
Learning Forever using Artificial Neural Networks

by

Shibhansh Dohare

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science
University of Alberta

© Shibhansh Dohare, 2026
This work is licensed under CC Public Domain Mark 1.0

Abstract

In this dissertation, I study the ability of artificial neural networks to learn new

things. I refer to this ability as plasticity. Plasticity is a desirable property of intelli-

gent systems in the real world. Systems that interact with the real world can become

outdated if they do not learn from the new information revealed to them by the ex-

tremely large and partially observable real world. All naturally intelligent systems

continually learn new things to keep up with the changes in the world. Many appli-

cations like predicting markets or weather, learning human preferences, controlling

factories or prosthetics, etc require AI systems that continually learn new things.

I provide direct and thorough demonstrations of loss of plasticity in deep learn-

ing systems. The demonstrations range from simple feed-forward networks to deep

residual networks and cover a wide range of algorithmic choices. While seeking an

understanding of the phenomenon, I found that loss of plasticity occurred simulta-

neously with hidden units becoming dormant and becoming similar to each other,

hampering the ability of the networks to learn new things.

Next, I describe the continual backpropagation algorithm. I designed this algo-

rithm, in collaboration with others, to maintain plasticity in artificial neural networks.

Continual backpropagation is a simple extension of the conventional backpropagation

algorithm. The conventional backpropagation has two main parts: initialization with

small random weights and gradient descent at each step. In addition to gradient

descent, continual backpropagation reinitializes a small fraction of units at each step.

Continual backpropagation indefinitely maintained plasticity in many continual su-

pervised learning problems.

ii

Finally, I study plasticity of deep reinforcement learning systems. First, I show

that plasticity loss has an effect even in stationary reinforcement learning problems.

It is unsurprising that plasticity loss affects stationary reinforcement learning because

it requires continual learning due to changing policies and bootstrapping. This effect

is visible under long-term learning. I found that some commonly used RL algorithms

do not scale with data. Their performance drops as they continue interacting with

the environment. Plasticity loss hampers the ability of these algorithms to recover

and relearn when the performance drops, resulting in agents that do not get better

with experience. Continual backpropagation allows these algorithms to recover when

performance drops, leading to agents whose performance keeps improving with ex-

perience. Second, I show that loss of plasticity is a significant problem in continual

reinforcement learning problems, and continual backpropagation maintains plasticity

in these problems.

iii

Preface

Chapters 3, 4, 6, and 7 are based on the paper:

• Dohare, S., Hernandez-Garcia, J. F., Lan, Q. Rahman, P., Mahmood, A. R.,

and Sutton, R. S. (2024). Loss of plasticity in deep continual learning. Nature

632, 768–774.

Fernando and I designed and conducted all the experiments for the demonstrations

of loss of plasticity provided in Chapter 4. In particular, I designed the Permuted

MNIST and Continual ImageNet experiments. Fernando and I jointly designed the

CIFAR-100 experiments, and we both include them in our dissertations.

I developed the continual backpropagation algorithm presented in Chapter 6 in

collaboration with Rich and Rupam. I conducted all the experiments to evaluate the

algorithm presented in Chapter 6.

I discovered the policy collapse phenomenon in PPO and its connection with loss

of plasticity presented in Chapter 7. Qingfeng and Rupam helped with conducting

the experiments in Chapter 7. I wrote the paper using extensive suggestions and

discussions with Rupam, Rich, and Fernando. The 2-state MDP in Chapter 7 is

based on this workshop paper:

• Dohare, S., Lan, Q., and Mahmood, A. R. (2023). Overcoming Policy Col-

lapse in Deep Reinforcement Learning. In Sixteenth European Workshop on

Reinforcement Learning.

iv

https://doi.org/10.1038/s41586-024-07711-7
https://openreview.net/forum?id=m9Jfdz4ymO
https://openreview.net/forum?id=m9Jfdz4ymO

To my parents,

who instilled in me the confidence to work on ambitious problems.

v

Acknowledgements

The research I conducted during my PhD continues my master’s thesis work. During

the first couple of years of my PhD, we tried to publish the initial versions of the

ideas of this thesis in various conferences. However, the paper was rejected from

four different conferences. It would not have been possible for me to keep working

on the same ideas without the support of my advisors, Richard Sutton and Rupam

Mahmood. They helped me see the value of these ideas and ignore the noisy reviews.

Eventually, we decided to submit the paper to a journal because the journal review

process was much more suitable for our work, as it was not in the mainstream of

continual learning research. After we started writing the paper, Rich spent 8 months

teaching me how to write clearly. We would meet twice a week, and Rich would give

me extensive feedback on my writing. In those 8 months, we only wrote three pages.

However, the output of those 8 months were not those three pages, but my ability

to write technical papers. At the same time, Rupam taught me how to think from

first principles and design practical algorithms. I’m very grateful to Rich and Rupam

for spending so much time on making me a scientist. After we finished writing our

journal paper, it was Marlos who encouraged us to be more ambitious and submit

our paper to Nature. My committee members, Marlos, Dale, Razvan, and Peter, gave

valuable feedback on my research and encouraged me to make it more rigorous and

precise. Jun at Huawei helped me think about my research from the perspective of

people outside the reinforcement and continual learning communities.

I am most grateful for the work of social revolutionaries in India like Baba Saheb

Dr. B. R. Ambedkar, Jotiba Phule, and Periyar E.V. Ramasamy who liberated

vi

millions of low-caste people from the shackles of the caste system in India. I belong

to a caste of untouchables called Chamar. In the Indian caste system, untouchables

like Chamars are considered impure, and their touch is believed to pollute higher caste

individuals. This untouchability led to severe social segregation and discrimination

against low caste people, where they were not even allowed to live in the city, let

alone get any education. Untouchability was widely practiced in India a couple of

generations ago and is still practiced in some parts of the country. It is due to the

work of social revolutionaries like Dr. Ambedkar, who is regarded as the father of the

Indian Constitution, that low-caste people gained basic human rights and access to

education. My parents were the first generation of my family to receive any education.

I will forever be indebted to my parents for showing me the value of education and

helping me pursue my interests. Thanks to my parents, brother, mama, mausis, and

grandparents for helping me see what I really value in life.

The last few years of my life have been some of the best of my life, and that is

mainly due to my friends. They were by my side during all the ups and downs of

the last few years. I am grateful to be close friends with Graves, Nicole, Georgia,

Fernando, Aman, and Charlotte; without their support, I might not have finished

this degree. I am lucky to have my climbing crew by my side. They are my family

in Edmonton. Thanks to Ivan, Maryna, Peter, Sam R, Andrew C, Sam G, Tanner,

Andrew S, Eva, Tyler, Meagean, Charlotte, Mel, Josh, Josh E, Liz, Bekah, Cory,

Sarah, Nicole Y, and Kyle for all the climbing trips, I don’t see how I will ever

have a day as good as our first one on Majestic in Squamish. I am glad to have

had my friends in the department who shared the experiences of grad school and

made it much better, Farza, Khurram, Prabhat, Leticia, Matt S, Qingfeng, Anna,

Kevin, Diego, Andy, Abhishek, Alex K, Alex L, Manan, Raksha, Gabor, David,

Liam, Jordan, Aidan, Esra’a, Esraa, Ehsan, Kenny and Tian. Final thanks to my

ESSC multi-sport team of Em, Raf, Julia, Nick, Paul, Summer, and Kelly, who made

me love every sport.

