,
the computational complexity and memory requirements of
this approach grow as O(mn), which on modern computing
systems enables the use of many features and many predictions

Fig. 1.
following the walls in the pen. A lamp shines in one corner of the pen, and
its light is observed by some of the robot’s sensors.

A robot performing a regular though non-periodic behaviour of

in real time. Moreover, this approach is intrinsically parallel
and decoupled, which enables flexible deployment on parallel
computing architectures.

The goal of learning to make many predictions in parallel
in real time on a robot raises different considerations than
are often considered for reinforcement learning experiments.
In particular, manually tuning the learning parameters for
each question is impractical. Instead, the learning parameters
should enable stable learning. As such, values for  and A
are shared across all the questions. Furthermore, the feature
vector is shared across all the questions. This problem setting
encourages the use of diverse features and a large feature
vector, to enable learning better predictions for a broad set of
questions. Note that in the online setting with an abundance of
data, increasing the space of features is generally not harmful.

We define in situ learning as this scenario of learning and
predicting in real time on a robot. Two competing desires for
in situ learning must be balanced. First, learning and prediction
are often only one piece of the larger system, so their compu-
tational and memory footprints should be reasonable. Second,
the predictions should exhibit accuracy within the robot’s life-
time. Several approaches in robot learning are computationally
expensive but learn from limited experience. However, modern
robots have extended operational lifespans of days and years,
so computationally efficient real-time algorithms can run on
top of these operational systems with little overhead, and thus
enable learning to occur directly from the stream of robot
experience.

1II. EVALUATION

To evaluate the practicality of the above method on a real
system we considered nexting predictions, namely predictions
about the future value of sensors (and many feature vec-
tor components), at a variety of time scales (as described
originally by Modayil et al. (2012)). By predicting what



Sensor Group Group | Tiling Type | (resolution,
Size tilings)
IRDistance 10 strip (8,8)
strip 2.4)
skip(0) 4.4
skip(1) 4.4
Light 4 strip 4.8)
skip(0) 4,1)
IRLight 8 strip (8,6)
strip 4,1)
skip(0) 8,1
skip(1) (€AY
Thermal 8 strip (8,4)
Rotational Velocity | 1 strip (8,8)
Mag 3 strip (8,8)
Accel 3 strip (8,8)
MotorSpeed 3 strip (8,4)
skip(0) (8,8)
MotorVoltage 3 strip (8,2)
MotorCurrent 3 strip (8,2)
MotorTemperature | 3 strip 4,4
OverheatingFlag 1 strip (2,4)
LastAction 3 strip (6,4)

Fig. 2. Summary of the tile-coding strategy for producing the feature vector
from the sensory observations. Sensors values in each group were tiled either
singly (strip tilings) or jointly pairwise (skip tilings). The last column indicates
how many tilings of each type were made for each sensor or sensor group,
and how many intervals (resolution) were involved in each dimension of each
tiling. See text for explanation.

will happen next, the robot gained a basic knowledge of its
interaction with the environment. In our experiment, the robot
performed an extended wall-following behaviour in a small
pen (Fig. 1). The observation stream contained both repeated
events (such as passing a light, driving forward, and periods
when the motors are cooling off), along with fine structure
(such as variations in the accelerometers without readily appar-
ent structure). The behaviour exhibited substantial variations,
for example the time to complete a loop of the pen varied
from 20 to 40 seconds, and there were intermittent seven-
minute resting periods with no motion to allow the motors
to cool off. Every 100ms, the robot generated an observation
vector with 53 components. They cover 11 different sensing
modalities and 4 software variables that are listed in Fig. 2.
The observation vector is transformed into the agent’s
representation x; by tile coding. This produced a binary vector,
x¢ € {0,1}™, with a constant number of 1 features (see Sutton
and Barto (1998) for more details; in short a tile coder maps
data from a continuous domain into a binary representation by
a set of indicator functions whose support tile the continuous
domain). The features provided no history and performed no
averaging of sensor values. The tile coder was comprised of
many overlapping tilings of individual sensors and pairs of
sensors (see Fig. 2). The resolution of a tiling refers to the
number of uniform partitions per dimension. When multiple
tilings covered a space, each had a random offset. The sen-
sory signals were partitioned based on sensor modalities into
IR(InfraRed)Distance, Light, Thermal, IRLight, MotorSpeed,
MotorCurrent, MotorVoltage, MotorTemperature, Accelera-
tion, Magnetometer and LastAction. Within each sensor group,

