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Abstract

Recent engineering considerations have prompted an
improvement to the least mean squares (LMS)
learning rule for training one-layer adaptive
networks; incorporating a dynamically modifiable
learning rate for each associative weight accellerates
overall learning and provides a mechanism for
adjusting the salience of individual cues (Sutton,
1992a,b). Prior research has established that the
standard LMS rule can characterize aspects of animal
learning (Rescorla & Wagner, 1972) and human
category learning (Gluck & Bower, 1988a,b). We
illustrate here how this enhanced LMS rule is
analogous to adding a cue-salience or attentional
component to the psychological model, giving the
network model a means for discriminating between
relevant and irrelevant cues. We then demonstrate
the effectiveness of this enhanced LMS rule for
modeling human performance in two non-stationary
learning tasks for which the standard LMS network
model fails to adequately account for the data
(Hurwitz, 1990; Gluck, Glauthier, & Sutton, in
preparation).

Introduction

In earlier papers, we have explored a simple adaptive
network as a model of human learning (Gluck &
Bower, 1988a,b; Gluck, Bower, & Hee, 1989; Gluck,
1991). This network model is based on Rescorla &
Wagner's (1972) description of classical conditioning;
the learning rule is the same as the least mean squares
(LMS) learning rule for training one-layer networks
(proposed by Widrow & Hoff, 1960), where the goal
of learning is to minimize the discrepancy between
the expected and the actual outcome.
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There are, however, many different engineering
algorithms for minimizing classification error: the
LMS rule is only the simplest of them. Recent
engineering considerations have prompted an
improvement to the least mean squares (LMS)
learning rule for training one-layer adaptive
networks; incorporating a dynamically modifiable
learning rate for each associative weight accellerates
overall learning and provides a mechanism for
adjusting the salience of individual cues (Sutton,
1992a,b). From a psychological perspective, this
enhanced LMS rule is analogous to adding a cue-
salience or attentional component to the
psychological model, giving the network model a
means for discriminating between relevant and
irrelevant cues. Thus, it is similar to psychological
ideas of learning cue-specific saliences,
associabilities, and attentional parameters (Pearce &
Hall, 1980; Mackintosh, 1975; Frey & Sears, 1978).
We call the class of learning methods that
dynamically adjust cue-specific learning rates
dynamic-learning-rate (DLR) methods.

Dynamic-Learning-Rate Methods

Dynamic-learning-rate (DLR) methods are meta-
learning algorithms for adapting step-size parameters
(i.e. learning rates) during a base-level learning
process, which in this paper is the Rescorla-Wagner
(1972) or LMS rule (Widrow & Hoff, 1960). The
step-size parameters are incrementally adjusted by a
gradient descent process to optimize convergence and
tracking performance. Such methods have been of
interest within the neural network community as a
way of speeding the relatively slow convergence of
learning methods such as back-propagation (e.g.,
Jacobs, 1988; Silva & Almeida, 1990; Lee &
Lippman, 1990; Sutton, 1986; Barto & Sutton, 1981;
Tollenaere, 1990) and have also been proposed as
relevant to a key problem in machine learning:
finding good individualized learning rates to speed
and direct learning (Sutton, 1992a). Recently, Sutton
(1992b) has argued that these dynamic-learning-rate
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Figure 1. A. Expected squared error surface in the weight space of a network with two weights of equal diagnosticity
(relevance). The two axes shown represent the possible values of weights 1 and 2, respectively. The third axis (shown
as a contour plot) represents the expected squared error, and the global minimum of the surface specifies the ideal
weight solution. The LMS network learns by changing the weights in the direction of steepest descent. B. A surface
with different slopes in different places. In the standard model, the largest changes are made to those weights where the
surface drops most sharply, as in part Y. A better strategy would be to take larger steps in the shallow, gently curving
part X to traverse it efficiently, and smaller steps in part Y to prevent instability and oscillation in the network. C. A
ravine: a surface with different slopes in different directions. Here, the network should take larger steps along the
horizontal axis where the slope is gentle (along the ravine) and smaller steps along the vertical axis where it is steep

(across the ravine) (After Sutton, 1986).