vii

Table of Contents

1 Introduction 1

2 Background 5

2.1 Artificial Neural Networks . 5

2.2 Training Artificial Neural Networks 7

2.3 Reinforcement Learning . 10

3 Prior Work on Loss of Plasticity 13

4 Demonstrations of Loss of Plasticity in Supervised Learning 16

4.1 Loss of Plasticity in Permuted MNIST 16

4.2 Correlates of Loss of Plasticity in Permuted MNIST 21

4.3 Evaluating Existing Methods on Online Permuted MNIST 26

4.4 Loss of Plasticity in Continual ImageNet 33

4.5 Plasticity Loss in Class-Incremental Learning 37

4.6 Discussion . 42

4.7 Conclusion . 45

5 Formalizing the Phenomenon of Loss of Plasticity 46

5.1 Loss of Plasticity as Decreasing Performance 47

5.2 Loss of Plasticity as Worse Performance than Retraining 48

5.3 Plasticity Loss as Increasing Dynamic Regret 50

5.4 Conclusion and Discussion . 51

6 Maintaining Plasticity via Selective Reinitialization 53

6.1 Description of Continual Backpropagation 53

6.2 Different Behaviors of Continual Backpropagation 59

6.3 Evaluating Continual Backpropagation 63

6.4 Discussion of Other Plasticity Preserving

Algorithms . 70

viii

6.5 Discussing Related Ideas in Machine Learning 74

6.6 Discussing Connections to Neuroscience 78

6.7 Conclusion . 79

7 Plasticity Loss in on-policy Deep Reinforcement Learning 81

7.1 Policy Collapse . 82

7.2 A Deeper Look at Policy Collapse in a 2-state MDP 84

7.3 Reducing Policy Collapse with Tuned Adam 89

7.4 Overcoming Policy Collapse using Continual Backpropagation 94

7.5 Maintaining Plasticity in Non-Stationary Reinforcement Learning . . 101

7.6 Discussion . 104

7.7 Conclusion . 105

8 Conclusion and Future Work 107

8.1 Directions for Future Work . 108

Appendix A: Network Architectures 121

Appendix B: Hyperparameters 123

ix

List of Figures

4.1 Left: An image with label ’7’ from the MNIST dataset. Right: A

corresponding permuted image. 17

4.2 Loss of plasticity in a feed-forward network trained via backpropaga-

tion with various step sizes on Online Permuted MNIST. These results

are averaged over 30 runs and the shaded regions correspond to plus

and minus one standard error. 18

4.3 The effect of the size of the network on loss of plasticity. Smaller

networks lose plasticity faster. These results are averaged over 30 runs

and the shaded regions correspond to plus and minus one standard error. 19

4.4 The effect of the rate of distribution change on plasticity loss. As the

non-stationarity in the data increases, loss of plasticity becomes more

severe. These results are averaged over 30 runs and the shaded regions

correspond to plus and minus one standard error. However, the shaded

region is invisible because the standard error is small. 20

4.5 Evolution of the number of dead units in a deep network trained via

backpropagation with different step sizes. The percentage of dead units

in the network increases over time. These results are averaged over 30

runs and the shaded regions correspond to plus and minus one standard

error. 22

4.6 The average weight magnitude in the network increases over time.

These results are averaged over 30 runs. The shaded regions corre-

sponds to plus and minus one standard error. However, they are not

visible because the shaded regions are thinner than the line width be-

cause standard error is small. 23

4.7 The figure depicts the evolution of the representation’s effective rank

for different step sizes of backpropagation. The effective rank decreases

over time. The results in this plot are averaged over 30 runs. The

shaded regions correspond to plus and minus one standard error. . . 25

x

4.8 Online classification accuracy of various algorithms on Online Per-

muted MNIST. Three of the five methods suffer from more loss of

plasticity than backpropagation. Only L2-regularization and Shrink

and Perturb have higher accuracy than backpropagation throughout

learning. Additionally, Shrink and Perturb have almost no drop in

online classification accuracy over time. 28

4.9 Evolution of various correlates of loss of plasticity on Online Permuted

MNIST for various deep-learning algorithms. Bottom left: Weight

magnitudes grow progressively over time across all methods except

L2-regularization and Shrink and Perturb. This is because only these

two methods have an explicit mechanism to stop the weights from

growing. Top: The percentage of dead units rises over time across

all methods. Shrink and Perturb keeps the fraction of dead units from

growing too much. Bottom right: The effective rank of last layer of the

representation decreases over time for all methods. Both Dropout and

Shrink and Perturb stop this after around 200 tasks. The results in

these plots are the average over 30 runs. The shaded regions correspond

to plus and minus one standard error. For some lines, the shaded region

is thinner than the line width because the standard error was small. 29

4.10 Parameter sensitivity of various algorithms on Online Permuted MNIST.

Starting from the top left and proceeding clockwise, the online classi-

fication accuracy of backpropagation with L2-regularization, Dropout,

Adam, Shrink and Perturb, and Online Normalization for various hy-

perparameter settings. We show the performance of three different hy-

perparameter settings for each method. The parameter settings used

in Figure 4.8 are marked with a solid square next to their label. The

results correspond to an average of over 30 runs for settings marked

with a solid square and 10 runs for the rest. The solid lines represent

the mean and the shaded regions correspond to plus and minus one

standard error. 31

4.11 Loss of plasticity with backpropagation on Continual ImageNet. The

test accuracy is measured at the end of each tasks. The first plot

shows performance over the first ten tasks, which sometimes improved

initially before declining. The second plot shows performance over 2000

tasks, over which the loss of plasticity was extensive. The results are

averaged over 30 runs and the shaded region represents plus and minus

standard error. 35

xi

4.12 The online training accuracy also drops for backpropagation on Con-

tinual ImageNet. This means that the network struggles to even reduce

the training loss in later tasks. The results are averaged over 30 runs

and the shaded region represents plus and minus standard error. . . . 36

4.13 Loss of plasticity in class-incremental CIFAR-100. Initially, incremen-

tal training produced benefits compared to a network retrained from

scratch, but after 50 classes it produced a substantial loss of plasticity

in the base deep-learning system. The Shrink and Perturb algorithm

lost less plasticity. 39

4.14 Test accuracy in class-incremental CIFAR-100. As more classes are

added, the classification becomes harder and algorithms naturally show

decreasing accuracy with more classes. Each line corresponds to the

average of 15 runs. 40

4.15 Left : A dormant unit in a network is one that is active less than 1% of

the time. The number of these increases rapidly with the base deep-

learning system, but less so with Shrink and Perturb. Right : A low

stable rank means a network’s units do not provide much diversity.

The base deep-learning system loses much more diversity than Shrink

and Perturb. 41

5.1 Hypothetical performance of various algorithms in a pretraining-finetuning

problem. A randomly initialized network trained on the fine-tuning

data does not perform well. The base deep learning system was pre-

trained on a large dataset, substantially outperforming training from

scratch. However, it might have lost plasticity during training. A

plasticity-preserving algorithm with the standard deep learning sys-

tem can outperform the base system. Comparing performance to a

network trained from scratch does not tell us if a system has lost plas-

ticity in this case. In practice, it is difficult to answer whether a system

has lost plasticity in a pretraining-finetuning problem. 50

6.1 The evolution of ne for a wide range of hyperparameters ρ and m of

continual backpropagation. For some settings of hyperparameters ne

oscillates initially. But for all hyperparameters ne eventually plateaus

at some value. 60

xii

6.2 A graphical depiction of two behaviours of continual backpropagation.

Top: m ∗ ρ is small and very few units are protected. In such a case,

generally,m is also small, and the algorithm only reinitializes low utility

units like dormant ones. Bottom: m ∗ ρ equals one, and half of the

units are protected from replacement. In such a case, m is generally

large, and the algorithm performs an aggressive search process where

units with non-negligible utilities can be reintialized. 62

6.3 The online classification accuracy of various algorithms on Online Per-

muted MNIST. The performance of all algorithms except continual

backpropagation degrades over time. 64

6.4 The performance of continual backpropagation for a wide range of re-

placement rates on Online Permuted MNIST. Continual backpropaga-

tion maintains a good level of performance for a wide range of replace-

ment rates. 65

6.5 A deeper look into various qualities of a deep network on Online Per-

muted MNIST using different algorithms. Top Left: Over time, the

percentage of dead units increases in all methods except for contin-

ual backpropagation. It has almost zero dead units throughout learn-

ing, and this happens because dead units have zero utility so they are

quickly reinitialized. Top Right: The average magnitude of the weights

increases over time for all methods except for L2-Regularization, Shrink

and Perturb, and continual backpropagation. And, these are the three

best-performing methods. This means that non-increasing weights are

important for maintaining plasticity. Bottom: The effective rank of

the representation of all methods drops over time. However, continual

backpropagation maintains a higher effective rank than both backprop-

agation and Shrink and Perturb. Among all the algorithms only con-

tinual backpropagation maintains a high effective rank, non-increasing

weight magnitude, and low percent of dead units. 66

6.6 Continual backpropagation outperforms many commonly used algo-

rithms and fully maintains plasticity on Continual ImageNet. It per-

forms well on the test set as well as the training data. Its performance

at the end of 5000 tasks is even better than on the first task. 67

xiii

6.7 Continual backpropagation fully maintains plasticity on class-incremental

CIFAR-100. Left: Its accuracy on the test set at the end of each in-

crement is always better than or equal to that of a network trained

from scratch. Right: Its online training accuracy is better than the

network trained from scratch. Online training accuracy captures the

speed of learning in addition to the final accuracy. The higher online

training accuracy of continual backpropagation means that continual

backpropagation learns faster than the network trained from scratch

and has about 2% higher online training accuracy. All results are av-

eraged over 30 runs and the shaded region represents plus and minus

one standard error. 68

6.8 Continual backpropagation performs well for a wide range of replace-

ment rates on class-incremental CIFAR-100. All results are averaged

over 30 runs and the shaded region represents plus and minus one

standard error. 69

6.9 Continual backpropagation fully maintains plasticity on class-incremental

CIFAR-100. Additionally, it has almost no dead units and it maintain

a high stable rank. 70

7.1 PPO on Ant-v3. After initial learning, the policy learned by PPO

kept degrading, and its performance dropped below what it was in

the beginning. PPO did not scale with experience because instead

of improving, its performance decreased with more experience. These

results are averaged over 30 runs. The solid lines represent the mean,

and the shaded regions correspond to a 95% bootstrapped confidence

interval. 83

7.2 Left: A 2-state MDP. Right: The network used by the learning agent

to represent the policy. 85

7.3 The performance of PPO on the 2-state MDP. A 2-dimensional vector

represents the states of the MDP. When PPO learns using the network

shown in Figure 7.2B, it lacks stability, and its performance degrades

as the agent continues interacting in the MDP. 86

xiv

7.4 A deep look at one specific run of PPO on the 2-state MDP. Figures

plot the evolution of different quantities. The magnitude of the output

weights of the network kept increasing (Figure B) because the optima

lie at infinity, making it difficult to try exploratory actions. Once the

representation of the two states became sufficiently similar, at time

step 17495 (Figure C), the agent kept taking the same action in both

states. This resulted in the agent getting stuck at a sub-optimal pol-

icy (Figure A). The sudden large changes in input weights (Figure D)

caused sudden large changes in the representation and the learned pol-

icy. These large changes were caused by the standard use of the Adam

optimizer, which caused large weight changes even when the gradient

was small (Figure E). 88

7.5 PPO with tuned Adam on the 2-state MDP. Tuned Adam uses the

same rate for keeping the averages for the first and second moments of

the gradient. Tuned Adam successfully mitigate policy collapse.Although,

there is still room for improvement as neither algorithm gets to the op-

timal policy (return of 1.5) in all runs. 90

7.6 PPO with tuned Adam on Ant-v3. Tuned Adam substantially im-

proves the performance of PPO, but there is still a significant drop in

performance over time. These results are averaged over 30 runs. The

solid lines represent the mean, and the shaded regions correspond to a

95% bootstrapped confidence interval. 91

7.7 PPO with standard Adam leads to larger updates in the policy network

compared with tuned Adam (β1 = β2 = 0.99) in Ant-v3, similar to

what we saw in the 2-state-MDP. These large updates explains why

PPO with tuned Adam is more stable than standard PPO in Ant-

v3. These results are averaged over 30 runs. The solid lines represent

the mean, and the shaded regions correspond to a 95% bootstrapped

confidence interval. 92

xv

7.8 A closer look inside the policy network trained by PPO with tuned

Adam on Ant-v3. These plots reveal a similar pattern as in continual

supervised learning. The network continually loses plasticity as its

weights keep growing, the fraction of dormant units increases, and the

stable rank of the representation decreases. Although tuned Adam

stabilizes weight updates, it does not mitigate the loss of plasticity.