each individual sensor (e.g., Light0) was tiled independently
as multiple one-dimensional overlapping grids called strip
tilings. Additionally, pairs of sensors within a group (e.g.,
IRLight: and IRLightj) were tiled together using multiple
two-dimensional overlapping grids. The two-dimensional grids
combined sensors in one of two ways. When they combined
sensors within a group that were directly spatially adjacent
on the robot, we call it a skip(0) tiling, whereas a skip(1)
tiling combines sensors that are spatially adjacent with a skip
of one (e.g., IRDistancel with IRDistance3, IRDistance2 with
IRDistance4, etc.). All in all, this tiling scheme produced a
feature vector with n = 6065 components, most of which
were 0s, but exactly 457 of which were 1s, including one bias
feature that was always 1.

We applied TD(A) to learn 2160 predictions in parallel.
For the first 212 predictions, the target signal, (9, was the
sensor reading of one of the 53 sensors listed in Fig. 2 and
the discount rate, W(i), was set to one of four timescales; for the
remaining 1948 predictions, the target signal was set to one of
487 randomly selected bits from the feature vector and the dis-
count rate was again set to one of four timescales. The discount
rate v(*) was one of the four values in {0,0.8,0.95,0.9875},
corresponding to time scales of approximately 0.1, 0.5, 2,
and 8 seconds respectively. For each question, the step-size
parameter was set to o = 9:1 (55th of the number of active
features), and the trace parameter was set to A\ = 0.9. The
initial weight vector was initialized to 0.

An initial performance question was scalability, in particular
whether so many predictions can be made and learned in real
time. We found that the total computation time for a cycle
under our conditions was 55ms, well within the 100ms duty
cycle of the robot. The wall-following policy, tile-coding, and
the TD(\) learning algorithm were all implemented in Java
and run on a laptop connected to the robot by a dedicated
wireless link. The laptop used an Intel Core 2 Duo processor
with a 2.4GHz clock cycle, 3MB of shared L3 cache, and
4GB DDR3 RAM. The system garbage collector was called
on every timestep to reduce variability. Four threads were
used for the learning code. For offline analysis, data was
also logged to disk for 120000 timesteps (3 hours and 20
minutes). The total memory consumption was 400MB. Note
that with faster computers, the number of predictions or the
size of the weight and feature vectors can be increased at
least proportionally. This strategy for prediction should scale
to millions of predictions with the foreseeable increases in
parallel computing power over the next decade.

In the text that follows, we consider a single nexting
prediction in detail. Each nexting prediction asks “What will
happen next?” over a relatively short, but temporally extended,
time scale. Consider the robot’s ability to anticipate when one
of its light sensors will be saturated as it passes the lamp
in one corner of the pen. Examples of returns for different
time scales are shown in Fig. 3 (left). The returns for each
question are computed from the stored log of observations
using Equation 1. For each point in time ¢, the value of the
return constitutes the empirical ground truth answer for the




1.2 T T T T T T
1+ _
H W Observation —» _‘
=
o 08 .
2] Y = 0.95 Return
=
Q
n
-
=
=
—
80 100 120
Seconds
Fig. 3.

1.2 T T T T T T
1+ .
S o8 _
7]
=
Q
©w o oo6f _
E Offline optimal
en
3 04

0 20 40 60 80
Seconds

100 120

(left) A plot of the returns for one light sensor. The sensor readings exhibit sharp changes when the robot passes the lamp. The returns for each

question are computed at the end of the experiment. (right) The learned prediction closely matches the return, and the predictions also have the desired

qualitative structure of rising in advance of changes in the light signal.

30 T T T T T T

20 1

15

10

)]

TD(1)
0 1 1 1 1 1 1

Root Mean Squared Return Error

o
w
o
2]
o

90 120
Minutes

150

Fig. 4. A comparison of the return errors from different methods for the
light prediction question above (8 seconds=80 timesteps). By the end of the
dataset, the error of TD(A) is nearly identical to the error of the best offline
weights, and to TD(1). The error of TD(0) is slightly higher, but still less
than the error from a bias unit representation, and less than the error of an
autoregressive model with a 300-step history. The bump in the error curves
(after 120 minutes) coincides with when the robot stalled near the lamp.

question.

