
Model-based Reinforcement Learning Methods
for Developing Intelligent Assistants

by

Katya Kudashkina

A Thesis

presented to

The University of Guelph

In partial fulfilment of requirements

for the degree of

Doctor of Philosophy

in

Engineering

Guelph, Ontario, Canada

© Katya (Ekaterina) Kudashkina, January, 2022

ABSTRACT

MODEL-BASED REINFORCEMENT LEARNING METHODS

FOR DEVELOPING INTELLIGENT ASSISTANTS

Katya Kudashkina Advisor:
University of Guelph, 2022 Dr. Julie Vale

Intelligent assistants could benefit humans and the environment in many ways: they

could help make predictions about the future, enhance productivity, optimize work, and

make improvements not only in daily tasks but on a global level. Intelligent assistants

are a challenge to develop. In particular, conversational intelligent assistants are still

a subject of artificial intelligence (AI) research.

The challenge of conversational AI requires a domain that is tightly scoped so that

the intelligent assistant can learn and understand it. In this thesis, I propose a voice

document-editing domain, argue that the proposed domain is particularly promising for

conducting research in conversational AI, and present its primary advantages. Further,

I present suitable methods for developing intelligent assistants that are designed to learn

from interaction without explicit instruction. I show that model-based reinforcement

learning is a particularly appropriate class of methods to pursue.

Next, I provide a sample-efficient model-based reinforcement learning method—soft-

planner policy optimization. In this method, we introduce a novel soft-planner policy

and present a new update in which the soft-planner policy is used to fine-tune a model-

free policy and value function. Using a specific deletion task within the proposed do-

main, I demonstrate that the soft-planner policy optimization method allows the agent

to efficiently learn. I compare the method to the current state-of-the-art implementa-

tions for such systems: model-free actor-critic methods and supervised methods.

Finally, within model-based reinforcement learning methods, I focus on methods that

use expectation models and linear value functions. I show that planning with an ex-

pectation model must update a state-value function, not an action-value function as

previously suggested in the literature. I then demonstrate three methods in which

actions can be selected when planning with state-value functions and present general

model-based reinforcement learning algorithms for each. I present the practical appli-

cation of these methods on our proposed voice document-editing domain.

Altogether, this thesis combines deep learning, natural language processing, and rein-

forcement learning in the context of intelligent assistants, in particular, conversational

AI. We focus on model-based reinforcement learning methods that solve control prob-

lems and combine the settings of online learning, function approximation, and stochas-

tic environments.

Keywords: expectation models, function approximation, conversational AI, deep learning,

intelligent assistants, linear value functions, machine learning, model-based reinforcement

learning, neural networks, natural language processing, online learning, planning, stochastic.

iv

DEDICATION

To my mother, Svetlana.

v

ACKNOWLEDGEMENTS

This thesis would not have been possible without the support of a large number of

fantastic individuals and institutions. First and foremost I would like to thank my

family—my mother Svetlana, my dearest sister Natasha, and my father Sergei. They

never give up on me no matter what. Thank you for always believing in me, protecting,

supporting, and encouraging me to be who I am. I would like to thank my fiancé Maxim

Souraev for his endless patience, support, love, and care.

I am deeply indebted to all of you in my PhD committee for this journey and could

never thank you all enough for lifting me up on the hardest days. The major ideas

of this thesis started out in collaboration with Rich Sutton. I would like to thank

Rich for his guidance, criticism, mentorship, and inspiration—Rich, you taught me to

look deeper, to search for answers endlessly, and to never stop polishing my writing. I

would like to thank Julie Vale—Julie, you are the star and I look up to you on many

dimensions. I would like to thank Jakob Foerster—Jakob, I would not have done this

without your help and support. Julie, Rich, and Jakob—I would like to thank you for

carefully examining this thesis and for your constructive feedback. I would like to thank

Peter Wittek—Peter, even though you now rest in Mount Trishul in the Himalayas,

you gave this work a head start and a kick of encouragement. I would like to thank

Graham Taylor for advising me in the earlier years of my PhD, until our ways parted.

I am thankful to Mike Bowling, Yi Wan, Abhishek Naik, Patrick Pilarski, Valiappa

Chockalingam, and Jamie Kiros for the fun collaboration and for valuable advice.

A special thank you goes to Ajay Agrawal, Martha Steenstrup, Marc Bellemare, Beatrix

Dart, and Hado van Hasselt for their insights, advice, and support along the way.

I am also thankful to my friends and colleagues at the RLAI at the University

of Alberta: Eric Graves, Roshan Shariff, Joseph Modayil, Khurram Javed, Matthew

vi

Schlegel, Marlos C. Machado, Anna Koop, John D. Martin, Zach Holland, Matt Taylor,

Tian Tian, Sina Ghiassian, Kenny Young, Shibhansh Dohare, Kory Mathewson, Alex

Kearney, Martha White, Adam White, Juan Fernando Hernandez Garcia, Kris De Asis,

Andy Patterson. I am grateful to my friends and colleagues at the MLRG at the Uni-

versity of Guelph: Michal Lisicki, Nikhil Sapru, Carolyn Augusta, Thor Jonson, Angus

Galloway, Adam Balint, Devinder Kumar, Brendan Duke, Alaa El-Nouby, Vithursan

Thangarasa, Eu Wern Teh, Boris Knyazev, Kristina Kuperschmidt, Eric Taylor, Ethan

Jackson, Mostafa Nategholeslam, Elahe Ghalebi. I am indebted to the Arrell Food

Institute at the University of Guelph for the Arrell scholarship. I am thankful to the

Canadian Institute for Advanced Research, and the Vector Institute, Compute Canada

and the Alberta Machine Intelligence Institute. I am grateful to my close and/or long-

term friends for mostly bearing with me: Russ Asai, Eleni Triantafillou, Anna Golbeva,

Irina Kuznetsova, Olga Kadysh, Ken Constable, Natalia Shevchenko, Timothy Jordan,

Jon French, Irina Baratov, Jane Podbelskaya , and many others.

For any errors or näıveté I alone am responsible.

vii

STATEMENT OF CONTRIBUTIONS

This thesis is a culmination of years of hard thinking and is based on the following pa-

pers and pre-prints. It connects intelligent assistants, conversational AI, deep learning,

natural language processing, and reinforcement learning.

In Chapter 3, I provide my position on what is necessary to advance research on

intelligent assistants, and in particular, conversational AI assistants. In this chapter I

present my first contribution and propose a voice editing domain and argue for methods

suitable for solving it. The ideas described in this chapter are drawn from my work

that started while visiting the University of Alberta as a Visiting Scholar. The work

was done in collaboration with Dr. Patrick Pilarski and Dr. Richard S. Sutton. At the

time of the submission of the thesis this work is under review with Springer Nature

Computer Science Journal and is available online: Kudashkina K., Pilarski P., and

Sutton R. S., “Document-editing Assistants and Model-based Reinforcement Learning

as a Path to Conversational AI”. ArXiv: 2008.12095.

In Chapter 4, I present my second contribution that is a model-based reinforce-

ment learning method—soft-planner policy optimization. This work was done in col-

laboration with Valliappa Chockalingam, Dr. Peter Wittek, Dr. Michael Bowling, and

Dr. Graham W. Taylor. This work is available online: Kudashkina K., Chockalingam

V, Taylor G., Bowling M., “Sample-Efficient Model-based Actor-Critic for an Interac-

tive Dialogue Task”. ArXiv: 2004.13657.

In Chapter 5, I explore model-based reinforcement learning methods for planning

with expectation models for control. The first part of this work was done during my

viii

second visit to the University of Alberta as a Visiting Scholar, working in collaboration

with Yi Wan, Abhishek Naik, and Dr. Richard S. Sutton. This pre-print of the work

is available online: Kudashkina K., Wan Y., Naik A., Sutton R. S., “Planning with

Expectation Models for Control”. ArXiv: 2104.08543. Here, I present my main con-

tribution in which I prove that planning with appealing expectation models cannot be

done with action-value functions. This brings up the question that was side-stepped

before of how planning is going to effect action selection. I address the question as my

fourth contribution by exploring planning with state-value function and considering

three strategies for action selection.

In Chapter 6, I explore the realization of the voice editing domain further. This

chapter presents the practical application of this action selection strategies discussed

in Chapter 5 on our proposed voice document-editing domain.

Overall, this thesis contributes model-based reinforcement learning methods appli-

cable for building intelligent assistants.

ix

TABLE OF CONTENTS

Abstract ii

Dedication iv

Acknowledgements v

Contributions vii

Table of Contents ix

List of Figures xiv

Notation Summary xix

1 Introduction 1

1.1 Overall Structure . 4

2 Background 7

2.1 Reinforcement Learning . 7

2.1.1 Markov Decision Process . 8

2.1.2 Tabular Formulation . 10

2.2 Partial Observability . 12

2.2.1 Agent State . 13

2.3 Function Approximation . 15

x

2.3.1 The Agent’s Components . 17

2.3.2 Function Approximators . 18

2.4 Model-free method: Q-learning . 18

2.5 Model-based Reinforcement Learning 18

2.5.1 Experience Replay vs. Learned Models 21

2.5.2 Type of Models . 22

2.5.3 Episodic vs. Continuing Setting 24

2.5.4 Linear Value Functions . 25

3 The Challenge of Conversational AI 27

3.1 Intelligent Assistants . 28

3.2 Conversational and Purposive Assistants 29

3.3 The Challenge of Conversation . 32

3.4 Voice Document-Editing Domain . 35

3.4.1 Advantages of Voice Document-Editing Domain 38

3.4.2 Current State of Voice Document-Editing Systems 41

3.5 Proposed Solution Space . 43

3.5.1 Advantages of Reinforcement Learning 44

3.5.2 Prior Work Applying RL to Conversational AI 47

3.5.3 Model-Based Reinforcement Learning Assistants 49

3.5.4 MBRL Open Research Areas . 51

3.6 Realizing Voice Document-Editing Domain 52

3.6.1 Voice Document-Editing Deletion Task 54

3.6.2 Simulation and Dataset . 58

3.7 Summary and Implications . 60

xi

4 Soft-Planner Policy Optimization 61

4.1 Related Work . 62

4.2 Background . 65

4.3 Soft-Planner Policy Optimization . 67

4.4 Experiments . 74

4.4.1 Word Embeddings . 75

4.4.2 State Update Architecture . 76

4.4.3 Model Architecture . 77

4.4.4 Baselines Architecture . 78

4.4.5 Initialization and Hyperparameters 78

4.5 Results . 79

4.5.1 Sample Efficiency . 80

4.5.2 Long-term Performance . 82

4.5.3 Model-free SPPO-lite Agent . 84

4.6 Discussion . 85

4.7 Conclusions . 87

5 Planning with Expectation Models for Control 88

5.1 Planning with Function Approximation 89

5.2 Background . 91

5.2.1 Value Iteration . 91

5.2.2 Planning and Backup Distribution 93

5.3 Equivalence of Planning with Expectation and Distribution Models . . 94

5.4 Incompatibility of Expectation Models and Action-Value Functions . . 99

5.4.1 A Counterexample Illustration 101

5.4.2 A Stochastic Corridor Illustration 104

5.4.3 Discussion and Conclusion . 107

5.5 Action Selection Strategies . 108

xii

5.5.1 Definitions . 108

5.5.2 Strategy 1: Decide-Time Planning 110

5.5.3 Strategy 2: Adjunct Action-value Function 111

5.5.4 Strategy 3: Adjunct Policy . 112

5.6 Non-stationarity Setting & Impact . 117

5.6.1 Experiments . 117

5.6.2 Results . 118

5.7 Action Selection Strategies Illustration 121

5.7.1 Experiments . 121

5.7.2 Results . 122

5.8 Discussion . 125

5.9 Conclusion and Future Work . 127

6 Application for VDE and Beyond 128

6.1 Action Selection Strategies Applied to VDE 128

6.1.1 Experiments . 129

6.1.2 Results . 130

6.1.3 Conclusions . 131

6.2 Some Remaining Questions . 132

7 Impact and Summary 136

7.1 Future Work . 137

References 141

Appendix 175

A Model Update 175

A.0.1 Matrix Update . 176

A.0.2 Reward Vector Update . 178

xiii

Glossary 179

Index 180

xiv

LIST OF FIGURES

2.1 An interaction between an agent and an environment that shows policy

learning. 11

2.2 A general process in the function approximation case for updating the

agent state and selecting actions. 17

2.3 A model receives a state and an action as inputs and outputs the next

state and reward. 19

2.4 The role of model and its impact on policy and value function in a

general process in the function approximation case for updating a state

and an action selection. 20

3.1 An example of a document-editing scenario with an intelligent assistant. 37

3.2 An example when a human says “I will walk the dog”, yet the dialogue

system results in “I will walk the frog”. As a result, the user wishes

to delete the final corrupted part of the sentence and then re-dictate it.

Note that, in this example, we could have replaced the word “frog” with

the word “dog”, which would comprise a replacement problem that is

not within the scope of this work. 54

xv

3.3 Consider an example where the user says “Good morning, George. I

hope you have been well”, yet the dialogue system transcribes and dis-

plays to the user “Good morning, George. I hope you pin well.” The

initial user’s intent in this example is 2—the user desires to delete two

words “pin well”. If an agent takes an action A1 = 1, the updated

sentence would become “Good morning, George. I hope you pin” and

the reward would be R1 = −1. The updated intent would be then 1.

Next, if the agent takes an action A2 = 3. The updated sentence would

be “Good morning, George. I” and the reward would be R2 = −2. If

the agent takes an action A2 = 3 the user would have to re-dictate two

deleted words “hope you” indicating that they were deleted incorrectly. 57

4.1 SPPO method schematically. The first part is on the left in blue—

planning and acting; the second part is in the middle in green—policy

and state-value function updates; the third part is on the right in yellow—

model update. 72

4.2 Construction of RNN-input Ω for the state-update function. The Ω

includes the information of the previous state, the observation, and the

reward. The dimensions of each array are shown underneath each entity. 76

4.3 A model architecture with a stack of three convolutional layers. 77

4.4 Performance of the SPPO method, AC and the supervised learning

method on the deletion task. The data are averages over 30 runs of each

algorithm, each begun with a different random number seed. Shaded

regions are standard error. 80

xvi

4.5 The total reward per interaction, the return G0, averaged over all runs.

The plot shows the average over the last 90,000 interactions (on the

left), and over the last 10,000 interactions (on the right) for the SPPO

method and AC. The data are averages over 30 runs of each algorithm,

each begun with a different random number seed. The orange line is the

median and the extent of the boxes represents upper and lower quartiles. 82

4.6 The distribution over actions for all actions that the SPPO method and

AC took over all interactions. 83

4.7 The performance of SPPO-lite and AC. SPPO-lite outperformed AC

with and without using greedy action selection. The orange line is the

median and the extent of the boxes represents upper and lower quartiles. 84

5.1 A counterexample episodic MDP. 101

5.2 Performance of Q-learning and AAVI with a learned expectation model

with ε-greedy action selection on the counterexample episodic MDP. The

data were averaged over 100 runs, each begun with a different random

number seed. Shaded regions (barely visible) are standard error. . . . 103

5.3 A stochastic corridor. The actions are stochastic: with probability p, the

actions cause the agent to move one cell in the direction corresponding

to its name (left or right), and with probability p − 1, the agent ends

up one cell in the other direction. The reward is −1 on all time steps

except the transitions that take the agent to terminal states. If the

agent reaches the terminal state marked by ‘G’—the goal state—it gets

a reward of +20; the reward is 0 for reaching the other terminal state.

The episode ends once the agent reaches a terminal state. 104

xvii

5.4 Performance of Q-learning and AAVI with expectation model on the

corridor stochastic environment with function approximation. Feature

vectors of size d = 14 are random binary feature vectors for each state.

They all have the same k number of 1s, k = 5, picked at random, without

replacement. Each data point represents the average number of total re-

ward per episode, averaged over all the runs and over temporal stretches

of 500-episode bins. Shaded regions are standard error. Stochasticity of

the environment was ζ = 0.1. 105

5.5 Performance of Q-learning and AAVI with the true model on the stochas-

tic corridor. Total reward per episode, averaged over 30 runs; each

data point represents the average number of total reward per episode,

averaged over all the runs and over temporal stretches of 50-episode

bins. Shaded regions are standard error. The phase was set to n = 500

episodes. Stochasticity of the environment was ζ = 0.3. 118

5.6 AVI with the learned expectation model on the stochastic corridor with

tabular features. Higher number of planning steps helped the agent to

adjust during the phase transition. A phase was 10,000 episodes. Each

data point was the return per episode G0, averaged over 30 runs and

over temporal stretches of 25-episode bins. Shaded regions are standard

error. 120

5.7 Q-learning, AAVI, and DTP on the non-stationary stochastic corridor

with a phase of n = 500 episodes, with k = 5 planning steps. Each

data point was the episode return, G0, averaged over all 30 runs and

over temporal stretches of 50-episode bins. Shaded regions are standard

error. The stochasticity of the environment was ζ = 0.1. 122

xviii

5.8 DTP, Adjunct Q, and Adjunct π methods on the non-stationary stochas-

tic corridor with a phase of n = 500 episodes, with k = 20 planning steps.

Each data point was the episode return, G0, averaged over 30 runs and

over temporal stretches of 50-episode bins. Shaded regions are standard

error. The stochasticity of the environment was ζ = 0.1. 124

6.1 Three action selection strategies the voice document-editing deletion

task (see Section 3.6.1). We measured total reward per interaction, G0,

averaged over 30 runs, each begun with a different random number seed.

Shaded regions are standard error. 130

xix

NOTATION SUMMARY

Capital letters are used for random variables. Lower case letters are used for the

instantiations of random variables—the values of random variables—and for scalar

functions. For example, the state, action, and reward at time step t are denoted St,

At, and Rt, while their possible values might be denoted s, a, and r. Approximate

value functions are deterministic functions of random parameters and are thus also in

lower case (e.g., v̂(s,w) ≈ vπ(s)).

.
= equality relationship that is true by definition

≈ approximately equal

Pr{X = x} probability that a random variable X takes the value x

X ∼ p X selected from a distribution p(x)
.
= Pr{X = x}

E[X] expectation of a random variable X, i.e., E .
=
∑

x p(x)x

arg maxa f(a) a value of a at which f(a) takes its maximal value

> transpose operator

lnx natural logarithm of x

ex the base of natural logarithm of x

R set of real numbers

← assignment, used to avoid confusion with definitions

(a, b] a real interval between a and b including b but not including a

ε probability of taking a random action in an ε-greedy policy

τ trajectory

Ht history up to a time step t including past actions, observations,

and rewards

xx

α, β step-size parameters, also referred to as learning rates

t discrete time step

ζ stochasticity of the environment

γ discount parameter

T, T (t) final time step of an episode At action at time t

A(s) set of all actions available in state s

s, s′ environment states

St environment state at time t

s, s′ feature-vectors of an agent state

st feature-vector of an agent state at time t

u state-update function

S set of all non-terminal states

R,Rt reward at time t

π policy (decision-making) rule

π(θ) policy π corresponding to parameters θ

π(a | s) probability of taking action a in state s under stochastic policy π;

a probability distribution over all a ∈ A(s) for each s ∈ S

πplanner planner policy

vπ(s) value of state s under policy π (expected return)

vπ or v∗ value functions

p(s′, r | s, a) joint probability of transition to next state s′ with reward r

given the current state s and action a

p(s′ | s, a) probability of transition to state s′, from state s and action a

d dimensionality—e.g., the number of components of w

d′ alternate dimensionality—the number of components of θ

w,wt d-vector of weights underlying an approximate policy

wi i-th component of a learnable weight vector

θ,θt d-vector of weights underlying an approximate value function

xxi

wq,wq
t d-vector of weights underlying an approximate action-value function

v̂(s,w) approximate value of state s given weight vector w

q̂(s, a,w) approximate value of a state–action pair s, a given weight vector w

∇v̂(s,w) column vector of partial derivatives of v̂(s,w) with respect to w

∇q̂(s, a,w) column vector of partial derivatives of q̂(s, a,w) with respect to w

αθ step-size corresponding to learnable weights θ

αw step-size corresponding to learnable weights w

ψt speech transcription at a time step t

wt word sequence

Ot observation

It user’s intent

mt number of steps within an interaction

bt number of words that were not corrupted but deleted by the agent incorrectly

H entropy

J(θ) performance measure for the policy π(θ)

ŝ feature-vector of the next state predicted by the model

r̂ next reward predicted by the model

Gt return following time t

Ĝt approximated return by one-step lookahead, following time t

Ĝa
t vector of returns following time t with an element Gt computed for all a ∈ A

b(s, a,w) ZTEM TD target at time step t

g(s,w) update target when acting greedily with respect to the model based

on the values of ZTEM TD target

k number of planning steps or iterations in AVI and AAVI

δt temporal-difference(TD) error at time t

n number of episodes in a phase

F model’s forward transition matrix

αF step-size corresponding to the matrix F

η expected reward vector used by the model

Chapter 1

Introduction

This chapter introduces the story of this thesis, highlights some key concepts, and

provides an organizational structure of the thesis.

Imagine a world filled with intelligent assistants that help humans by understanding

their questions, predicting their behaviors, reasoning about their needs, optimize their

lives as a whole, and truly integrating into everything humans do. The benefits of

such assistants could be enormous: from optimized global energy and resources and

reducing the environmental footprint of our society, to improved psychological and

physical well-being.

Intelligent assistants built on voice interaction—conversational AI—are among the

most important applications of AI. Conversational AI assistants are already a large part

of everyday human-computer interactions. Some examples are intelligent assistants

that help humans with voice shopping, voice web browsing that especially helps visually

impaired people accessing the internet, and virtual employee assistants. The integration

of voice assistants in our lives continues to influence everyone.

1

Yet, we still do not know how to build fully capable intelligent assistants that can

fulfill the promise of assisting people, and conversational AI assistants are no exception.

Over the last several decades, there have been many attempts to build conversational

AI assistants (e.g., Carbonell, 1971; Winograd, 1971; Litman et al., 2000; Singh et

al., 2002). Efforts have been made not only by researchers but also by the world’s

largest corporations. The task of building conversational AI is so difficult that even

big corporations with all the resources at their disposal are still working on it (Maedche

et al., 2016; Baym et al., 2019). A great example of such efforts is an intelligent user

interface for Microsoft Office nicknamed Clippy—an animated character that would

pop up on the user’s screen to assist and ask if the user needs help. Clippy is a great

example of how a research effort seeking to develop a human-like interface and software

that would assist humans results in an annoying feature that distracts the user instead.

Why is it so difficult to get to the goal of an intelligent conversational AI assistant

that is truly helpful to its users and understands users’ purposes? One of the reasons

is that conversational AI has many complex elements that research can be focused

on: dialogue management, input generation, natural language understanding, speech

recognition, natural language generation (Eric, 2020). Further, each of these elements

can have its own complexity levels and can result in many different research directions.

For example, the complexity levels can vary from less complex basic chatbots (e.g.,

Quarteroni and Manandhar, 2009) that have only built-in knowledge and do not im-

prove over time to more complex complex and advanced assistants that serve a specific

purpose such as booking tickets (e.g., Handoyo et al., 2018) and can carry context from

one interaction to the next which enhances the user experience.

In this thesis, I argue that to make progress in conversational AI we need a domain

that is small enough for an assistant to fully understand, yet challenging enough for the

2

assistant to learn. I propose a voice document-editing domain that is tightly scoped

and fully accessible while also exhibiting the characteristics of conversational AI agents

necessary for advancing this research.

The domain itself is not enough for developing conversational AI and we further

seek the most suitable methods. I further argue that, rather than using classic super-

vised learning approaches, reinforcement learning—and in particular more complicated

model-based reinforcement learning—is well-suited for developing effective intelligent

assistants. General methods, such as supervised learning, that scale with increased

computation are the dominant way to build knowledge into AI systems; however, this

built-in knowledge is not enough for building conversational AI agents assisting users,

especially in complicated domains. Built-in knowledge does not improve over time.

Supervised learning is an important kind of learning, but alone it is inadequate for

learning from interaction. In contrast, reinforcement learning is a natural way to learn

from human-computer interaction and allows the development of agents that can adapt

quickly to their users and learn with a minimal amount of prior knowledge and, typi-

cally, in the absence of external supervision.

Reinforcement learning starts with a system—an agent—that is interactive and

goal-seeking. Model-based reinforcement learning provides us with the key to the

effectiveness of an intelligent assistant—leveraging the human-computer interaction

information as much as possible. In model-based reinforcement learning an agent is

augmented with a model that the agent can query to predict how the world will respond

to the agent’s actions—often referred to as a world model. The world model can further

help the agent evaluate possible actions by imagining hypothetical scenarios and then

computing their expected future outcomes—the process referred to as planning. Thus,

world models and planning have the extraordinary potential to achieve the goal of an

3

efficient and useful intelligent assistant that can adapt to its users, reason about the

consequences of its actions, control its choice of actions among alternatives, and learn

how the real world works.

Many technologies have been explored in building conversational assistants. The

challenge of building one requires for a combination of many research areas: natural

language processing, human-machine interaction, dialogue systems, and deep learning,

to scratch the surface. In each of these areas, many specifics would entail years of

research. This thesis combines a few of them as described below.

1.1 Overall Structure

The thesis is divided into a background section followed by three main parts, and

concluding chapters.

Background

In Chapter 2, I formally introduce reinforcement learning settings and provide necessary

definitions for reinforcement learning and model-based reinforcement learning that are

common to the rest of the thesis. I leave background concepts required only for a

specific chapter to be introduced within the corresponding chapter.

Part 1. The challenge of building conversational AI

In Chapter 3, I propose a voice document-editing domain that enables the development

of intelligent assistants that can become more helpful and powerful.

4

Then, I unfold the solution space for this domain by arguing for the need for

reinforcement learning methods. I demonstrate that reinforcement learning methods

are particularly well-suited for designing research and experiments when it comes to

conversation AI. I carefully walk the reader through examples of how reinforcement

learning fits naturally into the cycle of human-machine interaction, allowing the user to

interact with a learning system in real-time, receive natural human feedback, and adjust

based on the user’s needs. Finally, I dive deeper into more complicated reinforcement

learning methods: model-based reinforcement learning methods, in a specific setting

that combines online learning and control.

Part 2. Soft-Planner Policy Optimization

In Chapter 4, I propose a sound model-based planning method—Soft-Planner Pol-

icy Optimization (SPPO). I empirically demonstrate the effectiveness of the proposed

planning method on the voice document-editing domain. Finally, I evaluate the Soft-

Planner Policy Optimization’s performance with respect to other state-of-the-art meth-

ods in model-based reinforcement learning.

Part 3. Planning with Expectation Models for Control

In Chapter 5, I provide a consistent and systematic approach to planning in model-

based reinforcement learning. We focus on the optimal control problem, particularly on

stochastic optimal control. First, we show the incompatibility of action-value functions

with expectation models. As a result, we raise the question of how planning influences

the agent’s action selections. We consider three strategies for this and present general

model-based reinforcement learning algorithms for each. We identify the strengths and

5

weaknesses of these algorithms. Our algorithms and experiments are the first to treat

model-based reinforcement learning with expectation models in a general setting. In

Chapter 6, I apply the discussed strategies for action selection to the voice editing

domain in practice. Finally, Chapter 7 provides concluding remarks and a view of the

future.

I hope that this research will progress the field, starting with advancements in

model-based reinforcement learning and further innovations in planning methods. These

advancements will substantially improve the generalization capabilities of model-based

reinforcement learning algorithms. By understanding how state-of-the-art algorithms

combine planning and learning, we can better understand intelligence itself. Finding

solutions for planning with model-based reinforcement learning will bring us one step

closer to the goal of intelligent assistants that fully and functionally understand the

real world around them. The realization of such intelligent assistants not only serves

our objectives of achieving goals and ambitions of AI but also results in increasing the

potential for a wide range of reinforcement learning applications that fundamentally

and profoundly change the everyday life of normal people and directly benefit society:

from improving productivity to benefiting people with limited abilities.

This thesis is designed to be read by an audience with some mathematical back-

ground and some familiarity with machine learning concepts. The background chapter

defines terms frequently used in reinforcement learning.

6

Chapter 2

Background

The role of this chapter is to provide necessary definitions and concepts that are

applicable and common across this thesis. In particular, we introduce reinforcement

learning (Section 2.1), the function approximation setting (Section 2.3), and model-

based reinforcement learning concepts (Section 2.5). Concepts that are applicable only

for specific chapters are introduced as additional background sections in those chapters,

e.g., the value iteration concept is introduced in Section 5.2.1. If a reader if familiar

with reinforcement learning they may prefer to skip this chapter.

2.1 Reinforcement Learning

Reinforcement learning (RL) is learning to maximize the expected outcome by map-

ping situations to actions. RL problems are cast as sequential decision-making prob-

lems in which an agent and an environment interact in a sequence of discrete time

steps t = 0, 1, 2, 3, ..., T . The time step at which the agent-environment interaction—

an episode—terminates is denoted by T . At each time step, the environment sends a

7

single number to the agent called the reward. The goal of a reinforcement learning prob-

lem is for the agent to maximize the total reward it receives over the episode. To follow

Sutton and Barto (2018), we use the terms agent, environment, and action instead of

the engineering terms controller, controlled system, and control signal. Similarly, we

also restrict our attention to discrete time steps.

2.1.1 Markov Decision Process

A mathematical framework that models reinforcement learning problems using precise

theoretical statements is the Markov Decision Process (MDP). In an MDP, action

selection is driven by the information that the state s provides; outcomes—or next

states—are partly random and partly under the control of an agent making decisions.

If S is the set of all possible states in the given environment, then at each discrete

time step t = 0, 1, 2, 3, ..., T the agent receives a representation of the environment

state denoted St ∈ S. If A(St) is the set of all actions possible from state St then

an action that the agent takes at St is denoted At ∈ A(St). Once an action is taken,

the agent receives a numerical reward , Rt+1 ∈ R and transitions to the next state

St+1 ∈ S. The function p defines the transition dynamics of the MDP such that, given

particular values of the current state s and action a, p gives the probability of each

possible reward r and next state s′:

p(r, s′|s, a)
.
= Pr{Rt+1 = r, St+1 = s′|St = s, At = a}.

8

The agent interacts with the MDP yielding a sequence that we henceforth refer to as

a trajectory denoted by τ :

τ
.
= S0, A0, R1, S1, ..., ST−1, AT−1, RT , ST .

If the probability of each possible value for St+1 and Rt+1 depends only on the previous

state St and action At, and not on any earlier states and actions, then the state is said

to have the Markov property. In this thesis, we will assume that the environment state

always has the Markov property.

A reward received some time in the future is worth less than if it were received

immediately. This concept is known as discounting. A discount rate is the rate that

indicates a willingness to trade-off between present rewards and delayed rewards. A

discount rate is denoted by γ ∈ [0, 1]. The sum of discounted rewards is referred to as

a total discounted return, or return for short, denoted Gt:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + ... =

T−t−1∑
k=0

γkRt+k+1. (2.1)

When it comes to discounting there are other formulations that exist, for example,

finite-horizon reinforcement learning (De Asis et al., 2019) and average-reward rein-

forcement learning (Schwartz, 1993). These choices are discussed in further details in

Section 2.5.3.

9

2.1.2 Tabular Formulation

In this section, we describe the core concepts of reinforcement learning algorithms in a

simple form: as if the states and action spaces are so small that it is possible to form

arrays of tables that contain an entry for each state or a state-action pair and their

corresponding policies and value functions. These are referred to as tabular methods .

The behavior of the agent is determined by a policy. If the agent follows policy πt

at time t then π(a | s) is a probability distribution over all a ∈ A(s) for each s ∈ S

such that At = a if St = s. A policy at time t is denoted as πt. The agent aims to find

a policy that maximizes the expected sum of discounted rewards Gt—the process is

referred to as learning the optimal policy π∗. Generally, reinforcement learning methods

specify how the agent’s policy is changed as a result of the agent’s experience (Sutton

and Barto, 2018).

The majority of reinforcement learning algorithms involve estimating functions that

compute the value of a given state or a state-action pair—referred to as state-value

functions and action-value functions respectively. The state-value function, denoted

vπ(s), is the expected return when starting in state s and following π thereafter:

vπ(s)
.
= Eπ[Gt | St = s] = Eπ

[∞∑
k=0

γkRt+k+1 | St = s

]
,∀s ∈ S.

The action-value function is the expected total discounted return for each state-action

pair, when the agent takes action a from state s, and then follows policy π:

qπ(s, a)
.
= Eπ[Gt | St = s, At = a] = Eπ

[∞∑
k=0

γkRt+k+1 | St = s, At = a

]
.