methods may improve classical engineering methods
for estimation such as least-squares methods and the
Kalman filter. The idea behind these DLR methods
is a generalization of Kesten's (1958) method for
accellerating stochastic approximation. Consider one
of the base-level modifiable parameters--one of the
weights in a connectionist network, for example--and
how it changes over time. If the weight changes are
all in the same direction--e.g., all increases--this
signifies that the step-size parameter is too small.
The weight could reach its asymptotic value faster if
it took larger steps. On the other hand, if the weight
changes are in opposite directions--¢.g., first up and
then down--this signifies that the step-size parameter
is too large. For example, opposite-signed weight
changes will occur when the weight is overshooting
its optimal value. The basic idea behind current DLR
methods is to adjust the step size according to the
correlation between successive weight changes, with
the goal of obtaining zero correlation. Jacobs (1988)
proposed correlating the current weight change with a
recency-weighted average of previous weight
changes. This update rule was written A(t-1)A(t) and
was called the Delta-Bar-Delta algorithm. The
extension of this method to the incremental case is
called the Incremental Delta-Bar-Delta (IDBD)
method (Sutton, 1992a). This is the method we use
to form the extended psychological model explored in
this paper.

DLR methods have advantages for both static
problems, in which the correct solution does not
change, and for non-static problems, in which the
correct solution does change over time and must
continually be tracked.

In static problems, DLR methods help overcome
well-known limitations of steepest descent methods
such as LMS and backpropagation. In the weight
space of a network (i.e. the space formed by
assigning each connection weight its own dimension),
the expected squared error forms a surface. The
minimum of this surface is the point at which the
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error is smallest; this identifies the ideal asymptotic
weights for a particular learning task. In the standard
model, a step is taken in weight space at each trial in
the direction in which performance is expected to
improve most rapidly (Figure 1A). Steepest descent
methods are well known to perform poorly for
surfaces with different slopes in different places
(Figure 1B) and for those containing ravines--places
which curve more sharply in some directions than
others (Figure 1C). In both of these cases, following
the direction of steepest descent does not take you
directly to the minimum. Jacobs (1988) and others
have shown that DLR methods can significantly
increase the speed of convergence on static problems.

Another advantage of DLR methods is on non-
static "tracking tasks"”, in which the correct solution is
not fixed, but continues to change. For example,
suppose a subject is faced with a sequence of
categorization tasks. Even if the correct solution
differs from task to task, the same subset of cues may
always be relevant. If cue-relevance can be learned
on the early tasks, learning performance on later tasks
can be greatly improved. Advantages of this sort
have been shown in an engineering context for DLR
methods (Sutton, 1992a,b).

The DLR Model

In this section we present the specifics of the standard
LMS model and of its extension with a DLR method.
We will refer to the extended model as the DLR
network model. In the standard LMS model, the
network operates in a training environment in which
feedback (the US or the correct classification) is
given after each stimulus pattern. At each time step,
or trial, ¢, the learner receives a set of inputs, xj (), x5

®, ... . % (v, computes its output, y (¢), and
compares this to the desired output, A (f). In the



standard model, the w; 's change on each trial

according to:
w; (1) =w; () + ad(n) x; (0,

n
where (1) =A (1) -y (1), and y (f) = ZW,- (0 x; (1)
i=1
The learning rate, « , is a positive constant (on the
order of .01 in most simulations) that determines how
much all the weights change when the output differs
from the training signal.
With the DLR algorithm, however, there is a
different learning rate, «; , for each input, x; , and

these change according to a meta-learning process.
The base-level learning rule is:

wi (1) =w; () + o (1+1) 6 () x; (1)
(The ¢; are indexed by ¢ + 1 rather than ¢ to indicate

that their update, by a process descibed below, occurs
before the w; update.) To insure that the learning

rates remain positive, they are expressed and stored in
the form: o; (1) = e Bi ® The 1DBD algorithm we
used updates the B; by:

0 &) x; (1) hj (1)

Vo ()

where 0 is a positive constant, the meta-learning
rate, and h is an additional per-input memory variable
initialized at zero and updated by:

h D =h @) [1- g ae 0 (t)]+
+ 0 (1) &) x; (1)

Bit+D)=p; (¢)+

+
where [x] isx ,ifx >0, else 0. The first term in
the above equation is a decay term; the product ¢;

(t+1) xiz () is normally zero or a positive fraction and

this causes a decay of #; towards zero. The second
term increments h; by the previous error. The
memory, h;, is thus a decaying trace of the
cumulative sum of recent errors (Sutton, 1992).

Results

To assess the capabilities of the extended DLR
model, we look at model fits to data from both an
XOR classification task (Hurwitz, 1990) and a new
reversal experiment (Gluck, Glauthier, & Sutton, in
preparation). Both of these experiments involved
relevant and irrelevant dimensions. The Gluck et al
study is a non-stationary task in the sense that the
correct response to the stimuli changes over time.
Non-stationary tasks are especially appropriate here
because they test the DLR model's ability to learn
biases during early learning and then use these biases
to improve later learning.

