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1 Introduction 

One of the projects in the Machine Learning Department a t  GTE 
Laboratories involves studying quality control of a fluorescent bulb 
manufacturing line. All manufacturing processes are subject to  
incompletely understood changes due t o  variations in raw materials, 
environmental factors such as weather, wearing and aging of the 
machinery, and changes in operators. This can result in iiiarked 
variations in yield, quality, and rejection rates. These problems 
can occur even in the most mature and established manufacturing 
processes. 

Our  goal is Computer Integrated Manufacturing (CIA4), the au- 
tonomous computer-based monitoring of plant behavior, determ- 
uatioii of causal influences, and, ultimately, adaptive control of the 
plant process. The first stage is process monitoring with respect 
to  yield and other performance measurements. By using past ex- 
perience to  find correlations between approximately one hundred 
sensory measurements, we will determine which process variables 
most affect quality. 

Two approaclies are being compared. One employs standard 
statistical procedures to  find correlations between sensor me,isure- 
inents and quality. The sensor data  from the production line are 
collected over a period of time and correlatious are made olf-line at 
infrequent intervals using analyses such as linear regression. The 
second approach is t o  estimate the correlations incrementally, as 
the data  are collected, on-line aiid i n  real-time. The estimates are 
updated incrementally using connectionist learning procedun s. 

2 Connectionist Learning Methods 

The exploration and development of incremental connectionist learn- 
ing methods is the focus of our work on this project. Connectionist 
models consist of “neuron-like” processing “elements (units)” that 
interact and form a network via weighted connections. The “:.tate” 
or “activity level” of each unit is determined by the input received 
from the other units through the connections aud from inputs re- 
ceived from the environment. One goal of connectionist research 
is to  discover efficient learning procedures that allow multi-layered 
networks of these units to  construct an internal representation of 
the environment (Hinton, 1987 [4]; Barto and Anderson, 1985 [ 2 ] ) .  
For example, in our application, a network of units could he used 
to  construct a representation of the manufacturing process t iat is 
conducive to  finding dependencies between sensor values and qual- 
ity measurements. For the initial experiments reported here, we 
focus on one-layer networks. reserving multi-layered networl;s for 
later study. 

Connectionist learning procedures can he viewed as im-rr~twz- 
tal methods for computing standard statistical quantities. Figure 1 
shows aone-layer iiDALI.VE netxvork [lo] (see srction 4 )  that com- 
putes essentially the same quantities as a linear regression; that is. 
independent variables (the sensor ineasurenients) are iiuniel irallv 
related to  dependent variablci (factory yield and other perforr imce 
and quality measures). In the liniit, both techniques produce es- 
actly the same numbers (\\‘idrow and Stearns. 19% 1111). The 
difference is that the adaptive network processes the data inc7tmr11- 
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Figure 1: A one-layer network of ADALINES 
used in manufacturing process iden- 
t ificat ion. 

tally, whereas linear regression is a batch process. In this paper, we 
present results comparing the performance if these t\vo methods. 
Conventional CIM approaches suffer from several problems that 
can potentially be solved by connectionist approaches. The pri- 
mary problems are computational complexity and a limited ability 
to  deal efficiently with nonlinearities. 

The processing time of the ADALIKE network increases only 
linearly with the number of independent variables (sensors‘); the 
processing required per time step is O ( n ) ,  where n is the nL inber 
of sensors. The total processing required by linear regression is, 
on the other hand, approximately 0 ( n l o g 7 )  =z O(nz.s l ) . l  As will 
he discussed below, even the most incremental implementation of 
linear regression requires at least o(n2) processing per time step. 
The learning network thus offers a savings of at least one factor 
of n. We expect n t o  eventually be about 150 in our applir-ition. 
The manufact.uring line with which we are working generztes a 
new set of independent and dependent sensor measurements every 
5 minutes. 