The returns computed offline are compared to the predic-
tions that were made in real time during the experiment in
Fig. 3 (right). The predictions in the graph show a clear
example of anticipating the increase in light. The return
and the learned prediction are in close correspondence. The
performance of the learned predictions is also similar to the
performance of the best fixed weights 6., that was computed
offline for the given set of features.

A comparison of the return errors of several methods for this
light prediction question is shown in Fig. 4. The graph shows
that the TD(\) algorithm performed well. By the end of the
dataset, TD(\) matched the error of the best offline weights
and TD(1). With the same representation as TD(\), TD(0)
had a higher error. Using only a bias unit as a representation

T T T T T
Average

Performance
AccelX |
T=0.1s  MotorSpeed0
T=2.0s
IRDistance0 .
T=0.5s Light3
T=8.0s

Normalized Mean Squared Return Error

0 30 60 90 120 150 180
Minutes

Fig. 5. The presented method learned to answer 2160 questions in real time
about future sensor observations generated by the mobile robot’s behaviour.
The questions pertain to the expected values over the near future at timescales
of 0.1, 0.5, 2, and 8 seconds. Only a handful of the learned predictions about
sensors and features are shown above; sensors are diverse and include motor
temperatures, currents, voltages, light sensors, infrared light sensors, ambient
temperature, magnetometers, accelerometers, and others. The predictions are
made in real time at a rate of 10Hz. The answers have substantial accuracy;
the error shown for each prediction is normalized by the observed variance
(Equation 5). Moreover, substantial learning is achieved within the first 30
minutes, as is seen in the error curve for the average performance.

(a single active feature) had the highest error of all the
methods. We compared these methods to an autoregressive
model trained incrementally by the least mean square rule
(delaying the learning by 600 timesteps to compute the return).
An offline sweep over the autoregressive model parameters
gave the lowest error with an autoregressive model of order
300 (which learns a linear predictor with the last 300 light
observations as the representation). This model had a higher
error than all the TD methods, but less error than a bias unit.

Fig. 5 demonstrates a key result, namely that many accurate
answers to predictive questions can be learned in parallel from
standard robot behaviour. To compare the accuracy of the



different questions, the prediction errors are normalized by
the sample variance of the returns for each question over the
entire dataset. This yields a normalized mean squared return
error (NMSRE),

122:0(@1@ - g1)°
t Var(g?) '

The NMSRE value represents the fraction of the variance
in the return that remains unexplained by the predictor (the
NMSRE is above one initially as the predictors have no data
and perform worse than the best constant predictor).

For every question, we can observe in Fig. 5 that the error
decreases along an exponential curve. Substantial learning
occurs in the first 30 minutes, but errors continue to decrease
with additional experience. Note that the error expresses the
fraction of the sample variance unexplained and that for every
question this falls below 1. Thus, the answers are non-trivial
even for a noisy sensor such as an accelerometer at long time
scales—the answers learned by the system with the given
experience and choice of representation outperform the best
constant prediction for every single question.

These results demonstrate our novel and somewhat surpris-
ing claim that it is practical to acquire a broad range of
knowledge in real time directly from experience. We have
shown a method with a sound theoretical foundation that
learns answers to thousands of different empirical questions
in practice, from regular robot experience. The method is
scalable in the number of questions and features, as the amount
of computation is linear in each. It is robust in practice, as
no individual tuning is required for the different questions. It
supports parallel implementation, which was used in dividing
the computation across multiple threads. This method provides
access to knowledge about multiple timescales while operat-
ing at a single fast timescale. This is an impressive set of
properties.

Viewed from another perspective, our approach is one
way to enable robots to exploit a key insight of machine
learning from big data: large, simple, discriminative models
will outperform small, complex, generative models when given
sufficient data. Substantially more structure often exists in
the robot’s experience than is predicted by small generative
models. This has been seen in several domains, including
games, search engines, recommender systems, and even in
Jeopardy. The method described here is one simple way to
provide a robot with immediate access to knowledge about
many facets of its observable existence. This is different from
the way knowledge is typically considered on a robot, and
opens the door to methods that can leverage a diverse body
of knowledge.