10

Agent

Environment

a state is used
further by the
value
function

Updates
policy

Value
Function

Takes
an action
according
to the policy

passed to the value function
to compute estimated returns

An environment responds
with a reward to the agent's action

An evironment takes the agent to the next state

Figure 2.1: An interaction between an agent and an environment that shows policy
learning.

Figure 2.1 conceptually describes the agent’s policy learning. In tabular methods,

it is possible to compute an optimal policy precisely.

The problem in which an optimal policy and optimal value functions are estimated is

referred to as the control problem, which is the primary focus of reinforcement learning.

Many of the methods in reinforcement learning focus on the computation of vπ and qπ

for a fixed arbitrary policy π—referred to as the prediction problem (e.g., Sutton et al.,

1988; Singh et al., 1995; Wan et al., 2019) or policy evaluation. In this work, we focus

on the more challenging control problem.

A reinforcement learning agent learns within one of two broad frameworks: model-

free reinforcement learning and model-based reinforcement learning (MBRL). In model-

free reinforcement learning, the agent relies solely on its observations to make decisions

(Sutton and Barto, 2018). In model-based reinforcement learning the agent learns

11

a model of the world, which it may further use to plan its decisions. The process of

taking a model as input and producing or improving a policy for interacting with a

modeled environment is referred to as planning. Models and planning are discussed in

more detail in Section 2.5.

2.2 Partial Observability

In this thesis, we generally consider partially observable settings in which an agent

receives a signal that depends on its state, but carries only partial information about

the state—referred to as observations (Sutton and Barton, 2018, Chapter 17). These

are known as Partially Observable MDPs (POMDPs).

Consider a dynamic system that takes as input at time step t an action At from

a discrete set of actions A and emits only observations Ot. An observation does not

contain all of the information for predicting the future state. Thus, the best one can

do for optimal control is to rely on the full sequence of actions and observations that

is referred to as history H. The history at time step t is as follows:

Ht
.
= A0, O1, A1, O2, ..., At−1, Ot.

The agent also receives a scalar numerical reward at every time step that is a function

of a state: Rt
.
= f(St) ∈ R. If OT is a special observation at the terminal state, the

episode trajectory is then as follows:

τ
.
= A0, O1, R1, ..., AT−1, OT , RT .

This trajectory is a history of what an agent interacting with the environment can know

12

and observe. As usual, the agent chooses actions to maximize the expected discounted

return from the start state Gt defined in (2.1).

2.2.1 Agent State

Here we define an important concept referred to as agent state. The agent state differs

from the environment’s state s defined in Section 2.1. The environment state is all

the things used by the environment to compute itself and is the basis of the theory of

Markov decision processes. The environment state may include latent (hidden) states

that are not visible to the agent. We define the agent state at time t to be a compact

summary of the agent’s history H up to time step t (including past actions, observations,

and rewards). This compact summary is useful for predicting and controlling the future

of the trajectory. The agent state changes at every time step based on the actions the

agent takes and the observations that come from the environment. We discuss the

computation of the agent state in Section 2.3 below.

In Section 2.1.1 we defined that the environment state is Markov with respect to the

environment, meaning that the previous state St carries information about all aspects

of the agent-environment interaction history that allows characterizing the next state

St+1:

Pr(St+1 | St) = Pr(St+1 | Ht). (2.2)

We denote the agent state as a bold letter s to differentiate it from the environment

state s. In function approximation settings, s is always a feature vector, and st is a

feature-vector at time step t. The agent state s is an approximation of the environment

state and may no longer be Markov with respect to the environment, meaning the

probability distribution of the next agent state given the full history Ht is no longer

13

equal to the probability distribution of the next agent state given the previous agent

state:

Pr(st+1 | st) 6= Pr(st+1 | Ht). (2.3)

Sometimes the agent state can be confused with the concept of belief state that is

defined in partially observable MDPs. In partially observable MDPs it is common to

learn a probability distribution over environment states referred to as belief state or

belief. The belief state assumes that there is a set of latent (hidden) states Xt and the

agent is trying to learn a distribution over the latent states which is often computation-

ally challenging. The agent has limited computational resources and sometimes cannot

approximate the latent state because the latent state can be too big and complicated,

especially in real-life settings. In contrast, the agent can approximate the agent state.

Thus, the latent state Xt produces an observation Ot which the agent sees and uses to

create an st, but the latent state itself is never available to the agent. Unless otherwise

specified, henceforth we refer to the agent state by state and to the environment state

as environment state.

14

2.3 Function Approximation

In many cases, especially real-life scenarios, tabular methods do not fit the problem

because they cannot account for all possible entries in a table (e.g., the number of

states can be too large to in a table). In these cases, the value functions and policy

are approximated using some parameterized function representation, for example, neu-

ral networks. These methods are referred to as reinforcement learning with function

approximation or approximate solution methods .

In the function approximation setting, the agent state can be represented by a

feature-vector that is a set of real numbers s ∈ Rd that is computed using a state-

update function u (Sutton and Barto, 2018). The state-update function uses the most

recent observation and action along with the most recent agent state to recursively

compute the new agent state incrementally at every time step:

st
.
= u(st−1, At−1, Ot). (2.4)

The state-update function u may be constructed based on prior knowledge (e.g., Albus,

1971; 1981) or learned (e.g., Littman et al., 2002).

In the tabular reinforcement learning setting, we define true value functions with

respect to environment states (see Section 2.1), conventionally denoted vπ, v∗, qπ, and q∗

(Sutton and Barto, 2018). For instance, for a policy π, the true value function vπ is the

expected return given the environment state (which is a Markov state). As described

above, in the function approximation setting the agent does not have access to the

environment state, nor is the agent state necessarily Markov as in (2.3). Hence the

true value functions vπ, v∗, qπ, q∗ cannot be computed with respect to states. Instead, we

have approximate value functions v̂, q̂ using deterministic functions with parameters

15

that are generally denoted as w,θ. Their parameters are generally weight vectors

where each vector is a column vector with a fixed number of real valued components,

for example, w
.
= (w1, w2, ..., wd)

> (the > denotes transpose, to turn the horizontal

row vector in the text into a vertical column vector).

The policy is often parameterized with parameter vector θ. Then an action a taken

at time t in state s with parameter θ is written as:

π(a | s,θ) = Pr{At = a | st = s,θt = θ}.

In other words, we say that each time step’s action At is selected according to a policy

π mapping states to a probability distribution over actions:

At ∼ π(· | st,θt), for all t.

Approximated value functions are deterministic functions of weight vector w and are

differentiable functions of w for all s ∈ S:

v̂(s,w) ≈ vπ(s),

q̂(s, a,w) ≈ qπ(s, a).

If the agent follows a policy π, then the approximate state-value function for policy

π, denoted v̂π : s × Rd → R, with weight vector w ∈ Rd, would be learned such that

v̂(st,wt) ≈ Gt, for all t. The quality of the approximation will be determined by the

dimensionality d of the weight vector, by how these vectors are used in the function

approximator, and by how well they match the statistics of the environment.

16

Agent

Environment

previous
state

previous
action

current
observation

compute an
agent state

outputs
an agent
state

Uses computed state
and reward
produced by

environment to
estimate optimal

policy and/or optimal
value function

Takes an action
according to the

policy

becomes a new input state

a new input for
a state update
 function

current
observation

An environment produces
a new observation based on the
action the agent takescurrent

reward

used in the computation
of optimal policies and

value functions

Figure 2.2: A general process in the function approximation case for updating the
agent state and selecting actions.

2.3.1 The Agent’s Components

When using function approximation, the agent is generally comprised of two primary

components. The first component of the agent is the state-update function u described

in (2.4). The second component of the agent comprises two closely related functions:

a policy and a value function. As described earlier, the value function estimates the

expected upcoming reward as a function of either states or state-action pairs. In

function approximation settings policies and value functions are often approximated

by artificial neural networks (e.g., Parr et al., 2008; Sutton et al., 2008). A general

process for updating the agent state and selecting actions using these components is

shown in Figure 2.2.

17

2.3.2 Function Approximators

Reinforcement learning has been successfully applied in a function approximation set-

ting using deep neural networks, kernel methods, support vector machines (SVMs),

and all other types of function approximators. Some of these types can be more or

less suited for a particular reinforcement learning problem. Neural networks (NNs) are

the most popular function approximators used in reinforcement learning, and are the

choice in this thesis.

2.4 Model-free method: Q-learning

Here we briefly describe a model-free algorithm that is used for solving control prob-

lem. In the control problem, often we are interested in approximating the action-value

function q̂(s, a,w) ≈ q∗(s, a) where w ∈ Rd is a finite-dimensional weight vector. A

known control algorithm for learning action-value functions is Q-learning (Watkins,

1898). The update for action-value prediction in Q-learning with function approxima-

tion, step size α, and discount rate γ is as follows:

wt+1
.
= w + α

[
Rt+1 + γmax

a
q̂(s′, a,w)− q̂(s′, a,w)

]
∇q(s′, a,w). (2.5)

2.5 Model-based Reinforcement Learning

Model-based reinforcement learning allows the agent to learn faster. In the reinforce-

ment learning methods we have discussed so far, the reinforcement learning agent learns

policies and value functions. In addition to policies and value functions, the agent can

learn a world model that can be used to further improve the agent’s behavior. By

18

Model

Figure 2.3: A model receives a state and an action as inputs and outputs the next
state and reward.

the world model, we mean any function that the agent uses to predict how the environ-

ment will respond to the agent’s actions. The world model is something that the agent

could learn or it could be provided to the agent. The world model is an incomplete

approximation of the environment.

We can use any computational process that takes the world model and produces

an improved agent’s behavior (via an improved policy or value function) for interact-

ing with the modeled environment. This process is known as planning . The idea of

augmenting a reinforcement learning agent with a world model that can be used for

planning is known as model-based reinforcement learning (Sutton and Barto, 1981;

Sutton and Pinette, 1985; Sutton, 1990; Chapman and Kaelbling, 1991; Singh, 1992;

Atkeson and Santamaria, 1997; Wiering et al., 2001; Abbeel et al., 2007; Sutton et

al., 2008; Ha and Schmidhuber, 2018; Holland et al., 2018; Schrittwieser et al., 2020).

Henceforth we use the words ‘model’ and ‘world model’ interchangeably.

Typically, a model receives a state s and an action a as inputs and generates the

next state denoted ŝ′ and reward r̂ as shown in Figure 2.3 (Kuvayev and Sutton, 1996;

Sutton et al., 2008; Hester and Stone, 2011). This output is used in planning to further

improve policies and value functions.

19

Model

Agent

Environment

previous
state

previous
action

current
observation

compute an
agent state

outputs
an agent
state

Uses computed state
and reward
produced by

environment to
estimate optimal

policy and/or optimal
value function

Takes an action
according to the

policy

becomes a new input state

a new input for
a state update function

current
observation

An environment produces
a new observation based on the
action the agent takescurrent

reward

used in the computation
of optimal policies and

value functions

Model

The previous
state and
action are
inputs to
the model

computes a
prediction of
next states
and rewards

Uses predicted
next states and

rewards to update
policy and value functions

The process
is repeated

Figure 2.4: The role of model and its impact on policy and value function in a general
process in the function approximation case for updating a state and an action selection.

We demonstrate the role of the model in detail in Figure 2.4—the model here is a

third component in addition to the state update function and the value function com-

ponents shown in Figure 2.2. Using models and planning enables an agent to predict

what would happen if actions are executed from states prior to actually executing them

and without necessarily being in those states.

In the tabular setting, a model takes an environment state and action as input and

outputs the next environment state and reward. In the function approximation setting,

while the agent state is not Markov with respect to the environment, it is Markov with

respect to the model. This means we can define models that use the agent state instead

of the environment state as input and then operate in the same way by producing the

next agent state and reward.

20

We refer to the term true model of the environment in cases when the model is not

learned, but rather is given to the agent. In this case the model has the true transition

dynamics (e.g., in chess).

We now describe the four inevitable choices of model-based reinforcement learning

setting:

1. Experience replay vs. learned models.

2. Model types: expectation, distribution, and sample models.

3. Episodic vs. continuing setting.

4. Linear vs. non-linear value functions.

2.5.1 Experience Replay vs. Learned Models

One choice to make is where planning improvements could come from: experience replay

(ER) (Lin, 1992) or learned models. The trajectories that the agent has already seen

are referred to as experience. The experience stored in the agent’s memory includes the

actions that the agent has already taken and the states the agent has seen. Replaying

experience can be compared to how humans replay memories of the situations they

have been in. In experience replay-based methods—also often referred to as replay

buffer—the agent plans using experience stored in the agent’s memory. Some replay-

based implementation examples include deep Q-networks (DQN) (Mnih et al. 2013;

2015) and its variations: double-DQN (van Hasselt et al., 2016), DQN with prioritized

sweeping (Schaul et al. 2016), deep deterministic policy gradient (Lillicrap et al., 2016),

and rainbow DQN (Hessel et al., 2018).

21

Model-based reinforcement learning methods in which 1) the model is parameter-

ized by some learnable weights, 2) the agent learns the parameters of the model, and 3)

the agent then uses the model to plan an improved policy, are referred to as planning

with learned parametric models. Learned parametric models are used in the Dyna ar-

chitecture (Sutton, 1991), in normalized advantage function methods that incorporate

the learned model into the Q-learning algorithm based on imagined rollouts (Gu et

al., 2016), and in MuZero (Schrittwieser et al., 2020). The latter is a combination of a

replay-based method and a learned model: the model is trained by using trajectories

that are sampled from the replay buffer.

If the environment is non-stationary, as in many assistive systems—and in particular

voice editing—then the transitions stored in the replay buffer might be stale and can

slow down or even hinder the learning progress. In this thesis, we focus on learned

parametric models. Learned models can lead to better generalization. Further, learned

models are useful when planning forward for agent’s behavior (van Hasselt et al., 2019).

2.5.2 Type of Models

Another important choice in model-based reinforcement learning setting is the choice

of model type. A model enables an agent to predict what would happen if actions were

to be executed from states prior to actually executing them and without necessarily

being in those states. Given a state and action, the model can predict a sample, an

expectation, or a distribution of outcomes, which results in three model-type possibil-

ities.

The first possibility is when a model computes a probability p of the next state as

a result of the action taken by the agent. We refer to such a model as a distribution

22

model. Such models have been used typically with an assumption of a particular kind

of distribution such as Gaussian (e.g., Chua et al., 2018). For example, Deisenroth and

Rasmussen (2011) proposed a model-based policy search method based on probabilistic

inference for learning control where a distribution model is learned using Gaussian

processes. Learning a distribution can be challenging: 1) distributions are potentially

large objects; and 2) distribution models may require an efficient way of representing

and computing them.

The second possibility is for the model to obtain a sample of the next state rather

than computing the full distribution. We refer to such a model as a sample model. The

output of sample models is smaller than the output of distribution models and thus,

more computationally feasible. In this sense, sample models are similar to experience

replay. Sample models have been a good solution when a deterministic environment

appears stochastic or non-stationary because of function approximation in the model.

Feinberg et al. (2018) used a sample model to improve value estimates in a method

called model-based value estimation. Another example is simulated policy learning

(Kaiser et al., 2020) in which a variational autoencoder (Kingma and Welling, 2014)

was used to model the stochasticity of the environment. A disadvantage of a sample

model is an additional branching factor in planning, as multiple samples need to be

drawn to gain a representative prediction.

The third possibility is to have a model that produces an expectation of the next

state feature-vector instead of the probability p as in distribution models. We refer to

this kind of model as an expectation model. Expectation models have been an obvious

choice for deterministic environments (Oh et al., 2015; Leibfried et al., 2017; Kurutach

et al., 2018). Wan et al. (2019), Sutton et al. (2008), and Parr et al. (2008) all used

linear expectation models. Wan et al. (2019) showed that expectation models can also

23

be used for planning in stochastic environments without a loss in planning performance

when using a linear value function.

In this thesis, we focus on expectation models parameterized by learnable weights.

Expectation models are easier to learn due to their compactness (Wan et al., 2019) and

take away additional parameters that would be required when learning distribution or

sample models. Expectation models in control settings with function approximation

have been previously explored. Sorg and Singh (2010) proposed model-based planning

with an expectation model and illustrated the use of linear-option expectation models

compared to primitive-action linear expectation models on the continuous rooms world

domain. Buckman et al. (2018) used an ensemble of expectation models and action-

value functions. Jafferjee (2020) evaluated the imperfection of Dyna-style algorithms

in the context of function approximation and learned models.

2.5.3 Episodic vs. Continuing Setting

Another choice to make is whether to use the episodic or continuing problem setting;

both are typical formulation of sequential decision making problems. In continuing

problems the interaction between agent and environment goes on and on forever with-

out termination or start states. Control with function approximation in continuing

problems is arguably the problem setting that matters most for AI (Sutton and Barto,

2018: Chapter 10; Naik et al., 2019). Arguably, real life settings should be formulated

as continuing problems rather than problems that use discounting. However, a num-

ber of theories and concepts today are known and applicable only to episodic settings.

Thus, studying episodic problems is a natural stepping-stone towards the problem of

AI. Moreover, the discounted formulation is not suitable in the case of continuing con-

trol with function approximation (Naik et al., 2019) and the average reward setting

24

should be considered.

In this thesis, we focus on planning for control with function approximation in

the episodic setting, extending Wan et al.’s (2019) work on the prediction problem

(see Chapter 5). The episodic formulation involves termination of episodes, and thus

requires an explicit indication of termination in our definitions.

2.5.4 Linear Value Functions

One more choice to make is between linear and non-linear value functions. In Sec-

tion 2.3, we discussed how in the function approximation setting we have approximate

value functions v̂, π̂ parameterized by learnable weights (e.g., v̂(s,w),w ∈ Rd). In this

thesis, we focus on linear value functions. Linear methods approximate a state-value

function by the inner product between w and a d-dimensional feature vector of the

agent state s (recall, that the > denotes transpose, needed here to turn the horizontal

row vector in the text into a vertical column vector):

s
.
= (x1(s), x2(s), ..., xd(s))>,

v̂(s,w)
.
= w>s =

d∑
i=1

wixi(s).

An approximate action-value function is the inner product between w and a d-dimensional

feature vector of the agent state s for each a ∈ A:

q̂(s, a,w)
.
= (w>)as =

d∑
i=1

(wi)
axi(s).

If both approximate state-value function and action-value function are used in the

25

same algorithm, we denote the weight for the action-value function as wq, and w for

the state-value function.

The gradients of the approximate value functions with respect to w are

∇v̂(s,w) = ∇(w>s) = s,

∇q̂(s, a,w) = ∇(w>s) = s.

One may think that the choice of linear value functions limits the expressivity of the

value function. We argue that the state-update function u can encompass the necessary

expressivity of the features. In many cases, we can choose to have a linear value function

by changing a feature representation with the u function. For example, to change

a feature representation, a choice for a state-update function u can be variational

autoencoders (e.g., Kingma and Welling, 2014; Rezende et al., 2014), long short-term

memory networks (Hochreiter and Schmidhuber, 1997), predictive state representation

(Littman et al., 2002), temporal difference networks (Sutton et al., 2005), or generalized

value functions (White, 2015). Choices of linear representations have a long history

in the field of reinforcement learning and form the basis of many methods with strong

theoretical guarantees (Sorg and Singh, 2010). Further, in Section 5.3 we show that

this choice allows us to use expectation models instead of distribution models without

a loss in generality.

26

Chapter 3

The Challenge of Conversational AI

The role of this chapter is to introduce the problem that we use in the rest of the

thesis. In my first contribution, I propose a solution to the problem, along with a

particularly appropriate class of methods for solving it. The following chapters build

on this first contribution. If the reader is interested only in the technical details of

proposed methods, they could skip this chapter and proceed to chapters 4 and 5.

Specifically, the chapter starts with a discussion of challenges when building conver-

sational AI assistants. As a solution, I propose voice document editing as a particularly

promising domain for conducting this research. I present the proposed domain and its

primary advantages—that the domain is tightly scoped and that it provides something

for the conversation to be about (the document) that is delimited and fully accessible

to the intelligent assistant. I further argue that model-based reinforcement learning

is a particularly appropriate class of methods. Then, I discuss the advantages of re-

inforcement learning in general; that reinforcement learning methods are designed to

learn from interaction without explicit instruction and that it formalizes the purposes

of the assistant. Finally, I dive deeper into more complicated reinforcement learning

27

methods: model-based reinforcement learning methods, that can enable a genuine un-

derstanding of the domain of discourse and thereby can enable the assistant to work

particularly efficiently with the user to achieve their goals.

3.1 Intelligent Assistants

The ambition of AI research is not solely to create intelligent artifacts that have the

same capabilities as people; we also seek to enhance our intelligence and, in particular,

to build intelligent artifacts that assist in our intellectual activities. Intelligent assis-

tants are a central component of a long history of using computation to improve human

activities, dating at least back to the pioneering work of Douglas Engelbart (1962).

Early examples of intelligent assistants include sales assistants (McDermott, 1982),

scheduling assistants (Fox and Smith, 1984), intelligent tutoring systems (Grignetti et

al., 1975; Anderson et al., 1985), and intelligent assistants for software development

and maintenance (Winograd, 1973; Kaiser et al., 1988). More recent examples of in-

telligent assistants are e-commerce assistants (Lu and Smith, 2007), meeting assistants

(Tür et al., 2010), and systems that offer the intelligent capabilities of modern search

engines (Fain and Pedersen, 2006; Thompson, 2006; Croft et al., 2010). Building in-

telligent assistants has been positioned as one of the key areas of development in AI

(Waters, 1986).

Intelligent assistants built on voice interaction—voice personal assistants such as

Amazon Alexa, Google Personal Assistant, Microsoft Cortana, Apple Siri, and Face-

book Portal—are considered to be among the most important current applications of

artificial intelligence. Voice personal assistants help people with many daily tasks, such

as shopping, booking appointments, setting timers, and filtering emails. The economic

28

value generated by these systems demonstrates their importance for general public,

and more specifically, for disabled people. The way these systems generate revenue

includes selling hardware devices, such as smart speakers, and selling digital goods,

such as subscription services. The revenue numbers speak for their economic value:

the revenue from such voice commerce was forecast to grow from $1.6 billion in 2015

to $19.4 billion by 2023 (Tractica, 2016; Moar and Escherich, 2021). Such economic

impact demonstrates that voice personal assistants are a driver of one of the important

areas of AI’s societal and economic impact.

3.2 Conversational and Purposive Assistants

Today’s voice assistants are still fairly limited in their conversational abilities and we

can expect more in their evolution toward increasing capability. Smart speakers and

voice applications are a result of the foundational research that has come to life in

today’s consumer products. These systems can complete simple tasks well: send and

read text messages; answer basic informational queries; set timers and calendar entries;

set reminders, make lists, and do basic math calculations; control Internet-of-Things-

enabled devices such as thermostats, lights, alarms, and locks; and tell pre-recorded

jokes and stories (Hoy, 2018). Although voice assistants have greatly improved in the

last few years, we are still looking forward to a future where assistants are capable

of completing more complicated routines, such as re-scheduling appointments in a

calendar, changing a reservation at a restaurant, or having a conversation.

The natural question is “Are today’s voice systems ‘conversational’?” The literature

defines intelligent assistants conversational if they are able to recognize and respond to

input; to generate their own input; to deal with conversational functions, such as turn-

29

taking, feedback, and repair mechanisms; and to give signals that indicate the state of

the conversation (Cassell, 2000). It is the ambition of conversational AI researchers to

achieve a conversational AI assistant that demonstrates these properties; communicates

in free-form language; and continuously adapts to users’ changing needs, the contexts

the users encounter, and the dynamics of the surroundings. This conversational AI

assistant would need to understand the domain within which it is assisting and to

provide appropriate support, and a pleasant experience for its users. The assistant

with all these properties has not been developed yet and requires more research.

Conversational AI is a primary goal along the path toward creating intelligent

assistants in general. In this thesis we narrow our focus on conversational AI assistants

because achieving conversational AI would lead to better general intelligent assistants—

intelligent assistants that have a genuine, deeper understanding of their domains and

users, helping people to achieve their goals.

Key to the effectiveness of an intelligent assistant is that it is able to understand the

higher-level goals of a task when assisting its users. Hawkins (1968) defined a goal or a

purpose as a future state that is brought about through instrumental control of a choice

of actions among alternatives. These higher-level goals or purposes are the reasons for

completing a task, and motivate and influence smaller intermediate goals. For example,

if a primary goal is flying to San Francisco, then intermediate goals can be purchasing

flight tickets and packing the luggage. We use the word ‘purpose’ to refer to the

combination of the high-level context of a task and the user’s goals and use the words

‘agent’ and ‘assistant’ interchangeably. A user interacting with an intelligent assistant

has purposes related to the user’s task. An assistant that understands users’ purposes

and has its own purposes is a purposive intelligent assistant . Everyone who has worked

on intelligent assistants has recognized the importance of agents’ understanding of

30

purposes, yet an assistant that carries this property has not been developed. Building

learning systems that genuinely understand purposes has been talked about for decades

(Lindgren, 1968; Sun et al., 2016; Serban et al., 2017a) and is still ahead on the AI

research road map in fulfilling the promise of assisting people.

Understanding users’ purposes is key not only for intelligent assistants in general

but, in particular, for conversational AI agents, because purpose understanding is

important for voice assistants in serving their users and adjusting to the users’ unique

preferences. Imagine a user who wants to have a business meeting with a client and

interacts with a meeting-booking assistant. In this example, the purpose is a successful

business meeting. The user’s initial ask is to book a lunch reservation at a French

restaurant for the purpose of the meeting, which triggers an intermediate goal: to

make the reservation. A meeting-booking assistant that understands the purpose may

suggest an Italian restaurant instead. This is because the assistant has information that

the Italian restaurant is quieter and better suited for business meetings, even though

the assistant realizes that the suggested restaurant is not a requested French type.

The user may accept the intelligent assistant’s suggestion, believing that it might be

even better than their initial ask because the suggestion supports the primary purpose,

the meeting. The intelligent assistant’s awareness of the purpose is what motivates

and drives this scenario. Another example of such a purposive intelligent assistant is a

robotic arm or other manipulation device controlled by a human user (e.g., a prosthesis

or an industrial robot). Take the case of a human-controlled robotic assistant picking up

an object on a chessboard or pushing it; both tasks would require different motions or

other situation-specific actions from the assistant. If the agent understands the context

when assisting with a task, then it would know how to implement a small direct move,

like advancing a pawn on the chessboard, or an indirect move, like deploying a knight,

31

with minimal delays and micromanagement on the user’s part. The assistant creates a

smoother user experience by making a better choice of actions when being purposive.

A purposive intelligent assistant improves its capabilities further when it develops

goals or purposes of its own. This concept is close to an idea where agent-based

adjustable autonomy is not prescribed by the user (see Maheswaran et al., 2003). An

example is an iRobot Roomba that cleans a house. Roomba could set a goal of not

hurting itself. This intelligent assistant not only seeks and adjusts to the user and their

preferences but also develops and sets its own goals and purposes.

It is important that the user should be aware of the intelligent assistant’s goals.

This awareness would help the user to adjust their preferences, contributing to more

harmonious interaction. This adjustment between the assistant and the user increases

the assistant’s capabilities resulting in a better user experience.

3.3 The Challenge of Conversation

Efforts to build voice assistants that learn purposes are present not only in modern

dialogue systems but go back through four decades of incremental research and devel-

opment (see Carbonell, 1971; Simmons and Slocum, 1972; Power, 1974; Bruce, 1975;

Walker and Grosz, 1978; Cohen, 1978; Allen, 1979; Pollack et al., 1982; Grosz, 1983;

Woods, 1984; Finin et al., 1986; Carberry, 1989; Moore and Paris, 1989; Smith and

Hipp, 1994; Kamm, 1995). SHRDLU (Winograd, 1971) was an early breakthrough: a

well-known dialogue system that responded to instructions and moved objects in a sim-

ulated world. SHRDLU was primarily a language parser that simulated understanding

of purposes well.

We separate modern dialogue systems into three categories to illustrate their close-

32

ness to purposive intelligent assistants. The first category is entertainment systems

that provide open-domain conversations (see Huang et al., 2020). These are chatbots

and systems that bring a sense of companionship (e.g., Quarteroni and Manandhar,

2009; Nonaka et al., 2012; Higashinaka et al., 2014; Li et al., 2016a; Smith et al., 2020;

Zhou et al., 2020), mostly implemented with sequence-to-sequence models (Sutskever

et al., 2014) or retrieval-based methods, which select responses from an existing pre-

defined repository. It is more difficult to develop purposive intelligent assistants in this

category because the user’s purpose does not result in a concrete output, and thus

is even less firm or clear than in other categories. The second category is text-based

instruction systems that are primarily represented by text-based games (e.g., He et al.,

2015; Kaplan et al., 2017). The user typically interacts with these systems by typing

commands. This category of dialogue systems is closer to learning purposes. An exam-

ple of the work advancing in this direction is the use of natural language instructions

by Goyal et al. (2019). The third category is task-oriented systems that help users

with particular tasks (see Peng et al., 2017; Liu, 2018; Zhang et al., 2018), such as

finding a product, booking a reservation, or call classification (e.g., Tür et al., 2005;

Bapna et al., 2017). The task-oriented systems category is the closest to our definition

of a purposive intelligent assistant, yet the delivery of the task by these systems still

depends on pre-designed slots and templates (e.g., Zhao and Eskenazi, 2016; Lipton et

al., 2018; Liu et al., 2018; Goyal et al., 2019; Gupta et al., 2019; Zhou et al., 2019) or

a handcrafted series of commands that come with if-else conditions and rules.

Modern dialogue systems have rapidly advanced in the last few years, but it still

seems to be difficult to develop conversational AI that has an ability to learn purposes.

One reason is that achieving the goal of learning purposes calls for large amounts

of computational power, a great deal of engineering effort to overcome architectural

33

challenges, and continual human-machine interaction to produce the data. The intro-

duction of deep learning techniques combined with the massive amount of data and

computational power produced amazing results with the recent system GPT-2 (Rad-

ford et al., 2019) being a prime example. GPT-2 is a confined language model that

predicts the next word, given all the previous words within some text. GPT-2 is an

amazing engineering effort that deserves special recognition. The limitation is that the

system’s answering capabilities rely on word-by-word prediction, and not on genuine

understanding of a domain or users’ goals. Today’s dialogue systems have come a

long way, yet continue to remain somewhat scripted, often using a limited number of

pre-defined slots and canned responses.

Why does it seem to be so difficult to get to the goal that would advance today’s

research community’s answers to the challenges of conversational AI and to develop

agents that learn purposes? One reason is that general methods may not be sufficient.

By general methods we mean methods of learning functions that map an input to

an output based on input-output examples—known as supervised learning. General

methods that scale with increased computation continue to build knowledge into our

agents; however, this built-in knowledge is not enough when it comes to conversational

AI agents assisting users, especially in complicated domains.

Another reason why advancing conversational AI seems difficult is that we have high

expectations of conversational agents. The exaggerated expectations lead to choices of

domains with unlimited and open-ended conversation topics. In a general conversation,

an intelligent assistant is expected to know everything that a human conversational

partner might know and, in some cases, also specialized user-related or world-related

information. For example, the agent is expected to know about relevant aspects or

patterns in the wider environment and users’ lives, such as what it means to have a

34

schedule. In other words, the agent is expected to know about the world of its user,

and a user can potentially ask the agent anything.

The research community has an ultimate goal to have intelligent assistants that

are able to provide support as effectively as expert human assistants can, but high

expectations with respect to an agent’s knowledge about the world and the users are

an obstacle on the path to getting there.

This leads to the question: Are there domains in which assistants can have focused

conversations with their users and be helpful without knowing everything about the

rest of the world and being able to learn what they have to assist with? We argue that

a conversational domain should be tightly scoped and fully accessible to the intelligent

assistant, so that the assistant can learn to understand it. We now propose such a

domain that allows us to accelerate and advance this field without immediately solving

the grand challenge of human-level AI.

3.4 Voice Document-Editing Domain

The challenge of genuine understanding in conversational AI requires us to pick a do-

main that is small enough for an assistant to fully understand. The domain should be

tightly scoped and fully accessible while also exhibiting the characteristics of conver-

sational AI agents suggested by Cassell (2020). These characteristics are

1. an ability to recognize and respond to input,

2. an ability to generate its own input,

3. an ability to deal with conversational functions such as turn-taking and feedback,

and

35

4. an ability to indicate the state of the conversation.

Selecting such a domain and making progress with it are concrete steps forward in the

direction of developing conversational AI, which, in turn, contributes to a development

of intelligent assistants in general.