These results are averaged over 30 runs. The solid lines represent

the mean, and the shaded regions correspond to a 95% bootstrapped

confidence interval. 93

7.9 The performance of various algorithms on Ant-v3. All algorithms other

than standard PPO use tuned Adam. These results are averaged over

30 runs. The solid lines represent the mean, and the shaded regions cor-

respond to a 95% bootstrapped confidence interval. PPO with tuned

Adam substantially improves over standard PPO but still shows a sig-

nificant drop in performance over time. Performance of PPO with

L2 regularization plateaus at a suboptimal level. The performance of

PPO with continual backpropagation (and weak regularization) keeps

improving. 95

7.10 The evolution of three correlates of plasticity in the Ant problems.

Continual backpropagation and L2 regularization mitigate all three

correlates. Additionally, continual backpropagation maintains a higher

stable rank and higher average weight magnitude. These results are

averaged over 30 runs. The solid lines represent the mean, and the

shaded regions correspond to a 95% bootstrapped confidence interval. 96

7.11 Performance of all algorithms on Hopper-v3 and Walker-v3. Similar to

the Ant environment, the performance of PPO and PPO with tuned

Adam drops over time in Hopper-v3 and Walker-v3. However, unlike in

the Ant environment, the performance of PPO with L2 regularization

gets worse over time in Hopper-v3. On the other hand, PPO with con-

tinual backpropagation and L2 regularization can keep improving over

time. These results are averaged over 30 runs. The solid lines represent

the mean, and the shaded regions correspond to a 95% bootstrapped

confidence interval. 97

xvi

7.12 Comparison of continual backpropagation, ReDo, SNR, and regenera-

tive regularization on Ant-v3. ReDo and SNR are selective reinitial-

ization methods that use different utility measures and reinitialization

strategies than continual backpropagation. Only the performance of

PPO with continual backpropagation and L2 regularization keeps im-

proving over time. These results are averaged over 30 runs. The solid

lines represent the mean, and the shaded regions correspond to a 95%

bootstrapped confidence interval. 99

7.13 Comparison of two forms of utility in continual backpropagation in

Ant-v3. The first form of utility calculated utility over just one mini-

batch, while the other kept a running average of utilities over mini-

batches. Both variations have similar performance. The utility in

continual backpropagation can be calculated over just one mini-batch

without a performance drop, reducing its computational requirements.

These results are averaged over 30 runs. The solid lines represent

the mean, and the shaded regions correspond to a 95% bootstrapped

confidence interval. 100

7.14 We make a non-stationary reinforcement learning problem by changing

the friction between the simulated ant robot and the ground. The

changing friction forces the agent to learn different behaviours to walk

on different surfaces. 102

7.15 Performance of various algorithms on the Ant problem with chang-

ing friction. These results are averaged over 100 runs. The solid

lines represent the mean, and the shaded regions correspond to a 95%

bootstrapped confidence interval. Standard PPO algorithm fails catas-

trophically on the non-stationary ant problem. Similar to the station-

ary Ant problem, when we set β1 = β2 = 0.99 for Adam, then the

failure is less severe, but adding continual backpropagation or L2 reg-

ularization is necessary to perform well indefinitely. 103

xvii

List of Tables

A.1 Network architecture used for the Continual ImageNet problem. The

network consists of three convolutional layers followed by three fully

connected layers. 121

A.2 Details of the 18 layer residual network used for the Class Incremental

CIFAR-100 problem. Convolutional layers used a kernel size of (3,3),

reshape layers used a kernel size of (1,1), and the pool layer used a

kernel size of (4,4). 122

B.1 Hyperparameter in Continual ImageNet. Values used for the grid

searches to find the best set of hyper-parameters for all algorithms

tested on Continual ImageNet. The best-performing set of values for

each algorithm is boldened. 123

B.2 Hyper-parameters for PPO. 123

xviii

Chapter 1

Introduction

The ability to learn new things is a desirable property of intelligent systems in the real

world. The real world is extremely large and partially observable. Systems usually

have a very small window into the world. Due to the small size of the window relative

to the size of the world, the world continually reveals new information. Systems

that do not learn from this information risk becoming outdated and ineffective. In

nature, animals also learn new things throughout their lives. Similarly, in industry,

AI systems that continually learn new things are highly sought-after across various

applications. These applications range from recommendation systems where people’s

preferences can change over time to robots interacting with the physical world to

agents interacting with humans whose desires and motivations can change to large

language models that have to accumulate new knowledge continually.

The current dominant paradigm in AI, deep learning, is specialized to problems

where deployment is separate from a training phase, and systems only learn during

the training phase. The most advanced models, like GPT-4 (OpenAI, 2023) and

DeepSeek-R1 (DeepSeek-AI, 2025), have an extensive training phase, but they do

not learn after they are deployed. If there is substantial new data to learn from, the

most common strategy in practice has been to train a new model from scratch on

the old and new data combined. Even when deep learning methods are applied to

non-stationary settings like reinforcement learning, techniques like replay buffer and

1

target networks are used to make the setting nearly stationary (Mnih et al., 2015).

It is well-known that deep learning systems tend to forget what they have pre-

viously learned when they continue to learn on new data. This phenomenon, also

known as “catastrophic forgetting”, was first shown in the 1980s (McCloskey and

Cohen, 1989; French, 1999). Since then, catastrophic forgetting has received signif-

icant attention, and many papers have been dedicated to overcoming catastrophic

forgetting (Kirkpatrick et al., 2017; Yoon et al., 2018; Aljundi et al., 2019; Golkar

et al., 2019; Riemer et al., 2019; Rajasegaran et al., 2019; Javed and White, 2019;

Luo et al., 2023).

Although catastrophic forgetting is an important issue in some cases, the essence

of continuing to learn from new data is simply to learn from new data. I refer to the

ability to learn from new data as plasticity. Maintaining plasticity is essential for con-

tinual learning systems that face a non-stationary data stream. In this dissertation,

I study plasticity, which is different but complementary to the more common focus

on catastrophic forgetting.

My goal for this dissertation is to develop algorithms that can continually learn new

things using artificial neural networks. The first question on the path to this goal is:

do standard deep learning algorithms lose plasticity in continual learning problems?

Somewhat surprisingly, this question had not been directly studied in the literature

when I started working on this dissertation. In Chapter 3, I discuss the prior work

that attempted to answer this question or provided hints towards an answer.

The first contribution of this dissertation is to provide a definitive answer to the

question of loss of plasticity in deep continual learning. The demonstrations of loss

of plasticity are presented in Chapter 4. These demonstrations range from simple

feed-forward networks to deep residual networks. They involve various optimizers,

hyperparameters, commonly used techniques in supervised learning, under- and over-

parameterized networks, a wide range of rates of distribution change, and a wide

range of memory constraints, from problems where information has to be processed

2

one data point at a time to problems where all past data can be stored, network

architectures ranging from feed-forward networks to residual networks. Based on

these demonstrations, I discuss various possible formalisms of the phenomenon of

loss of plasticity as well as their advantages and limitations in Chapter 5.

The second contribution of this research is to develop an algorithm that can main-

tain plasticity. The key insight behind our algorithm is that good continual learning

algorithms should do similar computations at all times. The conventional backpropa-

gation has two main parts: initialization with small random weights and then gradient

descent at each step. Our algorithm, continual backpropagation, is a simple extension

of the conventional backpropagation algorithm. In addition to gradient descent, con-

tinual backpropagation reinitializes a small number of units during training, typically

less than one per step. I fully describe the continual backpropagation algorithm, its

different behaviors, and all relevant experiments in Chapter 6. In various contin-

ual supervised learning problems, continual backpropagation maintained plasticity

indefinitely.

The final contribution is the study of loss of plasticity in deep reinforcement learn-

ing. Specifically, I study the relation between loss of plasticity and policy collapse,

a phenomenon where the learned policy dramatically worsens after initial training

in stationary reinforcement learning problems, in Chapter 7. I study policy collapse

in PPO (Schulman et al., 2017), which is one of the most commonly used reinforce-

ment learning algorithms. Policy collapse was not studied in the literature before this

dissertation. It was probably missed because most stationary reinforcement learning

experiments are stopped when the performance plateaus and the policy stops im-

proving. On the other hand, policy collapse takes a long time to be visible, and it

typically starts after the performance has plateaued for some time. Plasticity loss, in

part, causes policy collapse. Once the agent’s performance drops, it cannot recover

due to plasticity loss. Algorithms that maintain plasticity, like continual backpropa-

gation, can mitigate policy collapse, leading to agents that keep getting better with

3

experience. Additionally, I provide a demonstration of loss of plasticity in a non-

stationary reinforcement learning problem using PPO. This problem requires the

agent to continually change its behaviour as the environment kept changing. Contin-

ual backpropagation, along with some weight regularization, is sufficient to maintain

plasticity in this problem.

4

Chapter 2

Background

This thesis builds on the foundations of artificial neural networks, deep learning, and

reinforcement learning. In this chapter, I provide an overview of the key concepts re-

quired for understanding the thesis. Readers familiar with the basics of deep learning

and reinforcement learning can skip to the next chapter.

Notationally, I represent vectors with bold lowercase letters, for example, x ∈ Rn is

a real-valued vector with n dimensions. The ith element of this vector is represented

by x[i]. And I use subscripts to represent the value at a specific step, for example, xt

represents the value of x at step t. Finally, I represent matrices with bold uppercase

letters, for example, W ∈ Rm×n is a real-valued matrix with m rows and n columns.

2.1 Artificial Neural Networks

Artificial Neural Networks are mathematical functions that map an input to an out-

put. Formally, let’s denote the network by fθ : Rn → Rm, where x ∈ Rn is an

n-dimensional input, y ∈ Rm is the m-dimensional output, and θ ∈ Rd represents the

parameters that specify the network.

The networks used in this thesis are feed-forward networks. Feed-forward networks

perform a sequence of operations on the input to produce the output. One useful

way to think about these networks is as a sequence of layers, where each layer is a

mathematical function that contains some learnable parameters. In the simplest case,

5

each layer, except the last, applies a linear transformation, followed by an element-

wise non-linear transformation to the input. The last layer only applies the linear

transformation.