NMSRE(§,t) = (5)

IV. AN ILLUSTRATIVE APPLICATION

Our proposed method generalizes to any robot. To illustrate
this point, we describe an application to a robot arm (as
described originally by Pilarski et al. (2012)). The domain of
human-machine interaction provides a rich source of problems
for which predictive empirical knowledge can be interesting,

Fig. 6. The myoelectric training tool (MTT), a multi-joint robotic prosthesis

used to train new amputees.

0.241 Wil fIOBSERVATION
+0.18 | o
T 0.12] premiojfv

0.064 l

0.00 T T T
w 0.244

.18

=) 0.12—I

20,06

U 0.00 ‘ .
0.24 .

= 0.18

Soa2]

1 0.06

0.00 ‘ ‘-——-q_‘____,__J"__"'-\___

0.244 —

T 0.181

© 0.12
T 0.06{

1é00 ZdOO
Timesteps

i

d
2400

g T
1400 1600 2200

Fig. 7. The user must perform a task, manually switching between four
degrees of freedom. The shaded blocks indicate when a joint is active (the
observed signal), and solid red lines indicate the system’s predictions after
less than 15min of online learning; intervals with no activity on any joint
are switching times. The grey vertical dotted lines indicate the end of a joint
activity and thus the start of a switching period. The system learns to anticipate
which degree of freedom the user will move next. These choices will vary
across users and even within a task for a single user.

potentially useful, and difficult to acquire by other means. Re-
searchers have developed a robotic platform for familiarizing
new amputee patients with the process of controlling a pow-
ered prosthetic arm (Dawson et al., 2012). This myoelectric
training tool (MTT) includes a table-top robotic arm (Fig. 6),
which an amputee must learn to control using signals from
their remaining muscles.

The MTT enables four degrees of freedom, but the typ-
ical lack of distinct recording sites on an amputee patient
restricts the number of channels available for motor control.
As per standard commercial prostheses, control is therefore
multiplexed, with one channel being used to switch between
joints in a cyclic order, and a pair of control channels actuating



the currently active joint. However, a user can spend an
unacceptably large portion of their time selecting which joint
they wish to move next with switching-based approaches of
this nature, as shown by the time periods with no joint activity
in Fig. 7.

We applied nexting predictions to examine if online pre-
diction learning can support user switching in this setting.
In these experiments, four predictions were defined, one for
the user-driven motion of each joint—the learning agent’s
goal was to predict which joint the human user would use
next. These predictive questions represent temporally extended
expectations about motor activity on each of the MTT’s four
joints. For this task, the robot was operating with a duty cycle
of 20ms, and nexting questions were set to have a timescale
of 2.5 seconds (v = 0.992). The feature vector used by the
learning system was generated by jointly tiling all four robot
joint angles with each of the other 28 sensors provided by
the MTT system. The resulting feature vector was sparse,
consisting of 1,306,369 features, of which 169 were active
at any given time.

Fig. 7 shows the results of the nexting predictions after
15 minutes of online learning. The predictions consistently
anticipate which joint the user will move next, as shown by
the result that the joint that is selected next often has the
greatest magnitude of the four predictions. This information
could be used to change the joint selection ordering, so that
instead of cycling through a fixed order, the system would
cycle through the joints in an order given by the magnitude
of the nexting predictions. Nexting-based joint selection of
this kind was found to decrease the number of switching
commands that a user would have to provide, and thus the
total projected time used for transitions, as calculated using
the mean times observed for transitions involving one, two, or
three user switching actions (Fig. 8). The projected transition
cost for the adaptive order was then compared to the cost
for the best possible fixed switching order, as computed post-
hoc from the recorded data. Based on this comparison, it was
found that nexting predictions could facilitate a switching time
decrease of more than 14% on this task (Fig. 8). Moreover,
the time taken for switching was found to rise monotonically
with the number of switch commands. This means that with
adequate feedback to the user, this predictive approach could
reduce the amount of real time a patient spends on tasks.