.hi1 additional advantage of the ADALINE network is that  it can 
process each 5 minutes worth of data  as i t  is generated. while, com 
ventional regression techniques require all the  data  t o  be collected 
for days or weeks, and then processed all at once as a batch. BJ- 
completely processing all data  as it arrives, there is no accumulating 
buildup of past data  in need of processing, a major computa.ional 
stumbling block of “batch” linear regression. For hundreds of sen- 
sors, these computational differences can have a tremendous c,fFcct: 
the network could be implemented on a much smaller comrllter. 
or it could be used with many more sensors, or more frequentlh- 
sampled sensors. 

The reduced computational complexity of the connectionist net- 
ivork approach also allows more freedom i n  the choice of the inode1 
used to predict outcomes and correlations. IVitlr conventional meth- 
ods, nonlinear relationships among nieasiirablch would require a 
prohibitive amount of additional processing or Iluman intervention 
to  select a sinall nnmher of such rdationships for consideration. 
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Connectionist networks have been shown to be able t o  learn com- 
plex nonlinear functions (Rumelhart, Hinton, Williams, 19F5 [5]; 
Sejnowski and Rosenburg, 1986 [SI) with limited computatior.al re- 
sources. We note that the efficiency of network approaches bas 
yet to be compared with that of conventional nonlinear regression 
approaches and we have not yet carried out such a comparisoii our- 
selves. Nevertheless, we are already optimistic about the potential 
performance of the incremental methods because of their compu- 
tational advantages. To a large extent, more complex relationships 
can be handled simply by adding more interaction terms, such as 
pairwise products, t o  the input vector. This increases the effective 
n for the various techniques. Since the incremental connectionist 
methods are of order n more computationally efficient, they should 
be able to  consider far more such interaction terms then the con- 
ventional methods. 

3 The Manufacturing Line 

Our fluorescent bulb manufacturing line is a cascade of dozens of 
processes and is highly nonlinear. Figure 2 shows the line being 
monitored by a learning system. Each stage shown is itself com- 
posed of multiple complex processes. 
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quality and depends on the time of day and the environmental air 
temperature, both of which are “sensed” independent variables. 

Figure 2 shows the gathering of sensed information from the 
various stages along with quality measurements taken at  the final 
stage of the process. These data are processed by the learning sys- 
tem. The system predicts bulb quality and compares this prediction 
to the quality measurement in order to improve its predictive capa- 
bility. A human observing the output of the learning process may 
use the learned correlations between sensor values and predicted 
bulb quality to  adjust controls on the process line, as in conven- 
tional process control methods. However, our experiments icvolve 
only the discovery of such correlations. Also, we are not presently 
predicting color quality (as is shown in the figure), but percentage 
of defects in the phosphor coating of the bulbs. 

Results have been obtained from the simulation of the fluo- 
rescent line using an ADALINE and also a new, faster procedure 
called the NADALINE (Sutton, 1988 [9]). We compare these meth- 
ods with conventional linear regression and show the results of this 
comparison. 

4 The Algorithms 

4.1 ADALINE 

The ADALINE (ADAptive LInear Neuron) consists of a time-indexed 
vector of real-valued parameters or weights, 

~ ( k )  = [wo(k) ,  wl(k), ’ ’ . wn(k)lT (1) 

that  multiplies an input vector, 

to  form a weighted sum: 

Y(k) = W T ( k ) X ( k )  (3) 

= w:(k ) z : (k )  (4) 
n 

i =O 

where k is the discrete time index. The zj(k) are the n sensor mea- 
surements, except that  z o ( k )  = l; the corresponding weight, WO,  

plays the role of the “threshold” or “bias” in some other connec- 
tionist models. We may have, for example, zs(k) = 150 degrees, 
the temperature of the bulb wash water at  time step k. The result- 
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ing output signal, y(k) is the ADALINE’s estimate of the correct 
or desired output. The desired output, d(k) is supplied externally 
and is used to  form an error e ( k )  = d(k) - y(k). This error is used 
to adjust the values of the weights in the following way: F to be adjusicd 

w,(k + 1) = w, (k )  - a e ( k ) z , ( k )  ( 5 )  
I 

for every 1 = 0,1,2, .  . . , n, and a a positive learning rate parameter. 
A thorough analysis of the theory of this algorithm may be found 
in (111. 