Document editing is one of the domains that is tractable, allows an agent to focus

a conversation, and displays these four characteristics. Imagine an intelligent assis-

tant that helps create and modify a document via a free-form language conversation

with a user. This conversation is focused on the document the assistant and the user

are authoring. We call this domain voice document editing (VDE) and propose it as

particularly well-suited to develop conversational AI.

The voice document-editing domain fits well into the idea we described earlier:

learning purposes enables intelligent assistants to become more helpful and powerful.

Thus, the advancements in this domain domain would contribute to our overall goal of

developing purposive intelligent assistants. Document editing assistants could provide

better help if they could understand users’ purposes and allow interactions in a form

that does not require predefined commands, making the interaction process timely and

efficient. They could help create and edit text messages, emails, and other documents

on-the-go.

Voice document-editing assistants could perform actions such as deleting and insert-

ing words; creating and editing itemized lists; changing the order of words, paragraphs,

or sentences; converting one tense to another; or fine-tuning the style. For example,

if a user asks an assistant “Please move the second paragraph above,” and then says

“Delete the last word in the first sentence,” then the assistant would know that the

first sentence the user is referring to is in that particular paragraph that was moved by

the assistant’s previous action. A document-editing assistant could recognize the user’s

36

input which includes the text of the document and the user’s speech. The assistant

could respond to the user by asking clarifying questions. The assistant could generate

its own input by making text modifications. The user’s reaction to a text modification

would represent feedback. The state of the conversation would be then reflected as a

state of a document.

“A	high	score,	above	
70%,	means”

“A	high	score,	
above	seventy	
percent,	
means”

Stop?

Change	70%	to	the	
number	please.

No,	highlight	70%	in	
yellow

“A	high	score,	
above	70%,	
means”

Continue?

“A	high	score,	
above	70%,	
means”

Figure 3.1: An example of a document-

editing scenario with an intelligent assis-

tant.

Figure 3.1 demonstrates an example of

a document-editing scenario with an in-

telligent assistant. Such assistants have

been emerging for more than three decades

(Ades and Swinehart, 1986; Douglas, 1999;

Lucas et al. 2004).

We separate today’s dictation systems

into two types: the ones that allow voice

text modifications in addition to dictation

and the ones that do not. Examples of the

latter type include systems such as List-

Note, and the Speech Recogniser of iOS

(Duffy, 2018). Our focus is only on the

former type: in these systems, users can

write by dictating while walking, cooking,

or doing other things, and then edit the

document by using pre-defined commands.

We refer to them as voice editing-enabled

systems. These are dictation software sys-

tems such as Dragon by Nuance (Nuance,

37

2003), SMARTedit (Lau et al., 2001), Ap-

ple Dictation (Gruber and Clark, 2017), Dictation.io (Digital Inspiration, 2020), Google

Docs Voice Editor (Douglas, 1999; Google, 2020), and Windows Speech Recognition

(Microsoft, 2020).

Document editing can be thought of as a manipulation of the manuscript in text

blocks. Card et al. (1980) argued that, from a cognitive perspective, document editing

is structured into a sequence of almost independent unit tasks. The unit tasks are

manipulations of selected text blocks, as suggested by a number of patents related

to users’ text editing (e.g., Greyson et al., 1997; Takahashi, 2001; Walker, 1998).

In particular, a block of text is first identified by a user. Next, the block may be

moved around, modified, or formatted in place. A modification operation may include

insertion of the new text, or the selected block may be removed completely. Today’s

aforementioned voice editing-enabled systems (Douglas, 1999; Lau et al., 2001; Gruber

and Clark, 2017; Google, 2020; Microsoft, 2020) classify document-modification unit

tasks into text-editing functions representing the types of text-editing operations people

do in their editor of choice.

3.4.1 Advantages of Voice Document-Editing Domain

To demonstrate the suitability of voice document editing for conversational AI, we

further look into its advantages. One advantage of a voice document-editing domain

is that it excludes the real-world complexities that many other assistive systems have.

Consider an intelligent cleaning robot or some other assistive robotic system (e.g., Dario

et al., 1996; Salichs et al., 2019). These systems have many real-world complexities,

such as the effects of the electronic hardware, materials, sensory systems, surrounding

objects, and the variability of sensors. Voice document editing does not have these

38

dependencies and its reduced complexity is favorable for the agent’s learning process

and for the researchers’ experimentation.

An important advantage is that the voice document-editing domain serves as a

micro world with a finite number of clearly defined concepts for the agent to learn. We

refer to this property of the domain as being tightly scoped. The world is represented

by a manuscript being dictated and edited by the user. This world is smaller and

more manageable than in many other real-life applications of conversational AI, such

as open-domain conversations for chatbots (e.g., Saleh et al., 2020). It is easier for

the agent to learn in this smaller world because the agent only has to learn about the

state of the document and its modifications, both of which are fully accessible to the

agent. The agent should know about the structure of the document and can learn

about text blocks, such as paragraphs, sentences, and words. The agent can also know

the grammatical structure and core organizational components of the document, such

as salutations and valedictions when composing an email. The voice document-editing

domain allows the agent to center what a conversation is about—the document itself

and its edits. At the same time, the agent is not expected to be a subject-matter

expert. For example, it is not necessary for the agent to have to understand history if

a user is writing a historical article, or to understand medical decisions if the user is

writing a health-related article. The agent is not expected to know information about

the user that extends beyond the document-editing context: what the user had for

breakfast, their religion, other aspects of the user’s life, or additional world-related

information. The voice document-editing domain allows the agent to center what a

conversation is about—the document itself and its edits. The finite amount of editing

concepts in the fully-accessible document defines fixed bounds for the domain and

makes it easier to evaluate the performance. As a result, relative to other real-life

39

applications of conversational AI, the agent has to learn a smaller number of things,

which is favorable for the agent and leads to reasonable expectations.

One way to evaluate our choice of voice document-editing domain is to compare it

to other domains that may carry similar properties of reduced real-world complexity

and being tightly scoped. We compare our domain to voice image editing and task-

oriented systems: both are the closest to our definition of the purposive intelligent

assistant. We show in which ways voice image editing and task-oriented systems differ

from the domain of our choice, consequently making these domains more challenging

than voice document editing.

A voice image editing assistant has to be able to recognize the content, which may

require the assistant to learn an unlimited number of representations before becom-

ing useful to its users. Consider a conversational image editing system proposed by

Manuvinakurike et al. (2018) that is able to recognize voice commands such as “remove

the tree.” The ability to execute such commands entails that the system should be

able not only to understand the command itself but also to have a representation of a

tree to be able to identify a tree in the image that is being edited. To recognize a tree

in an arbitrary image, the agent would have to learn what all possible trees look like.

Learning about all possible trees requires the assistant to learn an unlimited number of

tree representations, which results in the agent having to acquire infinite multi-domain

knowledge. In contrast, in the voice document-editing domain, the agent does not need

to understand the content of the document; it only needs to learn how to perform the

edits. For example, the user dictated a phrase “There was a tree.” When the user asks

to replace the word ‘tree’ with the word ‘lake,’ the voice editing assistant does not need

to know what the concept of a tree or a lake is. It simply needs to transcribe the word

from voice to text and to know the replacement operation, because it already knows

40

the location of words in the text. This example illustrates that voice image editing is

not tightly scoped compared to voice document editing. While conversational image

editing is a suitable domain for incremental dialogue processing, it is more difficult for

the agent to become useful to its users in this domain because of the large amount of

information it has to learn.

Task-oriented systems also have unlimited concepts for the assistant to learn despite

the focus on a particular user goal. Consider a restaurant booking system (e.g., Wen

et al., 2017). To be a good assistant, the system has to know something about the

user’s schedule, transportation logistics, and many additional concepts. For example,

the assistant needs to understand that the reservation cannot be made during the

time when the user is picking up their children. The assistant also needs to know

how to select the best location of the restaurant when it comes to transportation

logistics. Scheduling and logistics are only a couple of many concept examples that the

agent is expected to know about in addition to knowing the reservation action. The

complexity of the real world leads to a possibly unlimited number of such concepts.

This example demonstrates how task-oriented systems may appear tightly scoped while

having unlimited concepts that the assistant has to learn. In contrast, our choice of

voice document-editing domain makes learning possible because it is more feasible for

the agent to learn a limited number of concepts and can still be useful to the user.

3.4.2 Current State of Voice Document-Editing Systems

Now that we have looked at the advantages of voice document editing, we turn our

attention to the current state of such systems. Work on document editing via voice goes

back more than three decades (e.g., Ades and Swinehart, 1986). Despite the enormous

effort in this direction, today’s voice editing assistive systems remain rudimentary.

41

When it comes to text modifications using voice, there are limitations: users can

format and edit by using only a few pre-defined commands such as “New line” in order

to start a new line or “Go to end of paragraph” when a user wants to move the cursor.

If the user says slightly modified versions of commands such as “Let’s go to a new line”

or “Move the cursor to the end” instead of the aforementioned pre-defined commands,

then the agent may not perform the right action. These constraints limit the benefits

of editing a document via voice—at the end of the day, a user has to either perform

manual text manipulation using a keyboard or carefully remember all the commands

to manipulate the manuscript via voice. For example, one of the advanced editors,

Google Docs Voice Editor (Google, 2020), has over a hundred basic commands that a

user would need to memorize or to look up while editing. Communication to the voice

editing assistant in a free-form language has not been developed yet.

An assistant that can communicate to the user in a free-form language—without

pre-defined command language—and be helpful to the user is one of the main chal-

lenges in conversational AI. Developing such an assistant involves a number of complex

elements, that are each challenging in isolation: e.g., natural language understanding,

acoustic prosody, natural language generation, response generation, and knowledge ac-

quisition (Eric, 2020). Voice document editing combines these elements in one domain

and thereby opens up research opportunities that could benefit the advancement of

conversational AI.

42

3.5 Proposed Solution Space

Methods for developing intelligent assistants should seek to answer specific require-

ments. First, it is intuitive that such methods should create an opportunity for human-

computer interaction. Second, such methods should have the ability to incorporate

user’s feedback to understand the user’s purposes and achieve our goal of a purpo-

sive intelligent assistant. Third, such methods should allow for continual knowledge

revision that would lead to continual adaptation to users.

Reinforcement learning has been pursued as a natural approach to intelligent as-

sistants (Kozierok and Maes, 1993; Pollack et al., 2002; Pineau et al., 2003) and is

particularly fitting when it comes to methods requirements for developing intelligent

assistants. Reinforcement learning starts with an agent that is interactive and goal-

seeking. Formally, reinforcement learning is an approach for solving optimal control

problems in which a behavior is learned through repeated trial-and-error interactions

between a learning system and the world the system operates in. We introduced rein-

forcement learning concepts in Section 2.1. Here we describe how these concepts are

mapped into a concept of an intelligent assistant. The learned behavior is a policy

defined in (2.1), a learning system is an agent, and the world the agent operates in is

an environment. In each interaction with the user or the world, the agent takes an ac-

tion and receives a reward which can be a positive or a negative scalar. Reinforcement

learning has not been previously investigated specifically for voice document editing

and it is the approach that we are going to explore further in this thesis.

For voice document-editing assistants in particular, reinforcement learning is a nat-

ural fit. Imagine a document that could be any text of any length; for example, an

email, a manuscript, or a text message. At any point in time, the user could have

43

two options to interact with the assistant: 1) to dictate a new block of text, or 2)

to ask the assistant to modify an existing text; for example, to switch some words or

sentences, delete words, or highlight parts of the text, etc. In reinforcement learning

terminology, an agent is the document-editing assistant. An environment combines

both a document and the user that interacts with the agent. A state encompasses the

current document and all the user communication to the assistant. In such, the current

document would include the text that was already dictated by the user, and the text’s

structure, such as paragraphs, sentences, and words.

At every time step a state is observed by the agent. The state includes the user’s

communication to which the agent then would react to and take an action: to edit the

document or to request a clarification from the user. This action would then affect the

environment, potentially resulting in changes to the document in the case of editing

actions. The user would respond in turn to the agent’s action by replying with the next

request or by continuing to request edits. This response would create a new state for

the agent and this interaction would repeat until the user would be fully satisfied. The

satisfaction of the user would be reflected in a reward signal that the agent receives after

every selected action. We leave further details of reinforcement learning formulation

for voice document editing and describe such voice document-editing assistants later

in this chapter.

3.5.1 Advantages of Reinforcement Learning

The first advantage of reinforcement learning for intelligent assistants is that it pro-

vides an opportunity for an intuitive human-computer interaction, in contrast to more

common machine learning formulations of supervised and unsupervised learning. In

particular, an interactive reinforcement learning agent can directly learn things about

44

its environment with every action and select future actions according to that knowl-

edge. This means that agents are not learning from the input-output pairs that were

provided ahead of time, but from direct experience—known as online learning. Online

learning provides a natural opportunity for intuitive interactions, during which intelli-

gent assistants adapt to users. Imagine a voice assistant that recommends fun things

to do during travel, similar to the NJFun system (Litman et al., 2000; Singh et al.,

2002) that provided users with information about fun things to do in New Jersey. The

assistant can learn about the user’s preferences much faster and provide better recom-

mendations by extracting a reward signal after each suggestion is made and adjusting

its suggestions accordingly. When this assistant helps a traveler who is interested in

music history, it can learn the user’s preferences quickly, based on how satisfied the

user was with its previously provided recommendations. The assistant can tailor the

recommended places to music history museums, music history festivals, music exhibits,

and other similar attractions. This adjustment via online learning between the as-

sistant and the user improves the assistant’s reasoning about its future actions. The

importance of online learning and interaction feedback has appeared in many studies

(e.g., Long, 1981; Pica et al.; Pica, 1986; 1987; Gass and Varonis, 1994; Bassiri, 2011;

Gašić et al., 2011; Gašić et al., 2013a; Ferreira and Lefèvre, 2015; Li et al., 2017a; Liu

et al., 2017).

The second advantage of reinforcement learning is that users’ feedback can be for-

mulated as a reward signal. Feedback can be used as a goal-directed signal of users’

satisfaction or dissatisfaction with actions the assistant takes, which is one way to

evaluate the assistant (see Jiang et al., 2015). In the context of dialogue settings, it is

expected that users have a way of communicating their feedback to the assistant, ei-

ther through voice interaction or physical interaction via a robotic device. Examples of

45

these interactions include training assistants with animal-like robot clicker techniques

(Kaplan et al., 2002); using a combination of reward signals from a human and an

environment (Knox and Stone, 2012); and using a sparse human-delivered training

signal, as in the case of adaptable, intelligent artificial limbs (Pilarski et al., 2011). An

intelligent assistant maximizing users’ satisfaction is a reinforcement learning agent

maximizing the expected return (see 2.1).

The third advantage of reinforcement learning is that it allows changes in the agent’s

knowledge. These changes are fundamental for learning, which is different from built-in

knowledge. A process when the agent has to change what it knows, rather than knowing

whether something is a fact, is defined as learning by Selfridge (1993) and is considered

the most important part of intelligence (Woodrow, 1946). Knowing is simply factual:

one learns a particular kind of knowledge and knows if it is the truth that applies

to a particular setting. Learning, however, leads to understanding. Understanding is

more fluid than drawing knowledge from built-in facts: in understanding, we relate

the facts to everything else and can reason about the consequences of our actions.

Reasoning about the outcome results in a controlled choice of actions when presented

with alternatives. As we argued earlier, a controlled choice of actions is a quality of a

purposive intelligent assistant that continuously adapts to users’ changing needs. Thus,

reasoning about the consequences of actions leads to an assistant that learns how to

learn, adapt, and improve by interacting with users (e.g., Li et al., 2017). The most

brilliantly-engineered slot-filling systems will not learn purposes because they cannot

learn to avoid repetitive mistakes, nor can they learn to adapt to different users. In

contrast to learning from static datasets, reinforcement learning is more general and

allows for these adjustments. In particular, the structure and other properties of the

world are not assumed in reinforcement learning.

46

3.5.2 Prior Work Applying RL to Conversational AI

Reinforcement learning has been applied to conversational AI in various ways since

the late 1970s. Some of the earliest works were Walker and Grosz (1978); Biermann

and Long (1996); Levin et al. (1997); Singh et al. (2000). In more recent works,

Gašić et al. (2011, 2013a) use reinforcement learning in online settings to directly learn

from human interactions using rewards provided by users and to optimize the agent’s

behavior in reaction to the user. Dhingra et al. (2017) also explore online learning, but

in simulated settings. They train their agent entirely from the feedback that mimics the

behavior of real users. Such simulated settings are not always available for a learning

task and building simulators for dialogue scenarios and tasks is challenging (Cuayáhuitl

et al., 2005; Li et al., 2016b). To overcome these challenges, Zhou et al. (2017) choose

to optimize a policy in offline settings using the raw transcripts of the dialogues, while

Liu and Lane (2017a) take an approach of jointly optimizing the dialogue agent and the

user simulator. Xu et al. (2018) also apply joint modeling of dialogue act selection but

use reinforcement learning only to optimize response generation. A number of others

also use reinforcement learning for open-domain dialogue generation (e.g., Ranzato et

al., 2015; Li et al., 2016a; Yu et al., 2017; Budzianowski et al., 2017; Jaques et al.,

2019).

A big trend in the last five years has been to use neural networks with multiple

layers—deep learning —in conjunction with reinforcement learning. This line of work

was invigorated and the attention was drawn to it after the success of deep reinforce-

ment learning on games such as Atari, Go, chess and shogi (Mnih et al., 2013; Silver

et al., 2018; Schrittwieser et al., 2020). This trend was embodied in several threads

each pursuing a different approach. For example, in one approach Liu et al. (2017),

Shen et al. (2017), Su et al. (2017) use reinforcement learning in combination with

47

supervised learning. Shah et al. (2016; 2018) contrast the interpretation of the hu-

man feedback as a reward value (see Thomaz et al., 2005, 2006; Knox and Stone,

2012; Loftin et al., 2014) and propose an interactive reinforcement learning approach

in which the user feedback is treated as a label on the specific action taken by the

agent similar to Griffith et al. (2013). In another approach, reinforcement learning is

studied for policy adaptation between domains in multi-domain settings (e.g., Gašić

et al., 2013b; Cuayáhuitll et al., 2016, 2017; Gašić et al., 2017; Rastogi et al., 2017;

Chen et al., 2018; Liu and Lane, 2017b). Serban et al. (2017b) apply reinforcement

learning to select from a number of responses produced by an ensemble of so-called

response models. Tang et al. (2018) use reinforcement learning to train a multi-level

policy that allows agents to accomplish subgoals. Weisz et al. (2018) focus on large

action spaces. Peng et al. (2017) propose a hierarchical deep reinforcement learning

approach using options (Sutton et al., 1999) for a task-oriented dialogue agent. Others

apply reinforcement learning to teaching agents to communicate with each other in

multi-agent environments (e.g., Foerster et al., 2016; Sukhbaatar et al. 2016; Lazari-

dou et al., 2016; Mordatch and Abbeel, 2018; and Papangelis et al., 2020). Bordes

et al. (2017), Dhingra et al. (2017), Lewis et al. (2017), Wen et al. (2017), Williams

et al. (2017), Liu et al. (2017, 2018), Jiang et al. (2019) all explore end-to-end dialog

system approaches. These works are a small fraction of the large body of research that

implements deep reinforcement learning approaches in dialogue systems.

A smaller trend in the last couple of years has been to use a more advanced form of

reinforcement learning in which a model of the world is learned in addition to a policy

and value functions. These model-based reinforcement learning methods are the topic

of the next section.

48

3.5.3 Model-Based Reinforcement Learning Assistants

World models and planning are helpful in learning the optimal agent’s behavior. One

advantage of models and planning is that they are useful when the agent faces unfamil-

iar or novel situations—when the agent may have to consider actions that they have

not experienced or seen before and evaluate the consequences of those actions. Models

can be fundamental in making long-term predictions and evaluating the consequences

of actions based on models’ predictions. Planning can help the agent evaluate possible

actions by evaluating hypothetical scenarios that are produced by the model and then

computing their expected future outcomes (Doll et al., 2012; Ha and Schmidhuber,

2018). These outcomes can be computed a few steps ahead and can be thought of as

the agent reasoning about the long-term consequences of its actions, similar to how

people evaluate the long-term consequences of their decisions. The agent reasoning

about the consequences of its actions and acting based on the world model’s predic-

tions is analogous to the way a person reasons and acts based on their understanding

of the world. Hypothetical scenarios allow the agent to safely explore the possible con-

sequences of actions. For example, the agent can use hypothetical scenarios to explore

actions that in real-life applications could lead to a costly crash or another disaster

(Berkenkamp et al., 2017). Another advantage of world models and planning is that

they help accelerate the learning of policies (e.g., Freeman et al., 2019).

The advantages of world models and planning arise in particular with intelligent

assistants. World models and planning enable intelligent assistants to leverage the in-

teraction information as much as possible, with a minimal amount of prior knowledge

and in the absence of external supervision. Nortmann et al. (2015) suggested people’s

internal models of the world are learned during the interaction with the world and

contain the information that is perceived by their brains. Similarly, world models are

49

learned by the agent during human-computer interaction. Forrester (1971) described

people’s models of the world as the image of the world that humans carry in their head:

the concepts and relationship between them that are used to represent a real system.

Likewise, world models capture the dynamics of the environment and the user-agent

interaction within it (Sutton, 2019). These dynamics are everything that the agent

needs to know about the environment. More precisely, in the context of model-based

reinforcement learning the knowledge of the environment dynamics enables the agent

to predict the next states and rewards from the previous state and its actions. Thus,

models help the agent to make informed action choices by enabling it to compute hypo-

thetical future outcomes of different actions with the modeled environment. Planning

is particularly important because it allows the agent to learn not only from the past

actions that resulted in a reward but also from hypothetical actions for which the agent

has not seen a reward. For example, Ng et al. (2004) proposed a successful application

of reinforcement learning that uses a model for autonomous helicopter flight, saving

hours of adjustments and flight testing and preventing unnecessary crashes. Ng et

al. started with a human pilot flying the helicopter for several minutes and then used

the data to fit a model of the helicopter’s dynamics. Similarly, Coates et al. (2017)

provided an agent with the pre-trained model and the reward function.

Thus, in conversational AI, models and planning make it possible for the agent to

acquire the full benefits of reinforcement learning, which in turn would allow us to

create a purposive intelligent assistant (see Section 3.2) that is efficient and useful, can

adapt to its users, reason about the consequences of its actions, can control its choice of

actions among alternatives, and can learn how the real world works. Planning also has

been previously explored in dialogue systems outside of reinforcement learning (e.g.,

Stent et al., 2004; Jiang et al., 2019).

50

There are several prior works in conversational AI that have come close to doing

model-based reinforcement learning. Most of these have used experience replay (see

definition in Section 2.5) with a replay buffer (Lin, 1992; Mnih et al., 2013; 2015). For

example, Lewis et al. (2017; Yarats and Lewis, 2017) explored a form of planning by

using a dataset obtained through Mechanical Turk (see Paolacci et al., 2010) to gener-

ate a simulation of complete dialogues—dialogue rollouts—that are used for planning.

Peng et al. (2018b) introduced a Deep Dyna-Q architecture (as in Sutton, 1991) using

deep learning and a replay buffer, which was subsequently extended by Su et al. (2018)

and Wu et al. (2019; see also Gao et al., 2019; Zhang et al., 2020). Zhao et al. (2020)

brought this line of work the closest to the kind of MBRL for conversational AI that we

are advocating in this thesis (cf. model-based Bayesian reinforcement learning, Lison,

2013) while still being limited by its reliance on a replay buffer.

3.5.4 MBRL Open Research Areas

There is a diversity of open research areas in model-based reinforcement learning.

One area is in the direction of the choice of models (see Chua et al., 2018), such as

probabilistic transition models that use Gaussian processes (e.g., Kocijan et al., 2004;

Deisenroth et al., 2013; Kamthe and Deisenroth, 2018), nonlinear neural network mod-

els (e.g., Hernandaz and Arkun, 1990), generative models (e.g., Buesing et al., 2018),

latent state-space models (e.g., Wahlström et al., 2015; Watter et al., 2015), and policy

search methods (e.g., Bagnell and Schneider, 2001; Deisenroth and Rasmussen, 2011;

Levine and Abbeel, 2014; Levine et al., 2016). Another area of study is on the asymp-

totic performance of model-based methods to match the asymptotic performance of

model-free algorithms (e.g., Chua et al., 2018). The effectiveness of planning meth-

ods and data sample efficiency is one more area of active research (e.g., Hafner et al.,

51

2018; Kamthe and Deisenroth, 2018; Kaiser et al., 2020). Silver et al. (2017a) argue

for the effectiveness of planning methods in applications such as AlphaGo, offering an

algorithm based solely on reinforcement learning, without human data, guidance, or

domain knowledge beyond game rules. Nevertheless, cases of full model-based rein-

forcement learning similar to Silver et al. (2017b), in which the model is learned from

online data and then used for planning, are rare, especially in stochastic domains. Re-

duction of errors in learned models that resemble the real environment, data efficiency,

asymptotic performance, and a choice of planning methods are some of the topics at

the forefront of model-based reinforcement learning research.

3.6 Realizing Voice Document-Editing Domain

The realization of voice document-editing assistants can be naturally mapped into

MBRL components: a state update function, a policy and value functions, and a

model (also see Section 2.3).

The first component of a MBRL agent, a state update function, produces the agent

state which would be a representation of the document and the history of the conver-

sation and its edits. The agent’s state should contain information about the current

document structure, such as paragraphs, sentences, and words; the user’s communica-

tions; which actions were taken by the agent; and how satisfied the user was in response

to the actions taken. An agent state can be computed by a state-update function us-

ing function approximation as in (2.4); for example, a recurrent neural network such

as a two-layered bi-directional Gated Recurrent Units (GRU) (Cho et al., 2014) that

takes an observation as one of its inputs can be used as a state-update function. The

observation can be represented by a combination of the current document’s content

52

and the user’s speech. The observation can be thought of as some information about

what is going on in the environment—the document and the user interacting with the

assistant. The information contained in the observation is partial because it does not

include things such as the user’s emotions or anything else outside of the document.

Outside information like users’ emotional reactions can be approximated from addi-

tional data such as the time between users’ reactions, their tone of voice, or their facial

expressions (e.g., via techniques such as face valuing by Veeriah et al., 2016, or other

cues as suggested by Skantze, 2016). One choice to represent an observation could

be word embeddings such as word2vec (Mikolov et al., 2013) or Bidirectional Encoder

Representations from Transformer (BERT) (Devlin et al., 2018).

In the second component of a MBRL agent, the policy in voice document editing is

the agent’s behavior in response to user’s requests. This behavior allows the agent to

make a choice between continuing to listen to the user when the user wishes to dictate

more, and selecting an editing action to manipulate a text block when the user requests

an edit. A value function in voice document editing represents user’s satisfaction.

The third component of a MBRL agent, a world model, helps to develop agent’s

understanding of what happens to the document if it takes an unseen action. The

model captures the dynamics of the user-agent interactions that the agent learns by

observing the results of actions taken. Learning world models in the voice document-

editing domain is possible because of the domain being tightly scoped. Even if the

assistant has never heard a command that the user is saying, by using environmental

models and planning, the agent would recognize whether the command is a continuation

of dictation or an edit that the user wants to perform. When editing requests are

recognized, then the agent can plan which editorial action leads to a better outcome

and higher users’ satisfaction.

53

Figure 3.2: An example when a human says “I will walk the dog”, yet the dialogue
system results in “I will walk the frog”. As a result, the user wishes to delete the final
corrupted part of the sentence and then re-dictate it. Note that, in this example, we
could have replaced the word “frog” with the word “dog”, which would comprise a
replacement problem that is not within the scope of this work.

3.6.1 Voice Document-Editing Deletion Task

Solving for voice document editing in full is an effort that would require significant

resources in time and computation that would most likely be a subject of a few graduate

thesis works. To reduce the scope to one graduate thesis, we split solving VDE into

a few subproblems. Recall, that examples of tasks within VDE are words insertion,

words deletion, fine-tuning a style, formatting, etc. In this thesis, we focus on words

deletion. Specifically, the problem is that often a system’s transcription of a dictation

results in a corrupted part of the sentence that the user wishes to delete and then re-

dictate (see example in Figure 3.2). We refer to this problem as a deletion task . The

idea of deletion tasks manifests from the state of current speech recognition systems:

most of today’s voice-editing systems do not allow the user to correct errors via voice.

The choice of deletion task among other VDE tasks is driven by two primary rea-

sons. The first reason is that the the deletion task can be simulated while accurately

reflecting real-life scenarios of VDE which permits the development and evaluation of

methods without user interaction. The second reason is that the deletion task is well

54

suited for demonstrating the advantages of MBRL.

We proceed with a common real-life scenario setting where corrupted words are at

the end of the sentence. Consider a speech-to-text system and a user that dictates a

sentence to a dictation system or a tool, the latter further referred to as an agent. The

agent processes the dictation and displays it on a screen to a user. We know that some

portion of the sentence has been processed incorrectly. As soon as the agent displays

processed words, a user sees the sentence right away and stops dictating. At this point,

the user sees which portion of the sentence has been processed correctly and which one

has been processed incorrectly. Here, in real life, the user could have many means to

ask the system to correct the sentence. We proceed with a simple setting in which the

user says one word “Delete” if they are not satisfied with the words at the end of the

sentence that is displayed on the screen during dictation. In our settings, when the

user says “Delete”, the word “Delete” is treated as a keyword for the agent to take an

action: the action here means to identify which words were not recognized properly

and to delete them. If the agent deletes too few words, the user can say “Delete” again

and the process is repeated until the correct number of words is deleted and the user is

satisfied. If the agent deletes too many words, the user has to repeat the accidentally

deleted words before continuing dictation. The agent’s goal is to identify the correct

number of words to delete in the least number of steps.

Next, we formalize the deletion task setting using reinforcement learning concepts of

environment, observation, state, action, episode, etc., and provide additional definitions

that are used further.

1. The environment of the deletion task is comprised of text that is transcribed by

a system from a user’s dictation based on the user speaking to a speech-to-text

system.

55

2. An encoded text is a text that has already been dictated and is shown on the

screen; the encoded text at time step t is denoted as wt.

3. A speech transcription is a new sequence of words dictated by a human; the

speech transcription at time step t is denoted as ψt.

4. An observation Ot that is available to the agent at a given time step t combines

an encoded text wt and speech transcription ψt.

5. An interaction corresponds to an episode in reinforcement learning. An interac-

tion is an interactive process between the user and the agent. This interaction

starts during any time of dictating a sequence of words at the moment when a

user decides to delete some words and says “Delete” for the first time. Interaction

terminates in one of the following two cases. In the first case, the agent takes

an action that completes an interaction and the user is satisfied with this action

from the agent, meaning the user is satisfied with the last edits of the text. In

the second case, the agent takes an action that deletes too many words. In this

case, the user would have to repeat the words that were previously dictated, not

corrupted, but mistakenly deleted by the agent.

6. We define mt a number of actions (or steps) that the agent takes within one

interaction.

7. An intent is an integer that represents the number of words that the user wishes

to correct; an intent at time step t is denoted as It.

8. We define bt as a number of words that were not corrupted but deleted by the

agent as a mistake: it is the number of words the user has to repeat if the agent

deleted too many words. See Figure 3.3.

56

9. An action At selected by an agent represents a number of words to delete.

Good mor ni ng, Geor ge. I
hope you pi n wel l .

Intent:
to delete
the last
two words

Action

Good mor ni ng, Geor ge. I
hope you pi n

Output

Output

Action

Good mor ni ng, Geor ge. I
Output

Good mor ni ng, Geor ge.
I hope you pi n wel l

Good mor ni ng, Geor ge.
I hope you pi n

Figure 3.3: Consider an example where the user says “Good morning, George. I
hope you have been well”, yet the dialogue system transcribes and displays to the
user “Good morning, George. I hope you pin well.” The initial user’s intent in this
example is 2—the user desires to delete two words “pin well”. If an agent takes an
action A1 = 1, the updated sentence would become “Good morning, George. I hope
you pin” and the reward would be R1 = −1. The updated intent would be then 1.
Next, if the agent takes an action A2 = 3. The updated sentence would be “Good
morning, George. I” and the reward would be R2 = −2. If the agent takes an action
A2 = 3 the user would have to re-dictate two deleted words “hope you” indicating that
they were deleted incorrectly.

10. The reward Rt is an integer that reflects user (dis)satisfaction by penalizing for a

longer time to task completion and for overshoots that require the user to repeat

the previously dictated words. The reward is 0 if the action corresponds to the

intent meaning that the agent deletes exactly the right number of corrupted words

57

and is −1 for each incorrect action with an additional penalty described below.