This approach to adapting the switching order demonstrates
one direct benefit of learning in situ. This is a scenario where,
even though a person is always in control of the actions being
performed, the robot can make the user’s life better by learning
to anticipate what the user will want next. As shown in these
results, the best fixed ordering for the task is outperformed by
an adaptive ordering. Given the fact that a user will switch
between several tasks and can solve the same task in different
ways, it is difficult to see how a non-adaptive approach could
achieve the same benefits. Moreover, in spite of the relatively
large number of variables and the large feature space, learning
is still computationally and data efficient, as this level of
performance is reached in 15 minutes. All learning related

Transition with 1 switching action, mean time: 1.09 sec
Transition with 2 switching actions, mean time: 1.75 sec
Transition with 3 switching actions, mean time: 2.21 sec
Net experiment time: 20.66 min
Net observed transition time: 10.40 min
Net transition time (projected for best fixed order): 9.98 min
Net transition time (projected for adaptive order): 8.49 min
Potential time savings with adaptive control: ~ 1.49 min
Potential time savings on transitions: 14.3%
Potential time savings on full experiment: 7.2%

Fig. 8. Additional performance numbers for the switching task, including
projected time savings from applying nexting predictions.

computations were completed within Sms per iteration on a
similar laptop to the one used in the earlier experiment.

V. RELATED WORK

Much previous work on reinforcement learning for real-
time robotics has focused on its role in control. For example,
the Natural Actor-Critic algorithm (Peters and Schaal, 2008)
has a critic that makes a single prediction. Other reinforce-
ment learning approaches focus on policy evaluation without
a predictive component, as used for example in improving
a quadruped walk (Kohl and Stone, 2004). Previous work
with reinforcement learning on robots has not demonstrated
learning of thousands of temporally extended predictions in
real time.

Related to the idea of learning many predictions in parallel
is the idea of constructing optimal predictions for a set of
tests (Talvitie and Singh, 2011). The domains differ greatly
however, as in that work the emphasis is on constructing
the most accurate predictive answers for partially observable
systems that have a small discrete set of observations, whereas
this paper is concerned with satisfying the constraints of
learning in real time with continuous data on a robot.

The most similar work to the current system is an online
variant of an offline spectral method for making many tem-
porally extended predictions (Boots et al., 2011). Their work
differs from the work presented here in several important ways.
Although their algorithm is incremental and online, supporting
real-time operation is non-trivial because their algorithm uses
computationally expensive matrix operations and sophisticated
data transformations. Their algorithm requires a window of
past and future observations, which imposes additional mem-
ory requirements. Finally, their algorithm strongly couples the
various prediction questions to discover joint structure, and
coupling the problems together in this way prevents direct
parallel implementations. Despite these important distinctions
in implementation between the two methods, it is possible that
ideas from both methods can be fruitfully combined because
of their similar learning objectives.

A standard approach for predicting the temporally extended
consequences of behaviour is to use model-based roll-outs of
a one timestep dynamical model. This requires the acquisition



of a one timestep model of robot dynamics, often analytically
or offline from logs (Thrun and Mitchell, 1995), and then
using this model for adapting control. Another line of work
uses online, real-time learning with a large memory of past
experiences to dynamically construct local models (Atkeson
et al., 1997). However, that work does not develop the use of
local models for temporally extended predictions about many
different targets. Moreover, their approach is computationally
intractable for systems that lack an underlying low dimen-
sional description, such as a mobile robot with a diverse set
of sensing modalities.

Previous work has relied on small one timestep models
to manage the computational expense of using roll-outs to
generate temporally extended predictions. One approach used
roll-outs of a one timestep model to ensure that a robot with
substantial inertia can both move quickly and stop safely (Fox
et al., 1997). Recent work on real-time control of an au-
tonomous helicopter (Abbeel et al., 2010) uses both a cost-
to-go function (a variant of a value function) and simulations
of the system dynamics at 20Hz with a two-second horizon.

A major distinction from our work is that this standard
approach needs to be given an accurate model of the dynamics.
The dynamics of a robot’s interaction with the environment
can be poorly understood prior to deployment, particularly
when robots are sent into novel domains including underwater
exploration, space, disasters, and human bodies. Our approach
enables a robot to learn partial models of the relevant dynamics
directly from its stream of real-time interaction. A robot
with the ability to acquire knowledge of its dynamics from
experience can benefit both designers and end-users of the
robot through additional flexibility and improved performance.