4‘2 The NADALINE 

The NADALINE, or Normalized ADALINE, is the same algorithm 
as the ADALINE with two differences. The most important differ- 
ence is that  the sampled inputs, z,, are normalized: 

Figure 2: Adaptive Networks for Process Monitoring 

While our goal is to compare these algorithms on an actual flu- 
orescent bulb line, we have constructed a simulator to  obtain the 
results presented in this paper. The stages included in the simula- 
tion are the bulb washer and dryer, the phosphor mixer, the coater, 
the four-stage dryer, and the baker. For much of the manufxtur- 
ing process. small bundles of several dozen bulbs are processed as 

(6) 
z * ( k )  - P 4 k )  

0 4 k )  
a unit, and our simulation reflects this level of detail throughout. 
Bundles of bulbs are “passed through” each stage and the quality of 

x ’ * ( k )  = 

coating is observed at  the end of the final stage. Rules in each stage 
affect coating quality of each bundle of bulbs while i t  is within that 
stage. These rules coarsely emulate the observations of the plant 
experts with whom we have consulted. Sensors are also simulated 
in every stage. The values of the variables that the sensors measure 
are determined by rules specifying their interrelations and also by 
random effects. Some variables are following random walks; some 
are tied to  the time of the day or to  other variables; most are a 
combination. For example, wash water temperature affects coating 

where p , ( k )  is the mean of all of the values of z , ( k )  up to the present 
time k, and o:(k) is their variance. Equations 4 and 5 describe the 
NADALINE with the zt(k) replaced by the normalized z ’ , ( k )  The 
serond difference is that  equation 5 does not apply for wo(k) ,  the 
weight corresponding to the input that is always 1. Instead, wo(k)  
is set to  the mean of all the values of d up to  but not including the 
kth  value. 

In experiments on other problems, these two minor change:. have 
been found to result in significant reductions in time to learn, typi- 
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cally by an order ol magnitude or more [9]. The process monitoring 
application is of the sort in which normalization would be expected 
to  help substantially, because it involves a wide variety of sensed 
variables with widely varying means and variances. The theory of 
the NADALINE is discussed further by Sutton [9]. 

4.3 Linear Regression 

Conventional linear regression is a technique for comnlltiug the 
weight vector 1%'- that minimizes the mean square error: 

l k  C(4i) - W*TX'(i))' (7) 
, = I  

In a sense this represents the optimal solution. However, that  per- 
spective is based on assumptions such as stationarity, statistical 
independence, and noise models that  rarely strictly hold in real 
applications. Thus, i t  is possible for other techniques to  perform 
better that  linear regression, as we in fact found for the NADALINE 
in the results discussed below. 

The linear regression algorithm we used was as follows. Let D 
be the k-vector of all desired responses d(k) seen up to time k. Let 
Z be the n x k matrix whose columns are all the X vectors seen up 
to  the current time k .  The minimum mean square weight vector is 
then given by: 

W' = ( Z T Z ) - ' Z T D  ( 8 )  

The complexity of this algorithm is O ( n z )  in space and O(kn2 + 
n2.81) in computation. Other implementations can reduce the com- 
putation to O ( k n z ) ,  that  is, one factor of n more complex than the 
ADALINE or NADALINE. Once regression is performed, W* is 
used to  find the predicted value, y(k), of the independent variable, 
d(k) (say, bulb coating quality), given the vector of sampled val- 
ues of the independent variables X ( k )  via y(k) = W * T X ( k )  (i.e., 
just as in the ADALINE, excepting W*).  A reference providing the 
details is Draper and Smith [3]. 