Formally, let’s consider a network with L layers and denote the mathematical

function of layer l as hl. Then, for some input x to the layer, the output of the layer

is hl(x) = ϕ(Wlx+ bl), where Wl and bl are called the weight and bias parameters

of the layer, respectively, and ϕ is an element-wise non-linear function, called the

activation function. This holds for l ∈ [1, L]. While, hL(x) = WLx + bL. The

dimensions of Wl and bl must be specified at the beginning to define the architecture

of the network. For a network with L layers, the output of the network is f(x) =

hL(hL−1(. . . h2(h1(x)) . . .)).

There are many possible choices for specifying the activation function ϕ. The most

common choice in deep learning is either the ReLU (Rectified Linear Unit) activation

(Householder, 1941; Fukushima, 1975; Krizhevsky et al., 2012) or some variation of

it. The ReLU activation is defined as ReLU(x) = max(0, x). All the networks in this

thesis use the ReLU activation.

In image classification problems, it is important that the network output can be

interpreted as probabilities, i.e., elements of the output vector sum to 1 and lie in [0, 1].

However, the raw network output described above does not satisfy these requirements.

To ensure that the network’s output can be treated as probabilities, when neural

networks are trained on C-class classification problems, their output is normalized

using the softmax function. Let z = hL(hL−1(. . . h2(h1(x)) . . .)) be the raw output

(logits) of the network. The softmax function is defined as

softmax(z)[i] =
ez[i]∑︁C
j=1 e

z[j]
(2.1)

for i = 1, 2, . . . , C. The final output of a network with softmax is,

f(x) = softmax(hL(hL−1(. . . h2(h1(x)) . . .))). (2.2)

6

2.2 Training Artificial Neural Networks

In supervised learning, the goal of training artificial neural networks is to minimize

some loss function ℓ : Rm × Rm → R. The supervised learning problems used in this

thesis are all image classification problems. In these problems, the network is given

an input image, the goal of which is to guess the class to which the image belongs.

Cross entropy loss is the standard loss function for image classification problems.

Let there be C classes, and let y[i] be the correct class label for a given image. y[i]

is 1 if the image belongs to class i and 0 otherwise. The cross entropy loss function

is ℓCE = −
∑︁C

i=1 y[i] log(ŷ[i]), where ŷ[i] is the probability of the image belonging to

class i outputted by the network.

Modern deep learning uses the backpropagation algorithm (Rumelhart et al., 1986)

for training artificial neural networks. This algorithm consists of two parts. The first

is the initialization of network parameters, θ, with random numbers sampled from

some distribution and the second is to perform stochastic gradient descent at each

step. In stochastic gradient descent, the parameters of the network are updated as

θt+1 = θt − η∇θtℓ(fθt(xt),yt), (2.3)

where η > 0 is the step size parameter, ∇θtℓ(fθt(xt),yt) is the gradient of the loss

with respect to parameters θt for input xt and output yt. In many cases, when

performing stochastic gradient descent, the loss is not calculated on just one input,

rather a mini-batch of input is used. In this case, mini-batch stochastic gradient

descent performs the following update

θt+1 = θt − η
1

|Bt|
∑︂

(xi,yi)∈Bt

∇θtℓ(fθt(xi),yi) (2.4)

where, Bt is the mini-batch at step t.

One common strategy to initialize neural network parameters is Kaiming Initializa-

tion (He et al., 2015). Kaiming initialization ensures that the variance of activations

7

and gradients stays the same across layers at initialization. This mitigates the explod-

ing and vanishing gradient problems in deep networks. For a deep ReLU network,

the Kaiming normal distribution for a layer with n inputs is a Gaussian distribution

with mean zero and standard deviation
√
2
n
.

In many applications of deep learning, a variation of stochastic gradient descent

called the Adam optimizer is used (Kingma and Ba, 2015). Adam keeps an exponen-

tially moving average of past gradients and squared gradients. Let, gt be the gradient

at step t, for stochastic gradient descent, gt = ∇θtℓ(fθt(xt),yt). And for mini-batch

stochastic gradient descent, gt =
1

|Bt|
∑︁

(xi,yi)∈Bt
∇θtℓ(fθt(xi),yi). Adam updates the

parameters θt as

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

m̂t = mt/(1− βt
1)

v̂t = vt/(1− βt
2)

θt = θt−1 − η m̂t/(
√︁
v̂t + ϵ) (2.5)

where m and v are initialized as 0s, β1, β2 ∈ [0, 1) are two hyper-parameters, and

ϵ is a small positive number, one commonly used value being 10−8, used for mathe-

matical stability. In practice, the default βs (β1 = 0.9, β2 = 0.999) are usually used

(Abadi et al., 2016; Paszke et al., 2019) without further adjustment in both supervised

learning and reinforcement learning.

One commonly used technique in deep learning is L2-regularization. It incorporates

a penalty term into the loss function proportional to the squared ℓ2-norm of the

network weights. This penalty term encourages stochastic gradient descent toward

solutions with smaller weight magnitudes. In our case, ℓreg(θ) = ℓCE(θ) + λ∥θ∥22,

where λ is a hyperparameter that controls the strength of regularization. When used

with stochastic gradient descent, the network parameters are updated as

θt = θt−1 − η(gt + 2λθt−1). (2.6)

8

Shrink and Perturb is a technique based on L2-regularization (Ash and Adams,

2020). As the name suggests, Shrink and Perturb performs two operations. The first

is to shrink the weights at each step, similar to L2-regularization. And second, to

perturb the weights by adding random noise at each step. The update equation for

Shrink and Perturb when it is used with stochastic gradient descent is

θt = θt−1 − η(gt + 2λθt−1) + pt (2.7)

where p is a vector with the same dimensions as θ, whose elements are randomly

sampled from a Gaussian distribution with mean zero and standard deviation ρ. ρ is

a hyperparameter of the Shrink and Perturb algorithm.

Another technique we use in this thesis is batch normalization (Ioffe and Szegedy,

2015). In batch normalization, the inputs to each layer are normalized using the data

from the mini-batch. Application of batch normalization involves three steps during

training: calculation of mean and variance, normalization, and scaling. Consider a

layer with input x = [x[1],x[2], . . . ,x[n]]. Let the input data from the mini-batch be

x(1),x(2), . . .x(m). In the first step, we calculate the mean and variance for each input

dimension as

µ[j] =
1

m

m∑︂
i=1

x(i)[j] (2.8)

σ[j]2 =
1

m

m∑︂
i=1

(x(i)[j]− µ[j])2, (2.9)

where µ[j] and σ[j]2 are the mean and variance of the jth input dimension. The next

step is to normalize the inputs as

x̂(i)[j] =
x(i)[j]− µ[j]√︁

σ[j]2 + ϵ
.

Finally, the input is scaled and shifted as

y(i)[j] = γ[j]x̂(i)[j] + β[j], (2.10)

9

where γ[j] and β[j] are parameters learned through stochastic gradient descent, and ϵ

is a small number used for mathematical stability. During testing, batch norm uses the

running estimates of mean and variance that are calculated during training, instead

of computing them from the current mini-batch. The running estimates approximate

the mean and variance of the entire training set. In practice, normalization can

be applied to the layer’s input or before or after the activation function is applied.

There is no consensus on the best place to normalize, and different applications use

normalization at different places.

The final technique we use is called Dropout (Hinton et al., 2012). In Dropout,

during training, a fraction of randomly chosen input dimensions of each layer are set

to zero. Consider a layer with input x = [x[1],x[2], . . . ,x[n]], Dropout applies the

following transformation

y = r⊙ x (2.11)

where ⊙ is element-wise multiplication, and r is a binary mask whose elements are

independently sampled from a Bernoulli distribution, where the probability of an

element being zero is defined by the hyperparameter p ∈ [0, 1]. Dropout is turned off

during testing, meaning all input dimensions remain active. However, because more

inputs are active, they are all scaled by (1− p) to ensure that the scale remains the

same during training and testing.

2.3 Reinforcement Learning

In reinforcement learning (RL), an agent learns to maximize a reward signal by in-

teracting with an environment (Sutton and Barto, 2018). The reinforcement learning

problem is generally formalized as a Markov Decision Process (MDP). Let M =

(S,A,P, r, γ) be a Markov Decision Process which includes a state space S, an action

space A, a state transition probability function P : S ×A×S → [0, 1] ⊂ R, a reward

signal r : S ×A → R, and a discount factor γ ∈ [0, 1).

10

Given an MDP, the agent’s behaviour is specified by a policy π, which outputs

a distribution over the action space given a state. At each time step t, the agent

observes a state St ∈ S and selects an action At from π(·|St). The environment then

transitions to the next state St+1 ∈ S according to the transition function P(·|St, At)

and the agent receives a scalar reward Rt+1 = r(St, At) ∈ R. Considering an episodic

task with horizon T , the return Gt is defined as the sum of discounted rewards, that is,

Gt =
∑︁T

k=t γ
k−tRk+1. The action-value function of policy π give the expected return

if the agent takes a specific action in a specific state and follows the policy π. It is

defined as qπ(s, a) = E[Gt|St = s, At = a], ∀(s, a) ∈ S ×A. Similarly, the state-value

function vπ maps states to expected returns, vπ(s) = E[Gt|St = s], ∀s ∈ S. Another

useful quantity is the advantage function, which is Advπ(s, a) = qπ(s, a)− vπ(s).

The agent aims to find an optimal policy π∗ that maximizes the expected return

starting from some initial states. A common class of approaches to find the optimal

policy is based on the policy gradient methods. Policy gradient methods directly

learn a policy. Among policy gradient methods, Proximal Policy Optimization, PPO,

is one of the most widely used Schulman et al. (2017). The key idea of PPO is

to constrain the policy update by using a clipped surrogate objective to prevent the

policy from changing too much. In practice, PPO is applied as an alternating sequence

of interaction and optimization. During interaction, the agent stores all the states,

actions, and rewards in a replay buffer. During optimization, the data in the buffer

is used to update the policy. After the optimization phase, the data in the replay

buffer is discarded and it is filled during the next interaction phase. Let’s refer to

the policy with network parameters θ as πθ and let θold be the network parameters

at the start of an optimization phase. And let rt(θ) =
πθ(at|st)

πθold
(at|st) . PPO optimizes the

following objective on the data in the replay buffer,

ℓPPO = Et[min(rt(θ)ˆ︁Advt, clip(rt(θ), 1− ϵ, 1 + ϵ)ˆ︁Advt)] (2.12)

where, ˆ︁Advt is the estimate of the advantage at time t, and ϵ is a hyperparameter. The

11

advantage estimate is calculated using generalized advantage estimation (Schulman

et al., 2016) that uses an additional network to approximate the value function. Note

that πθold
(at|st) is a constant during the optimization phase, the only quantity that

changes is πθ(at|st). And it can change until it reaches the boundaries defined by the

clipping function.