VI. BROADENING THE SPACE OF QUESTIONS
(ONGOING AND FUTURE WORK)

We have demonstrated a method that learns to make
thousands of temporally extended predictions directly from
robot experience in real time. The predictions are answering
questions about the future that are empirical and multi-scale,
but are of a more constrained form than can be answered by
simulation roll-outs with a one-timestep model. In this section,
we outline generalizations of our approach that substantially
broaden the space of predictions that can be expressed. The
generalizations are based on the theory of options (Sutton
et al., 1999) and on allowing general value functions to be
option conditional (Sutton et al., 2011).

The first generalization is to permit 7y to vary with the state,
v = 7, which enables questions with state based (pseudo)-
termination to be posed. For example the question “How many
timesteps will elapse until all the wheels stop turning?”” can be
posed by setting ; = 1 and ; = 0 if the observed velocity of
every wheel is zero and ¢ = 1 otherwise. As another example,
Fig. 9 shows an example of the amount of power consumed
until a light sensor is saturated or approximately two seconds
have elapsed, where v; = .95 X Ipjght3<Saturation, and

= E?:lMotorCurrentit X MotorVoltage?;.

16 - -
14
12
=
=10
[a W
5 8
S
6 J
=
= 4 Prediction 1
o . .
= ol Light saturation
0} J
-2 ‘ : ‘
0 10 20 30 40
Seconds
Fig. 9. TD(A) can learn to answer questions where y varies with time for

state based terminations and the addition of terminal outcomes. Here, we see
predictions matching returns for the question of how much power will be used
until the sensor Light3 is saturated, or spontaneous termination occurs with a
2 second horizon.

This prediction was learned with the same parameters and
feature representations used in our result in Section III.

The next generalization is to add to the return an outcome
z¢ at termination. This allows questions to be expressed where
the final state is relevant. For example, the robot’s expected
temperature on Motor2 when the Light3 sensor is saturated
can be expressed by setting r; = 0, v = .95 X I ight3 <Saturations
z¢ = MotorTemperature2. Incorporating z; into the return is
supported by standard TD(\). For all the above generalizations
of questions, the error in the learned predictions should
decrease at rates comparable to those shown earlier.

A final generalization is to consider questions about differ-
ent ways of behaving. If the robot behaves according to one
policy, it is challenging to learn about the consequences of
following a different policy. In this off-policy learning setting,
the standard TD(\) algorithm can diverge. The expression for
the general value function g is modified,

gr,z,’Y,Tr(s) — E[G:’Z”’”|St — S7St+1 ~ 71.(5})]7 (6)
and the return G is extended,
Gyo" T =1+ e+ 27, N

where the termination time 7' is sampled according to ~.
This general question form is known as option-conditional
prediction (Sutton et al., 1999).

As an example of an off-policy scenario, consider the sen-
sory experience of a car being driven by a person being used
to learn to predict the time to come to a complete stop while
braking. Many environmental aspects could influence stopping
times while braking, including gravel roads, temperature, and
rain. The ability to learn off-policy enables learning from all
the snippets of experience when the driver touches the brakes,
and not just the times when the car comes to a complete stop.

To learn to answer off-policy questions in real time, one
can use the GTD(\) algorithm (Maei, 2011) that uses the ratio



m(Ae|Se)

Pt = 74,15 I the update equations that are shown below.

O = o1 + (1 — Y1) 21 + ’Yt+19t—r$t+1 - 92—% 3
et = pe(we + yedeer—1) 9
9t+1 =0, + Ol(5t€t - ’Yt+1(1 - )\t+1)(e:wt)xt+1) (10)
Wit = wi + B(drer — (x] we)xy) (11

The primary computational differences between GTD(\) and
TD()\) are an additional weight vector w, an associated step-
size parameter (3, and an explicit computation of the ratio p
between ;, (the robot’s behaviour policy) and 7 (the policy
considered by the prediction).

This algorithm is a gradient-based generalization of the
traditional TD()\) algorithm. The algorithm learns an answer
to the question g specified by r,z,m, and y as a linear function
of the feature vector, with the same form of linear prediction,
g(z¢) = 6w, and thus the same linear complexity. The
GTD()\) algorithm maintains guarantees of stability when
learning off-policy and converges to a fixed-point that min-
imizes the mean-squared projected Bellman error weighted by
the distribution of states visited by the behaviour (Maei, 2011).
This somewhat technical objective is a natural one for online
learning, as the algorithm minimizes the error that arises from
the agent’s limited perception (projecting environmental state
onto the feature vector x), for the Bellman error (the difference
between prediction and reality across adjacent timesteps), for
the experience generated by the robot’s behaviour that is
relevant to the policy considered by the prediction.