XOR Experiment (Hurwitz, 1990)

Hurwitz (1990) describes an experiment in which
subjects learned to classify words from a new
language into one of two categories. The design
involved 16 patterns, each defined on 4 binary
dimensions. The assignment of patterns to categories
A and B was determined by two relevant dimensions,
related to the categories by the XOR rule: the
patterns 11e» and 22+ were assigned to category A,
and 12+ and 21+ to category B; the irrelevant
dimensions are indicated by bullets (+). The trials
were broken into four divisions of 80 trials each with
only a subset of the patterns presented during each
division (Figure 2). Each subset was designed so that
both the first and second pairs of dimensions could
produce XOR relationships to the categories.
However, combinations of the subsets preserved this
relationship only for the relevant pair of dimensions.
Subjects who used the XOR relationship defined on
the irrelevant pair of dimensions in making their
categorization responses would therefore show
reduced performance when a new subset was
introduced. Generalization to new patterns in a new
subset could only occur if the relevant features had
been discovered during training on previous subsets.

A. Set Patterns  XOR Classification B. Block Pattern Set
A B 00— ——00 1 2 3 4
18890 88| A A 110 10 0o o
([ 1 ] [ J
2 ggoo gggo A A 215 5 10 0
33008 deee| A B 3l 0 0o 5 15
43300 3030 A B 4|5 5 5 5

Figure 2. Hurwitz' XOR experimental design. A. Patterns were divided into 4 subsets of 4 patterns each so that within
each subset both the first and second pairs of dimensions could produce XOR relationships to the categories.
Combinations of subsets preserved this relationship only for the first pair of dimensions. B. Subsets were presented

with varying frequencies in each block of 80 trials.
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Figure 3. Fits to performance on Hurwitz’ XOR experim

weights at the end of each division. Each of the 32

component and configural) indicated at the left. The mi
and the right represents +1. C. Standard Configural-Cue

The results of Hurwitz's experiment suggest that
many subjects were able to distinguish the relevant
dimensions from the irrelevant ones. Subjects’
acquisition curve was relatively smooth, showing a
downward trend only at the beginning of the second
trial division. In the third division, their curve
remained smooth, despite the fact that the exemplar
distribution was changing again. By the fourth
division, they were at virtually perfect performance.

The model fits from Hurwitz's simulations show
that the LMS configural-cue network (Gluck &
Bower, 1988b; Gluck, Bower, & Hee, 1989) and
exemplar models are unable to account for the
subjects’ ability to generalize to the new patterns
introduced at the beginning of the third trial division.
As shown in Figure 3A, performance of the standard
configural-cue LMS model drops significantly at this
point, whereas the subjects’ performance continued to
improve.

Hurwitz argued that the configural-cue LMS
model has no mechanism to allow it to differentiate
relevant from irrelevant cues. Thus, it does not
predict the solvers' generalization to new patterns in
the third division of trials.

The extended model presented here, however,
does have the ability to differentiate between relevant

percent correct
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ent. A and B show average percent correct (y axis) throughout
training in blocks of 10 trials each (x axis). The vertical lines mark the divisions where a new subset of patterns was
introduced. A Standard Configural-Cue LMS Network (B=.03).
rows represents the connection weight for a feature node (both

ddle of a row represents a weight of 0, the left represents -1,

B. DLR Network (6=.01). C and D show network

LMS Network Model which reaches a stable solution by the
end of Division 3. D. DLR Network Model which stabilizes by the end of Division 2.
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and irrelevant cues. As with the standard network
model, the DLR network does not use hidden layers
or backpropagation. The individual, dynamic
learning rates on each connection allow the network
to differentiate relevant from irrelevant features. As
shown in Figure 3B, performance of the configural-
cue DLR model continues to improve at the
beginning of the third trial division, despite the fact
that the exemplar distribution changes again. This is
consistent with the empirical data and suggests how
the model successfully distinguishes relevant from
irrelevant dimensions.

To illuminate the difference between the standard
configural-cue model and the DLR model, we
compared their solutions at the end of each trial
division. The major difference between the models'
solutions was apparent at the end of Division 2.
Whereas the standard model still attributed
significant weight to the local XOR relationships
defined in pattern subsets 2 and 3 (Figure 3C), the
DLR model reduced weights on all irrelevant
dimensions to virtually zero (Figure 3D). Only the
XOR solution that remained consistent across subsets
1 and 2 was reflected in the weights. For the
remainder of the trials, this solution remained
essentially unchanged.