If the agent undershoots by deleting fewer words than the intent then the agent

is penalized proportionally to the number of actions the agent has already taken.

This way if the agent has an incentive to delete corrupted words in fewer actions.

The reward is then calculated as follows:

Rt = −1 ·mt.

If the action taken is greater than the intent (see the second step in the example

in Figure 3.3), then the agent is penalized by the number of words bt that were

deleted by the agent incorrectly. The reward then is calculated as follows:

Rt = −1 · bt.

3.6.2 Simulation and Dataset

The lack of sophistication in today’s voice-editing systems is partially due to the diffi-

culty of training them when it comes to the datasets. Such training requires either a

large, diverse training dataset of general document-editing dialogues or hours of online

human-machine interactions. Such datasets do not currently exist and online interac-

tions are impractical— a substantial amount of training is needed before the agent can

overcome users’ frustration with a system that has not been sufficiently trained.

To overcome the limitations, we created a simulation of the deletion task that mim-

ics a sentence being corrupted by the voice-recognition imperfection. In our simulation,

we consider a collection of sentences as they were dictated by a user. We further in-

ject corrupted words into a sentence simulating a corrupted end of the sentence. The

58

simulation is set up in a way that, followed by a corrupted sentence, the agent always

receives “Delete” as a speech transcription ψ from the user. Then the agent has to

take an action and it keeps receiving “Delete” as an answer until the correction of the

sentence is complete or until the agent overshoots the correction.

To represent a sentence collection, we chose the BookCorpus dataset that is a

large collection of free novel books written by unpublished authors, which contains

11, 038 books of 16 different sub-genres (Zhu et al., 2015). The dataset contains around

74 million sentences. Along with narratives, the books sentences contain dialogue,

emotion, and a wide range of interaction between characters (Kiros et al., 2015). The

sentences from the dataset are fed to the agent one by one, and corrupted words are

injected at a random place in a sentence. Corrupted words are chosen uniform randomly

from a vocabulary of the dataset. We acknowledge that a more realistic approach would

be to replace words with phonetically similar ones, but this would require significant

engineering efforts such as creating datasets of phonemic dictionaries, which is beyond

the scope of this thesis.

This simulation intentionally creates a difficult problem for the agent: there are no

labels, and the replacements of words with corrupted ones are selected at random. Thus

the only way for the agent to learn is through dialogue interactions and by observing the

dynamics of the environment. Given the simulated environment, we know how many

corrupted words were injected and thus can calculate rewards for any given action.

Thus, our reward function well reflects a real-life human-machine interaction.

59

3.7 Summary and Implications

In this chapter, we have proposed that the domain of voice document editing is partic-

ularly well-suited for the development of intelligent assistants that can engage in a con-

versation. To make progress in developing useful assistants for conversational AI, these

assistants should be purposive. A natural approach for developing purposive assistants

is reinforcement learning, and, in particular, model-based reinforcement learning. This

approach is well-suited to assistants that learn and adapt within document editing and

general conversational AI settings. Many aspects of using model-based reinforcement

learning remain open areas in AI research, in particular, its use within voice document

editing. Finding solutions for the voice document-editing domain with model-based

reinforcement learning and building these systems can provide us with lessons that

move us closer to building other systems that genuinely understand the user and learn

their purposes. In this way, a better voice document editing system will also contribute

to the development of other assistive systems, moving the research toward the ultimate

goal of assistive agents that fully and functionally understand the real world around

them.

The realization of voice document-editing assistants not only serves our objectives

of creating a purposive assistant and achieving goals of conversational AI, but also

results in an application that directly benefits society: from improving productivity to

benefiting people with limited typing abilities.

60

Chapter 4

Soft-Planner Policy Optimization

The role of this chapter is to present a second contribution of this thesis. In this chapter,

I take the argument made in Chapter 3 and I apply model-based reinforcement learning

methods to the proposed voice document-editing domain in practice. In particular,

in this chapter I propose a novel model-based reinforcement learning method—Soft-

Planner Policy Optimization (SPPO). The intent of this method is to make the best

use of online learning and to address two problems: 1) faster performance improvement

during online training, and 2) creation of an agent that is computationally light for

real-life deployments.

The first problem, faster performance improvement during online training, is often

referred to as sample efficiency. The less of an agent’s experience during training is

required to reach the desired behavior, the more sample-efficient that agent is. Recall

that despite recent progress in voice document editing, voice-dictation systems are

still in a primitive form (Section 3.4.2). One issue is that further advances in a real-

life domain are limited by the availability of data due to the cost of acquiring new

samples. One of the promises of model-based reinforcement learning is a substantial

61

improvement in sample efficiency (Sutton and Barto, 2018, Chapter 8).

The second problem, creation of an agent that is computationally light for real-life

deployments, can be solved in a number of ways. Often, model-based reinforcement

learning methods result in computationally heavy models that are difficult to deploy

in real life. We show that our method results in a trained model-free agent that can

be decoupled from a computationally heavy model and a planner. This agent can be

deployed as a computationally-light final solution that performs better than a model-

free agent trained without a model. We demonstrate the benefits of a model and

planner with a novel soft-planner policy and show how to use a novel, non-standard

update to improve the model-free policy.

In real-world human-computer interactive systems, the reward function truly de-

pends on user feedback. The deletion task within the voice document-editing domain

carries this property and encompasses user interactions with an imperfect transcription

system. The agent’s goal in a deletion task is to delete a certain number of words at

the end of the phrase (see Section 3.6.1). We compare it to the current state-of-the-art

implementations for such systems: model-free actor-critic methods.

4.1 Related Work

The first suggestions of formalizing MDPs for dialogue goes back forty years, followed

by work using reinforcement learning (Walker and Grosz, 1978; Biermann and Long,

1996; Levin, Pieraccini, and Eckert, 1997). An example of an early end-to-end dia-

logue system that used reinforcement learning is the RLDS software tool (Singh et al.,

2000) at AT&T Labs. NJFun was another pioneering system developed by Litman et

al. (2000) that used reinforcement learning. NJFun was created as an MDP with a

62

manually designed state space for the dialogue.

Dialogue systems have rapidly advanced in performance over the last few years, fol-

lowing the introduction of a paradigm that turns one sequence into another sequence

by Sutskever, Vinyals, and Le (2014)—known as sequence-to-sequence. Sequence-to-

sequence transformed many natural language processing tasks allowing minimal as-

sumptions on the sequence structure. Further, much of the progress in dialogue systems

is now attributed to the increasing availability of large amounts of data and computa-

tional power via deep learning techniques combined with reinforcement learning—deep

reinforcement learning (see Section 3.5.2) (e.g., Cuayáhuitl et al., 2016; Budzianowski

et al., 2017; Liu, 2018; Tang et al., 2018; Mendez et al., 2019; Shin et al., 2019).

Many recent dialogue systems are based on policy gradient methods, such as actor-

critic methods (e.g., Su et al. 2017; Peng et al., 2018a); however, such methods do not

include models and planning that are critical components of model-based reinforcement

learning allowing an agent to learn the dynamics of a dialogue environment. Several

works combine policy gradient methods and supervised learning methods (e.g., He et

al., 2015; Li et al., 2016a; Kaplan, Sauer, and Sosa, 2017; Weisz et al., 2018), or take a

different approach to improve sample efficiency using imitation learning (Lipton et al.,

2018). Zhao and Eskenazi (2016) used an end-to-end model-based reinforcement learn-

ing architecture that is close to the Dyna architecture (Sutton, 1991); however, their

additional model employs a known transition function from a dataset and not a world

model that is learned through interactions. Their method is comparable to Model-

Based Policy Optimization (MBPO) (Janner et al., 2019) that also uses a dataset.

In contrast, our method focuses on online learning (see Section 3.5.1) and allows the

agent to learn a model online from interactions while reducing the need for additional

elements that are often required in dialogue system implementations (e.g., “successful

63

trajectories”, Lipton et al., 2018; or additional data augmentation, Goyal, Niekum,

and Mooney, 2019).

A developing direction of research on dialogue systems is applying model-based

reinforcement learning approaches that allow learning a world model to mimic user re-

sponses generating hypothetical experiences and to use planning to improve the agent’s

behavior. We discussed some of these works in Section 3.5.3. For example, Lewis et

al. (2017) used dialogue rollouts, followed by Yarats and Lewis (2017) who improved

the effectiveness of planning with dialogue rollouts further. Peng et al. (2018b) pro-

posed the deep Dyna-Q framework incorporating planning into dialogue policy. Su et

al. (2018) extended this work and added control of the quality of hypothetical expe-

riences improving the planning phase. Wu et al. (2019) extended the deep Dyna-Q

framework by integrating a “switcher” that allowed the agent to differentiate between

a real or hypothetical experience. These works, however, do not combine learning and

planning together, similar to what has been proposed by Sutton (1990, 1991). Zhao

et al. (2020) used similar model designs and took the first step in combining learning

and planning, bringing this line of work closer to a combination of learning, planning,

and reactive execution that has been advocated for in this thesis (see Chapter 3).

64

4.2 Background

In this chapter, we focus on reinforcement learning methods that learn a parameterized

policy that enables actions to be taken instead of learning action values and then using

them to select actions. A parameterized policy with policy parameters θ ∈ Rd′ is

defined as follows:

π(a | s,θ)
.
= Pr{At = a | st = s,θt = θ}.

In particular, we consider methods that learn policy parameters on each time step

based on the gradient of some scalar performance measure J(θ) with respect to the

policy parameters—referred to as policy gradient methods (Sutton and Barto, 2018,

Chapter 13). Policy gradient methods find a locally optimal solution to the problem of

maximizing the objective J(θ) and work by applying gradient ascent, as in the classic

variant of policy gradient methods—the REINFORCE algorithm (Williams, 1992):

θt+1
.
= θt + α∇̂J(θt),

∇J(θt)
.
= E

[
∇ ln

(
π(a | st,θt)

)
Gt

]
. (4.1)

Some policy gradient methods are a combination of value-based and policy-based

methods and are called actor–critic methods (Witten, 1977; Barto, Sutton, and An-

derson, 1983; Sutton, 1984). The ‘actor’ refers to the part of the agent responsible for

producing the policy, while the ‘critic’ refers to the part of the agent responsible for

producing a value function. In practice, policy-based methods can have high variance

when using only an actor; hence, a large number of samples may be needed for the

policy to converge. Actor-critic methods solve this problem and aim to reduce this

variance by using an actor and a critic together.

65

Our method is inspired by actor-critic methods. There are two reasons for our focus

on actor-critic methods. The first reason is that online policy-based gradient methods

are more suitable for incorporating a state-update function compared to implementa-

tions of off-policy offline algorithms like deep Q-networks (DQN) (Mnih et al. 2013;

2015). DQN with a state-update function can be resource-inefficient and involve issues

of stale updates as batches of stale experience over a long horizon from a replay buffer

are used in updates. The second reason is the strong performance of actor-critic-based

methods across many domains (Silver et al., 2014; Haarnoja et al., 2018a, 2018b).

We compare our method to the model-free baseline: the actor-critic (AC) method

that is based on the difference between estimates at two successive times—known as

1-step Temporal-Difference (TD) learning. If v̂(s,w) is an estimate of the value of the

state, parameterized by w, then using 1-step Temporal-Difference learning, the critic

update with a step size αw is

δt
.
= Rt+1 + γv̂(st+1,wt)− v̂(st,wt),

wt+1
.
= wt + αwδt∇v̂(st,wt).

(4.2)

To update the policy parameters θ with a step size αθ, instead of using Gt—as in

REINFORCE (4.1)—we use a policy gradient update with the one-step return:

θt+1
.
= θt + αθδt

∇π(At | st,θt)
π(At | st,θt)

(4.3)

= θt + αθδt∇ln π(At | st,θt).

66

4.3 Soft-Planner Policy Optimization

In this section, we introduce a soft-planner policy optimization method (SPPO) that

includes major components of model-free and model-based RL architectures, which we

introduced in Section 2.5. In the parameterized function approximation setting, we

denote model-based reinforcement learning components: the model M, the policy or

‘actor’ π, and the state-value function or ‘critic’ v̂, and their respective parameters θ,

and w. We use the words “interaction” and “episode” interchangeably.

For each time step t of an interaction, we compute the state st from the previous

state st−1, incorporating the information that followed in the transition: the action

At−1 and the observation Ot received by the agent after taking action At−1. An agent

state st is a representation of the entire interaction’s history at time t. The state

accumulates all the information since the beginning of an interaction: information

about the observation, and the previous action and state.

Incorporating a state-update function in the algorithm is necessary to encapsu-

late the course of dialogue into a compact summary that is useful for choosing future

actions (see, mapping model-based reinforcement learning components into voice doc-

ument editing in Section 3.6). The state st at time t is computed by the state-update

function st = u(st−1, At−1, Ot). For example, if the user intends to delete five words,

but at the first step, the agent deletes only one word, the agent could use the infor-

mation about this first attempt to delete the remaining four words. The idea behind

this is that the state should be sufficient for predicting and controlling the future tra-

jectories and understanding the consequences of the actions, without having to store a

complete history.

67

The SPPO method includes three major parts:

Part 1: Planning and acting.

Part 2: Updating the policy π and the approximate state-value function v̂.

Part 3: Updating the model weights.

Part 1. Planning and Acting

Here we describe the first part of the SPPO method. First, we compute a state st

using a state update function. Next, for each possible action a ∈ A, we use the model

M to output the predicted next state ŝ(s, a) and the predicted reward r̂(s, a). Then,

using the outputs of the model, for each possible action a ∈ A we compute a discounted

return Ĝt. While we can iterate the model and predict multiple steps ahead at the cost

of more computation, we chose one-step iteration to reduce the computational cost.

Thus, we use the value estimate of the one-step predicted state—one-step lookahead.

We chose a one-step lookahead because it is fully online and incremental. If γ ∈ [0, 1]

is a parameter for a discount rate (see Section 2.1), then for each action a ∈ A the

computed return is

Ĝt
.
= r̂(st, a) + γv̂

(
ŝ(st, a),wt

)
,

and we write the vector of returns Ĝa
t in which each element i is a calculated return

for an action ai.

We define a soft-planner policy πplanner that is computed by applying a softmax

68

function softmax(xi)
.
= exp(xi)∑

j exp(xj)
to the estimated returns Ĝa

t :

πplanner .= softmax(Ĝa
t)

=
exp(Ĝa

t)∑
a∈A

exp(Ĝa
t)
.

The state-value corresponding to the planner policy is computed as the dot product of

the planner policy πplanner and the estimated return for each of the actions:

vplanner(st)
.
= Ĝa

t · πplanner(a | st).

Part 2. Updating Actor and Critic

In the second part of the SPPO method the agent takes an action and updates the

actor and the critic. We make an assumption that the planner policy is a better policy

and use it as a reference policy. Using the planner policy πplanner, the agent takes an

action At: At ∼ πplanner(· | st) and receives reward Rt+1, followed by the observation

Ot+1 (Figure 4.1).

To update the parameters w of the approximate value function v̂(st,wt), we reduce

the error by a small amount in the direction of the planner policy v̂planner(st) using

stochastic gradient descent (SGD). Using SGD, we minimize the mean squared error

(MSE) between the state-value of the critic v̂(st,wt) and the state-value of the planner

v̂planner(st), which is based on the model reward predictions and the critic’s estimates

69

at predicted states. The critic is updated at each time step by the following rule:

wt+1
.
= wt −

1

2
α∇
[
v̂planner(st)− v̂(st,wt)

]2

= wt + α

[
v̂planner(st)− v̂(st,wt)

]
∇v̂(st,wt).

To optimize the actor and to encourage exploration, we introduce two modifications

to the standard update. As a first modification, we use the relative entropy between

the actor policy π and the reference planner policy πplanner, similar to the work of

Schulman, Chen, and Abbeel (2017) in which they use a fixed, uniform policy as the

reference policy. In the SPPO method we make an assumption that the planner policy

is a better policy and instead of a fixed reference policy we use the continually changing

planner policy as the reference. Relative entropy is also known as the Kullback-Leibler

divergence and is calculated as follows:

DKL

(
πplanner||π(a | st,θt)

)
.
=
∑
a∈A

πplanner log
π(a | st,θt)
πplanner(a | st)

.

As a second modification, we use entropy similar to the work of Mnih et al. (2016) to

increase exploration. We denote an entropy term H at time step t that is computed

as follows:

Ht

(
π(a | st,θt)

) .
= −

∑
a∈A

π(a | st,θt) log π(a | st,θt).

70

Then the actor parameters are updated as follows:

θt+1
.
= θt − α∇

[∑
a∈A

πplanner log
π(a | st,θt)
πplanner(a | st)

+ βHt

]
= θt − α∇

∑
a∈A

πplanner log
π(a | st,θt)
πplanner(a | st)

− β∇
(
−
∑
a∈A

π(a | st,θt) log πθ(a | st,θt)
)

= θt − α∇
∑
a∈A

πplanner log
π(a | st,θt)
πplanner(a | st)

+ β∇
∑
a∈A

π(a | st,θt) log π(a | st,θt).

Part 3. Model Update

In the third part of the SPPO method we update the model weights. First, using the

current state st, the action taken At, and the new observation Ot+1 as an input for

the state-update function u, we compute the next state st+1. The model outputs the

predicted next state ŝ(st, a) and reward r̂(st, a) using the current state st and action

taken At as inputs. The objective is to minimize the mean squared error between the

model-predicted feature-vectors of the next state and reward and the next state st+1

computed by the state updated function and the observed reward Rt+1. The mean

squared errors are computed as follows:

MSEstates
.
= ||ŝ(st, a)− st+1||2,

MSErewards
.
= ||r̂(st, a)−Rt+1||2.

All three parts are visualized in the Figure 4.1 and described algorithmically below.

71

PART 1 PART 3PART 2

Actor &
Critic

Update

Model
Update

Figure 4.1: SPPO method schematically. The first part is on the left in blue—planning
and acting; the second part is in the middle in green—policy and state-value function
updates; the third part is on the right in yellow—model update.

72

1 Algorithm: Soft-Planner Policy Optimization (SPPO)

Algorithm parameters: step sizes αη, αθ, αw; γ, β

2 Initialize M, π, v̂, πplanner,θ,w, starting state and an action

3 Observe Ot (first observation of episode)

4 while still time to train (for each time step t) do

5 Compute a state s by a state-update function

6 // Step 1: Plan and act

7 while still time to plan do

8 for a ∈ A do

9 ŝ(s, a), r̂(s, a)←M # model outputs next state and reward

10 Ĝ← r̂(s, a) + γv̂(ŝ(s, a),w)

11 end

12 end

13 πplanner ← SoftMax(Ĝa) # compute a planner policy

14 vplanner(s)← Ĝa · πplanner(a | s)

15 Sample action A ∼ πplanner(· | s)

16 Take action A and get next observation O and reward R

17 Compute a state s by a state-update function

18 // Update actor π and critic v̂

19 w← w + α

[
v̂planner(s)− v̂(s,w)

]
∇v̂(s,w) # update critic

20 H ← −
∑
a∈A

π(a | s,θ) log π(a | s,θ) # compute entropy

21 θ ← θ − α∇
[∑
a∈A

πplanner log π(a|s,θ)
πplanner(a|s) + βH

]
update actor

22 Update model

23 end

73

4.4 Experiments

This section presents the experimental setup. First, we investigated the performance

of the SPPO method and how quickly the agent learns during planning. Next, we

created and investigated the performance of a computationally-light agent. Recall that

in the beginning of this chapter we discussed how model-based reinforcement learning

methods often result in an agent that is heavier in terms of computation and memory

than a model-free agent. One of our goals is that the SPPO method can serve as a

solution for a real-life application. With this goal in mind we asked, “Can we first train

an agent with the SPPO method, then detach the model and planner components, so

that the resulting solution contains only the light model-free architecture that can be

deployed as an assistant?” Motivated by this question, we investigated the performance

of our agent after we trained the full model-based agent and then detached the model

and planner. We called the resulting model-free agent SPPO-lite. For evaluation, we

used a subset of the dataset: the full dataset of over 74 million sentences was split

into halves for training and testing. We used the test set of unseen sentences to assess

performance. Instead of sampling actions from a probability distribution, the agent

selects actions whose estimated value is the greatest—called greedy actions (Sutton

and Barto, 2018, Chapter 2).

In all the experiments, each method was executed for 100, 000 simulated interac-

tions, with 30 replications for each method, changing the random seed for each replica-

tion. The random seed affects the initialization of parameters of the neural networks.

The average over 30 runs was used in the performance measures of the methods. We

report average reward per interaction and the distribution over actions. The actions

were represented by the discrete action range [1, 15], respecting the real-world setting,

where a user is most likely to observe the corrupted words and therefore halt dictation.

74

4.4.1 Word Embeddings

To represent text, we used real-valued vectors that encode the meaning of each word

such that the words with similar meanings are closer in the vector space—a technique

known as word embeddings. We used word2vec word embeddings models by Mikolov

et al. (2013). We note that the latest developments such as BERT (Devlinet al., 2018)

for word embeddings does not apply to our setting. BERT models jointly condition

on both the left and right contexts of a sentence, which would create a problem in our

simulation provided we inject random noise to simulate corrupted words. Instead, we

learn temporal structures with the recurrent neural network state-update function.

75

encode

concat
w2v

transform

concat

|A| |A| x |S|

|S| x |S|
|S| x |h|

|S| x |S|

|S| x |w| |S|

dot
product

Figure 4.2: Construction of RNN-input Ω for the state-update function. The Ω includes
the information of the previous state, the observation, and the reward. The dimensions
of each array are shown underneath each entity.

4.4.2 State Update Architecture

The state-update function u, as in (2.4), was represented by a recurrent neural network

(RNN): a two-layered bi-directional GRU (Cho et al., 2014) with input and hidden sizes

of 400 and 100, respectively. To compute a state using the RNN, we needed to provide

an RNN-input denoted Ωt, which combined the previous state, the observation, and

the reward (Figure 4.2). The observation Ot was constructed by concatenation of the

encoded text wt and user input ψt. The word2vec embeddings then were used to

encode an observation Ot into an observation matrix Ot. An action was encoded into

a binary vector that is all zero values except the index of the integer that represents

an action—referred to as one-hot vectors. A collection of one-hot vectors results in

an action-matrix At−1. A dot product of the action-matrix At−1 and the previous

state was concatenated with the observation Ot to compute the RNN-input Ω.

76

action-vector
co

nv
 1

co
nv

 2

co
nv

 3

de
co

nv
 1

de
co

nv
 2

de
co

nv
 3

encoding

including
action

information &
reward prediction decoding

Figure 4.3: A model architecture with a stack of three convolutional layers.

4.4.3 Model Architecture

Following Oh et al. (2015), we used a stack of three convolutional layers with filter sizes

50, 50, and 100 for the model architecture (Figure 4.3). The action was encoded into a

vector and the Hadamard product was applied to the output of the 1D convolutional

layers and the action vector. The output of this operation was then passed through a

stack of three deconvolutional layers with filter sizes of 100, 50, and 100. The output

of the Hadamard product operation was also passed through a linear layer to a single

node for the scalar reward prediction. The state st and the action At served as inputs

to the model. The model outputs were predictions of the next reward r̂ and the next

state ŝ similar to other model-based reinforcement learning methods (Kuvayev and

Sutton, 1996; Sutton et al., 2008; Hester and Stone, 2012).

77

4.4.4 Baselines Architecture

We use actor-critic as a baseline because actor-critic is often implemented in con-

junction with deep learning. We note that often actor-critic is implemented using

its asynchronous variants. An example of such a variant is Asynchronous Advan-

tage Actor-Critic (A3C) by Mnih et al. (2016). Asynchronous methods such as A3C

are multi-threaded variants that are optimized to simultaneously use multiple CPU

threads on a single machine where each thread interacts with its own copy of the en-

vironment. In our experiments, we used a single-threaded AC agent that learns from

a single stream of experience. A single-threaded agent mimics real human-computer

interaction for the task, so the comparison of single-threaded agents is foundational.

The actor and critic were implemented as a one-dimensional (1D) convolutional neural

network (see Fukushima and Miyake, 1982) that extracts correlations in the temporal

structure of the sentences. The network was shared up until the point where there was

a split into two separate heads: one producing a scalar value estimate and the other a

probability distribution over actions as a policy. The shared architecture consisted of

three convolutional layers with filter sizes of 50, 50, and 100.

The supervised learning model implemented the same architecture as the actor in

our SPPO method and the training of the supervised learning model was done with

cross-entropy loss using the intent as the target.

4.4.5 Initialization and Hyperparameters

The architecture was implemented in PyTorch 1.0. To support the required RNN-

input—an initial state and an initial action to perform the first state-update iteration—

the initial state was initialized to ones, and the initial action was initialized to zeros. We

78

used the Adam optimizer (Kingma and Ba, 2014) with the default parameters provided

by the PyTorch implementation, with the exception of the step size, which was set to

1× 10−4. The step size was selected based on the parameter study performed for each

of the methods. Both methods performed the best with the step size of 1× 10−4. We

used a discount rate γ of 0.9, and the word-embedding size was 300. The entropy

parameter β was set to 1 for simplicity.

4.5 Results

In this section, we present the results on the voice document-editing domain. We

compared our method to a model-free actor-critic method that is already known for

its good performance across many domains (Schulman et al., 2015, 2017; Haarnoja et

al., 2018a, 2018b). As a measure of performance, we used the total sum of reward per

interaction, defined as G0 in Section 2.1.1. We averaged G0 over 30 runs, each begun

with a different random number seed.

79

0 250 500 750 1000 1250 1500 1750 2000
Number of interactions

6.0

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5
SPPO

Supervised Learning Method,
average over the last 10,000 interactions

Actor-Critic Method,
average over the last 10,000 interactions

Actor-Critic

G0

Total
reward
during

interaction

Figure 4.4: Performance of the SPPO method, AC and the supervised learning method
on the deletion task. The data are averages over 30 runs of each algorithm, each begun
with a different random number seed. Shaded regions are standard error.

4.5.1 Sample Efficiency

Figure 4.4 shows the performance of the SPPO method, AC, and the supervised learn-

ing method on the deletion task of the voice document-editing domain. The algorithms

were run with the selected parameters described in Section 4.4.5. We measured the

total reward per interaction, which is the return G0 defined in Section 2.1.1, averaged

over 30 runs, each begun with a different random number seed. Each algorithm was

executed for 100,000 interactions.

During the first 100 interactions, AC gained a total reward approximately between

-5.5 to -4.5, which means that an agent that used AC made 4-5 mistakes on average

to correct the corrupted words in a given sentence. AC stabilized its performance

80

at around 2,000 interactions and improved marginally after that: Figure 4.4 shows

that on average, G0 of the last 10,000 interactions for AC was around -3.7, which was

not far from its performance at 2,000 interactions. This means that AC made about

3.7 mistakes on average to correct the sentence, which is an improvement from 4-5

mistakes, but not by much.

The supervised learning model gained a higher G0 than AC: it reached an average of

-3 over the last 10,000 interactions, compared to -3.7 value for AC. The interpretation

of this result is that to correct the sentence about 3 mistakes on average were made by

the agent trained with the supervised learning method compared to 3.7 mistakes made

by the agent trained with AC method.

The SPPO method gained higher performance much quicker than AC: at around

100 interactions it was approximately at the level of AC’s performance at the last

10,000 interactions. At around 250 interactions the SPPO method was already at

the level of the supervised learning method’s performance and the agent trained with

the SPPO method made only about 3 mistakes to correct the sentence. Over the

first 2,000 interactions the SPPO method improved its performance about two times,

from approximately 4 mistakes to correct the sentence to 2. In comparison, AC did

not improve significantly between 100 and 2,000 interactions: only from about 5 to 4

mistakes to correct the sentence. Overall, the SPPO method quickly gained a higher

total reward per episode and continued to improve while AC improved slowly and

practically plateaued.

81

−1.95

−1.90

−1.85

−1.80

−1.75

2 4

−3.80

−3.75

−3.70

SPPO,
last 90,000
interactions

AC,
last 90,000
interactions

SPPO,
last 10,000
interactions

AC,
last 10,000
interactions

G0

Total
reward
during

interaction

Figure 4.5: The total reward per interaction, the return G0, averaged over all runs.
The plot shows the average over the last 90,000 interactions (on the left), and over the
last 10,000 interactions (on the right) for the SPPO method and AC. The data are
averages over 30 runs of each algorithm, each begun with a different random number
seed. The orange line is the median and the extent of the boxes represents upper and
lower quartiles.

4.5.2 Long-term Performance

Figure 4.5 shows the return G0, over the long period of interactions, averaged over 30

runs, and then further averaged over the last 90,000 interactions (on the left) and the

last 10,000 interactions (on the right). Generally, 10,000 interactions between the agent

(the assistant) and a user can be a significant amount of interactions. The purpose

of averaging over the last large number of interactions was to demonstrate the agent’s

performance as if the agent continued to assist the user on the selected task in the long

run.

First, consider the last 90,000 interactions on the left side of the Figure 4.5. The

82

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10000

20000

30000

40000

Nu
m
be

r o
f a

ct
io
ns

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Actions taken by the agent

0

10000

20000

30000

40000

Nu
m
be

r o
f a

ct
io
ns

SPPO

AC

Figure 4.6: The distribution over actions for all actions that the SPPO method and
AC took over all interactions.

median for the SPPO method was around −1.8. The interquartile interval, where 50%

of the data is found, was almost twice as tight for AC than for the SPPO method. The

spread between lower and upper quartiles also showed more variability for the SPPO

method.

Next, consider the last 10,000 interactions on the right side of the Figure 4.5. No-

ticeably, the median for the SPPO method was higher over the last 10,000 interactions

compared to the last 90,000 interactions, while the median for AC stayed at around

the same value. Interestingly, the interquartile interval shortened significantly for both

methods. Overall, the SPPO agent made on average 2 fewer mistakes to correct the

sentence than the agent trained with AC.

Figure 4.6 shows the distribution of actions selected by the agent for both methods

over all interactions. AC preferred lower numbered actions, and seemed to explore less,

while SPPO’s distribution over actions was much more uniform.

83

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3

2 3 4
−3.8

−3.7

−3.6

−3.5

MBAC-lite AC Greedy
MBAC-lite

Greedy
AC

SPPO-lite
SPPO-lite

G0

Total
reward
during

interaction

Figure 4.7: The performance of SPPO-lite and AC. SPPO-lite outperformed AC with
and without using greedy action selection. The orange line is the median and the
extent of the boxes represents upper and lower quartiles.

4.5.3 Model-free SPPO-lite Agent

Figure 4.7 shows the performance of the two model-free architectures : the SPPO-lite

method and AC. We measured the total reward per episode—the return G0. Recall that

first we trained a full model-based agent using the SPPO method. Then we detached

the model and the planner components so that the resulting solution contained only

model-free architecture—the SPPO-lite.

Without greedy action selection (on the left) the SPPO-lite method and AC per-

formed around the same: both methods made close to 3.5 mistakes on average to

correct the sentence. Using greedy action selection (on the right) resulted in a different

picture: it made just over 1 mistake on average for the SPPO-lite method to correct

the sentence while AC made about 2 mistakes.

84

4.6 Discussion

The first result shown in Figure 4.4 suggests that the SPPO method could be more

effective than AC and the supervised learning model. It seems that the superior per-

formance of the SPPO method empowered with the model is expected similar to how

it would be expected that a supervised learning model would outperform model-free

AC methods. However, it is unclear what exactly caused the gain in performance. For

example, the SPPO’s performance could be explained by improved exploration based

on the more uniform distribution over actions. This improved exploration could come

from using the model or could come from updates that we proposed for the actor and

critic. Recall that the SPPO method is not simply AC with a model, but AC with a

model,a planner policy, and a novel update for both actor and critic.

Moreover, these results depend on many choices, for example, choices of parameters,

word embeddings, and architectures. This experiment is limited to the selected settings

and choices made, and thus we cannot generalize from this result. It is possible that

even a different choice of word embeddings would bring the methods closer to each

other in performance or could reduced the variability in the SPPO method.

The second result on Figure 4.7 suggests that SPPO-lite could perform about the

same as AC, but could be superior to AC using greedy action selection. When selecting

the greedy actions, the agent is exploiting its current knowledge. This could be suitable

for our goal of deploying a computationally light agent, however, such an assistant

would have to be re-trained at some point in time. This experiment demonstrates that

we can accomplish our desired goal and distill model and planner knowledge into the

model-free architecture. The resulting assistant could be significantly more effective

than a regular model-free agent.