5 Experimental Results 

To compare the algorithms, we ran the simulation for eight days 
of simulated time, taking data samples every fifteen minutes. The 
first seven days of data was used as a training set, and the eighth 
day's as a testing set. All algorithms used exactly the same train- 
ing and testing set. For linear regression, the first seven days of 
data was stored and then used to compute W'. For the ADALINE 
and NADALINE, the weight vector was updated incrementally for 
the first seven days and then held constant during the eighth day. 
A comparison of the actual and predicted coating quality ovcr the 
eighth day for each of the three algorithms is shown in Figures 3, 4, 
and 5 .  The average prediction errors over the eighth day of the algo- 
rithms were linear regression, 0.244, ADALINE, ,737, and NADA- 
LINE, .259 (in percentage of coating defects per bundle of bulbs). 
We see that linear regression and the NADALINE performed well 
both in predicting short term changes and in following the gen- 
eral trend. The ADALINE could only predict the average level of 
coating defects given seven days worth of data. We hypothesize 
that i ts  inability to learn was caused by the widely different vari- 
ances in the values of the sensor readings. The learning rate for the 
NADALINE was Q = .01 and that of the ADALINE, a = .00001. 
Without normalization, a small learning rate is required in order to 
be stable. In fact, for a value of Q = . G G O i  tile ADALINE was un- 
stable. For this reason, in order for the ADALINE's performance to 
converge to  that obtained by linear regression, more training data 
would need to be presented. 

Rctual I Coating Fa>lures 
Predicted 2 Caat>ng F a i l w e s  

4 .d  

Figure 3: Linear regression: Predicted and ac- 
tual quality versus time for one day 
after a training period of one week. 

Rctual I Coating Failure. 
Predicted 2 Coating Failures 

Figure 4: ADALINE: Predicted and actual 
quality versus time for one day af- 
ter a training period of one week. 

Predicted Rctval I 2 Coating Coating Failures Failures 

Figure 5: NADALINE: Predicted and actual 
quality versus time for one day af- 
ter a training period of one week. 
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6 Conclusions 

We have shown in simulation that connectionist learning networks 
can monitor manufacturing processes to  determine causal relation- 
ships with an accuracy competitive with that of conventional sta- 
tistical techniques. Moreover, the network operates on-line, in real- 
time, and with substantial savings in  computational complexity 
as compared with conventional CILI techniques. Our comparisons 
have been between single-layer. linear networks and linear regres- 
sion. Similar comparisons could be made between multi-layer non- 
linear networks and various forms of nonlinear regression. LVhile 
one of the most attractive features of connectionist networks is their 
ability to  handle nonlinearity, our results suggest that  even in the 
simpler case they can offer significant advantages. 

7 Future Work 

JIu[ti-lnyer learning networks, such as back-propagation networks 
( Itumelhart, Hinton, and Williams, 1985), could similarly be com- 
pared with nonlinear incremental regression methods. More com- 
plex connectionist networks that  are able to learn nonlinear map- 
pings will produce more accurate correlations than linear methods. 
The ability t o  learn nonlinear mappings is necessary in modelling 
complex manufacturing process. This is an especially important 
point in light of the application that  is our focus. 

Another important area of study is that of the temporal aspects 
of causal relationships. The effect of a variable in an early stage 
of the manufacturing process may not be evident until the quality 
is checked a t  the very end of the process. This means that there 
is a temporal delay in observed cause and effect, and the length of 
this delay is probably not known. All the methods discussed here, 
both connectionist and conventional, assume that all data  samples 
are selected independently, and that all causal influences have their 
effect within a single sampling interval; the methods all ignore the 
temporal relationships between samples. However, since these re- 
lationships do  provide significant additional information about the 
causal structure of the manufacturing process, this information can 
in principle be used t o  form better estimates. Temporal-difference 
learning methods (Sutton,l988 [9]) are one simple way of extending 
the connectionist techniques discussed here t o  take advantage of the 
information contained in the temporal sequencing of observations. 
‘These methods can also be used t o  account for delays of varying 
length between cause and effect. 

Finally, we would like t o  consider the use of the correlations 
that  are drawn in the monitoring stage for closed loop control of 
the manufacturing line. In a sense this is done now by humans in 
a heuristic manner that  has evolved with the expertise of the plant 
operators. A preliminary step will be t o  supply the operators with 
the correlations we obtain from applying our techniqeus t o  process 
monitoring. They may be able t o  use this information on-line to  
ad,just controls in the manufacturing line and then report the ways 
that they found these correlations to  be useful in improving the 
quality of the line. 
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