12

Chapter 3

Prior Work on Loss of Plasticity

The first step towards developing artificial neural networks that can learn forever is to

ask if networks trained by deep learning methods can learn forever. This question had

not been thoroughly studied before this dissertation. However, some work provided

hints or partial answers to this question. In this chapter, I discuss work that was

done prior to this dissertation on the issue of loss of plasticity in deep learning.

Plasticity research is equally relevant to the fields of machine learning and neu-

roscience. However, historically, it has received more prominent attention in neuro-

science. In neuroscience, plasticity refers to the brain’s ability to change. The brain

exhibits synaptic plasticity, where the strength of the connections between neurons

(synapses) changes in response to experience (Citri and Malenka, 2008). Moreover,

there is also structural plasticity in the brain, where entirely new connections can grow

between neurons (Eriksson et al., 1998). Similarly, in the machine learning literature,

plasticity commonly refers to a system’s ability to adapt to changes (Carpenter and

Grossberg, 1988). In light of this meaning of the term plasticity, it is natural to use

loss of plasticity to refer to the loss of the ability to adapt or the loss of the ability

to learn new things.

The first evidence of loss of plasticity in deep learning comes from the psychology

literature of the early 2000s. Ellis and Lambon Ralph (2000), Zevin and Seidenberg

(2002), and Bonin et al. (2004) showed plasticity loss in neural networks of early 2000s

13

in regression problems. The experiments in these papers used a setup where a set

of examples was presented to the network for a certain number of epochs, and then

the training set was expanded with a second set of examples and training proceeded.

The results were interesting and they showed that the error for the examples in the

first training set was lower than for the second set of examples after controlling for

the number of epochs. These experiments provided evidence that artificial neural

networks trained by the backpropagation algorithm can lose plasticity. The main

limitation of these works is that the networks used were relatively shallow by today’s

standards, and the algorithms used are not those that are most popular today. For

example, they did not use the ReLU activation function or modern optimizers like

Adam. The psychology research from early 2000s on artificial neural networks pro-

vides hints, but does not provide a clear answer to the question of whether or not

modern deep learning networks exhibit loss of plasticity.

Some recent studies in the machine learning literature suggest that there is loss

of plasticity in deep learning. Chaudhry et al. (2018) observed loss of plasticity in

continual image classification problems. However, these results are not completely

satisfactory because of a confounding variable in their experiments. In their experi-

ments, new output units were added to the network when the network learns a new

task. Meaning that the number of output units grew over time. Loss of plasticity was

confounded with the effect of interference from old output units. More importantly,

they found that when old output units were removed at the beginning of the next

task, plasticity loss was minimal, suggesting that the plasticity loss they observed

was primarily due to the effects of the old output units. The second key limitation

of their study is that they did not study loss of plasticity when in a long sequence of

tasks, as they only used ten tasks for their experiments.

Ash and Adams (2020) found that pretraining can be harmful in some cases. They

showed that a network that is first trained on half of a dataset can lead to worse final

performance than networks trained from scratch. The failure of pretraining in these

14

experiments is an important example of loss of plasticity and it suggested that there

could be a major issue of loss of plasticity when deep learning systems face a long

sequence of tasks. Berariu et al. (2021) built on Ash and Adams’ work and showed

in similar experiments that as the number of pretraining stages increases, the final

performance gets worse. However, Berariu et al.’s experiments were still performed

in a stationary problem setting with a fixed dataset, and they observed a small loss of

plasticity. Although these papers hint at a fundamental problem of loss of plasticity

in deep learning systems, they do not provide a fully satisfactory demonstration of

the phenomena.

Concurrent with my work, some evidence for loss of plasticity in deep learning was

obtained in the reinforcement learning literature. Reinforcement learning is inherently

continual due to the changing behaviour of the agent, so the loss of plasticity in deep

learning networks could affect modern deep reinforcement learning agents. Nikishin

et al. (2022) showed in reinforcement learning problems, sometimes early learning

could harm later learning. Lyle et al. (2022) also found that some deep reinforcement

learning agents lose the ability to learn new functions over time. These are exciting

results, but we can only draw limited conclusions from them due to the inherent com-

plexity of modern deep reinforcement learning. All these papers from the psychology

literature of the early 2000s and the recent machine learning and reinforcement learn-

ing literature provide evidence that deep-learning systems lose plasticity, but they are

not direct or thorough demonstrations of the phenomenon in fully continual learning

problems.

In the last few years, there has been a notable increase in the attention paid

to the problem of plasticity loss in artificial neural networks. Several papers have

been written adding evidence to the phenomenon, improving our understanding, and

providing methods to maintain plasticity in artificial neural networks. A detailed

discussion of recent papers and other related work is provided at the end of the

relevant chapter.

15

Chapter 4

Demonstrations of Loss of
Plasticity in Supervised Learning

In this chapter, I provide direct and thorough demonstrations of loss of plasticity in

continual supervised learning problems. The contents of this chapter are taken from

Dohare et al. (2024). All these demonstrations build on the demonstrations provided

in my Master’s thesis (Dohare, 2020). The main limitation of those experiments is

that they used a small (single hidden layer with five units) network.

The demonstrations provided in this chapter use more commonly used networks

and more realistic datasets. These demonstrations cover a wide range of memory con-

straints. The first demonstration is entirely online as there is no additional memory;

in the second one, the learning system stores all the examples for the current classes;

and in the last demonstration, the learning system stores all the examples seen so

far. These experiments also cover multiple network architectures, over- and under-

parameterized networks, optimizers, activation functions, and common techniques

like dropout, regularization, and normalization.

4.1 Loss of Plasticity in Permuted MNIST

The first demonstration is based on the MNIST dataset (Lecun et al., 1998). MNIST

is a commonly used dataset in supervised learning. It is a dataset of grayscale images

of the handwritten digits from 0 to 9 together with their correct labels. It consists

16

Figure 4.1: Left: An image with label ’7’ from the MNIST dataset. Right: A corre-
sponding permuted image.

of 60,000 28 × 28 images. The left image in Figure 4.1 is an image contained in

the dataset labeled by the digit 7. The smaller size of the images and the dataset

compared to others used in this chapter allows smaller networks to perform well on

this dataset. The small size of networks and datasets means that experiments can be

performed with much less computation, which enables us to perform extensive and

long-run continual learning experiments.

We created a continual supervised learning problem using permuted MNIST datasets

(Goodfellow et al., 2014; Zenke et al., 2017). This problem can be seen as a sequence

of tasks where each task uses a new permuted MNIST dataset. An individual per-

muted MNIST dataset is created by permuting the pixels in the original MNIST

dataset. The right image in Figure 4.1 is an example of such a permuted image. All

60,000 images are permuted in the same way to produce the new permuted MNIST

dataset. Note that convolutional layers are not helpful for permuted MNIST images

because the spatial information is lost.

The main strength of this problem is that we can create a near-infinite sequence

of permuted MNIST datasets which allows us to study long term plasticity. For a

feedforward network, all the permuted MNIST datasets are of equal difficulty. A

17

Figure 4.2: Loss of plasticity in a feed-forward network trained via backpropagation
with various step sizes on Online Permuted MNIST. These results are averaged over
30 runs and the shaded regions correspond to plus and minus one standard error.

drop in performance in a sequence of permuted MNIST problems would mean that

the network is losing plasticity.

We created a sequence of 800 supervised learning tasks, where each task used a

different permuted MNIST dataset. Within each task, we presented all the 60,000

images one by one to the learning network in a randomized order. After completing

one task, we moved to the next task and applied the same process, continuing this

process across all 800 tasks. The network was trained on a single pass through the

data without using any mini-batches during training. We call this problem Online

Permuted MNIST.

We used feed-forward neural networks with three hidden layers and 2000 units in

each layer for Online Permuted MNIST. For each example, the network outputs a

guess for the probabilities of each of the 10 classes. These guessed probabilities are

then compared to the correct label, and the cross-entropy loss is calculated. Finally,

stochastic gradient descent (SGD) is performed using the computed loss. To measure

the performance, we calculated the percentage of times the network correctly classi-

fied each of the 60,000 images in the task. Figure 4.2 plots this per-task performance

18

Figure 4.3: The effect of the size of the network on loss of plasticity. Smaller networks
lose plasticity faster. These results are averaged over 30 runs and the shaded regions
correspond to plus and minus one standard error.

measure versus task number. The network architecture utilized ReLU activation func-

tions, and the initial weight parameters were sampled from the Kaiming distribution.

Figure 4.2 shows the evolution of performance across tasks for different settings

of the step size parameter. The performance first increased across tasks, which is

expected as pretraining on similar tasks can help learning on later tasks. Specifically,

in Online Permuted MNIST, features in layers closer to the output layer could be

reused across tasks. However, after the initial increase, the performance began falling

steadily across all subsequent tasks. This continuing drop in performance means that

the network is slowly losing the ability to learn from new data.

For the next set of experiments, we test how the size of the network affects loss of

plasticity on a given problem. To vary the size of the nextwork, we vary its width.

We test networks with 100, 1,000, and 10,000 units per layer on the online permuted

MNIST problem. These networks have about 100k, 3M, and 200M parameters re-

spectively. We ran this experiment for only 150 tasks due to the significantly longer

computational time required for the 200M parameter network. Figure 4.3 shows the

performance at good step sizes for each network. The loss of plasticity over extended

19

Figure 4.4: The effect of the rate of distribution change on plasticity loss. As the
non-stationarity in the data increases, loss of plasticity becomes more severe. These
results are averaged over 30 runs and the shaded regions correspond to plus and minus
one standard error. However, the shaded region is invisible because the standard error
is small.

training is most severe for smaller networks, though even the largest networks exhibit

some loss of plasticity.