85

Our goal was to demonstrate a sound model-based reinforcement learning method

that allows the agent to adapt in the online learning setting, without using built-in

knowledge of previously obtained data. The deletion task is difficult for the supervised

learning model because it requires learning long-term dependencies in the dictated

sentence. Pre-training the agent on large datasets is not a suitable option when it

comes to online learning. Learning a model could help the agent to adapt quickly, so

it is no surprise that SPPO performs well in the continually changing setting of the

deletion task. SPPO learns the language model of the dictated sentences and eventually

allows deletion of corrupted words as quickly as two mistakes on average.

86

4.7 Conclusions

In this chapter, we presented a soft-planner policy optimization method that uses a

soft-planner policy to update the agent’s model-free policy. On the selected parameters

and settings, our SPPO method can be more sample-efficient than the classical actor-

critic method that does not use the model and the planner. We demonstrated that at

deployment time, the model and planner can be detached to obtain an inexpensive,

light, yet well-performing model-free agent.

We believe this result and architecture are important in applying RL to real-life

applications that use human-computer interactions for a few reasons. The first reason

is that this is the first implementation of the voice document-editing domain and

the first application of model-based reinforcement learning methods to it. It is a

step forward in realizing voice document editing that can directly benefit society by

improving productivity and helping those with limited typing abilities. The second

reason is that the results demonstrate the difficulty of the deletion task: none of the

methods were able to achieve the level of performance necessary to make zero mistakes

when correcting sentences. This is realistic and expected for real-life problems. The

third reason is that the result demonstrates the complexity of choices when it comes

to real-life realization of such assistants and the limitation of conclusions drawn from

the choices made.

87

Chapter 5

Planning with Expectation Models

for Control

The role of this chapter is to provide the main contribution of this thesis: proving

incompatibility of planning with expectation models and linear action-value functions.

Further, the chapter builds on the main contribution and presents the fourth and final

contribution that is strategies for planning with expectation models.

More specifically, in this chapter we look deeper into planning with expectation

models; such models have their own benefits, for example, ease of implementation and

scalability. While finding solutions that work for conversational AI and in particular,

voice document editing, we also want to find methods that are applicable for building AI

assistants of all types. In this chapter, I provide a consistent and systematic approach

to planning in model-based reinforcement learning that applies to general settings with

function approximation. Value iteration type of planning works by estimating value

functions—it is an iterative process that makes value functions better. There are two

ways in which value iteration can be done: one way is using state-value functions and

another way is action-value functions. One advantage of action-value functions is that

88

they immediately tell the agent how to behave. Here, we show that planning with

appealing expectation models cannot be done with action-value functions. This brings

up the problem of how to do planning with state-value functions and how to effect

action selection. We address the problem by considering three strategies for action

selection.

5.1 Planning with Function Approximation

Methods that resort to approximating functions rather than learning them exactly

have not been fully investigated. Extending the techniques used in the simpler tabu-

lar regime to the function approximation regime (see Section 2.3) is an obvious first

step, but some of the ideas that have served us well in the past might actually be

impeding progress on the new problem of interest. For example, Sutton and Barto

(2018) showed that when dealing with feature vectors rather than underlying states,

the common Bellman error objective is not learnable with any amount of experiential

data. Recently, Naik et al. (2019) showed that discounting is incompatible with func-

tion approximation in the case of continuing control tasks. Understanding function

approximation in reinforcement learning is key to building general-purpose intelligent

assistants that can learn to solve many tasks of arbitrary complexity in the real world.

Planning with function approximation is an interesting and unsolved problem, espe-

cially for solving control problems in stochastic environments. Recall that in Section 2.5

we introduced models and planning, and stated that one advantage of models and plan-

ning is that they are useful when the agent faces unfamiliar or novel situations—when

the agent may have to consider states and actions that it has not experienced or seen

before. Planning can help the agent evaluate possible actions by using the model to

89

compute hypothetical scenarios and then computing their expected future outcomes

(Doll et al., 2012; Ha and Schmidhuber, 2018; Sutton and Barto, 2018). Planning with

function approximation remains an open question in reinforcement learning today and

there are some works in this direction (e.g., Shariff and Szepesvári, 2020).

Planning with function approximation can be performed with various kinds of mod-

els: distribution models, sample models, and expectation models. A full distribution

model may be impractical and a sample model may be either more expensive com-

putationally or suffer from high variance. Thus, expectation models seem like a good

alternative to those choices. However, it is not obvious how expectation models can

be used in stochastic environments with function approximation because they only

partially characterize a distribution. Wan et al. (2019) considered planning with an

expectation model for the prediction problem within the function approximation set-

ting and showed conditions under which the model could produce the expectation of

the next feature vector rather than the full distribution, or a sample thereof, with

no loss in planning performance. Yet, there is more to be done because Wan et al.

considered only planning for prediction to evaluate a fixed policy and not the control

problem we are interested in.

In this chapter, we extend Wan et al.’s (2019) work on the prediction problem to

the more challenging control problem in the context of stochastic and non-stationary

environments. We start off by discussing important choices in model-based reinforce-

ment learning, followed by fundamentals on planning with expectation models in the

general context of function approximation. We prove that in stochastic environments

planning with an expectation model must update a state-value function, not an ac-

tion-value function as previously suggested in the literature (e.g., Sorg and Singh,

2010; van Hasselt et al., 2019; Jafferjee, 2020), by which we open the question of how

90

planning influences action selection. We consider three ways in which actions can be

selected when planning with state-value functions and present general model-based re-

inforcement learning algorithms for each of them. We demonstrate these algorithms

empirically and consider the strengths and weaknesses of these algorithms in compu-

tational experiments. Our algorithms are the first to treat model-based reinforcement

learning with expectation models in a general setting.

5.2 Background

In the previous chapters we discussed that model-based methods are an important

part of reinforcement learning’s claim to provide a full account of intelligence. An

intelligent agent should be able to model its environment and use that model flexibly

and efficiently to plan its behavior. In model-based reinforcement learning, models

add knowledge to the agent in a way that policies and value functions do not. When

planning is applied, the model’s output is used to further improve policies and value

functions. We now define value iteration with function approximation, and the backup

distribution.

5.2.1 Value Iteration

A known approach to learning a policy is iterative updates to a state-value or action-

value function (Sutton, 1988). Various solutions exist for updating value functions.

The value of a state depends on the values of the actions possible in that state and on

how likely each action is to be taken under the current policy (Sutton and Barto, 2018,

Chapter 3). To iteratively update the estimated value of the state s (or a state–action

91

pair), usually, the value of its successor states s′ (or state–action pairs) is computed first

and then the value information is transferred back to the state—the process referred

to as backup operations. The state we are seeking to update is called the backup state.

Value iteration is a classic planning algorithm (Bellman, 1957; Sutton, 1988;

Watkins, 1989; Bertsekas, 2012) that performs sweeps of computed backup values

through the state or state-action space. Using value functions, value iteration for

all s ∈ S can be written as follows for the tabular case:

vk+1(s)
.
= max

a
E[Rt+1 + γvk(St+1) | St = s, At = a]

= max
a

∑
s′,r

p(s′, r | s, a)
[
r + γvk(s

′)
]
, s ∈ S.

Similarly, we can write the corresponding value iteration for the function approx-

imation case. Recall that, in the function approximation setting, the agent state is

represented by a feature vector s ∈ Rd, that is computed using a state-update func-

tion u (Sutton and Barto, 2018) that uses the most recent observation and action along

with the most recent agent state to recursively compute the new agent state as in (2.4).

Consider a transition probability function p(s′ | s, a) that takes the agent from state s

to a successor state s′, p : Rd × Rd ×A → [0, 1], such that

∫
s′∈Rd

p(s′ | s, a)ds′ ≤ 1, s ∈ Rd, a ∈ A.

Consider an approximate value function v̂(s,w) ≈ v∗ and its weight vector w. For

this update we select the states in some order and for each single state we change the

weight vector w on each update. We refer to such an update as an iteration k and we

include the iteration number as a superscript not to confuse it with the actual weight

92

vector and state at time t which is a separate sequence. The difference is the number

of iterations corresponds to the number of planning steps and we are not necessarily

doing one step of planning in parallel to every step in the real world that is denoted

by time steps t. The choice of the number of iterations—number of planning steps—is

an algorithmic choice, while st sequence is based on the evolution of the environment.

In this update notation we drop the time index t and we consider an update for each

set of states. Then Approximate Value Iteration (AVI) consists of repeated applications

of the following update for a given state s and a weight wk ∈ Rd at the iteration k

with a positive step-size parameter α, and the gradient vector ∇ with respect to wk is

as follows:

wk+1 .
= wk + α

max
a

r(sk, a) + γ

∫
s′∈Rd

p
(
s′ | s, a

)
ds′v̂

(
s′,wk

)− v̂(s,wk)

∇v̂(s,wk).

(5.1)

5.2.2 Planning and Backup Distribution

We discussed above that planning can often be described as proceeding in a sequence

of state-value backups, each of which updates the value estimate of a single state (and

perhaps others by generalization). The backup state can be selected in many different

ways. Often we can speak of the distribution of states at which backups are done. A

state distribution from which backup updates are performed during planning has an

effect on the value function convergence. Here, we refer to the distribution of states we

are planning from as a backup distribution. The process of choosing this distribution

is known as backup control which is analogous to “search control” strategies such as

prioritized sweeping (see Sutton et al., 2008; Pan et al., 2018). To update the backup

93

state, one or more backups are made either from the backup state or from its possible

successor states, a backup target is formed, and finally the backup-state’s state-value

estimate is shifted toward the target. In one-step backups, all the backup updates are

from the same backup state; they all predict one step into the future from it. These

are the shortest backups. In multi-steps, or iterated backups, backups are made both

from the backup state and the predicted states of those backups.

5.3 Equivalence of Planning with Expectation and

Distribution Models

In this section, we show that planning with expectation models is equivalent to planning

with distribution models when the value function is linear. To do so, we first introduce

a few important definitions.

Definition 5.3.1 (Distribution Model). A distribution model consists of an expected

reward function r : Rd ×A → R, written r(s, a), and a transition probability function

p : Rd × Rd ×A → [0, 1], written p(s′ | s, a), such that

∫
s′∈Rd

p(s′ | s, a)ds′ ≤ 1, s ∈ Rd, a ∈ A.

If p integrates to less than 1, then the remaining probability is interpreted as the

probability of termination.

Definition 5.3.2 (AVI with a distribution model). Following an approximate update

for a weight vector in (5.1) we define an update target g(s,w) for a large (or infinite)

94

state space as follows:

g(s,w)
.
= max

a∈A

[
r(s, a) + γ

∫
s′∈Rd

p(s′ | s, a)v̂(s′,w)ds′
]
. (5.2)

Then AVI with a distribution model consists of repeated applications of the following

update for a given state s and a weight wk ∈ Rd at the iteration k with a positive

step-size parameter α, and the gradient vector ∇ with respect to wk is

wk+1 .
= wk + α

(
g(s,w)− v̂(s,wk)

)
∇v̂(s,wk). (5.3)

Definition 5.3.3 (GEEM). A general episodic expectation model (GEEM) consists of

an expected reward function r : R × A → [−∞, 0], an expected next-state function

ŝ : Rd × A → Rd, and a termination probability function β : Rd × A → [0, 1]. The

termination probability function β(s, a) is interpreted as the probability of terminating

in one step from state s if action a is taken, and ŝ(s, a) is interpreted as the expected

next state if termination does not occur.

Definition 5.3.4 (EVI). Expectation value iteration (EVI) consists of repeated appli-

cation of AVI (5.3) with the update target

g(s,w)
.
= max

a∈A

[
r(s, a) + γ

(
1− β(s, a)

)
v̂
(
ŝ(s, a),w

)]
. (5.4)

In the special case in which the approximate value function is linear, v̂(s,w) = w>s,

this update target can be written

g(s,w) = max
a∈A

[
r(s, a) + γ

(
1− β(s, a)

)
ŝ(s, a)︸ ︷︷ ︸

s̄(s,a)

>w
)]
, (5.5)

95

revealing that the β and ŝ functions of the expectation model can be combined and

learned as a single function s̄(s, a). This motivates the next definition.

Definition 5.3.5 (ZTEM). A zero-terminal expectation model (ZTEM) consists of an

expected reward function r : R×A → [−∞, 0] and a zero-terminal expected next-state

function s̄ : Rd ×A → Rd, written s̄(s, a), which can be interpreted as an expectation

of the next state given that the terminal state is treated as a zero vector.

Definition 5.3.6 (ZTEM and a GEEM are aligned). A ZTEM and a GEEM are

aligned iff their expected reward functions are identical and the expected next state

functions are related by

s̄(s, a) =
(
1− β(s, a)

)
ŝ(s, a). (5.6)

Definition 5.3.7 (LEVI). Linear expectation value iteration (LEVI) is the combina-

tion of EVI and a linear state-value function. It consists of repeated applications of

(5.3) with the update target

g(s,w)
.
= max

a∈A

[
r(s, a) + γw>s̄(s, a)

]
. (5.7)

96

Theorem 1. If a ZTEM and GEEM are aligned, then LEVI is equivalent to EVI with

a linear state-value function.

Proof. Follows immediately from the combination of (5.5) and (5.6). In particular,

in (5.6) we stated the relation between the expected next state functions:

s̄(s, a) =
(
1− β(s, a)

)
ŝ(s, a).

Expectation value iteration from (5.5) is as follows:

g(s,w) = max
a∈A

[
r(s, a) + γ

(
1− β(s, a)

)
ŝ(s, a)︸ ︷︷ ︸

s̄(s,a)

>w
)]

= max
a∈A

[
r(s, a) + γs̄(s, a)>w

]
= max

a∈A

[
r(s, a) + γw>s̄(s, a)

]
.

This shows that the update target in LEVI (5.7) is the same as the update target in

EVI (5.4), thus, LEVI is equivalent to EVI.

Definition 5.3.8 (ZTEM and a distribution model are aligned). A ZTEM and a

distribution model are aligned iff their expected reward functions are identical and

their transition parts are related by:

s̄(s, a) =

∫
s′∈Rd

s′p(s′ | s, a)ds′ ∀ s ∈ Rd, a ∈ A. (5.8)

97

The theorem below extends Wan et al.’s (2019) result to general setting of function

approximation.

Theorem 2. If a ZTEM and a distribution model are aligned, then LEVI is equivalent

to AVI with a linear state-value function.

Proof. Consider now the integral part in (5.2) below:

∫
s′∈Rd

p(s′|s, a)v̂(s′,w)ds′ =

∫
s′∈Rd

p(s′ | s, a)w>s′ds′

=

∫
s′∈Rd

w>p(s′ | s, a)s′ds′

= w>
∫

s′∈Rd

p(s′ | s, a)s′ds′

= w>EF ,η
[
st+1 | st = s, At = a

]
= w>s̄(s, a)

.
= s̄(s, a)>w.

This shows that AVI and LEVI are equivalent.

g(s,w) = max
a∈A

[
r(s, a) + γ

∫
s′∈Rd

p(s′ | s, a)v̂(s′,w)ds′
]

(AVI)

= max
a∈A

[
r(s, a) + γw>s̄(s, a)

]
, (LEVI).

The theorem allows us to use the benefits of expectation models such as lesser

computation and smaller variance.

98

5.4 Incompatibility of Expectation Models and

Action-Value Functions

In this section we show that in stochastic environments planning with expectation

models, function approximation, and linear value functions must update state-value

functions and not action-value functions as previously suggested in the literature (e.g.,

by Sorg and Singh, 2010; van Hasselt et al., 2019; Jafferjee, 2020).

It is natural to extend approximate value iteration to an action-value form. An up-

date target for an approximate action-value iteration (AAVI) for a given state s and

a weight wk ∈ Rd at the iteration k with a positive step-size parameter α, and the

gradient vector ∇ with respect to wk is defined as:

g(s, a,w)
.
= r(s, a) + γ

∫
s′∈Rd

p(s′ | s, a) max
a′

q̂(s′, a′,w)ds′. (5.9)

The AAVI update is then

wk+1 .
= wk + α

(
g(s, a,wk)− q̂(s, a,wk)

)
∇q̂(s, a,wk). (5.10)

Based on our Theorem 2, we can write the integral part in the update target for AAVI

in (5.9) as follows:

∫
s′∈Rd

p(s′|s, a) max
a′

q̂(s′, a′) ds′
.
=

∫
s′∈Rd

p(s′|s, a) max
a′

(w>a′ s
′) ds′. (5.11)

99

However, we also know that

∫
s′∈Rd

p(s′|s, a) max
a′

(w>a′ s
′) ds′ 6= max

a′

∫
s′∈Rd

p(s′|s, a)w>a′ s
′ds′. (5.12)

Combining (5.11) and (5.12) we get

∫
s′∈Rd

p(s′|s, a) max
a′

q̂(s′, a′) ds′
.
=

∫
s′∈Rd

p(s′|s, a) max
a′

(w>a′ s
′) ds′

6= max
a′

∫
s′∈Rd

p(s′|s, a)w>a′ s
′ds′. (5.13)

We now substitute the update target (5.9) in the AAVI update (5.10) with (5.13) and

replace the part of the integral with the output of the ZTEM as per Theorem 2:

wk+1 = wk + α

[
r(s, a) + γ

∫
s′∈Rd

p(s′|s, a) max
a′

q̂(s′, a′) ds′ − q̂(s, a,wk)

]
∇q̂(s, a,wk)

= wk + α

[
r(s, a) + γ

∫
s′∈Rd

p(s′|s, a) max
a′

(w>a′ s
′) ds′ − q̂(s, a,wk)

]
∇q̂(s, a,wk)

6= wk + α

[
r(s, a) + γmax

a′

∫
s′∈Rd

p(s′|s, a)w>a′ s
′ds− q̂(s, a,wk)

]
∇q̂(s, a,wk)

6= wk + α

[
r(s, a) + γmax

a′

(
s̄(s, a)>w

)
− q̂(s, a,wk)

]
∇q̂(s, a,wk) (by Theorem 2).

Thus, the backup value obtained from the distribution model is not aligned with the

backup value obtained from the expectation model. Hence, we state an important

result: in stochastic environments, planning with expectation models and linear value

functions cannot proceed with action-value functions. We refer to this result as the

incompatibility of expectation models and action-value functions.

100

1

3

2

p = 0.5

p = 0.5

T

T

T

T

T

A

B A

A

B

B

0

-1

0

-5

-5

0

Figure 5.1: A counterexample episodic MDP.

5.4.1 A Counterexample Illustration

We now empirically demonstrate the incompatibility of expectation models and action-

value functions on a counterexample. Consider a Markov decision process with three

transition states shown in Figure 5.1. From the start state 1 the agent can perform

one of two actions A and B. With equal probability, the action A causes the agent

to advance either to state 2 or 3. If the transition takes the agent to state 2, then

action A takes the agent to the terminal state with the reward 0, and action B takes

the agent to the terminal state with the reward −5. The opposite happens in state 3:

action A takes the agent to the terminal state with the reward −5, and action B takes

the agent to the terminal state with the reward 0. From state 1, the action B takes

the agent to the terminal state with the reward −1. The episode ends once the agent

reaches the terminal state.

In this experiment, we compared the model-free Q-learning method (see Section 2.4)

and the AAVI method that used a learned expectation model, as in (5.10). We used

ε-greedy action selection with ε = 0.1, meaning that the agent takes actions greedily

101

most of the time—maximizing the reward according to the arg maxa function—but

every once in a while with a small probability ε, instead selects randomly among all

the actions with equal probability, independently of the action-value estimates. We

measured a sum of all the rewards since the beginning of the episode—the return G0.

The data were averages over 100 runs, each begun with a different random number seed.

With greedy action selection, the optimal policy for Q-learning would get the return

G0 = 0. However, since we used ε-greedy, then the agent picked an optimal action with

probability p = 1 − ε + ε
2

= 0.95. Then the probability of picking the optimal action

at any state was (1− p)(−1) + p(1− p)(−5) = 0.05 · (−1) + 0.95 · 0.05 · (−5) = −0.29.

This means that the maximum return that Q-learning could receive is around -0.3.

Similarly, we expect AAVI with the expectation model to obtain a performance of -1

using greedy action selection, and -0.7 using ε-greedy.

We used tabular features meaning that states were encoded as one-hot vectors—

binary vectors that are all zero values except the index of the integer that represents

a state. We used 0.3 for the action-values step size in both Q-learning and AAVI, and

0.3 for the expectation model step-size. We set the number of planning steps k = 20.

The model was updated as per below. The model consists of a forward transition

matrix F ∈ Rd × Rd and an expected reward vector η ∈ Rd constructed such that

ŝ(s, a,η)
.
= Fs and r̂(s, a,η)

.
= η>s can be used as estimates of the feature vector and

reward that follow the state st. Then the model update with step size αF is as follows

(see Appendix A for details):

Ft+1
.
= Ft + αF

[
Fst − st+1

]
s>t ,

ηt+1
.
= ηt + αF [r − η>t st]st. (5.14)

102

0 300 600 900 1200 1500 1800 2100 2400 2700 3000
Episodes

1.60

0.70

0.29
Q-learning

Approximate Action-Value Iteration (AAVI)
with a learned expectation model

--

--

G0

Total
reward on
episode

Figure 5.2: Performance of Q-learning and AAVI with a learned expectation model
with ε-greedy action selection on the counterexample episodic MDP. The data were
averaged over 100 runs, each begun with a different random number seed. Shaded
regions (barely visible) are standard error.

Figure 5.2 shows the performance of Q-learning and AAVI with an expectation

model with ε-greedy action selection. Q-learning reached the optimal policy of approxi-

mately −0.3, while AAVI with a learned expectation model only reached approximately

-0.7. This means that AAVI learned to take action B from state 1 while Q-learning

learned an optimal policy of taking action A from state 1.

The learned expectation model cannot differentiate between states 2 and 3 because

as an expected state they look exactly the same, and as a result AAVI with an expec-

tation model learns a suboptimal policy.

103

0 1 2 3 4 5 6 7 8 9 10 11 12
0
1
2

G

Figure 5.3: A stochastic corridor. The actions are stochastic: with probability p, the
actions cause the agent to move one cell in the direction corresponding to its name
(left or right), and with probability p − 1, the agent ends up one cell in the other
direction. The reward is −1 on all time steps except the transitions that take the
agent to terminal states. If the agent reaches the terminal state marked by ‘G’—the
goal state—it gets a reward of +20; the reward is 0 for reaching the other terminal
state. The episode ends once the agent reaches a terminal state.

5.4.2 A Stochastic Corridor Illustration

To illustrate further the incompatibility of expectation models and action-value func-

tions, we compared three methods: the model-free Q-learning method (see Section 2.4),

the AAVI method, as in (5.10), that uses a learned expectation model, and the AAVI

method that uses the true model of the environment. Consider a stochastic corridor

shown on Figure 5.3. The corridor consists of 9 white non-terminal states. The black

cells represent walls, red cells represent terminal states. An episode starts with the

agent randomly initialized in one of the white states numbered 2–10, and ends when

it reaches one of two terminal states, numbered 1 and 11. The agent can move left

or right using the left or right actions. The actions are stochastic: with probability

p, the actions cause the agent to move one cell in the direction corresponding to its

name (left or right), and with probability p− 1, the agent ends up one cell in the other

direction. We refer to such a setup as a stochasticity of the environment with a value

ζ = p − 1. The reward is −1 on all time steps except the transitions that take the

agent to terminal states. If the agent reaches the terminal state marked by ‘G’—the

104

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Episodes, bins of 500

11.0

11.5

12.0

12.5

13.0

13.5

14.0

AAVI with a learned expectation model

AAVI with the true model

Q-learning

G0

Total
reward on
episode

Figure 5.4: Performance of Q-learning and AAVI with expectation model on the
corridor stochastic environment with function approximation. Feature vectors of size
d = 14 are random binary feature vectors for each state. They all have the same
k number of 1s, k = 5, picked at random, without replacement. Each data point
represents the average number of total reward per episode, averaged over all the runs
and over temporal stretches of 500-episode bins. Shaded regions are standard error.
Stochasticity of the environment was ζ = 0.1.

goal state—it gets a reward of +20; the reward is 0 for reaching the other terminal

state.

In this experiment, we used a feature vector of size d = 14 with 5 random bits,

meaning that it was a vector of all zeros and 5 ones at random. We used ε-greedy

action selection during decision time, with ε = 0.1. We used 0.01 for the action-values

step size in both methods, the Q-learning method and the AAVI method, and 0.1 for

the expectation model step-size. We set the number of planning steps k = 20 and the

stochasticity of the environment was ζ = 0.1. The model was updated as in (5.14).

Figure 5.4 shows the performance of Q-learning, AAVI that uses a learned expec-

tation model, and AAVI with the true model, over 20,000 episodes. We measured the

105

sum of all the rewards since the beginning of the episode—the return G0. The data

were averaged over 30 runs, each begun with a different random number seed. Each

data point represents the total sum of rewards per episode—G0, averaged over all the

runs and over temporal stretches of 500-episode bins where we used binning of episodes

to help read the results.

Q-learning started at around 11 and learned the optimal policy within the first 2,000

episodes. The optimal policy is close to 14.5 which we can calculate by solving a system

of linear equations for all the state values. AAVI with the true model started much

higher right away: its performance was over 13.5 in the beginning which is expected

because the true model would always correctly calculate the next state. As a result of

planning with the true model, the agent could improve its value function more quickly.

AAVI with the learned expectation model only reached about 13.5 which is far from

the optimal policy of 14.

This example demonstrates the incompatibility of expectation models and action-

value functions on the stochastic corridor.

106

5.4.3 Discussion and Conclusion

Here, we demonstrated that in stochastic environments, planning with expectation

models with function approximation and linear value functions is incompatible with

action-value functions. Our results show that Sorg and Singh’s (2010) usage of an

expectation model for planning with linear action-value function can be invalid. Sim-

ilarly, van Hasselt et al. (2019) showed the divergence of forward Dyna in stochastic

environments, advocating to use replay-based models. In their work, they explained

the divergence due to the the fact that the expected state may not be a valid state.

However, we argue that the expected state may be be still a reasonable generalization

of a state, especially in the environments with rich features and we showed that the

divergence occurs due to the incompatibility of expectation models and action-value

functions. Another example is the work of Jafferjee (2020) who hypothesised that

AAVI with a learned expectation model may fail to learn control policies and argued

this occurs because the imperfect model may erroneously generate fictitious states that

do not correspond to real states. Their argument remains correct, but it does not have

specifics that we provided here of why the failure occurs. Finally, there are some works

(e.g., Yao et al., 2009) that applied AAVI with expectation models only to deterministic

environments and thus the problem did not surface for them.

This incompatibility is not restricted to function approximation settings. In prac-

tice, the counterexample in Figure 5.1 is implemented with tabular settings extending

the incompatibility of planning with expectation models and action-value functions be-

yond function approximation. Importantly, we can say that the result is not restricted

to linear value functions because our counterexample uses tabular value functions which

are not linear.

Finally, the incompatibility of expectation models and action-value functions in

stochastic environments leads us to an important question that we discuss in the next

section.

107

5.5 Action Selection Strategies

The incompatibility of expectation models and action-value functions that we stated

in Section 5.4 raises an important question: how can we affect action selection when

planning if we cannot plan with action-value functions and select actions based on

their estimated action-values? In this section, we address this problem and consider

three ways of selecting actions when planning with expectation models and state-value

functions. To refer to these ways we use the phrase action selection strategies to em-

phasize this important concept of the thesis. There might be other action selection

strategies that exist in the literature. We consider the most obvious ones and summa-

rize them into the algorithms at the end of this section. Our objective is to present

some theoretically-grounded general ways in which action selection can be done.

5.5.1 Definitions

Here, we discuss a few concepts and definitions that are used across all three action

selection strategies. We use the concept of decision time to discuss how the agent

selects actions during the decision time when it needs to take an action and how we

update the policy and value functions after that. We use the concept of planning time

to discuss how we update the policy and value functions during planning.

Recall that s is a feature vector of an agent state, s ∈ Rd. s̄(s, a) is an expected

next state function and an output of the ZTEM that is aligned with GEEM, defined

in (5.6). Also, recall that the target for the regular TD update (see Section 4.2) is

Rt+1 + v̂(st+1,wt).

108

Replacing the next state st+1 and the reward by the outputs of the ZTEM model

we define a ZTEM TD target :

b(st, a,wt)
.
= r(st, a) + γv̂

(
s̄(st, a),wt

= r(st, a) + γs̄(st, a)>wt. (5.15)

We define a regular planning update that consists of three steps. The first step is to

sample a state s from the backup distribution. The second step is to compute the

update target by acting greedily with respect to the model based on the values of

ZTEM TD target:

g(st,wt)
.
= max

a∈A

[
r(st, a) + γv̂

(
s̄(st, a),wt

]
(5.16)

= max
a∈A

[
r(st, a) + γs̄(st, a)>wt

]
(5.17)

= max
a∈A

[
r(st, a) + γw>t s̄(st, a)

]
(5.18)

= max
a∈A

b(st, a,wt). (5.19)

The third step is to update the parameters of the approximate state-value function:

wt+1
.
= wt + α

(
g(st,wt)−w>t st

)
∇(w>t st). (5.20)

109

5.5.2 Strategy 1: Decide-Time Planning

Here we discuss the first strategy for action selection when planning with the state-

value function. In this strategy, during decision time, the agent uses the ZTEM TD

target (5.15) as a one-step lookahead by the model and then acts greedily:

At
.
= arg max

a∈A
b(st, a,wt), (5.21)

and then the agent uses a regular TD update:

δt
.
= Rt+1 + γv̂(st+1,wt)− v̂(st,wt),

wt+1
.
= wt + αwδt∇v̂(st,wt). (5.22)

During planning time the agent performs a regular planning update for k planning

steps. We refer to this strategy as Decide-Time Planning (DTP).

One may think of this method as a one-step lookahead at the time the action needs

to be taken by the agent. This method does not maintain an explicit action-value

function, yet it allows the agent to select an action online during decision time as if

it were to have one, because it uses the output from the model. In this approach the

backup values play the same role as action-values in greedy action selection with an

action-value method.

The equation (5.21) is greedy action selection with respect to the model when there

is a model for each of the actions. In practice, one may want to ensure that the agent

is trying actions that improve the model—often referred to as exploration (Sutton and

Barto, 2018, Chapter 8). One way to do this is to change (5.21) to ε-greedy action

selection in which with a small probability ε a random action is selected among all the

110

actions with equal probability, independently of the value function estimates. There

are other methods that ensure exploration that are out of the scope of this thesis.

We show the DTP strategy algorithmically at the end of this section.

5.5.3 Strategy 2: Adjunct Action-value Function

Here, we discuss the second strategy for action selection when planning with the state-

value function. In this strategy, we maintain an adjunct action-value function ap-

proximator q(s, a,wq) parameterized by the weight vector wq ∈ Rd. However, this

action-value function is not used in AAVI and it is not used to compute the ZTEM

TD target b(st, a,wt). During decision time, the agent uses the action-value function

q(s, a,wq) to act greedily:

At
.
= arg max

a∈A
q̂(st, a,w

q
t),

then the agent uses a regular TD update (5.22) and also updates the adjunct action-

value function parameters wq with the step size αq:

wq
t+1

.
= wq

t + αq
(
Rt+1 + γw>st+1 − q̂(st, a,wq)

)
∇q̂(st, a,wq

t).

During planning time the agent performs a regular planning update for k planning

steps and, in addition, it also updates the adjunct action-value function parameters

using the ZTEM TD target b(st, a,wt):

wq
t+1

.
= wq

t + αq
(
b(st, a,wt)− q̂(st, a,wq)

)
∇q̂(st, a,wq

t). (5.23)

We refer to this strategy as Adjunct Action-value Function (Adjunct Q).

111

Maintaining the adjunct action-value function avoids the problem of the invalid

update that we stated in Section 5.4. At the same time, the Adjunct Q method takes

less time during decision time compared to the DTP method because the agent no

longer needs to calculate the values during decision time. We show the Adjunct Q

strategy algorithmically at the end of this section.

5.5.4 Strategy 3: Adjunct Policy

Here, we discuss the third strategy for action selection when planning with the state-

value function. In this strategy, we maintain an adjunct policy approximator π(s, a,θ)

parameterized by the weight vector θ. During decision time, the agent uses the policy

π(s, a,θ) to act:

At ∼ π(· | st,θt),

then the agent uses a regular TD update (5.22) and also updates the policy parameters

θ with the step size απ as in the regular actor update :

θt+1
.
= θt + απδt∇ln π(st, a,θt).

During planning time the agent performs a regular planning update for k planning

steps and, in addition, it also updates the adjunct policy parameters using the ZTEM

TD target b(st, a,wt):

θt+1
.
= θt + απ

[
b(st, a,wt)− s>w

]
∇ln π(st, a,θt).