A New Reversal Experiment

The DLR model is designed to acquire an appropriate
bias from previous learning experience. An ideal
testing ground is a series of problems requiring non-
identical solutions but similar biases. Reversal
experiments are a good example of this kind of
problem. In such experiments, subjects learn to
classify stimuli into one of two mutually exclusive
categories. At some point in learning, typically after
some criterion has been reached, the contingencies
are reversed. For a deterministic classification task,
this means that all stimulus exemplars that had
previously belonged to category A now belong to
category B, and vice versa. For a probabilistic task,
the probability that an exemplar belongs to category
A and the probability that it belongs to category B are
interchanged. When an experiment involves frequent
reversals and irrelevant cues, a bias for the relevant
cue(s) must be generated for optimal performance. A
subject who has identified the relevant cue(s) will be
able to recover from a reversal much more quickly
than one who has not.

Our experiment involved four binary cues, one of
which was the relevant dimension. The binary cues
for the relevant dimension determined the category
assignment of exemplars with a probability of 0.9.
The cues for each of the three irrelevant dimensions
were assigned to each category equally often. The
contingencies were reversed 11 times over the course
of the experiment; the cue that had been diagnostic
of category A became diagnostic of category B, and
vice versa. The reversals occurred more frequently as
the experiment progressed. Of the 420 trials
presented, reversals occurred after trials 80, 140, 200,
240, 280, 300, 320, 340, 360, 380, and 400.

A,

percent correct

104 ™= = Network (Beta = .09)
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Recovery from the later reversals was possible only if
the relevant dimension was discovered earlier in
training. Otherwise, performance would drop after
each reversal and never get much above chance.

Predictions. Prior to examining any human
behavioral data, we can compare the engineering
value of the standard LMS network model with that
of the DLR network model for this particular task.
For each model, we can ask: what is the best it can
do? Figure 4A shows the performance of each model
with the best value of its free parameter.

The standard model predicts that with frequent
contingency reversals, ideal weight values will not be
reached. Regardless of the size of the learning rate,
weights on all connections will begin to change to
compensate for the sudden increase in error. Thus,
the weights on the irrelevant dimensions will begin to
acquire non-zero values in response to local
characteristics of the trial ordering. These non-zero
values take the model farther from the solution, and
keep the performance close to chance until they are
again brought down to zero. This type of solution
can be characterized as "local” or "unbiased". No
matter how much previous learning has suggested
that the weights on the irrelevant dimensions be kept
at zero, weights for all present features still change.

The DLR model predicts that the ideal weights for
a block of trials between reversals will be approached
more and more rapidly as the experiment progresses.
With each reversal, the bias toward the relevant
dimension will become stronger. In other words, the
learning rates on the connections from the node(s) for
the relevant dimension will become larger, while all
other learning rates will drop toward zero. When a
reversal occurs, the model is "biased" toward
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Figure 4. A. Optimal parameters for the standard and DLR network models. The graph shows average percent correct (y axis)
throughout training in blocks of 10 trials each (x axis). The vertical lines mark the divisions where a reversal occurred. B. Fits
to performance on Reversal Experiment. Subjects who met criteria were able to recover from reversals late in training. Whereas
the standard model exhibited only chance performance, the DLR network was able to form a selective bias to the relevant

dimension and recover from the reversals.
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changing only the weights on the relevant dimension.
Weights on the irrelevant dimensions stay close to
zero, allowing the model to improve its performance
more quickly and efficiently.

Results. - Subjects showed a gradual increase in
performance over the first block of 80 trials and a
sharp drop in performance after the first reversal. It
took subjects an average of 35 trials to recover from
this first reversal. However, the drop in performance
on subsequent reversals was considerably less, even
though the reversals occurred more and more
frequently. Recovery rates were likewise improved.

The data we obtained suggest that many subjects
were able to identify the relevant dimension and use
this bias to help them recover performance after later
reversals. The last 7 reversals, occuring every 20
trials, were of particular interest because of their
frequency. Whereas the standard LMS network is
unable to account for the solvers' performance on
these later reversals, the DLR model fits the data well
(Figure 4B).

Conclusion

The new psychological model presented here
emerges from engineering considerations; it comes
from a search for a better way to minimize the
expected error (Sutton, 1992a,b). Giving each input
its own dynamic learning rate is analogous to adding
a salience or attentional component to the learning
mechanism. Leaming is significantly accellerated on
static learning tasks. On series of related tasks with
common relevant cues and on selected non-stationary
tasks, the extended model shows superior learning
capacity and provides a better account of human
learning behavior. We have shown that for two such
tasks, in which the standard LMS configural-cue
model (Gluck & Bower, 1988b) fails to account for
the behavioral data, the extended DLR model
succeeds far better.
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