The space of questions that can be expressed in this final
setting is quite general, and possibly covers all the interesting
temporally extended predictions that one can answer with one-
timestep models (Sutton et al., 2011). However, there remain
numerous complications introduced by the general setting that
make it unsuitable for the demonstration of scaling that is the
focus of the present work. In particular, it is difficult to directly
measure performance in an off-policy setting. In an off-policy
setting, predictions are made about many different ways of
behaving, but from each state only the predictions for one way
of behaving can be tested at a time. Moreover, performing
a test alters the state and the state distribution from which
experience is gathered. These issues can likely be addressed,
and we plan to explore this direction in future work.

VII. CONCLUSIONS

We have demonstrated that a robot can learn to answer tem-
porally extended predictive questions in real time at scale—
for thousands of questions, using thousands of features, with
amounts of experience and computation that are commonly
available on robots today. This approach provides a principled
technique for a robot to acquire knowledge from experience
in real time about the temporally extended consequences of its
behaviour. We have described one potential use for this style of
knowledge as part of an adaptive user interface for a robot arm.
The method is straightforward to deploy on different robots,
and presents promising directions for future study.

ACKNOWLEDGMENTS

The authors thank Mike Sokolsky for creating the Crit-
terbot, and Thomas Degris for essential assistance with the
experiments briefly reported in Sections 4 and 6. The authors
also thank Michael R. Dawson and Jason P. Carey for their
contributions to the myoelectric control study in Section 4.

REFERENCES

Abbeel, P., Coates, A., and Ng, A. Y. (2010). Autonomous helicopter
aerobatics through apprenticeship learning. International Journal
of Robotics Research (IJRR).

Atkeson, C. G., Moore, A. W., and Schaal, S. (1997). Locally
weighted learning. Artificial Intelligence Review, 11(1/5):11-73.
Boots, B., Siddiqi, S., and Gordon, G. (2011). An online spectral
learning algorithm for partially observable nonlinear dynamical
systems. In Proceedings of the Twenty-Fifth National Conference

on Artificial Intelligence (AAAI).

Dawson, M. R., Fahimi, F,, and Carey, J. P. (2012). The development
of a myoelectric training tool for above-elbow amputees. The Open
Biomedical Engineering Journal, in press.

Fox, D., Burgard, W., and Thrun, S. (1997). The dynamic window
approach to collision avoidance. IEEE Robotics & Automation
Magazine, 4(1).

Kohl, N. and Stone, P. (2004). Machine learning for fast quadrupedal
locomotion. In Proceedings of the Nineteenth National Conference
on Artificial Intelligence (AAAI), pages 611-616.

LaValle, S. M. (2006). Planning Algorithms. Cambridge University
Press.

Maei, H. R. (2011). Gradient Temporal-Difference Learning Algo-
rithms. PhD thesis, University of Alberta.

Modayil, J., White, A., and Sutton, R. S. (2012). Multi-timescale
nexting in a reinforcement learning robot. In Proc. of the Int.
Conf. on Simulation of Adaptive Behaviour (to appear).

Peters, J. and Schaal, S. (2008). Natural actor-critic. Neurocomputing,
71:1180-1190.

Pilarski, P. M., Dawson, M. R., Degris, T., Carey, J. P., and Sutton,
R. S. (2012). Dynamic switching and real-time machine learning
for improved human control of assistive biomedical robots. In Pro-
ceedings of the 4th IEEE International Conference on Biomedical
Robotics and Biomechatronics (BioRob), pages 296-302.

Sutton, R. S. (1988). Learning to predict by the methods of temporal
differences. Machine Learning, 3:9-44.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforce-
ment learning. Artificial Intelligence, 112:181-211.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An
Introduction. MIT Press.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White,
A., and Precup, D. (2011). Horde: A scalable real-time archi-
tecture for learning knowledge from unsupervised sensorimotor
interaction. In Proceedings of the 10th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS).

Talvitie, E. and Singh, S. (2011). Learning to make predictions
in partially observable environments without a generative model.
Journal of Artificial Intelligence Research.

Thrun, S. and Mitchell, T. (1995). Lifelong robot learning. Robotics
and Autonomous Systems.