Finally, we studied the effect of the rate at which the task changed. Returning to

the original network architecture with 2,000-unit layers, we varied the task-switching

intervals. We changed permutations after every 10,000, 100,000, or 1 million examples

instead of the original 60,000 examples. The experiments were run for a total of

48M examples for all three settings of task switching interval. We measured network

performance on each task by calculating the percentage of correct classifications across

all examples within that task. The evolution of performance is shown in Figure 4.4,

which again showed that performance dropped over successive tasks. The performance

drops faster as the rate of distribution changes increases, suggesting that loss of

plasticity will be a more important phenomenon in settings where the distribution

changes rapidly, like reinforcement learning. Altogether, these results show that the

phenomenon of loss of plasticity robustly arises with conventional backpropagation.

Loss of plasticity happens for a wide range of step sizes, distribution change rates,

20

and under and over-parameterized networks.

4.2 Correlates of Loss of Plasticity in Permuted

MNIST

Let’s turn our attention to understanding why backpropagation loses plasticity in

Online Permuted MNIST. At the highest level, the only difference in the learning

algorithm across time is the network weights. Initially, weights consisted of small

random values drawn from the initialization distribution; however, following training

on several tasks, these weights became specialized for the most recently encountered

task. Consequently, the initial weights for each new task differ fundamentally from

the weights at the very beginning of the first task. As this difference in the weights is

the only difference in the learning algorithm across time, some specific characteristics

of the initial weight distribution must be facilitating plasticity during early learn-

ing phases. This initial random distribution likely encompasses multiple plasticity-

enabling features, such as unit diversity, activation states that avoid saturation, small

magnitude parameters, etc.

As we will now show, numerous beneficial properties of the initial distribution

deteriorate alongside the loss of plasticity. The degradation of each advantageous

characteristic partially explains the degrading performance that we observed. We

subsequently present arguments for how the deterioration of these properties may

contribute to plasticity loss, along with metrics that measure the extent of each

deterioration for each property. We conduct an in-depth study of the Online Permuted

MNIST problem which will serve as motivation for multiple methods that could reduce

plasticity loss.

The first noticeable phenomenon that occurs concurrently with the loss of plasticity

is the the progressive accumulation of dead units. When a unit becomes dead, it

stops propagating gradients during backpropagation. Zero gradients stops the weight

coming into the unit from changing, which effectively eliminates the unit’s learning

21

Figure 4.5: Evolution of the number of dead units in a deep network trained via
backpropagation with different step sizes. The percentage of dead units in the network
increases over time. These results are averaged over 30 runs and the shaded regions
correspond to plus and minus one standard error.

capacity. For ReLU activation functions, this situation arises when a unit’s activation

remains zero across all task examples; such units are commonly termed “dead” (Lu

et al., 2019; Shin and Karniadakis, 2020). We quantify dead units in ReLU networks

by counting those that output zero for every example in a randomly selected sample of

two thousand images evaluated at the beginning of each new task. For networks using

sigmoidal activations, an analogous metric is the number of units whose outputs falls

within an ϵ neighborhood of the function’s saturation values for some small positive

ϵ (Rakitianskaia and Engelbrecht, 2015). In this section we only focus on ReLU

networks.

The evolution of dead units in the online permuted MNIST problem is plotted in

Figure 4.5. It shows that the fraction of dead units increases over time. This increase

is associated with the loss of plasticity in online permuted MNIST. For the largest

step size, 0.01, a quarter of all units died after 800 tasks. This large increase in

number of dead units directly decreases the capacity of the network.

Another concurrent phenomenon accompanying plasticity loss is the steady in-

crease of the network’s mean weight magnitude. The network’s mean weight magni-

22

Figure 4.6: The average weight magnitude in the network increases over time. These
results are averaged over 30 runs. The shaded regions corresponds to plus and minus
one standard error. However, they are not visible because the shaded regions are
thinner than the line width because standard error is small.

tude is the sum of the absolute values of all the network weights divided by the total

number of weights. This rise of the network’s mean weight magnitude in the online

permuted MNIST problem is shown in Figure 4.6. The rise of the weight magnitude

co-occurs with the declining plasticity shown in Figure 4.2.

The weight magnitude growth can pose a learning impediment because larger pa-

rameter values typically correlate with slower learning. Network weights directly

influence the condition number of the Hessian of the loss function with respect to

network parameters, θ. The Hessian’s condition number is known to impact con-

vergence rates in SGD optimization (Boyd and Vandenberghe, 2004). Therefore, in-

creasing weight magnitudes may result in an ill-conditioned Hessian matrix, leading

to slower convergence rates.

The final phenomenon accompanying loss of plasticity is the decline in the rep-

resentation’s effective rank. The rank of a matix refers to the number of linearly

independent dimensions. Similarly, the effective rank accounts for each dimension’s

contribution to the transformation induced by a matrix (Roy and Vetterli, 2007).

A high effective rank indicates that most matrix dimensions contribute comparably

23

to the transformation. Conversely, a low effective rank suggests that only a lim-

ited number of dimensions substantially influence the transformation, meaning that

information contained in most dimensions is redundant.

Formally, consider a matrixΦ ∈ Rn×m with singular values σk for k = 1, 2, ..., q, and

q = max(n,m). Let pk = σk/∥σ∥1, where σ is the vector containing all the singular

values, and ∥ · ∥1 is the ℓ1-norm. The effective rank of matrix Φ, or erank(Φ), is

defined as

erank(Φ)
.
= exp {H(p1, ..., pq)} ,where H(p1, ..., pq) = −

q∑︂
k=1

pk log(pk). (4.1)

Note that, unlike the rank of the matrix, the effective rank is a continuous measure

with a range between one and the rank of a matrix.

For neural networks, a layer’s effective rank quantifies how many units are necessary

to reconstruct the layer’s output effectively. When a hidden layer’s output has a low

effective rank, the output can be reproduced by a small number of units, indicating

that many units within that layer contribute minimal useful information. We estimate

the effective rank using a randomly sampled set of two thousand permuted images

prior to training on each new task.

In the online permuted MNIST problem, loss of plasticity is accompanied by a

decrease in the average effective rank of the network, as shown in Figure 4.7. The

drop in the effective rank is not inherently a problem. It has been demonstrated

that gradient-based optimization naturally tends toward low-rank solutions through

implicit loss function regularization or implicit rank minimization (Smith et al., 2021;

Razin and Cohen, 2020). Nevertheless, a low-rank representation may serve as poor

initialization for learning new things because most hidden units provide negligible

novel information about new input. The declining effective rank may account for

plasticity loss in our experiments in the following way. For each task, SGD finds a

low-rank solution tailored to the current task, which subsequently becomes the start-

ing point for the following task. Through this iterative process, the representation

24

Figure 4.7: The figure depicts the evolution of the representation’s effective rank for
different step sizes of backpropagation. The effective rank decreases over time. The
results in this plot are averaged over 30 runs. The shaded regions correspond to plus
and minus one standard error.

layer’s effective rank progressively diminishes after each task, constraining the range

of solutions the network can immediately represent at the beginning of new tasks.

In this section, we looked deeper at the networks that lost plasticity in the Online

Permuted MNIST problem. We noted that at the highest level, the only difference in

the learning algorithm across time is the weights of the network, which means that the

initial weight distribution possesses specific characteristics that enable early plasticity.

As learning advances, the network weights diverge from their initial distribution,

causing the algorithm to gradually lose plasticity. We found that loss of plasticity

correlates with three phenomena: growing weight magnitudes, declining effective rank

of the representation, and increasing number of dead units. Each of these correlates

provide partial insights into the loss of plasticity faced by backpropagation.

25

4.3 Evaluating Existing Methods on Online Per-

muted MNIST

This section describes the effects of adding various existing methods to backpropaga-

tion on the loss of plasticity observed in the online Permuted MNIST problem. We

analyzed five existing methods: L2-regularization (Goodfellow et al., 2016), Dropout

(Hinton et al., 2012), online normalization (Chiley et al., 2019), Shrink and Per-

turb (Ash and Adams, 2020), and Adam (Kingma and Ba, 2015). The choice of

L2-regularization, Dropout, normalization, and Adam was straightforward due to

their widespread use in deep learning applications. Although Shrink and Perturb is

less commonly used, we included it because it reduces the failure of pretraining, an

instance of loss of plasticity. See Chapter 2 for details of all these methods.

To evaluate whether these techniques can alleviate loss of plasticity, we applied

them to the Online Permuted MNIST problem using the identical feed-forward net-

work architecture from the previous section. We used the same evaluation metric

as before, the average online classification accuracy across all 60,000 task examples.

Figure 4.8 displays the online classification accuracy of all the methods. We used

a step size of 0.003 for all algorithms in this section because it performed the best

for backpropagation, see Figure 4.2. We also tested how these methods affect the

three correlates of loss of plasticity we identified in Section 4.2. Figure 4.9 shows the

summaries of the three correlates for the loss of plasticity for the hyperparameter

settings used in Figure 4.8.

Each method involves hyperparameters that directly influence its performance.

Despite this dependency, we can find hyperparameter configurations that give us a

good representation of the best performance for each method. We tested various

combinations of hyperparameters for each method. The results for three different

combinations of hyperparameters for each method are shown in Figure 4.10. While

additional hyperparameter tuning could potentially lead to slightly better perfor-

26

mance, Figure 4.10 successfully captures the pattern of results and the behavior of

these methods. We generally chose the hyperparameter value with the highest aver-

age classification accuracy across all 800 tasks. Similar to Figure 4.8, the first point

in Figure 4.10 is the average classification accuracy over the first task, the next over

the second task and so on.

L2-regualrization

L2-regularization adds a penalty term into the loss function that is proportional to

the ℓ2-norm of the network weights (see Equation 2.6). This penalty term encourages

SGD toward solutions with smaller weight magnitudes. The performance of L2-

regularization in the online permuted MNIST problem is shown in Figure 4.8 with

the purple curve. The purple lines in Figure 4.9 show how the three correlates of loss

of plasticity evolve with L2-regularization. With L2-regularization, weight magnitude

stabilizes. As anticipated, the stable weight magnitude is associated with a lower loss

of plasticity. Nevertheless, L2-regularization provides only partial protection against

loss of plasticity. With L2-regularization, the proportion of dead units continues rising

while the effective rank keeps decreasing, which explains the loss of plasticity with

L2-regularization.