We refer to this strategy as Adjunct Policy (Adjunct π).

112

This third strategy is similar to Adjunct Q, but instead of adjunct action values

we have an adjunct explicit approximate policy. Having the approximate policy can

be useful in problems when the action space is not too large. Parameterized policies

enable the selection of actions with arbitrary probabilities and may be simple functions

to approximate (Sutton and Barto, 2018, Chapter 13). In this method actions are

sampled from the parameterized policy at decision time and the policy is updated as

in policy gradient methods. The difference from policy gradient methods is that during

planning time we update the policy parameters based on the output of the model. We

show the Adjunct π strategy algorithmically at the end of this section.

113

Here we show all the three methods—DTP, Adjunct Q, and Adjunct π—

algorithmically.

1 Algorithm: Decide-Time Planning (DTP)

Algorithm parameters: step size α

2 Initialize the weights w for state-value function, and weights for the model

3 Compute state s with the state-update function u

4 while still time to train do

5 A ∼ arg maxa∈A
[
r(s, a) + γs̄(s, a)>w

]
(e.g., ε-greedy) (this is a lookahead)

6 Take action A, observe R,O′

7 Compute state s′ with the state-update function u

8 δ ← R + γw>s′ −w>s

9 w← w + αδ∇(w>s)

10 Update model weights

11 while still time to plan do

12 Sample state s from the backup distribution

13 g(s,w)← maxa∈A
[
r(s, a) + γw>s̄(s, a)

]
14 w← w + α(g(s,w)−w>s)∇(w>s)

15 end

16 s = s′

17 end

114

1 Algorithm: Adjunct Action-value Function (Adjunct Q)

Algorithm parameters: step size α, αq

2 Initialize the weights w, wq for value functions, and model weights

3 Compute state s with the state-update function u

4 while still time to train do

5 A ∼ arg maxa∈A q̂(s, a,w
q) (e.g., ε-greedy)

6 Take action A, observe R,O′

7 Compute state s′ with the state-update function u

8 δ ← R + γw>s′ −w>s

9 w← w + αδ∇(w>s)

10 wq ← wq + αq
(
R + γw>s′ − q̂(s, a,wq)

)
∇q̂(s, a,wq)

11 Update model weights

12 while still time to plan do

13 Sample state s from the backup distribution

14 Output next state s̄ using the model

15 g(s,w)← maxa∈A
[
r(s, a) + γw>s̄(s, a)

]
16 w← w + α

(
g(s,w)−w>s

)
∇(w>s)

17 // Update cached action-value function

18 b(s, a,w)← r(s, a) + γs̄(s, a)>w

19 wq ← wq + αq

(
b(s, a,w)− q̂(s, a,wq)

)
∇q̂(s, a,wq)

20 end

21 s = s′

22 end

115

1 Algorithm: Adjunct Policy (Adjunct π)

Algorithm parameters: step size αw, αθ, αη

2 Initialize the weights w, θ for the value function and policy, and model weights

3 Compute state s with the state-update function u

4 while still time to train do

5 A ∼ π(s, a,θ) (e.g., ε-greedy)

6 Take action A, observe R,O′

7 Compute state s′ with the state-update function u

8 δ ← R + γw>s′ −w>s

9 w← w + αδ∇(w>s)

10 θ ← θ + απδ∇
(

log π(s, a,θ)
)

11 Update model weights

12 while still time to plan do

13 Sample state s from the backup distribution

14 g(s,w)← maxa∈A
[
r(s, a) + γw>s̄(s, a)

]
15 w← w + α

(
g(s,w)−w>s

)
∇(w>s)

16 // Update policy parameters

17 Sample action a from πθ(s, ·)

18 b(s, a,w)← r(s, a) + γs̄(s, a)>w

19 θ ← θ + απ

[
b(s, a,w)− s>w

]
∇ln π(s, a,θ)

20 end

21 s = s′

22 end

116

5.6 Non-stationarity Setting & Impact

To demonstrate the action selection strategies, we first introduce an additional setting.

In this section we describe a change we introduced to the stochastic corridor to make

the environment non-stationary and demonstrate the impact of the change. Under-

standing the impact of non-stationarity is necessary to further interpret the results in

the following sections. More specifically, inspired by the work of van Seijen et al. (2020)

that measured how quickly an reinforcement learning method adapts to a local change

in the environment, we introduced a goal change to the stochastic corridor. We refer

to this setting as the non-stationary setting. In this setting the goal location changes

every n episodes. We refer to n episodes as a phase. At the end of each phase the other

terminal state becomes the goal state. For example, state 1 becomes a goal state and

the agent would now receive +20 when it goes to the left of the corridor and 0 when

the agent goes to the right of the corridor.

5.6.1 Experiments

Here, we show the impact of non-stationarity. The implementation was done using Py-

Torch 1.8.1. We used the discount parameter γ = 1. All weights (weight vectors) were

initialized to zeros. We used a replay buffer for the backup distribution in planning.

For all methods, we performed parameter studies during which we ran the algorithms

for 1,000 episodes. The results for each of the parameter sets were averaged based on

30 runs, each begun with a different random number seed. The final parameters were

chosen based on the best performing parameter set. For each episode, we measured

the total reward per episode, G0.

We used tabular-features, meaning states were encoded as one-hot vectors. We used

117

0 150 300 450 600 750 900 1050 1200 1350 1500
Episodes, bins of 50

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Total
reward on
episode

Phase 1 Phase 2 Phase 3

Q-learning

AAVI with the true model

G0

Figure 5.5: Performance of Q-learning and AAVI with the true model on the stochastic
corridor. Total reward per episode, averaged over 30 runs; each data point represents
the average number of total reward per episode, averaged over all the runs and over
temporal stretches of 50-episode bins. Shaded regions are standard error. The phase
was set to n = 500 episodes. Stochasticity of the environment was ζ = 0.3.

0.1 for the action-values step size in both Q-learning and AAVI with the expectation

model. We used 0.1 for the expectation model step-size. We set the number of planning

steps k = 20 and the stochasticity of the environment was ζ = 0.3. The model was

updated as in (5.14).

5.6.2 Results

This section describes the performance of Q-learning, AAVI with the true model, and

AVI with a learned expectation model on the non-stationary stochastic corridor. Fig-

ure 5.5 shows the Q-learning method and AAVI with the true model on the stochastic

non-stationary corridor with the phase n = 500 episodes. We measured the total re-

118

ward per episode from the start of the episode, G0, averaged over 30 runs and then

averaged over bins of 50 episodes. The value at the phase switch represents the average

over the first 50 episodes of the following phase. The total reward per episode when

following the optimal policy was about 7.5 because we increased the stochasticity of

the environment from ζ = 0.1 to ζ = 0.3.

The first obvious feature of this graph is that the reward dramatically drops at

the phase transition from one to another. This was expected because the agent using

Q-learning kept going in the wrong direction right after the goal changed. As a result,

Q-learning obtained around -7.5 in total reward around the first 50 episodes of phase 2.

Q-learning took a relatively long time to find the goal state consistently every time

the goal was moved during a phase. However, the Q-learning method performed a

bit better at the second phase transition suggesting that it may have already learned

something about the phase transition. Initially, the value for Q-learning was about

2.5 before the phase transition: Q-learning performed better when started with zero

knowledge about the environment compared to when it learned to go to the right

side and the goal location was changed. AVVI with the true model adjusted to the

phase transition almost instantly. There was no drop in performance on the first phase

transition and only a small drop on the second phase transition. Such a quick recovery

of model-based methods was expected in this scenario.

119

9900 9925 9950 9975 10000 10025 10050 10075 10100
Episode, bins of 25

6

4

2

0

2

4

6

8

10

20 planning steps
5 planning steps

Phase 1 Phase 2

Total
reward on
episode

G0

1 planning step

Figure 5.6: AVI with the learned expectation model on the stochastic corridor with
tabular features. Higher number of planning steps helped the agent to adjust during
the phase transition. A phase was 10,000 episodes. Each data point was the return
per episode G0, averaged over 30 runs and over temporal stretches of 25-episode bins.
Shaded regions are standard error.

Figure 5.6 shows the AVI method with the learned expectation model on non-

stationary stochastic corridor with a phase of 10,000 episodes, with 1, 5, and 20 plan-

ning steps. Each data point was the return per episode, G0, averaged over 30 runs and

over temporal stretches of 25-episode bins. The graph shows the effect of the number

of planning steps: the recovery during the phase transition happened more quickly

with the agent using more planning steps. Further, the drop was not as dramatic as

we increased the number of planning steps, suggesting that the agent with a higher

number of planning steps learned much more quickly during the first 25 episodes after

the phase transition. The higher the number of planning steps, the more efficient the

agent was at recovering after the phase transition.

120

5.7 Action Selection Strategies Illustration

This section describes the performance of Q-learning (see Section 2.4) and the three

action selection strategies, DTP, Adjunct Q, and Adjunct π, applied to the stochastic

non-stationary corridor shown on Figure 5.3, in the function approximation setting.

5.7.1 Experiments

The implementation was done using PyTorch 1.8.1. In all experiments we used the

following parameters. The discount parameter γ was 1. All weights were initialized

to zeros. The backup distribution in planning used a replay buffer. For all methods,

we performed parameter studies during which we ran algorithms for 1,000 episodes.

The results for each of the parameter sets were averaged based on 30 runs, each begun

with a different random number seed. The final parameters were chosen based on the

best performing parameter set. For each episode, we measured the total reward per

episode, G0.

In these experiments on the stochastic corridor, the feature vectors for each state

are random binary feature vectors of size d = 14, with 5 bits picked at random, without

replacement. The phases were 500 episodes. We used ε-greedy action selection during

decision time, with ε = 0.1. We used 0.1 for the action-values step size in both

Q-learning and AAVI with the expectation model. The model step size was set to

0.1, 0.001, and 0.01 for DTP, Adjunct Q, and Adjunct π respectively. The state-

value function step size was set to 0.01 for all three algorithms: DTP, Adjunct Q, and

Adjunct π. We used 0.01 for the adjunct action-values step size in Adjunct Q. We set

the number of planning steps to k = 5 and the stochasticity of the environment was

ζ = 0.1. We used ε-greedy action selection with ε = 0.1. The adjunct policy step size

121

0 150 300 450 600 750 900 1050 1200 1350 1500
Episodes, bins of 50

10

5

0

5

10

15

Total
reward on
episode

G0

Phase 1 Phase 2 Phase 3

AAVI with a learned expectation model

Decide-Time Planning (DTP)
Q-learning

Figure 5.7: Q-learning, AAVI, and DTP on the non-stationary stochastic corridor
with a phase of n = 500 episodes, with k = 5 planning steps. Each data point was the
episode return, G0, averaged over all 30 runs and over temporal stretches of 50-episode
bins. Shaded regions are standard error. The stochasticity of the environment was
ζ = 0.1.

was set to 0.000005 in Adjunct π. In all these experiments the model was a learned

model. The model was updated as in (5.14).

5.7.2 Results

Figure 5.7 shows the Q-learning, AAVI with the learned expectation model, and the

DTP methods on the non-stationary stochastic corridor. Each data point was the

episode return, G0, averaged over 30 runs and over temporal stretches of 50-episode

bins. The stochasticity of the environment was ζ = 0.1. We used ε-greedy for action

122

selection with ε = 0.1.

Similar to some of the earlier experiments, the first obvious feature of this graph

is that the reward dramatically drops at the phase transition. Right after the goal

changed, Q-learning obtained around -7.5 in total reward around the first 50 episodes

of the phase 2, similar to what we have seen already in Figure 5.5. Notably, at every

following phase transition Q-learning performed better and better: around -2.5 at the

second phase transition and around 2 at the third phase transition.

DTP performed better overall, and was close to the optimal policy at around 14.5.

The drop for DTP was significantly smaller than for Q-learning and the recovery was

much faster.

AAVI with the learned expectation model did not reach optimal performance at all,

which was expected based on our earlier illustrations of the incompatibility of plan-

ning with expectation models and action-value functions in stochastic environments.

Interestingly, during the phase transition this method did not experience as large of a

drop as Q-learning and also recovered faster, yet to a suboptimal policy.

123

0 150 300 450 600 750 900 1050 1200 1350 1500
Episodes, bins of 50

10

5

0

5

10

15

Total
reward on
episode

G0

Phase 1 Phase 2 Phase 3

Decide-Time Planning (DTP)
Adjunct Action-value Function
Adjunct Policy

Figure 5.8: DTP, Adjunct Q, and Adjunct π methods on the non-stationary stochastic
corridor with a phase of n = 500 episodes, with k = 20 planning steps. Each data point
was the episode return, G0, averaged over 30 runs and over temporal stretches of 50-
episode bins. Shaded regions are standard error. The stochasticity of the environment
was ζ = 0.1.

Figure 5.8 shows the performance of the three action selection strategies on the

non-stationary stochastic corridor. Figure 5.8 shows the performance of the DTP,

Adjunct Q, and Adjunct π methods on the non-stationary stochastic corridor with a

phase of n = 500 episodes, with k = 20 planning steps. Each data point was the

episode return, G0, averaged over 30 runs and over temporal stretches of 50-episode

bins. The stochasticity of the environment was ζ = 0.1. We used ε-greedy for action

selection with ε = 0.1.

Consistent with the previous results, the performance of all three methods dropped

during phase transitions. However, for each of the methods, their recovery after the

124

second phase transition was shorter than after the first phase transition.

During the first phase, DTP and Adjunct Q obtained similar performance. Adjunct

Q performed better than both DTP and Adjunct π in this phase. However, this

behaviour changed in the second and third phases. In the second phase, Adjunct π

performed better than DTP, but Adjunct Q still performed the best at the end of

this phase. However, in the third phase, Adjunct Q performed slightly worse in the

beginning of the phase than the other two methods.

Notably, Adjunct π had the largest drop to almost -4 during the phase transition

across the three methods. Adjunct Q dropped to around 11 in the first phase transition

and to only around 12 during the second one. However, Adjunct Q dropped even lower

to around 2 at the beginning of the second phase. DTP had the smallest drops across

all three methods: it dropped to only around 12 during the first phase transition and

had only a minor drop to around 14 during the second phase transition.

5.8 Discussion

In the first set of experiments in Section 5.6.2 we observed that non-stationarity can

have a dramatic impact on the performance. In our experiments, the model-based

method recovered faster than model-free Q-learning, which is expected. A larger num-

ber of planning steps clearly benefits the agent’s performance.

Section 5.7.2 illustrates our action selection strategies on this non-stationary do-

main, now in the setting of function approximation. The experiment settings are such

that in all cases, at the beginning of the second phase the agent starts from a value

function that induces the agent to move in one direction opposite to the goal. However,

at the beginning of the third phase the agent no longer starts from the value function

125

that moves the agent to the opposite direction. The value function now is no longer the

optimal value function from the previous phase because it includes the learning from

both of the previous phases that are the opposite of each other. This could explain the

slightly shorter recovery period in the third phase transition.

A disadvantage of DTP is that it involves significant computation at decision time,

because it has to compute one-step backups for all actions. This could add significant

latency to the agent’s responses during decision time, especially if the number of ac-

tions to be considered is large. This could become an issue in real-life applications

such as voice document editing. Adjunct Q and Adjunct π mitigate this issue to an

extent because they use an explicit adjunct action-value function and an explicit policy

respectively. The adjunct action-value function and the adjunct policy help to shorten

the computation during the decision time because the agent simply can use the existing

action-value function or policy to act. Another strength of Adjunct Q compared to

DTP is its flexibility with regards to when the action values are updated—for which

states and actions (5.23) is performed. Adjunct π has a similar flexibility in terms

of updating the policy. On the other side, Adjunct Q and Adjunct π have more pa-

rameters compared to DTP. A larger number of parameters can be a disadvantage

because it takes longer to find the best performing parameters and also comes at a

higher computational cost.

126

5.9 Conclusion and Future Work

Many problems considered in AI exhibit non-stationarity and dynamically changing

goals paired with some level of stochasticity in the domain. Expectation models are

appealing and have benefits compared to sample models and distribution models. Ex-

pectation models are expected to have less variance and hence result in quicker learn-

ing. In addition, their space and computational requirements are smaller, and they

may require less parameter tuning.

One may think that when planning with expectation models AAVI is a suitable

approach. We showed in this chapter that planning with expectation models cannot

be done with action-value functions and must update state values in stochastic envi-

ronments. This raised an important question of action selection when planning and we

considered three action selection strategies. We demonstrated these action selection

strategies empirically. The studies reported here represent a general setting of model-

based reinforcement learning with expectation models that are independent of many

choices such as that of state representation. The results show how planning expecta-

tion models with function approximation can proceed in stochastic environments when

using state-value functions.

Interesting areas for future work lie in a few directions: 1) how different kinds

of backup distributions affect planning; 2) how the degree of function approximation

affects planning; and 3) comparison of one-step backups in expectation models and

iterated backups in sample models, and 4) further extension of the theory in this

chapter to the case of general non-linear value functions.

127

Chapter 6

Application for VDE and Beyond

The role of this chapter is to connect the main contribution of the thesis with the

first contribution of the thesis. In this final chapter, we move our attention from the

general theory back to the practical application of this theory and our ideas on our

VDE domain. We start with an experiment that takes the theory from Chapter 5 and

applies the action selection strategies to the VDE domain. Finally, we discuss two

questions that are important to think about when implementing the voice document-

editing domain in practice: 1) How ambitious can the agent’s learning be? and 2)

Should intelligent assistants learn online or offline?

6.1 Action Selection Strategies Applied to VDE

In this section, we describe the experiments and results of applying the action selection

strategies to the VDE task. Recall that the VDE task represents an episodic control

problem with a stochastic environment in which the agent learns online. In this task

128

the agent receives a corrupted sentence and has to correct it by deleting a number

of words. We want the agent to delete the correct number of corrupted words in the

fewest actions possible, which would reduce the interaction with the user during the

deletion process, and as a result reduce users’ frustration.

6.1.1 Experiments

In these experiments, we compared the performance of the DTP, Adjunct Q, and

Adjunct π methods. We measured the total reward per interaction, G0, averaged over

30 runs, each begun with a different random number seed.

We proceed with our defined function approximation setting, as in Chapter 4. The

state-update function architecture for the voice document-editing domain remained the

same as described in Section 4.4.2; the state-update function u was represented by a

two-layered bi-directional RNN with hidden sizes of 400 and 100, respectively. The

RNN-input was computed using the same approach as in Chapter 4 (see Figure 4.2).

We also used the same word embeddings described in Section 4.4.1.

The implementation was done using PyTorch 1.8.1. Similar to the implementation

in Section 4.4.5, a starting state for the state update function was initialized to ones

and a starting action to perform the first state-update iteration was initialized to zeros.

We used ε-greedy action selection during decision time, with ε = 0.1.

For all methods, we performed parameter studies during which we ran algorithms

for 1,000 episodes. The results for each of the parameter sets were averaged based on

30 runs, each begun with a different random number seed. The final parameters were

chosen based on the best performing parameter set. The state-value function step size

was set to 0.001, 0.001, and 0.005 for DTP, Adjunct Q, and Adjunct π respectively.

129

100 200 300 400 500 600 700 800 900 1000
Interactions (episodes)

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

Total
reward on
interaction

G0 Adjunct Policy

Decide-Time Planning (DTP)

Adjunct Action-value Function

Figure 6.1: Three action selection strategies the voice document-editing deletion task
(see Section 3.6.1). We measured total reward per interaction, G0, averaged over 30
runs, each begun with a different random number seed. Shaded regions are standard
error.

The adjunct action-value function step size was set to 0.001 in Adjunct Q. The model

step size was set to 0.001 for all three methods: DTP, Adjunct Q, and Adjunct π. The

adjunct policy step size was set to 0.001 in Adjunct π. The number of planning steps

was set to k = 10.

6.1.2 Results

Figure 6.1.2 shows the performance of the action selection strategies on the VDE

task—total reward per interaction, G0, averaged over 30 runs, each begun with a

different random number seed. The first feature of this graph is that all three methods

reached a performance of over -1.5 on average. This means that the agent trained

with these methods would correct a sentence with 1-1.5 mistakes on average. DTP

130

reached a performance of around -1.2 more quickly than the other two methods. It

also showed the best overall performance of all three. Adjunct Q caught up with

DTP after approximately 700 interactions. Adjunct π, however, started similar to

Adjunct Q, but then stayed at around -1.5. Overall, the final performance (at 1,000

interactions) of DTP and Adjunct Q is almost the same, and the final performance of

all three methods was quite close to each other. The interpretation of the results is

that DTP and Adjunct Q took on average around 1 mistake to correct the sentence at

the end of training, while Adjunct π took 1.5 mistake on average.

6.1.3 Conclusions

Generally, we can say that all three action selection strategies performed well on the

VDE task—averaging close to 1 mistake in making a sentence correction is close to

the optimal performance. Adjunct π potentially is more sensitive because it has an

explicit policy that could be getting stuck in local optima. Also, Adjunct π has more

parameters to finetune and it is possible that there could be another set of parameters

that leads to better performance. DTP had the best performance amongst the three,

however, this could change with other parameters.

In these experiments, we empirically demonstrated the application of the action

selection strategies to the VDE task. We showed that these methods could perform

well and can be implemented for this real-life application.

131

6.2 Some Remaining Questions

There are many open questions when it comes to the implementation of systems such

as VDE. This thesis cannot cover all of them. Here, we discuss two questions specific

to our voice document-editing domain: 1) How ambitious can the agent’s learning

be? and 2) Should intelligent assistants learn online or offline? These questions are

important, because the answers to them have a ripple effect to other implementation

choices such as representation possibilities and a selection of models.

The first question is how ambitious can the agent’s learning be? Recall that there

are many complex elements in conversational AI, such as natural language understand-

ing, dialogue management, natural language generation, and response generation. For

example, the agent’s learning can focus on only one (or on a few) of the elements, while

the remaining elements can be treated as a black box; for example, the user’s speech

can be a black box and can be transcribed by existing tools for speech-to-text conver-

sion (e.g., Bijl and Hyde-Thomson, 2001; Rao, 2011). When not treated as a black

box, each of the elements has its own challenges; for example, diversity and coherence

in natural language generation (e.g., Yarats and Lewis, 2017; Jang et al., 2019; Shi et

al., 2018; Gu et al., 2019; Wang et al., 2019). The agent’s ambitiousness in learning can

vary in its complexity with the choices for and within each element of conversational

AI.

The agent’s learning within one element in conversational AI can be thought of as

having three levels of complexity. As an example, consider natural language generation.

The first level of complexity is when the agent’s responses are entirely pre-defined by a

system designer; this means that no language generation occurs. The agent’s learning

then focuses only on the selection of actions to satisfy the user, and the agent’s only

132

intelligence is in the learned policy that it follows to select a response. The model could

then learn the dynamics of the interactions and still help the agent with this action

selection, e.g., when using planning. Despite the absence of language generation, this

agent can still be useful to its users. The second level of complexity is when the response

generation is treated as a black box and can be supplemented by one of the existing

approaches (e.g., Serban et al., 2017b) instead of using pre-defined responses as in the

first level. The third level of complexity is when the response generation is fully learned

and this learning becomes a part of the model-based reinforcement learning agent. The

response generation is a demonstration of the agent’s ambitiousness in learning within

one element of conversational AI.

Our answer to the first question is that an ambitious agent is the most desirable;

the agent can be fully responsible for learning all the elements of conversational AI,

from generating responses to selecting them. A model will be more complex for this

sophisticated agent because it will have to learn all about the interaction dynamics

between the user and the assistant. These kinds of implementations are often referred

to as end-to-end training. Variations of such implementations can include multiple

agents with multiple models, where each of the agent-model pairs can be responsible

for a particular conversational AI element. Further, there are higher-level models of

the world based on temporally extended abstract behavior, which were introduced

as options by Sutton et al. (1999). Higher-level models provide a way of obtaining

higher-level planning and reasoning (Sutton, 2020).

The second question is how to train voice document-editing assistants: should they

learn online or offline? Recall that online learning is learning directly from experience,

such as from real human-computer interactions. Offline learning is a traditional ap-

proach that is often used in supervised learning that relies on pre-constructed datasets.

133

These datasets can be constructed in a number of ways, including real user-computer

interactions, and can be used then to build simulators.

One way an offline dataset can be created is by using the Mechanical Turk service,

a crowdsourcing web service that coordinates the supply and demand of tasks (see

Paolacci et al., 2010). Using Mechanical Turk, dictation and editing of the resulting

documents can be recorded as a dataset, which is then used to create an environment

for voice editing simulations. As Dhingra et al. (2017) pointed out, it is common in

the dialogue community to use simulated users for this purpose (e.g., Schatzmann et

al., 2007; Cuayáhuitl et al., 2005; Asri et al., 2016).

Another way to obtain offline datasets requires more creative approaches. Consider

the work of Feng et al. (2019) in which organizational business documents were used as

inputs to generate a conversational offline dataset. In this conversational dataset, the

conversation is based on the organization’s workflow. We encourage the reader to think

about similar creative ways of obtaining document-editing datasets. For example, with

some good engineering, the mechanical manipulations of text blocks in manuscripts

can be collected and converted into conversational data with the addition of voice

commands.

Our preferred method of training would be online learning from real interaction

data. Online learning allows the intelligent assistant to adapt to each individual and

their particular circumstances during the training process, and it creates an opportunity

for the assistant and the user to build the communication resources developed together

during their ongoing interaction (see Pilarski et al., 2017). Building communication

resources can effectively improve collaboration and interaction between the user and

the voice-editing assistant. For example, a person with an accent might be consistently

misinterpreted by the voice recognition feature, and the voice-editing assistant could

134

end up having to delete the same words over and over to fix the sentence. If the

assistant is trained offline on many other people’s data then it might do worse at

recognizing and fixing such an individual situation, thus its quallity would be worse

overall. As Mendez et al. (2019) point out, a widespread adoption by users of intelligent

assistants is limited to the assistants’ quality, which often requires the investment of

vast amounts of data. Thus, even if we were to have access to systems that allow us

to experiment with real online data (e.g., Google, 2020), then the assistant that learns

fully online might be of lower quality in the beginning of training than one that was

pre-trained with offline datasets. In the past, when a secretary was hired, they were

expected to have structural language knowledge. Similarly, it is reasonable to have

such expectations of voice editing assistants and pre-train them with some preliminary

knowledge learned from offline datasets before these assistants can be offered to users

and continue to learn online.

135

Chapter 7

Impact and Summary

In this thesis, we started with a discussion of a problem that arises when developing

conversational AI assistants—the need for a suitable but tightly scoped domain. In

Chapter 3 we proposed the voice document-editing domain to address the problem.

We then discussed reinforcement learning, and in particular, model-based reinforce-

ment learning methods as suitable methods for developing intelligent assistants and

for realizing VDE. In Chapter 4 we demonstrated the application of model-based re-

inforcement learning methods in practice—we proposed the model-based, soft-planner

policy optimization method for solving voice document editing. Our work in Chapter 4

motivated us to explore deeper planning with expectation models in function approx-

imation settings and seek methods that are applicable not only for solving VDE, but

for building intelligent assistants in general. It is natural to think that planning can

be done with action-value functions. However, in Chapter 5 we proved the incom-

patibility of planning with expectation models and action-value functions. This result

raised an important question of how to select actions when planning. We considered

three action selection strategies that are applicable to general settings. We empirically

136

demonstrated these strategies and discussed their advantages and disadvantages. Fi-

nally, in Chapter 6 we demonstrated these action selection strategies empirically on

the VDE domain.

This thesis is a long journey from a high-level general problem to this specific specific

question of action selection when planning with expectation models in function approx-

imation settings and stochastic environments; a question that came from examining

more closely planning with action-value functions and proving their incompatibility in

these settings. The incompatibility of expectation models and action-value functions

and the action selection strategies that we showed in Chapter 5 are applicable to gen-

eral settings and we hope that this work will serve as a basis for the implementation

of intelligent assistants and for further investigation of planning methods.

7.1 Future Work

Broadly, in this thesis we looked at model-based reinforcement learning methods that

use planning and expectation models. We applied these methods in the context of

intelligent assistants, in particular, voice document-editing assistants. While there is

progress in this direction, there are important challenges that remain. In this section,

we outline some remaining open areas of this research direction.

1. Non-linear value functions. Our setting includes function approximation,

meaning that the agent states are described by feature vectors, and the value

function and transition model use function approximators, such as neural net-

works. There is the usual spectrum of possible approximators, from state aggre-

gation and linear, then semi-linear, and finally general non-linear. In Chapter 5,

137

we focused on linear value functions for function approximators. There are cur-

rently no promising approaches that extend planning with expectation models to

non-linear value functions or other more complex approximators.

2. Temporal abstractions. Temporal abstractions can speed up agent’s learning

even further increasing the effectiveness of the training which is most valuable in

human-machine interactions (e.g., Fikes, Hart, and Nilsson, 1972; Minton, 1988;

Iba, 1989). This work can be extended to temporally abstract courses of action

over a period of time—known as options (Sutton, Precup, and Singh, 1998, 1999;

Precup, 2000). In such, this work can also be extended to option models.

3. Continuing setting. The lives of many living creatures, including humans,

can be formulated as a continuing problem. Usually, there is a finite amount of

time during which a living being interacts with the world, and there is no reset

after that. Naik et al. (2021) suggest that we can think about such settings as one

long episode. These are settings that do not have a set break for the end of the

interaction the—continuing setting. In this thesis, we focused on episodic prob-

lems. The methods presented could be investigated for the continuing setting and

continuing control. Such a setting would change the reward formulation. Recall

that the discounted formulation would not be suitable in the case of continuing

control with function approximation (Sutton and Barto, 2018, Chapter 10; Naik

et al., 2019) and the setting would have to be extended to the average reward

formulation. This is an important direction for real-world applications.

4. Backup distribution & Search control. Recall that planning can often

be described as proceeding in a sequence of state-value backups, each of which

updates the value estimate of a single state—the backup state (see Section 5.2.1).

138

Also, recall that a process for selecting the backup state is referred to as search

control. There are many choices available and many different ways the backup

state can be selected (e.g., see search-control in Dyna by Pan et al., 2019). How-

ever, more sophisticated search control methods could be analysed, e.g., search

control by Pearl (1984) or prioritized sweeping (Moore and Atkeson, 1993; Peng

and Williams, 1993).

5. Multi-step backups. Another direction for investigation is whether multi-step

backups are necessary and beneficial. With our focus on expectation models, we

do not expect to perform multi-step backups. This is because the expected next

state may not correspond to any real observation; Jafferfee (2020) showed that

planning from such states can be detrimental. In contrast, sample models are

amenable to multi-step backups. However, this can also be detrimental to plan-

ning because of compounding errors (Talvitie, 2014; 2017). Multi-step backups

can compound errors just as one-step backups can if the backup distribution is

poor. We have shown that planning works perfectly well with one-step backups,

but have not investigated if greater sample-efficiency can be gained from iterated

multi-step backups.

6. Sample models. Sample models can be used effectively in stochastic environ-

ments (Deisenroth and Rasmussen, 2011; Chua et al., 2018). Extending this

work using sample model approaches instead of expectation models is another

research direction. The sample model is often much easier to obtain computa-

tionally rather than a distribution model. A potential area of future research is

how sample models affect the stochasticity of the planning update.

7. Policy-gradient methods. Policy-gradient methods have many advantages due

139

to their ability to learn explicit policy parameters. For example, these methods

could learn special levels of exploration or approach deterministic policies asymp-

totically (Sutton and Barto, 2018, Chapter 13). Konda and Tsitsiklis (2000)

claimed that policy-gradient methods in continuous control problems are often

more stable than value-based methods, particularly in the function approxima-

tion setting. Overall, policy-gradient methods are foundational for many real-life

applications with state-of-the-art performance across many domains (Schulman

et al., 2015, 2017); however, in the function approximation and model-based

reinforcement learning setting these methods are less well understood in some

respects, and thus, can be a subject of further research.

All of the above are great challenges, each of which would take significant time

and effort to investigate, taking us closer to achieving the goals of conversational AI

and the bigger challenge of creating intelligent assistants that will improve the lives of

many generations to come.

This thesis is the intersection between deep learning, natural language process-

ing, and reinforcement learning, with the focus on model-based reinforcement learning

methods. This thesis presents a view on what domains and methods are required to

move conversational AI research forward, contributing to the development of intelligent

assistants. It is my hope that this work will inspire and uplift the future of the field,

advancing the benefits for all of humanity and driving the arc of human progress.

140

References

Abbeel, P., Coates, A., Quigley, M., and Ng, A. Y. (2007). An application of reinforce-

ment learning to aerobatic helicopter flight. In Proceedings of the 21st Conference

on Neural Information Processing Systems (NIPS 2007), pp. 1–8.