The added penalty term in the loss function introduces a hyperparameter λ that

modulates the contribution of the penalty term. λ controls the peak performance and

the speed of performance degradation, see Figure 4.10.

Shrink and Perturb

The next method we test is Shrink and Perturb (Ash and Adams, 2020). As the

name indicates, Shrink and Perturb performs two operations: shrinking all weights

and adding random Gaussian noise to these weights, see Equation 2.7 for details. The

performance of Shrink and Perturb is shown in orange in Figures 4.8 and 4.9. Like L2-

regularization, Shrink and Perturb prevents weight magnitude growth. Additionally,

it decreases the percentage of dead units. Although its effective rank is lower than

backpropagation, but it is still higher than that of L2-regularization. Shrink and

27

Figure 4.8: Online classification accuracy of various algorithms on Online Permuted
MNIST. Three of the five methods suffer from more loss of plasticity than backprop-
agation. Only L2-regularization and Shrink and Perturb have higher accuracy than
backpropagation throughout learning. Additionally, Shrink and Perturb have almost
no drop in online classification accuracy over time.

Perturb almost completely mitigates the loss of plasticity in Online Permuted MNIST

and has highest classification accuracy on the 800th task among all the methods we

have tested so far.

Shrink and Perturb has two hyperparameters. First is λ, the same as in L2-

regularization, and second is the variance of the noise. Figure 4.10 shows that Shrink

and Perturb is sensitive to the variance of the noise. Large noise made loss of plasticity

much more severe. On the other hand, small noise does not have any effect.

Dropout

Dropout is an important technique in modern deep learning (Hinton et al., 2012).

The performance of Dropout is shown by pink in Figures 4.8 and 4.9. Dropout had

a similar evolution of percent of dead units, weight magnitude, and effective rank as

backpropagation, yet surprisingly had greater plasticity loss. Our three correlates of

loss of plasticity do not explain the poor performance of Dropout, which means there

are other causes of loss of plasticity.

In Dropout, the hyperparameter p refers to the probability of setting hidden units

28

Figure 4.9: Evolution of various correlates of loss of plasticity on Online Permuted
MNIST for various deep-learning algorithms. Bottom left: Weight magnitudes grow
progressively over time across all methods except L2-regularization and Shrink and
Perturb. This is because only these two methods have an explicit mechanism to stop
the weights from growing. Top: The percentage of dead units rises over time across
all methods. Shrink and Perturb keeps the fraction of dead units from growing too
much. Bottom right: The effective rank of last layer of the representation decreases
over time for all methods. Both Dropout and Shrink and Perturb stop this after
around 200 tasks. The results in these plots are the average over 30 runs. The
shaded regions correspond to plus and minus one standard error. For some lines, the
shaded region is thinner than the line width because the standard error was small.

29

to zero. Among all values of p, Dropout performs best with p = 0.01, where its

performance is almost identical to that of backpropagation. However, in Figure 4.8,

we show the performance of dropout with p = 0.1 to show how the method performs.

We found that the higher the value of p, the faster the loss of plasticity.

Online normalization

The next technique we study is batch normalization (Ioffe and Szegedy, 2015).

Batch normalization changes the output of each hidden unit by normalizing and

rescaling it using statistics computed from each mini-batch. We used online normal-

ization (Chiley et al., 2019), an online variant of batch normalization, because batch

normalization is not amenable to the online setting used in the Online Permuted

MNIST problem. Figures 4.8 and 4.9 show the performance of online normalization

in green. The network containing online normalization was expected to have fewer

dead units and a higher effective rank than the network that does not. This expecta-

tion holds for earlier tasks, but both measures degrade over time. In later tasks, the

network containing online normalization has a higher percentage of dead units and

a lower effective rank than the network trained using backpropagation. The online

classification accuracy aligns with these results. Initially, online normalization results

in better online classification accuracy, but later, the classification accuracy of online

normalization falls below that of backpropagation.

Online normalization contains two hyperparameters for the incremental estimation

of the statistics in the normalization steps (see Equation 2.9). Changing these hy-

perparameters changes when the performance of the method peaked and it also has

a small effect on how fast it gets to its peak performance.

Adam

Adam (Kingma and Ba, 2015) is necessary for a complete evaluation of alternative

methods, as it ranks among the most valuable tools in contemporary deep learning.

Adam is a variant of stochastic gradient descent that uses an estimate of the first

moment of the gradient scaled inversely by an estimate of the second moment to

30

Figure 4.10: Parameter sensitivity of various algorithms on Online Permuted MNIST.
Starting from the top left and proceeding clockwise, the online classification accuracy
of backpropagation with L2-regularization, Dropout, Adam, Shrink and Perturb, and
Online Normalization for various hyperparameter settings. We show the performance
of three different hyperparameter settings for each method. The parameter settings
used in Figure 4.8 are marked with a solid square next to their label. The results
correspond to an average of over 30 runs for settings marked with a solid square
and 10 runs for the rest. The solid lines represent the mean and the shaded regions
correspond to plus and minus one standard error.

31

update the weights, see Equation 2.5. The performance of Adam is shown with cyan in

Figures 4.8 and 4.9. Adam experiences catastrophic plasticity loss, with performance

dropping dramatically. Adam also significantly worsens all three correlates of loss of

plasticity. Adam has a similar weight magnitude to backpropagation. However, there

is a drastic drop in the effective rank early during training and the percentage of dead

units plateaus around 40%.

Adam has two hyperparameters, β1, β2, which are used to keep incremental es-

timates of the mean and square of the gradient. We used the standard of these

hyperparameters, which was proposed in the original paper, i.e., β1 = 0.9, β2 = 0.999.

Figure 4.10 shows the performance of Adam for different values of the step-size pa-

rameter, η. Different values of step-size change how fast the performance collapsed.

Many standard methods substantially exacerbate plasticity loss. Adam’s effect on

network plasticity is particularly dramatic. Networks trained with Adam have a large

fraction of dead units and quickly lose almost all of their representation diversity, as

measured by the effective rank. Similarly, other widely-used methods like Dropout

and normalization also worsen plasticity loss. Normalization initially performs better

than backpropagation, but later it has a sharper drop. Dropout simply degrades per-

formance, the higher the Dropout probability, the larger the loss of plasticity. These

results mean that some of the most successful deep learning tools do not work well

in continual learning, highlighting the need to focus on developing tools specifically

for continual learning.

We achieved some success in preserving plasticity within deep neural networks.

L2-regularization and Shrink and Perturb both mitigate plasticity loss, with Shrink

and Perturb proving particularly effective as almost entirely overcame loss of plastic-

ity in Online Permuted MNIST. However, both methods are somewhat sensitive to

hyperparameter values. They reduce plasticity loss for a small range of hyperparam-

eters, while worsening it for other values. This sensitivity to hyper-parameters can

limit the practical application of these methods to continual learning. Furthermore,

32

Shrink and Perturb does not completely address the three correlates of plasticity loss,

it has a lower effective rank than backpropagation, and a significant fraction of units

are dead.

4.4 Loss of Plasticity in Continual ImageNet

Imagenet is a large database of images and their labels (Deng et al., 2009). It has

been influential throughout machine learning and it played a pivotal role in the rise of

deep learning (Krizhevsky et al., 2012). ImageNet allowed researchers to conclusively

show that deep learning can solve a problem like object recognition, a hallmark of

intelligence. Classical machine learning methods had a classification error rate of 25%

(Russakovsky et al., 2015) when deep-learning methods reduced it to below 5% (Hu

et al., 2018), the human error rate on the dataset.

The ImageNet database contains millions of images labeled with nouns (classes)

representing various animals. The standard ImageNet task is to guess the correct

label for a given image. Our ImageNet dataset includes 1,000 classes, with 700 images

per class. In the standard way to use this dataset, it is split into training and test

partitions. A learning system is first trained on a set of images and their labels, then

training is stopped and performance is measured on a separate set of test images

from the same classes. We divided the 700 images for each class into 600 images for

a training set and 100 images for a test set. We used the down-sampled 32 × 32

version of the ImageNet dataset, as is often done to save computation (Chrabaszcz

et al., 2017).

We constructed a sequence of binary classification tasks by randomly selecting two

classes from the dataset to adapt ImageNet to continual learning while minimizing

all other changes. For example, the first task might be to separate crocodiles and

guitars, and the second might be to separate cats from dogs. We created about half

a million binary classification tasks this way, because our dataset has 1000 classes.

For each task, we trained a deep learning network on images from the training sets

33

of the two selected classes, then evaluated its performance on a separate test set for

the same classes. Specifically, the network was first trained on the 1,200 images from

the training set of and then its classification accuracy was measured on the test set of

200 images. The training consisted of several passes through the training set, called

epochs. For each task, all learning algorithms performed 250 epochs on the training

set using mini-batches of 100 images. Following training and testing on one task,

the next task began with a different pair of classes. We call this problem Continual

ImageNet. In Continual ImageNet, task difficulty remains constant over time. A drop

in performance would mean the network is losing its learning ability.

We applied a wide variety of standard deep learning networks to Continual Ima-

geNet and tested many learning algorithms and parameter settings. Network perfor-

mance on each task was assessed by measuring the percentage of correctly classified

test images. The results are shown in Figure 4.11. In Figure 4.12, we plot the aver-

age classification accuracy during training on a task. These results are representative;

they are for a feed-forward convolutional network and for a training procedure, us-

ing unmodified backpropagation, that performed well on this problem in the first few

tasks. The network had three convolutional-plus-max-pooling layers followed by three

fully connected layers. The final layer consisted of just two units, the heads, corre-

sponding to the two classes. The details of the network architecture are presented in

Table A.1 in Appendix A. At task changes, the input weights of the heads were reset

to zero. This head resetting can be interpreted as introducing new heads for new

classes. This resetting of the output weights is not ideal for studying plasticity, as the

learning system gets access to privileged information on the timing of task changes

(and we do not use it in other experiments in this thesis). We use it here because it

is the standard practice in deep continual learning for this type of problem where the

learning system faces a sequence of independent tasks (van de Ven et al., 2022).