Ades, S. and Swinehart, D. C. (1986). Voice annotation and editing in a worksta-

tion environment. Technical Report. CSL-86-3, XEROX Corporation, Palo Alto

Research Center.

Albus, J. S. (1971). A theory of cerebellar function. Mathematical Biosciences, 10 (1-

2):25–61.

Albus, J. S. (1981). Brains, Behavior, and Robotics. Byte Books, Peterborough, NH.

Allen, J. F. (1979). A plan-based approach to speech act recognition. Technical Report

131/79, University of Toronto, Department of Computer Science.

Anderson, J. R., Boyle, C. F., and Reiser, B. J. (1985). Intelligent tutoring systems.

Science, 228 (4698):456–462. American Association for the Advancement of Sci-

ence.

Asri, L.E., He, J., and Suleman, K. (2016). A Sequence-to-Sequence Model for User

Simulation in Spoken Dialogue Systems. INTERSPEECH.

Atkeson, C. G. and Santamaria, J. C. (1997). A comparison of direct and model-based

reinforcement learning. In Proceedings of International Conference on Robotics and

Automation. Vol. 4, pp. 3557–3564.

Bagnell, J. A. and Schneider, J. G. (2001). Autonomous helicopter control using rein-

forcement learning policy search methods. In Proceedings 2001 ICRA. IEEE Inter-

national Conference on Robotics and Automation (Cat. No. 01CH37164) (IEEE),

141

vol. 2, pp. 1615–1620.

Baym, N., Shifman, L., Persaud, C., and Wagman, K. (2019). Intelligent Failures:

Clippy Memes And The Limits Of Digital Assistants. AoIR Selected Papers of

Internet Research.

Bapna, A., Tür, G., Hakkani-Tür, D. Z., and Heck, L. (2017). Towards Zero-Shot

Frame Semantic Parsing for Domain Scaling. INTERSPEECH.

Barto, A. G., Sutton, R. S., Anderson, C. W. (1983). Neuronlike elements that can

solve diffcult learning control problems. IEEE Transactions on Systems, Man, and

Cybernetics, 13(5):835–846. Reprinted in J. A. Anderson and E. Rosenfeld (Eds.),

Neurocomputing: Foundations of Research, pp. 535–549. MIT Press, Cambridge,

MA, 1988.

Bassiri, M. A. (2011). Interactional Feedback and the Impact of Attitude and Motiva-

tion on Noticing L2 Form. English Language and Literature Studies 1, 61.

Bellman, R. (1957). Dynamic Programming. Princeton University Press.

Berkenkamp, F., Turchetta, M., Schoellig, A., and Krause, A. (2017). Safe model-

based reinforcement learning with stability guarantees. In Proceedings of the 31st

Conference on Neural Information Processing Systems (NIPS 2017), pp. 908–918.

Bertsekas, D. P. (2012). Dynamic Programming and Optimal Control, Volume II: Ap-

proximate Dynamic Programming, (4th ed.). Athena Scientific, Belmont, MA.

Bertsekas, D. P., Tsitsiklis, J. N. (1996) Neuro-Dynamic Programming. Athena Scien-

tific, Belmont, MA.

Biermann, A. W. and Long, P. M. (1996). The composition of messages in speech-

graphics interactive systems. In Proceedings of the 1996 International Symposium

on Spoken Dialogue, pp. 97–100.

142

Bijl, D. and Hyde-Thomson, H. (2001). Speech to text conversion. US Patent 6,173,259.

Google Patents.

Bordes, A., Boureau, Y.-L., and Weston, J. (2017). Learning end-to-end goal-oriented

dialog. In Proceedings of the 5th International Conference on Learning Represen-

tations (ICLR 2017).

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen,

P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S. (2012). A survey of

Monte Carlo tree search methods. IEEE Transactions on Computational Intelli-

gence and AI in games 4 (1):1–43.

Bruce, B. (1975). Belief systems and language understanding. Trends in Linguistics.

Studies and Monographs 19 :113–160.

Buesing, L., Weber, T., Racaniere, S., Eslami, S. M. A., Rezende, D., Reichert, D. P., et

al. (2018). Learning and querying fast generative models for reinforcement learning.

ArXiv:1802.03006.

Budzianowski, P., Ultes, S., Su, P.-H., Mrkšic, N., Wen, T.-H., Casanueva, I., et

al. (2017). Sub-domain modelling for dialogue management with hierarchical re-

inforcement learning. In Proceedings of the 18th Annual SIGdial Meeting on Dis-

course and Dialogue, pp. 86–92.

Buckman, J., Hafner, D., Tucker, G., Brevdo, E., and Lee, H. (2018). Sample-Efficient

Reinforcement Learning with Stochastic Ensemble Value Expansion. In Proceedings

of the 32nd Conference on Neural Information Processing Systems (NIPS 2018),

pp. 8224–8234.

Carberry, S. (1989). Plan recognition and its use in understanding dialog. In User

Models in Dialog Systems, pp. 133–162. Springer.

143

Carbonell, J. R. (1971). Mixed-Initiative Man-Computer Instructional Dialogues.

Technical Report, Cambridge, Bolt Beranek and Newman.

Card, S., Moran, T., and Newell, A. (1980). Computer text-editing: An information-

processing analysis of a routine cognitive skill. Cognitive Psychology, 12 :32–74.

Cassell, J. (2000). More than just another pretty face: Embodied conversational inter-

face agents. Communications of the ACM 43 (4):70–78.

Chapman, D. and Kaelbling, L. P. (1991). Input generalization in delayed reinforce-

ment learning: An algorithm and performance comparisons. In Proceedings of the

Twelfth International Conference on Artificial Intelligence, pp. 726–731. Morgan

Kaufmann, San Mateo, CA.

Chen, L., Chang, C., Chen, Z., Tan, B., Gašić, M., and Yu, K. (2018). Policy adapta-

tion for deep reinforcement learning-based dialogue management. In IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (IEEE), pp. 6074–

6078.

Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk,

H.; and Bengio, Y. (2014). Learning Phrase Representations using RNN En-

coder–Decoder for Statistical Machine Translation. In Proceedings of the 2014

Conference on Empirical Methods in Natural Language Processing (EMNLP-2014),

pp. 1724–1734.

Chua, K., Calandra, R., McAllister, R., and Levine, S. Deep reinforcement learning

in a handful of trials using probabilistic dynamics models. (2018). In Proceedings

of the 32nd Conference on Neural Information Processing Systems (NIPS 2018),

pp. 4754–4765, Montréal, Canada. Curran Associates, Inc.

Coates, A., Abbeel, P., and Ng, A. Y. (2017). Autonomous Helicopter Flight Using

144

Reinforcement Learning. Encyclopedia of Machine Learning and Data Mining..

Boston, MA: Springer US.

Cohen, P. R. (1978). On Knowing What to Say: Planning Speech Acts. Ph.D. thesis,

University of Toronto, Department of Computer Science.

Croft, W. B., Metzler, D., and Strohman, T. (2010). Search engines: Information

retrieval in practice. (Vol. 520, pp. 131–141). Reading: Addison-Wesley.

Cuayáhuitl, H., Renals, S., Lemon, O., and Shimodaira, H. (2005). Human-computer

dialogue simulation using hidden Markov models. In Workshop on Automatic

Speech Recognition and Understanding, IEEE, pp. 290–295.

Cuayáhuitl, H., Yu, S., Williamson, A., and Carse, J. (2016). Deep reinforcement

learning for multi-domain dialogue systems. In Workshop on Deep Reinforcement

Learning, NIPS.

Cuayáhuitl, H., Yu, S., Williamson, A., and Carse, J. (2017). Scaling up deep rein-

forcement learning for multi-domain dialogue systems. In Proceedings of the Inter-

national Joint Conference on Neural Networks (IEEE), pp. 3339–3346.

Dario, P., Guglielmelli, E., Genovese, V., and Toro, M. (1996). Robot assistants:

Applications and evolution. Robotics Auton. Syst., 18 :225–234.

Deisenroth, M., Rasmussen, C. E. (2011). PILCO: A model-based and data-efficient

approach to policy search. In Proceedings of the 28th international conference on

Machine learning (ICML-11), pp. 465–472. Omnipress.

Deisenroth, M. P., Fox, D., and Rasmussen, C. E. (2013). Gaussian processes for data-

efficient learning in robotics and control. IEEE transactions on pattern analysis

and machine intelligence 37 :408–423.

145

Devlin J., Chang M. W., Lee K., Toutanova K. (2018). BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. In Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, vol. 1, pp. 4171–4186.

Dhingra, B., Li, L., Li, X., Gao, J., Chen, Y.-N., Ahmed, F., et al. (2017). To-

wards end-to-end reinforcement learning of dialogue agents for information access.

In Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics, pp. 484–495.

Digital Inspiration. Dictation.io. http://dictation.io [Accessed July 27, 2020]

Doll, B. B., Simon, D. A., Daw, N. D. (2012). The ubiquity of model-based reinforce-

ment learning. Current Opinion in Neurobiology, 22 (6):1–7.

Douglas, H. R. (1999). Method and apparatus for editing documents through voice

recognition. US Patent 5,875,429, Google Patents.

Duffy, J. (2018). The Best Dictation Software for 2019. https://zapier.com/blog/best-

text-dictation-software [Accessed July 27, 2020]

Engelbart, D. C. (1962). Augmenting human intellect: A conceptual framework. Tech-

nical Report. AFOSR-3223. Stanford Research Institute.

Eric, M. (2020). NeurIPS 2019 ConvAI Workshop Recap. IEEE Signal Processing

Society. https://signalprocessingsociety.org/ [Accessed July 27, 2020]

Fain, D. C., and Pedersen, J. O. (2006). Sponsored search: A brief history. Bulletin of

the American Society for Information Science and technology, 32 (2), 12–13. Wiley

Online Library.

Feinberg, V., Wan, A., Stoica, I., Jordan, M. I., Gonzalez, J. E., and Levine, S.

146

(2018). Model-based value estimation for efficient model-free reinforcement learn-

ing. ArXiv:1803.00101.

Feng, S., Fadni, K., Liao, Q. V., and Lastras, L. A. (2019). Doc2Dial: A Frame-

work for Dialogue Composition Grounded in Business Documents. In Workshop

on Document Intelligence, NeurIPS.

Ferreira, E. and Lefèvre, F. (2015). Reinforcement-learning based dialogue system for

human–robot interactions with socially-inspired rewards. Computer Speech Lan-

guage 34, 256–274.

Fikes, R., Hart, P., and Nilsson, N. (1972). Learning and executing generalized robot

plans. Artificial Intelligence, 3 :251–288.

Finin, T. W.; Joshi, A. K.; and Webber, B. L. (1986). Natural language interactions

with artificial experts. Proceedings of the IEEE 74 (7):921–938.

Finnsson, H. and Björnsson, Y. (2008). Simulation-Based Approach to General Game

Playing. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence

(AAAI-08), vol. 8, pp. 259–264.

Foerster, J., Assael, I. A., De Freitas, N., and Whiteson, S. (2016). Learning to

communicate with deep multi-agent reinforcement learning. In Proceedings of the

30st Conference on Neural Information Processing Systems (NIPS 2016), pp. 2137–

2145.

Forrester, J. W. (1971). Counterintuitive behavior of social systems. Theory and

Decision 2 (2):109–140.

Fox, M. S., and Smith, S. F. (1984). ISIS—a knowledge-based system for factory

scheduling. Expert systems, 1 (1):25–49. Wiley Online Library.

147

Freeman, D., Ha, D., and Metz, L. (2019). Learning to Predict Without Looking

Ahead: World Models Without Forward Prediction. In Proceedings of the 33rd

Conference on Neural Information Processing Systems (NIPS 2019), pp. 5380–5391.

Fukushima, K., and Miyake, S. (1982). Neocognitron: A new algorithm for pattern

recognition tolerant of deformations and shifts in position. Pattern recognition,

15 (6):455–469.

Jiang, J., Hassan Awadallah, A., Jones, R., Ozertem, U., Zitouni, I., Gurunath Kulka-

rni, R., et al. (2015). Automatic Online Evaluation of Intelligent Assistants. In

Proceedings of the 24th International Conference on World Wide Web, pp. 506–516.

Jiang, Z., Mao, X.-L., Huang, Z., Ma, J., and Li, S. (2019). Towards End-to-End

Learning for Efficient Dialogue Agent by Modeling Looking-ahead Ability. In Pro-

ceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue.

Gašić, M., Jurč́ıček, F., Thomson, B., Yu, K., and Young, S. (2011). On-line policy

optimisation of spoken dialogue systems via live interaction with human subjects.

In IEEE Workshop on Automatic Speech Recognition & Understanding, IEEE,

pp. 312–317.

Gašić, M., Breslin, C., Henderson, M., Kim, D., Szummer, M., Thomson, B., et

al. (2013a). On-line policy optimisation of Bayesian spoken dialogue systems via

human interaction. In IEEE International Conference on Acoustics, Speech and

Signal Processing (IEEE-2013), pp. 8367–8371.

Gašić, M., Breslin, C., Henderson, M., Kim, D., Szummer, M., Thomson, B., et

al. (2013b). POMDP-based dialogue manager adaptation to extended domains.

In Proceedings of the SIGDIAL 2013 Conference, pp. 214–222. Metz, France: As-

sociation for Computational Linguistics.

148

Gašić, M., Mrkšic, N., Rojas-Barahona, L. M., Su, P.-H., Ultes, S., Vandyke, D., et

al. (2017). Dialogue manager domain adaptation using Gaussian process reinforce-

ment learning. Computer Speech & Language 45, 552–569.

Gao, J., Galley, M., Li, L., et al. (2019). Neural Approaches to Conversational AI. In

Foundations and Trends in Information Retrieval 13 (2-3):127–298.Now Publishers,

Inc.

Gass, S. M. and Varonis, E. M. (1994). Input, interaction, and second language pro-

duction. Studies in Second Language Acquisition 16, 283–302.

Google (2020). Type with your voice: Edit your document. https://support.google

.com/docs/answer/4492226 [Accessed February 22, 2020]

Goyal, P., Niekum, S., and Mooney, R. J. (2019). Using natural language for reward

shaping in reinforcement learning. In Kraus, S., (Ed.), Proceedings of the Twenty-

Eighth Interna- tional Joint Conference on Artificial Intelligence, pp. 2385–2391.

Macao, China.

Greyson, A. M., Hokit, J. D., Kaptanoglu, M., Wagner, A. M., and Capps, S. P. (1997).

Method and apparatus for the manipulation of text on a computer display screen.

US Patent 5,666,552. Google Patents.

Griffith, S., Subramanian, K., Scholz, J., Isbell, C. L., and Thomaz, A. L. (2013). Policy

shaping: Integrating human feedback with reinforcement learning. In Proceedings

of the 27th Conference on Neural Information Processing Systems (NIPS 2013),

pp. 2625–2633.

Grignetti, M. C., Hausmann, C., and Gould, L. (1975). An “intelligent” on-line as-

sistant and tutor: NLS-scholar. In Proceedings of the May 19-22, 1975, National

Computer Conference and Exposition, pp. 775–781. ACM.

149

Grosz, B. (1983). Team: A transportable natural language interface system. In Pro-

ceedings of the 1st Conference on Applied Natural Language Processing, pp. 38–45.

Santa Monica, California: ACM.

Gruber, T. R. and Clark, G. C. (2017). Dictation that allows editing. US Patent App.

15/268,215. Google Patents.

Gu, S., Lillicrap, T., Sutskever, I., and Levine, S. (2016). Continuous deep Q-learning

with model-based acceleration. In Proceedings of the 33rd international conference

on Machine learning (ICML-16), vol. 48, JMLR.org.

Gupta, A., Zhang, P., Lalwani, G., and Diab, M.T. (2019). CASA-NLU: Context-

Aware Self-Attentive Natural Language Understanding for Task-Oriented Chat-

bots. Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-

guage Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP).

Ha, D. and Schmidhuber, J. (2018). World models. In Proceedings of the 32nd Con-

ference on Neural Information Processing Systems (NIPS 2018), pp. 2451–2463.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., at al. (2018a).

Soft actor-critic algorithms and applications. ArXiv:1812.05905.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018b). Soft actor-critic: Off-

policy maximum entropy deep reinforcement learning with a stochastic actor. In

Proceedings of the 35th international conference on Machine learning (ICML-18),

pp. 1861–1870. PMLR.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., et al. (2018). Learn-

ing latent dynamics for planning from pixels. In Proceedings of the 35th interna-

tional conference on Machine learning (ICML-18).

150

Handoyo, E., Arfan, M., Soetrisno, Y. A. A., Somantri, M., Sofwan, A., and Sinuraya,

E. W. (2018). Ticketing chatbot service using serverless NLP technology. In Pro-

ceedings of the 5th International Conference on Information Technology, Computer,

and Electrical Engineering, pp. 325–330. IEEE.

Hawkins, D. (1968). The nature of purpose. In Purposive systems: Proceedings of the

first annual symposium of the American Society for Cybernetics, pp. 163–173.

He, J., Chen, J., He, X., Gao, J., Li, L., Deng, L., and Ostendorf, M. (2015). Deep

reinforcement learning with a natural language action space. ArXiv:1511.04636.

Hernandaz, E. and Arkun, Y. (1990). Neural Network Modeling and an Extended

DMC Algorithm to Control Nonlinear Systems. In American Control Conference,

pp. 2454–2459. IEEE.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Hor-

gan, D., Piot, B., Azar, M. G., and Silver, D. (2018). Rainbow: Combining Im-

provements in Deep Reinforcement Learning. In Proceedings of the 32nd AAAI

Conference on Artificial Intelligence (AAAI-18), pp. 3215–3222.

Hester, T. and Stone, P. (2011). Learning and using models. in M. Wiering, and M. van

Otterlo (Eds.), Reinforcement Learning: State-of-the-Art, pp. 111–141. Springer-

Verlag, Berlin Heidelberg.

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural Com-

putation, 9 (8):1735–1780.

Higashinaka, R., et al. (2014). Towards an open-domain conversational system fully

based on natural language processing. In Proceedings of COLING 2014, the 25th

International Conference on Computational Linguistics: Technical Papers, pp. 928–

939.

151

Holland, G. Z., Talvitie, E. J., and Bowling, M. (2018). The Effect of Planning Shape

on Dyna-style Planning in High-dimensional State Spaces. ArXiv:1806.01825.

Hoy, M. B. (2018). Alexa, Siri, Cortana, and more: an introduction to voice assistants.

Medical reference services quarterly 37 (1):81–88. Taylor and Francis.

Huang, M., Zhu, X., and Gao, J. (2020). Challenges in building intelligent open-domain

dialog systems. ACM Transactions on Information Systems (TOIS) 38 (3):1–32.

Iba, G. A. (1989). A heuristic approach to the discovery of macro-operators. Machine

Learning, 3 :285–317.

Jafferjee, T. (2020). Chasing Hallucinated Value: A Pitfall of Dyna Style Algorithms

with Imperfect Environment Models. Master’s thesis, University of Alberta.

Jang, Y., Lee, J., and Kim, K.-E. (2019). Bayes-Adaptive Monte-Carlo Planning and

Learning for Goal-Oriented Dialogues. In 3rd Workshop on Conversational AI,

NIPS 2019.

Janner, M., Fu, J., Zhang, M., and Levine, S. (2019). When to trust your model:

Model-based policy optimization. In Proceedings of the 33rd Conference on Neural

Information Processing Systems (NIPS 2019).

Kaiser, G. E., Feiler, P. H., and Popovich, S. S. (1988). Intelligent assistance for

software development and maintenance. IEEE software, 5 (3), 40–49.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Campbell, R. H., Czechowski, K.,

Erhan, D., Finn, C., Kozakowski, P., Levine, S., Mohiuddin, A., Sepassi, R., Tucker,

G., and Michalewski, H. (2020). Model-based reinforcement learning for Atari. In

Proceedings of the 8th International Conference on Learning Representations (ICLR

2020).

152

Kamm, C. (1995). User interfaces for voice applications. In Proceedings of the National

Academy of Sciences 92 (22), 10031–10037.

Kamthe, S. and Deisenroth, M. (2018). Data-efficient reinforcement learning with prob-

abilistic model predictive control. In Proceedings of the 21st International Confer-

ence on Artificial Intelligence and Statistics, eds. A. Storkey and F. Perez-Cruz

(Lanzarote, Spain: PMLR), vol. 84 of Proceedings of Machine Learning Research,

pp. 1701–1710.

Kaplan, F., Oudeyer, P. Y., Kubinyi, E., and Miklósi, A. (2002). Robotic clicker

training. Robotics and Autonomous Systems, 38 (3-4):197–206.

Kingma, D. P., and Ba, J. (2014). Adam: A method for stochastic optimization. In

Proceedings of the 3rd International Conference on Learning Representations (ICLR

2015).

Kingma, D. P. and Welling, M. (2014). Auto-Encoding Variational Bayes. In Pro-

ceedings of the 2nd International Conference on Learning Representations (ICLR

2014).

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Torralba, A., and

Fidler, S. (2015). Skip-thought vectors. Proceedings of the 29th Conference on

Neural Information Processing Systems (NIPS 2015), pp. 3294–3302.

Knox, W. B. and Stone, P. (2012). Reinforcement learning from simultaneous human

and MDP reward. In Proceedings of the 11th International Conference on Au-

tonomous Agents and Multiagent Systems-Volume 1 (AAMAS-2012), pp. 475–482.

Kocijan, J., Murray-Smith, R., Rasmussen, C. E., and Girard, A. (2004). Gaussian

process model based predictive control. In Proceedings of the 2004 American control

conference (IEEE), vol. 3, pp. 2214–2219.

153

Konda V. and Tsitsiklis J. (2000). Actor-critic algorithms. In Proceedings of the 13th

Conference on Neural Information Processing Systems (NIPS 2000), pp. 1008–1014.

Kozierok, R. and Maes, P. (1993). A learning interface agent for scheduling meetings.

In Proceedings of the 1st international conference on Intelligent user interfaces,

pp. 81–88. ACM.

Kurutach, T., Clavera, I., Duan, Y., Tamar, A., and Abbeel, P. (2018). Model-ensemble

trust-region policy optimization. In Proceedings of the 6th International Conference

on Learning Representations (ICLR 2018).

Kuvayev, L. and Sutton, R. S. (1996). Model-based reinforcement learning with an ap-

proximate, learned model. In Proceedings of the Ninth Yale Workshop on Adaptive

and Learning Systems, pp. 101–105. Yale University, New Haven, CT.

Lau, T., Wolfman, S., Domingos, P.M., and Weld, D.S. (2001). Learning Repetitive

Text-Editing Procedures with SMARTedit. Your Wish is My Command.

Lazaridou, A., Pham, N. T., and Baroni, M. (2016). Towards multi-agent

communication-based language learning. ArXiv:1605.07133.

Leibfried, F., Kushman, N., and Hofmann, K. (2017). A Deep Learning Approach

for Joint Video Frame and Reward Prediction in Atari Games. In Workshop on

Principled Approaches to Deep Learning, ICML, Sydney, Australia.

Levine, S. and Abbeel, P. (2014). Learning neural network policies with guided policy

search under unknown dynamics. In Proceedings of the 28th Conference on Neural

Information Processing Systems (NIPS 2014), pp. 1071–1079.

Levin, E., Pieraccini, R., and Eckert, W. (1997). Learning dialogue strategies within

the Markov decision process framework. In IEEE Workshop on Automatic Speech

Recognition and Understanding Proceedings, pp. 72–79.

154

Lewis, M., Yarats, D., Dauphin, Y., Parikh, D., and Batra, D. (2017). Deal or No

Deal? End-to-End Learning of Negotiation Dialogues. In Proceedings of the 2017

Conference on Empirical Methods in Natural Language Processing (EMNLP-2017),

pp. 2443–2453.

Li, J., Monroe, W., Ritter, A., Galley, M., Gao, J., and Jurafsky, D. (2016a). Deep re-

inforcement learning for dialogue generation. In Proceedings of the 2016 Conference

on Empirical Methods in Natural Language Processing (EMNLP-2016)

Li, X., Lipton, Z. C., Dhingra, B., Li, L., Gao, J., and Chen, Y.-N. (2016b). A user

simulator for task-completion dialogues. ArXiv:1612.05688.

Li, J., Miller, A. H., Chopra, S., Ranzato, M., and Weston, J. (2017). Learning through

dialogue interactions by asking questions. In Proceedings of the 5th International

Conference on Learning Representations (ICLR 2017).

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,

and Wierstra, D. (2016). Continuous control with deep reinforcement learning. In

Proceedings of the 4th International Conference on Learning Representations (ICLR

2016).

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning, plan-

ning and teaching. Machine learning 8 (3-4):293–321.

Lindgren, N. (1968). Purposive systems: The edge of knowledge. IEEE spectrum

5 (4):89–100. IEEE.

Lipton, Z. C., Li, X., Gao, J., Li, L., Ahmed, F., and Deng, L. (2018). BBQ-Networks:

Efficient Exploration in Deep Reinforcement Learning for Task-Oriented Dialogue

Systems. AAAI. In Proceedings of the 32nd AAAI Conference on Artificial Intelli-

gence (AAAI-18), pp. 5237–5244.

155

Lison, P. (2013). Model-based bayesian reinforcement learning for dialogue manage-

ment. INTERSPEECH, pp. 475–479.

Litman, D., Singh, S., Kearns, M., and Walker, M. (2000). NJFun: a reinforcement

learning spoken dialogue system. In Proceedings of the 2000 ANLP/NAACL Work-

shop on Conversational Systems, pp. 17–20. ACL.

Littman, M. L., Sutton, R. S., Singh. (2002). Predictive representations of state.

In Proceedings of the 14th Conference on Neural Information Processing Systems

(NIPS 2001), pp. 1555–1561. MIT Press, Cambridge, MA.

Liu, B. (2018). Learning Task-Oriented Dialog with Neural Network Methods. Ph.D.

thesis, Carnegie Mellon University, Department of Electrical and Computer Engi-

neering.

Liu, B. and Lane, I. (2017a). Iterative policy learning in end-to-end trainable task-

oriented neural dialog models. In Automatic Speech Recognition and Understanding

Workshop, pp. 482–489.

Liu, B. and Lane, I. (2017b). Multi-domain adversarial learning for slot filling in spoken

language understanding. In 1st Workshop on Conversational AI, NIPS 2017.

Liu, B., Tür, G., Hakkani-Tür, D., Shah, P., and Heck, L. (2017). End-to-end

optimization of task-oriented dialogue model with deep reinforcement learning.

ArXiv:1711.10712.

Liu, B., Tür, G., Hakkani-Tür, D., Shah, P., and Heck, L. (2018). Dialogue learning

with human teaching and feedback in end-to-end trainable task-oriented dialogue

systems. In Proceedings of the 2018 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies,

pp. 2060–2069. New Orleans, Louisiana: ACL.

156

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning, plan-

ning and teaching. Machine learning, 8 (3-4):293–321.

Loftin, R. T., MacGlashan, J., Peng, B., Taylor, M. E., Littman, M. L., Huang, J., et

al. (2014). A strategy-aware technique for learning behaviors from discrete human

feedback. In Proceedings of the 28th AAAI Conference on Artificial Intelligence

(AAAI-14), pp. 937–943.

Long, M. H. (1981). Input, interaction and second language acquisition. Annals of the

New York Academy of Sciences 379, 259–278.

Lu, Y., and Smith, S. (2007). Augmented reality e-commerce assistant system: try-

ing while shopping. In International Conference on Human-Computer Interaction,

pp. 643–652. Springer, Berlin, Heidelberg.

Lucas, M., Miko, S., and Bennington, S. A. (2004). Method and apparatus for voice

dictation and document production. US Patent 6,834,264. Google Patents.

Maedche, A., Morana, S., Schacht, S., Werth, D., and Krumeich, J. (2016). Advanced

user assistance systems. Business and Information Systems Engineering, 58 (5),

367–370.

Maheswaran, R. T., Tambe, M., Varakantham, P., and Myers, K. (2003). Adjustable

autonomy challenges in personal assistant agents: A position paper. In Interna-

tional Workshop on Computational Autonomy, AAMAS, pp. 187–194. Springer.

Manuvinakurike, R., Bui, T., Chang, W., and Georgila, K. (2018). Conversational im-

age editing: Incremental intent identification in a new dialogue task. In Proceedings

of the 19th Annual SIGdial Meeting on Discourse and Dialogue. pp. 284–295.

Mendez, J. A., Geramifard, A., Ghavamzadeh, M., and Liu, B. (2019). Reinforcement

learning of multi-domain dialog policies via action embeddings. In 3rd Workshop

157

on Conversational AI, NIPS 2019.

McDermott, J. (1982). XSEL: A computer salesperson’s assistant. Machine intelli-

gence, 10 (1), 235–337. John Wiley and Sons.

Microsoft (2020). Windows Speech Recognition commands. https://support.micro

soft.com. [Accessed February 23, 2020]

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed

representations of words and phrases and their compositionality. In Proceedings

of the 27th Conference on Neural Information Processing Systems (NIPS 2013),

pp. 3111–3119.

Minton, S. (1988). Learning search control knowledge. An explanation-based approach.

Kluwer Academic Publishers.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., et

al. (2013). Playing Atari with Deep Reinforcement Learning. In Deep Learning

Workshop, NIPS 2013.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie,

C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S.,

Hassabis, D. (2015). Human-level control through deep reinforcement learning.

Nature, 518 (7540):529–533.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., et al. (2016).

Asynchronous methods for deep reinforcement learning. In Proceedings of the 33rd

international conference on Machine learning (ICML-16), pp. 1928–1937. PMLR.

Moar, J., and Escherich, M. (2021). Voice Assistant Transaction Val-

ues To Grow By Over 320% By 2023 [Press release]. Retrieved from

158

https://www.juniperresearch.com/researchstore/devices-technology/voice-

assistants-market-research-report. Juniper Research.

Moore, A. W., Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement learning

with less data and less real time. Machine Learning, 13 (1):103–130.

Moore, J. D., and Paris, C. L. (1989). Planning text for advisory dialogues. In Pro-

ceedings of the 27th Annual Meeting on Association for Computational Linguistics,

pp. 203–211. ACL.

Mordatch, I. and Abbeel, P. (2018). Emergence of grounded compositional language in

multi-agent populations. In Proceedings of the 32nd AAAI Conference on Artificial

Intelligence (AAAI-18).

Naik, A., Shariff, R., Yasui, N., and Sutton, R. S. (2019). Discounted reinforcement

learning is not an optimization problem. Optimization Foundations of Reinforce-

ment Learning Workshop, NIPS 2019.

Naik, A., Abbas, Z., White, A., Sutton R. S. (2021) In Never-Ending Reinforcement

Learning (NERL) Workshop, ICLR.

Ng, A. Y., Kim, H. J., Jordan, M. I., and Sastry, S. (2004). Autonomous helicopter

flight via reinforcement learning. In Proceedings of the 30st Conference on Neural

Information Processing Systems (NIPS 2016), eds. S. Thrun, L. K. Saul, and B.

Schölkopf, pp. 799–806. MIT Press.

Nonaka, Y., Sakai, Y., Yasuda, K., and Nakano, Y. (2012). Towards assessing the com-

munication responsiveness of people with dementia. In International Conference

on Intelligent Virtual Agents. pp. 496–498. Springer, Berlin, Heidelberg.

Nortmann, N., Rekauzke, S., Onat, S., König, P., and Jancke, D. (2015). Primary

visual cortex represents the difference between past and present. Cerebral Cortex

159

25, 1427–1440.

Nuance (2003). Dragon NaturallySpeaking 13 Installation Guide and User Guide.

https://www.nuance.com [Accessed January 5, 2021]

Oh, J., Guo, X., Lee, H., Lewis, R. L., Singh, S. (2015). Action-conditional video pre-

diction using deep networks in Atari games. In Proceedings of the 29th Conference

on Neural Information Processing Systems (NIPS 2015), pp. 2845–2853. Curran

Associates, Inc.

Pan Y., Zaheer M., White A., Patterson A., and White M. (2018). Organizing experi-

ence: a deeper look at replay mechanisms for sample-based planning in continuous

state domains. In Proceedings of the 27th International Joint Conference on Arti-

ficial Intelligence (IJCAI-18), pp. 4794–4800. AAAI Press.

Pan Y., Yao H., Farahmand A.M., White M. (2019). Hill Climbing on Value Esti-

mates for Search-control in Dyna. In Proceedings of the 28th International Joint

Conference on Artificial Intelligence (IJCAI-19).

Paolacci, G., Chandler, J., and Ipeirotis, P. G. (2010). Running Experiments on Ama-

zon Mechanical Turk. Judgment and Decision making 5 :411–419.

Papangelis, A., Namazifar, M., Khatri, C., Wang, Y.-C., Molino, P., and Tür, G.

(2020). Plato Dialogue System: A Flexible Conversational AI Research Platform.

ArXiv:2001.06463.

Parr, R., Li, L., Taylor, G., Painter-Wakefield, C., Littman, M. L. (2008). An analysis

of linear models, linear value-function approximation, and feature selection for rein-

forcement learning. In Proceedings of the 25th international conference on Machine

learning (ICML-08), pp. 752–759.

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem Solv-

160

ing. Addison-Wesley, Reading, MA.

Peng, B., Li, X., Li, L., Gao, J., Celikyilmaz, A., Lee, S., et al. (2017). Composite

task-completion dialogue policy learning via hierarchical deep reinforcement learn-

ing. In Proceedings of the Conference on Empirical Methods in Natural Language

Processing (Copenhagen, Denmark: Association for Computational Linguistics),

pp. 2231–2240.

Peng, B., Li, X., Gao, J., Liu, J., Chen, Y. N., and Wong, K. F. (2018a). Adversar-

ial advantage actor-critic model for task-completion dialogue policy learning. In

2018 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 6149–6153. IEEE.

Peng, B., Li, X., Gao, J., Liu, J., and Wong, K.-F. (2018b). Deep Dyna-Q: Integrating

Planning for Task-Completion Dialogue Policy Learning. In Proceedings of the 56th

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers). ACL.

Peng, J. and Williams, R. J. (1993). Efficient learning and planning within the Dyna

framework. Adaptive behavior, 1 (4): 437–454.

Pica, T. (1987). Second-language acquisition, social interaction, and the classroom.

Applied Linguistics 8, 3–21.

Pica, T., Doughty, C. J., and Young, R. (1986). Making input comprehensible: Do

interactional modifications help? ITL-International Journal of Applied Linguistics

72, 1–25.

Pineau, J., Montemerlo, M., Pollack, M., Roy, N., and Thrun, S. (2003). Towards

robotic assistants in nursing homes: Challenges and results. Robotics and au-

tonomous systems 42 :271–281.

161

Pilarski, P. M., Dawson, M. R., Degris, T., Fahimi, F., Carey, J. P., and Sutton,

R. S. (2011). Online human training of a myoelectric prosthesis controller via

actor-critic reinforcement learning. In Proceedings of the 2011 IEEE International

Conference on Rehabilitation Robotics (ICORR), pp. 134–140. Zurich, Switzerland:

IEEE.

Pilarski, P. M., Sutton, R. S., Mathewson, K. W., Sherstan, C., Parker, A. S.,

and Edwards, A. L. (2017). Communicative Capital for Prosthetic Agents.

ArXiv:1711.03676.

Pollack, M. E., Brown, L., Colbry, D., Orosz, C., Peintner, B., Ramakrishnan, S.,

et al. (2002). Pearl: A mobile robotic assistant for the elderly. AAAI Technical

Report WS-02-02. pp. 85–91. AAAI.

Pollack, M. E., Hirschberg, J., and Webber, B. (1982). User participation in the

reasoning processes of expert systems. In Proceedings of the 1st AAAI Conference

on Artificial Intelligence (AAAI-82), pp. 358–361. University of Pennsylvania.

Power, R. (1974). A computer model of conversation. Ph.D. thesis, The University of

Edinburg.

Precup, D. (2000). Temporal Abstraction in Reinforcement Learning. Ph.D. thesis,

University of Massachusetts, Amherst.

Ranzato, M., Chopra, S., Auli, M., and Zaremba, W. (2015). Sequence level training

with recurrent neural networks. ArXiv:1511.06732.

Quarteroni, S. and Manandhar, S. (2009). Designing an interactive open-domain ques-

tion answering system. Natural Language Engineering 15 (1):73–95.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I.

(2019). Language Models are Unsupervised Multitask Learners. OpenAI Blog.

162

https://openai.com/blog/better-language-models. [Accessed July 23, 2020].

Rao, A. P. (2011). Predictive speech-to-text input. US Patent 7,904,298. Google

Patents.

Rastogi, A., Hakkani-Tür, D., and Heck, L. (2017). Scalable multi-domain dialogue

state tracking. In IEEE Automatic Speech Recognition and Understanding Work-

shop, ASRU, pp. 561–568.

Rezende D. J., Mohamed S., Wierstra D. (2014). Stochastic backpropagation and

approximate inference in deep generative models. In Proceedings of the 28th Con-

ference on Neural Information Processing Systems (NIPS 2014).

Saleh, A., Jaques, N., Ghandeharioun, A., Shen, J.H., and Picard, R. W. (2020).

Hierarchical Reinforcement Learning for Open-Domain Dialog. In Proceedings of

the 34th AAAI Conference on Artificial Intelligence (AAAI-20), pp. 8741–8748.

Salichs, M., Ge, S., Barakova, E., Cabibihan, J., Wagner, A. R., González, Á., and He,

H. (2019). Preface–Social Robotics. In 11th International Conference, ICSR-2019.

Springer.

Schatzmann, J., Thomson, B., Weilhammer, K., Ye, H., and Young, S. (2007). Agenda-

Based User Simulation for Bootstrapping a POMDP Dialogue System. In Human

Language Technologies 2007: The Conference of the North American Chapter of

the Association for Computational Linguistics, pp. 149–152.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016). Prioritized experience

replay. In Proceedings of the 4th International Conference on Learning Represen-

tations (ICLR 2016).

Schulman, J., Chen, X., Abbeel, P. (2017). Equivalence between policy gradients and

soft Q-Learning. ArXiv:1704.06440.

163

Schulman J., Levine S., Abbeel P., Jordan M., and Moritz P. (2015). Trust region pol-

icy optimization. In Proceedings of the 32nd international conference on Machine

learning (ICML-15), pp. 1889–1897.

Schulman J., Wolski F., Dhariwal P., Radford A., and Klimov O. (2017). Proximal

policy optimization algorithms. ArXiv: 1707.06347.

Schrittwieser, J., Antonoglou, I., Hubert, T. et al. (2020). Mastering Atari, Go, chess

and shogi by planning with a learned model. Nature 588, 604–609.

Selfridge, O. G. (1993). The Gardens of Learning: A Vision for AI. AI Magazine,

14 (2):36–48.

Serban, I. V., Sankar, C., Germain, M., Zhang, S., Lin, Z., Subramanian, S., et

al. (2017a). A deep reinforcement learning chatbot. ArXiv:1709.02349.

Serban, I., Sordoni, A., Lowe, R., Charlin, L., Pineau, J., Courville, A., and Bengio,

Y. (2017b). A hierarchical latent variable encoder-decoder model for generating

dialogues. In Proceedings of the 31st AAAI Conference on Artificial Intelligence

(AAAI-17)(Vol. 31, No. 1).

Shah, P., Hakkani-Tür, D., and Heck, L. (2016). Interactive reinforcement learning

for task-oriented dialogue management. In Workshop on Deep Learning for Action

and Interaction, NIPS.

Shah, P., Hakkani-Tür, D.,Tür, G., Rastogi, A., Bapna, A., Nayak, N., et

al. (2018). Building a conversational agent overnight with dialogue self-play.

ArXiv:1801.04871.

Shariff, R., and Szepesvári, C. (2020). Efficient Planning in Large MDPs with Weak

Linear Function Approximation. In Proceedings of the 34th Conference on Neural

Information Processing Systems (NIPS 2020), Vancouver, Canada.

164

Shen, Y., Huang, P.-S., Gao, J., and Chen, W. (2017). ReasoNet: Learning to stop

reading in machine comprehension. In Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pp. 1047–

1055.

Shi, Z., Chen, X., Qiu, X., and Huang, X. (2018). Toward Diverse Text Generation

with Inverse Reinforcement Learning. Proceedings of the 27th International Joint

Conference on Artificial Intelligence (IJCAI-18).

Shin, J., Xu, P., Madotto, A., and Fung, P. (2019). Happybot: Generating empathetic

dialogue responses by improving user experience look-ahead. ArXiv:1906.08487.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M. (2014). De-

terministic policy gradient algorithms. In Proceedings of the 28th Conference on

Neural Information Processing Systems (NIPS 2014), pp. 387–395.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,

et al. (2017a). Mastering the game of Go without human knowledge. Nature,

550 (7676):354–359.

Silver, D., van Hasselt, H., Hessel, M., Schaul, T., Guez, A., Harley, T., et al. (2017b).

The Predictron: End-to-end learning and planning. In Proceedings of the 34th

International Conference on Machine Learning-Volume 70, pp. 3191–3199.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., et al. (2018).

A general reinforcement learning algorithm that masters chess, shogi, and Go

through self-play. Science 362 :1140–1144.

Simmons, R., and Slocum, J. (1972). Generating English discourse from semantic

networks. Communications of the ACM 15 (10):891–905.

Singh, S. P. Reinforcement learning with a hierarchy of abstract models. (1992). In

165

Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92),

pp. 202–207. AAAI/MIT Press, Menlo Park, CA.

Singh, S. P., Jaakkola, T., and Jordan, M. I. (1995). Reinforcement learning with soft

state aggregation. In Proceedings of the 7th Conference on Neural Information

Processing Systems (NIPS 1994), pp. 359–368. MIT Press, Cambridge, MA.

Singh, S. P., Kearns, M. J., Litman, D. J., and Walker, M. A. (2000). Reinforcement

learning for spoken dialogue systems. In Proceedings of the 13th Conference on

Neural Information Processing Systems (NIPS 2000), pp. 956–962.

Singh, S., Litman, D., Kearns, M., and Walker, M. (2002). Optimizing dialogue man-

agement with reinforcement learning: Experiments with the NJFun system. Jour-

nal of Artificial Intelligence Research 16 :105–133.

Skantze, G. (2016). Real-time coordination in human-robot interaction using face and

voice. AI Magazine 37 :19–31.

Smith, R. W., and Hipp, D. R. (1994). Spoken natural language dialog systems: A

practical approach. Oxford University Press.

Smith, E. M., Williamson, M., Shuster, K., Weston, J., and Boureau, Y.-L. (2020).

Can You Put it All Together: Evaluating Conversational Agents’ Ability to Blend

Skills. ArXiv:2004.08449.

Stent, A., Prasad, R., and Walker, M. (2004). Trainable sentence planning for complex

information presentation in spoken dialog systems. In Proceedings of the 42nd

Annual Meeting of the Association for Computational Linguistics (ACL-04), ACL,

pp. 79––87.

Sorg, J., Singh, S. Linear options. (2010). In Proceedings of the 9th International

Conference on Autonomous Agents and Multiagent Systems, pp. 31–38.

166

Su, P.-H., Budzianowski, P., Ultes, S., Gašić, M., and Young, S. (2017). Sample-

efficient actor-critic reinforcement learning with supervised data for dialogue man-

agement. In Proceedings of the SIGDIAL for Dialogue Policy Learning, pp. 147-157.

Su, S.-Y., Li, X., Gao, J., Liu, J., and Chen, Y.-N. (2018). Discriminative Deep

Dyna-Q: Robust Planning for Dialogue Policy Learning. In Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing (EMNLP-2018),

pp. 3813–3823. ACL.

Sukhbaatar, S., Szlam, A., and Fergus, R. (2016). Learning multiagent communication

with backpropagation. In Proceedings of the 30st Conference on Neural Information

Processing Systems (NIPS 2016), pp. 2244–2252.

Sun, M., Chen, Y.-N., and Rudnicky, A. I. (2016). An intelligent assistant for high-

level task understanding. In Proceedings of the 21st International Conference on

Intelligent User Interfaces, pp. 169–174. Sonoma, USA. ACM.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with

neural networks. In Proceedings of the 28th Conference on Neural Information

Processing Systems (NIPS 2014), pp. 3104–3112.

Sutton, R. S. (1984). Temporal Credit Assignment in Reinforcement Learning. Ph.D.

thesis, University of Massachusetts, Amherst.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Ma-

chine learning, 3 (1): 9–44.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based

on approximating dynamic programming. In Proceedings of the 7th International

Workshop on Machine Learning (ICML-90), pp. 216–224. Morgan Kaufmann. Also

appeared as “Artificial intelligence by dynamic programming,” in Proceedings of the

167

Sixth Yale Workshop on Adaptive and Learning Systems, pp. 89–95.

Sutton, R. S. (1991). Dyna, an integrated architecture for learning, planning, and

reacting. SIGART Bulletin 2 (4):160–163. ACM, New York.

Sutton, R. S. (2019). The Bitter Lesson [Blog post]. Retrieved from http://www.

incompleteideas.net/IncIdeas/BitterLesson.html. [Accessed June 20, 2020]

Sutton, R. S. (2020). Experience and Intelligence: Toward a Scalable AI-Agent Archi-

tecture. Vector Institute for Artificial Intelligence, Visitor Research Talk.

Sutton, R. S. and Barto, A. G. (1981). An adaptive network that constructs and uses

and internal model of its world. Cognition and Brain Theory 4 :217–246.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An Introduction. MIT

press.

Sutton, R. S. and Pinette, B. (1985). The learning of world models by connectionist

networks. In Proceedings of the 7th Annual Conference of the Cognitive Science

Society. pp. 54–64.

Sutton, R. S., Precup, D., Singh, S. (1998). Intra-option learning about temporally

abstract actions. In Proceedings of the 15th international conference on Machine

learning (ICML-98), pp. 556-564. Morgan Kaufmann.

Sutton, R. S., Precup, D., Singh, S. (1999). Between MDPs and semi-MDPs: A frame-

work for temporal abstraction in reinforcement learning. Artificial Intelligence,

112 (1-2):181–211.

Sutton, R. S. , Rafols, E. J. , and Koop, A. (2005). Temporal Abstraction in Temporal-

difference Networks. In Proceedings of the 19th Conference on Neural Information

Processing Systems (NIPS 2005).

168

Sutton, R. S., Szepesvári, Cs., Geramifard, A., Bowling, M. (2008). Dyna-style plan-

ning with linear function approximation and prioritized sweeping, In Proceedings

of the 24th Conference on Uncertainty in Artificial Intelligence, pp. 528–536.

Takahashi, F. (2001). Document editing system and method. US Patent 6,202,073.

Google Patents.

Talvitie, E. (2014). Model Regularization for Stable Sample Rollouts. In Proceedings

of the 30th Conference on Uncertainty in Artificial Intelligence, pp. 780–789.

Talvitie, E. (2017). Self-correcting Models for Model-based Reinforcement Learning.

In Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI-17).

Tang, D., Li, X., Gao, J., Wang, C., Li, L., and Jebara, T. (2018). Subgoal discovery

for hierarchical dialogue policy learning. In Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing (EMNLP-2018), pp. 2298–2309.

Thomaz, A. L., Hoffman, G., and Breazeal, C. (2005). Real-time interactive reinforce-

ment learning for robots. In Workshop on human comprehensible machine learning,

AAAI.

Thomaz, A. L., Hoffman, G., and Breazeal, C. (2006). Reinforcement Learning with

Human Teachers: Understanding How People Want to Teach Robots. In ROMAN

2006–The 15th IEEE International Symposium on Robot and Human Interactive

Communication, pp. 352–357.

Thompson, C. (2006). Google’s China Problem. The Power of Information. School of

Journalism, Stony Brook University.

Tractica, A market intelligence firm. (2016). The Virtual Digital Assistant Market Will

Reach $15.8 Billion Worldwide by 2021. https://www.tractica.com/newsroom/

169

press-releases/the-virtual-digital-assistant-market-will-reach-15-8-billion-

worldwide-by-2021 [Accessed January 12, 2019]

Tür, G., Hakkani-Tür, D., and Schapire, R. E. (2005). Combining active and semi-

supervised learning for spoken language understanding. Speech Communication,

45 (2):171–186.

Tür, G., et al. (2010). The CALO meeting assistant system. in IEEE Transactions on

Audio, Speech, and Language Processing, 18 (6), 1601–1611.

van Hasselt, H., Guez, A., and Silver, D. (2016). Deep Reinforcement Learning with

Double Q-Learning. In Proceedings of the 30th AAAI Conference on Artificial

Intelligence (AAAI-16), AAAI Press.

van Hasselt, H. P., Hessel, M., and Aslanides, J. (2019). When to use parametric

models in reinforcement learning? In Proceedings of the 33rd Conference on Neural

Information Processing Systems (NIPS 2019), pp. 14322–14333.

van Seijen, H., Nekoei, H., Racah, E., and Chandar, S. (2020). The LoCA Regret: A

Consistent Metric to Evaluate Model-Based Behavior in Reinforcement Learning.

In Proceedings of the 34th Conference on Neural Information Processing Systems

(NIPS 2020).

Veeriah, V., Pilarski, P. M., and Sutton, R. S. (2016). Face valuing: Training user

interfaces with facial expressions and reinforcement learning. In Workshop on In-

teractive Machine Learning, IJCAI.

Wahlström, N., Schön, T. B., and Deisenroth, M. P. (2015). From pixels to torques:

Policy learning with deep dynamical models. Deep Learning Workshop at the 32nd

International Conference on Machine Learning, ICML.

Walker, D. E., and Grosz, B. J. (1978). Understanding spoken language. Elsevier

170

Science Inc.

Walker, R. C. (1998). Text processor. US Patent 5,802,533. Google Patents.

Walker, M. A., Stent, A., Mairesse, F., and Prasad, R. (2007). Individual and domain

adaptation in sentence planning for dialogue. Journal of Artificial Intelligence

Research 30 :413–456.

Wan, Y., Zaheer, M., White, A., White, M., and Sutton, R. S. (2019). Planning with

expectation models. In Proceedings of the 28th International Joint Conference on

Artificial Intelligence (IJCAI-19), pp.3649–3655.

Wang, Y., Si, P., Lei, Z., Xun, G., and Yang, Y. (2019). HSCJN: A Holistic Semantic

Constraint Joint Network for Diverse Response Generation. In 3rd Workshop on

Conversational AI, NIPS 2019.

Waters, R. C. (1986). KBEmacs: Where’s the AI?. AI Magazine, 7 (1), 47–47.

Watkins, C. (1989).Learning from delayed rewards. Ph.D. thesis, King’s College, Cam-

bridge, England.

Watkins, C. J. C. H., Dayan, P. (1992). Q-learning. Machine Learning, 8 (3-4):279–

292.

Watter, M., Springenberg, J., Boedecker, J., and Riedmiller, M. (2015). Embed to con-

trol: A locally linear latent dynamics model for control from raw images. In Pro-

ceedings of the 29th Conference on Neural Information Processing Systems (NIPS

2015), pp. 2746–2754. Cambridge,USA: MIT Press.

Weisz, G., Budzianowski, P., Su, P.-H., and Gašić, M. (2018). Sample efficient deep

reinforcement learning for dialogue systems with large action spaces. IEEE/ACM

Transactions on Audio, Speech, and Language Processing 26, pp. 2083–2097.

171

Wen, T.-H., Vandyke, D., Mrkšic, N., Gašić, M., Rojas Barahona, L. M., Su, P.-H.,

et al. (2017). A network-based end-to-end trainable task-oriented dialogue system.

In Proceedings of the 15th Conference of the European Chapter of the Association

for Computational Linguistics: Volume 1, Long Papers, pp. 437–449. Association

for Computational Linguistics.

Wiering, M., Salustowicz, R., and Schmidhuber, J. (2001). Model-based reinforcement

learning for evolving soccer strategies. In Computational intelligence in games,

pp. 99–132. Springer.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connection-

ist reinforcement learning. Machine Learning, 8 (3-4):229–256.

Williams, J. D., Asadi, K., and Zweig, G. (2017). Hybrid code networks: practical

and efficient end-to-end dialog control with supervised and reinforcement learning.

In Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics. ACL.

Winograd, T. (1971). Procedures as a representation for data in a computer program

for understanding natural language. Technical Report, MIT.

Witten, I. H. (1977). An adaptive optimal controller for discrete-time Markov envi-

ronments. Information and Control, 34 (4):286–295.

White A. (2015). Developing a predictive approach to knowledge. Ph.D. thesis, Uni-

versity of Alberta.

Woodrow, H. (1946). The ability to learn. Psychological Review 53, 147–158.

Woods, W. (1984). Natural language communication with machines: An ongoing goal.

Artificial intelligence applications for business, pp. 195–209.

172

Wu, Y., Li, X., Liu, J., Gao, J., and Yang, Y. (2019). Switch-based active deep

Dyna-Q: Efficient adaptive planning for task-completion dialogue policy learning.

In Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI-19),

pp. 7289–7296.

Xu, C., Wu, W., and Wu, Y. (2018). Towards explainable and controllable open

domain dialogue generation with dialogue acts. ArXiv:1807.07255.

Yao, H., Bhatnagar, S., and Diao, D. (2009). Multi-step linear Dyna-style planning.

In Proceedings of the 23rd Conference on Neural Information Processing Systems

(NIPS 2009), pp. 2187–2195.

Yarats, D. and Lewis, M. (2017). Hierarchical Text Generation and Planning for

Strategic Dialogue. In Proceedings of the 34th international conference on Machine

learning (ICML-17). Stockholm, Sweden: PMRL 80.

Yu, L., Zhang, W., Wang, J., and Yu, Y. (2017). Seqgan: Sequence generative adver-

sarial nets with policy gradient. In Proceedings of the 31st Conference on Neural

Information Processing Systems (NIPS 2017).

Zhao, T., and Eskenazi, M. (2016). Towards end-to-end learning for dialog state track-

ing and management using deep reinforcement learning. In Proceedings of the SIG-

DIAL 2016 Conference, p. 1–10. Los Angeles: ACL.

Zhao, Y., Wang, Z., Yin, K., Zhang, R., Huang, Z., and Wang, P. (2020). Dy-

namic Reward-Based Dueling Deep Dyna-Q: Robust Policy Learning in Noisy En-

vironments. In Proceedings of the 34th AAAI Conference on Artificial Intelligence

(AAAI-20), pp. 9676–9684.

Zhang, J., Zhao, T., and Yu, Z. (2018). Multimodal hierarchical reinforcement learn-

ing policy for task-oriented visual dialog. Proceedings of the 19th Annual SIGdial

173

Meeting on Discourse and Dialogue.

Zhang, Z., Takanobu, R., Zhu, Q., Huang, M., and Zhu, X. (2020). Recent advances

and challenges in task-oriented dialog systems. Science China Technological Sci-

ences, pp. 1–17.

Zhou, L., Small, K., Rokhlenko, O., and Elkan, C. (2017). End-to-end offline goal-

oriented dialog policy learning via policy gradient. In 1st Workshop on Conversa-

tional AI, NIPS 2017.

Zhou, L., Gao, J., Li, D., and Shum, H. Y. (2020). The design and implementation of

XiaoIce, an Empathetic Social Chatbot. Computational Linguistics, 46 (1):53–93.

Zhou, M., Arnold, J., and Yu, Z. (2019). Building task-oriented visual dialog systems

through alternative optimization between dialog policy and language generation.

In Proceedings of the 2019 Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on Natural Language Pro-

cessing (EMNLP-IJCNLP).

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., and Fidler,

S. (2015). Aligning Books and Movies: Towards Story-Like Visual Explanations by

Watching Movies and Reading Books. In 2015 IEEE International Conference on

Computer Vision (ICCV), pp. 19–27.

174

175

Appendix A

Model Update

Here, we describe a general update for an expectation model. This update is applicable

for our settings of function approximation and linear value functions.

Recall that s ∈ Rd is a feature vector of an agent state. The model consists of

a forward transition matrix F ∈ Rd × Rd and an expected reward vector η ∈ Rd

constructed such that ŝ(s, a,η)
.
= Fs and r̂(s, a,η)

.
= η>s can be used as estimates

of the feature vector and reward that follow the state st. We omit the time step t to

simplify a notation in the update and write s. Thus, at a planning step, the outputs of

the model are a next feature vector ŝ(s, a,η)
.
= Fs and next reward r̂(s, a,η)

.
= η>s.

Here, we use v̂ as an arbitrary linear value function v̂
.
= w>s, which can be a state-

value function v̂(s,w) or an action-value function q̂(s, a,w) parameterized by learnable

weights w ∈ Rd.

During the model update we update a matrix F and a reward vector η.

175

A.0.1 Matrix Update

To update the matrix F , we want to minimize mean square error (MSE) between the

next state feature vector ŝ that is an output of the model and the next feature vector

s′ the agent will receive. The MSE is computed as L2 norm between these two vectors:

MSE
.
= ||ŝ(s, a,η)− (s′)||2 = ||Fs− (s′)||2 = (Fs)>Fs− 2(s′)>Fs + (s′)>(s′)

We use a classic stochastic gradient descent (SGD) method to adjust the matrix. Thus,

we want to take a gradient of MSE with respect to F :

∇(MSE)

∇F
= ∇

[
(Fs)>Fs− 2(s′)>Fs + (s′)>s

]
= ∇

[
(Fs)>Fs− 2(s′)>Fs

]
(A.1)

The gradient of a scalar with respect to a matrix tells us how to change the component

of the matrix to get closer to that value. Consider now a partial derivative ∂(Fs)>Fs
∂F .

We ask how does this change if we change the pq-th component of the matrix where p

are rows and q are columns of F . We know that the 2-norm of the vector is the sum

of its ith components:

∂(Fs)>Fs

∂Fpq
=

∂

∂Fpq

[∑
i

(
Fs
)2

i

]
.

Now we can move the gradient inside of the sum and take the derivative:

∂

∂Fpq

[∑
i

(
Fs
)2

i

]
=
∑
i

∂

∂Fpq
(
Fs
)2

i
=
∑
i

2
(
Fs
)
i

∂

∂Fpq
(
Fs
)
i

(A.2)

176

177

Consider now the last term in (A.2):

∂

∂Fpq
(
Fs
)
i

=
∂
(
Fs
)
i

∂Fpq

=
∂

∂Fpq

∑
j

Fijsj =

0, if i 6= p, the Fpq does not show up in the sum

sq, if i = p

We know that sq = s>, thus, based on (A.2) and we can write

∇(Fs)>Fs

∇F
= 2(Fs)s>.

Consider now a second partial derivative ∂(−2(s′)>Fs)
∂F , the shape of which is a matrix.

We again ask how does this change if we change the pq-th component of the matrix

where p are rows and q are columns of F . By matrix multiplication formula

∂(−2(s′)>Fs)

∂Fpq
=

∂

∂Fpq

[
− 2

∑
ij

Fij(s′)isj
]
.

Then the derivative of this will only be non-zero when the index ij = pq, and for all

other terms it will disappear:

∂

∂Fpq

[
− 2

∑
ij

Fij(s′)isj
]

= −2(s′)psq.

Now we can define a matrix which is a rank 1 matrix:

∇(−2s>Fs)

∇F
= −2

(s′)1s1 ... (s′)1sd

...

(s′)ds1 ... (s′)dsd

 = −2(s′)s>.

177

Now we write all the terms for (A.1):

∇
[
(Fs)>Fs− 2s>Fs

]
= 2(Fs)s> − 2(s′)s> = 2

[
Fs− (s′)

]
s>.

Then the model update with a step size α is

Ft+1
.
= Ft − α

[
st+1 −Fst

]
s>t

= Ft + α

[
Fst − st+1

]
s>t . (A.3)

A.0.2 Reward Vector Update

To update a reward vector η with a step size α

ηt+1
.
= ηt − α[r̂(st, a,ηt)− r]∇r̂(st, a,ηt)

= ηt − α[r̂(st, a,ηt)− r]∇η>t st

= ηt + α[r − η>t st]st. (A.4)

178

179

Glossary

A3C Asynchronous Advantage Actor-Critic.

AC Actor-Critic.

Adjunct π Adjunct Policy.

Adjunct Q Adjunct Action-value Function.

DQN Deep Q-networks.

DTP Decide-Time Planning.

ER Experience Replay.

GRU Gated Recurrent Units.

MBPO Model-Based Policy Optimization.

MDP Markov Decision Process.

MSE Mean Squared Error.

NN Neural Networks.

179

POMDP Partially Observable Markov Decision Process.

RL Reinforcement Learning.

RNN Recurrent Neural Network.

SGD Stochastic Gradient Descent.

SPPO Soft-Planner Policy Optimization.

SVM Support Vector Machine.

TD Temporal Difference.

VDE Voice Document Editing.

180

181

Index

SPPO-lite, 74

A3C, 78

AC, 66

action-value functions, 10

Actor-critic, 65

Actor-Critic , 66

actor–critic methods, 65

agent state, 13

AlphaGo, 52

Amazon Alexa, 28

Apple Siri, 28

approximate solution methods, 15

AVI, 93

backup operations, 92

backup state, 92

belief state, 14

chatbots, 33

control problem, 11, 18

corrupted, 54

deep learning, 47, 63

deep reinforcement learning, 63

deletion task, 54, 62

dialogue rollouts, 51

discount rate, 9, 68

discounted return, 9

DQN, 66

entertainment systems, 33

environment state, 8, 13

expected return, 10

Facebook Portal, 28

feature-vector, 15

function approximation, 15

goal, 30

181

Google Personal Assistant, 28

GPT-2, 34

GRU, 52

higher-level goals, 30

history, 12

hypothetical scenarios, 49

Kullback-Leibler divergence, 70

learning, 46

Markov Decision Process, 8

Markov property, 9

mean squared error, 69

Microsoft Cortana, 28

model-based, 11

model-based reinforcement learning, 19

model-free, 11, 62

models, 49

MSE, 69

observations, 12

one-step lookahead, 68

online learning, 45

optimal policy, 10

parameterized policy, 65

Partially Observable MDP, 12

planning, 19, 49

policy, 10

policy evaluation, 11

policy gradient, 65

policy-based, 65

prediction problem, 11

purpose, 30

purposive intelligent assistant, 30, 33

recurrent neural network, 52

REINFORCE, 65

reinforcement learning, 7

replay buffer, 21, 51, 66

reward, 8

sample efficiency, 61, 63

sequence-to-sequence, 33, 63

SGD, 69

softmax, 69

state-value functions, 10

supervised learning, 34

SVM, 18

tabular methods, 10

task-oriented systems, 33

text-based instruction systems, 33

trajectory, 9

182

183

transition dynamics, 8

unsupervised learning, 44

value-based, 65

voice document editing, 36

voice personal assistants, 28

world model, 18

183

	Abstract
	Dedication
	Acknowledgements
	Contributions
	Table of Contents
	List of Figures
	Notation Summary
	Introduction
	Overall Structure

	Background
	Reinforcement Learning
	Markov Decision Process
	Tabular Formulation

	Partial Observability
	Agent State

	Function Approximation
	The Agent's Components
	Function Approximators

	[]Model-free method: Q-learning
	Model-based Reinforcement Learning
	[]Experience Replay vs. Learned Models
	[]Type of Models
	[]Episodic vs. Continuing Setting
	[]Linear Value Functions

	The Challenge of Conversational AI
	Intelligent Assistants
	Conversational and Purposive Assistants
	The Challenge of Conversation
	Voice Document-Editing Domain
	Advantages of Voice Document-Editing Domain
	Current State of Voice Document-Editing Systems

	Proposed Solution Space
	Advantages of Reinforcement Learning
	Prior Work Applying RL to Conversational AI
	Model-Based Reinforcement Learning Assistants
	MBRL Open Research Areas

	Realizing Voice Document-Editing Domain
	Voice Document-Editing Deletion Task
	Simulation and Dataset

	Summary and Implications

	Soft-Planner Policy Optimization
	Related Work
	Background
	Soft-Planner Policy Optimization
	Experiments
	Word Embeddings
	State Update Architecture
	Model Architecture
	Baselines Architecture
	Initialization and Hyperparameters

	Results
	Sample Efficiency
	Long-term Performance
	Model-free ouralgo-lite Agent

	Discussion
	Conclusions

	Planning with Expectation Models for Control
	Planning with Function Approximation
	Background
	Value Iteration
	Planning and Backup Distribution

	Equivalence of Planning with Expectation and Distribution Models
	Incompatibility of Expectation Models and Action-Value Functions
	A Counterexample Illustration
	A Stochastic Corridor Illustration
	[]Discussion and Conclusion

	Action Selection Strategies
	Definitions
	Strategy 1: algo1
	Strategy 2: algo2
	Strategy 3: algo3

	Non-stationarity Setting & Impact
	Experiments
	Results

	Action Selection Strategies Illustration
	Experiments
	Results

	Discussion
	Conclusion and Future Work

	Application for VDE and Beyond
	Action Selection Strategies Applied to VDE
	Experiments
	Results
	Conclusions

	Some Remaining Questions

	Impact and Summary
	Future Work

	References
	Appendix
	Model Update
	Matrix Update
	Reward Vector Update

	Glossary
	Index