In this problem, we reset the network head at each task’s beginning. For a linear

network, this means resetting the entire network, which explains why linear network

34

Task number (bins of 50)

Linear baseline

step size = 0.01

step size = 0.001

step size = 0.0001

Accuracy on the test set

Task number

Linear baseline

step size = 0.01

step size = 0.001

70%

75%

80%

85%

90%

1 5 10 50 1,000 2,000

Figure 4.11: Loss of plasticity with backpropagation on Continual ImageNet. The
test accuracy is measured at the end of each tasks. The first plot shows performance
over the first ten tasks, which sometimes improved initially before declining. The
second plot shows performance over 2000 tasks, over which the loss of plasticity was
extensive. The results are averaged over 30 runs and the shaded region represents
plus and minus standard error.

performance does not degrade in Continual ImageNet. Since the linear network serves

as a baseline, obtaining a low-variance performance estimate is desirable. The value

of this baseline is obtained by averaging over thousands of tasks. This averaging gives

us a much better estimate of its performance than other networks.

The network was trained using stochastic gradient descent (SGD) with momentum

on the cross-entropy loss and randomly initialized once prior to the first task. The

momentum hyper-parameter was 0.9. We tested various step size parameters for

backpropagation but only presented the performance for step sizes 0.01, 0.001, and

0.0001 for clarity of Figures 4.11 and 4.12. We performed 30 runs for each hyper-

parameter value, varying the sequence of tasks and other randomness. Across different

hyper-parameters and algorithms, the same sequences of pairs of classes were used.

Although these networks learned up to 88% correct on the test set of the early

tasks (Figure 4.11, left panel), by the 2000th task they had lost substantial plasticity

35

step size = 0.0001

90%

95%

100%

Task number (bins of 50)

step size = 0.01

step size = 0.001

50 1,000 2,000

Online
training
accuracy

Figure 4.12: The online training accuracy also drops for backpropagation on Continual
ImageNet. This means that the network struggles to even reduce the training loss in
later tasks. The results are averaged over 30 runs and the shaded region represents
plus and minus standard error.

for all values of the step size parameter (right panel). Some step sizes performed the

best on the first two tasks, but then fell on subsequent tasks, eventually reaching a

level below a linear network. For other step sizes, performance rose initially and then

fell, and was only slightly better than the linear network after 2000 tasks. The drop in

classification accuracy on the test set is accompanied by a similar drop in the online

training accuracy (Figure 4.12). The online training accuracy for a task is the average

accuracy on all the data points on which the network is being trained. We found this

to be a common pattern in our experiments: for a well-tuned network, performance

first improves, then falls substantially, ending near or below the linear baseline. We

have observed this pattern for many network architectures, parameter choices, and

optimizers. The specific choice of network architecture, algorithm parameters, and

optimizers affects when the performance starts to drop, but a severe performance

drop occurred for a wide range of choices. The failure of standard methods to learn

better than a linear network in later tasks is substantial evidence that deep learning

methods can fail in continual learning problems.

36

4.5 Plasticity Loss in Class-Incremental Learning

For the final demonstration, we chose to use residual networks, class-incremental con-

tinual learning, and the CIFAR-100 dataset. Residual networks (He et al., 2016) in-

cluded layer-skipping connections in addition to the usual layer-to-layer connections

of conventional convolutional networks. Today residual networks are more widely

used and produce better results than strictly layered networks. We used residual net-

works in a class-incremental continual learning (Rebuffi et al., 2017) problem which

involves sequentially adding new classes while testing on all classes seen so far. In our

demonstration, we started with training on five classes and then successively added

more, five at a time, until all 100 were available. After each addition, the networks

were trained and performance was measured on all available classes. We continued

training on the old classes (unlike in most work in class-incremental learning) to focus

on plasticity rather than on forgetting.

We used the CIFAR-100 dataset to create the class-incremental learning problem.

The dataset consists of 100 classes with 600 images each. The 600 images for each

class were divided into 450 images to create a training set, 50 for a validation set

and 100 for a test set. Note that the network is trained on all data from all classes

available at present. First, it is trained on data from just five classes, then from

all ten classes and so on, until finally, it is trained from data from all 100 classes

simultaneously.

In this demonstration, we used an 18-layer residual network with a variable number

of heads, adding heads as new classes were added. The details of the network architec-

ture are presented in Table A.2 in Appendix A. We also used additional deep learning

techniques, including batch normalization, data augmentation, L2 regularization, and

learning rate scheduling. We call this our base deep-learning system.

The weights of convolutional and linear layers in the 18-layer residual network were

initialized using Kaiming initialization, the weights for the batch-norm layers were

37

initialized to one and all of the bias terms in the network were initialized to zero.

Each time five new classes were made available to the network, five more output

units were added to the final layer of the network. The weights and biases of these

output units were initialized using the same initialization scheme. The weights of

the network were optimized using SGD with a momentum of 0.9, a weight decay of

0.0005 and a mini-batch size of 90.

After each increment, the network was trained for 200 epochs, for a total of 4,000

epochs across all 20 increments. We used a learning rate schedule that reset at the

start of each increment. For the first 60 epochs of each increment, the learning rate

was set to 0.1, then to 0.02 for the next 60 epochs, then 0.004 for the next 40 epochs,

and to 0.0008 for the last 40 epochs. During the 200 epochs of training for each

increment, we kept track of the network with the best accuracy on the validation set.

To prevent overfitting, at the start of each new increment, we reset the weights of the

network to the weights of the best-performing (on the validation set) network found

during the previous increment; this is equivalent to early stopping for each different

increment.

We used several steps of data preprocessing before the images were presented to the

network. First, the value of all the pixels in each image was rescaled between 0 and

1 by dividing by 255. Then, each pixel in each channel was centred and rescaled by

the average and standard deviation of the pixel values of each channel, respectively.

Finally, we applied three random data transformations to each image before feeding

it to the network: randomly horizontally flip the image with a probability of 0.5,

randomly crop the image by padding the image with 4 pixels on each side, and

randomly cropping to the original size, and randomly rotate the image between 0 and

15 degrees. The first two steps of preprocessing were applied to the train, validation,

and test set, but the random transformations were only applied to the images in the

train set.

As more classes are added, correctly classifying images becomes more difficult,

38

Base deep-learning
system with

shrink and perturb

Base deep-learning
system with

shrink and perturb
Retrained Network

Base deep-learning
system

Base deep-learning
system

2%

75%

80%

85%

90%

95%

0%

-2%

-4%

Accuracy on the test set
relative to retrained network

Online training accuracy

5 550 50100 100

Number of classes

Figure 4.13: Loss of plasticity in class-incremental CIFAR-100. Initially, incremental
training produced benefits compared to a network retrained from scratch, but after
50 classes it produced a substantial loss of plasticity in the base deep-learning system.
The Shrink and Perturb algorithm lost less plasticity.

and classification accuracy would decrease even if the network maintained its ability

to learn. To factor out this effect, we compare the accuracy of our incrementally-

trained networks with networks that were retrained from scratch on the same subset

of classes. For example, the network that was trained first on five classes, and then

on all ten classes, is compared to a network retrained from scratch on all ten classes.

If the incrementally-trained network performs better than a network retrained from

scratch, then there is a benefit due to training on previous classes, and if it performs

worse, then there is a genuine loss of plasticity.

The red line in the left panel of Figure 4.13 shows that incremental training was

initially better than retraining, but after forty classes the incrementally-trained sys-

tem showed loss of plasticity that became increasingly severe. By the end, when

all 100 classes were available, the accuracy of the incrementally-trained base system

was 5% lower than the retrained network (a performance drop equivalent to that of

removing a major algorithmic advance, such as batch normalization). We observed a

similar trend for online training accuracy, see right panel of Figure 4.13. The loss of

39

Base deep learning system

5

Number of classes

Test accuracy

50 100
70%

75%

80%

85%

90%

Shrink and perturb

Network trained
from scratch

Figure 4.14: Test accuracy in class-incremental CIFAR-100. As more classes are
added, the classification becomes harder and algorithms naturally show decreasing
accuracy with more classes. Each line corresponds to the average of 15 runs.

plasticity was less severe if Shrink and Perturb was added to the learning algorithm

(in the incrementally-trained network), as shown by the orange line in Figures 4.13

and 4.13. For completeness, Figure 4.14 shows the test accuracy of each algorithm in

each different increment. The final accuracy of the base deep-learning system on all

100 classes was about 71%, while that of the network trained from scratch was about

76%.

We tested several hyperparameters to ensure the best performance for each different

algorithm with our specific architecture. For the base system, we tested values for

the weight decay parameter in 0.005, 0.0005, 0.00005. A weight-decay value of 0.0005

resulted in the best performance in terms of area under the curve for accuracy on the

test set over the 20 increments. For Shrink and Perturb, we used the weight-decay

value of the base system and tested values for the standard deviation of the Gaussian

noise in {10−4, 10−5, 10−6}; 10−5 resulted in the best performance.

We plot the evolution of dormant units in the network and the stable rank of the

representation in the penultimate layer of the network. We call a unit to be dormant

40

5 50 100
Number of classes

50

40

30

20

10

0

Percentage of dormant units

Base deep-learning
 system

Base deep-learning
system With

shrink and perturb

Base deep-learning
 system

95

90

85

80

75

5 50 100
Number of classes

Stable rank of the representation
scaled between 0 and 100

Base deep-learning
system with

shrink and perturb

Figure 4.15: Left : A dormant unit in a network is one that is active less than 1% of
the time. The number of these increases rapidly with the base deep-learning system,
but less so with Shrink and Perturb. Right : A low stable rank means a network’s
units do not provide much diversity. The base deep-learning system loses much more
diversity than Shrink and Perturb.

if it is active less than 1% of the time. For a matrix Φ ∈ Rn×m with singular values

σk sorted in descending order for k = 1, 2, ..., q, and q = max(n,m), the stable rank

is min
{︂
k :

Σk
i σi

Σd
i σi

> 0.99
}︂
(Yang et al., 2019).

Figure 4.15 revealed a similar trend as we saw in the permuted MNIST problem

seen in Section 4.2. In the 18-layer residual network, the fraction of dormant units

dramatically increases. By the time of the last increment, more than 50% of the units

in the network are dormant (left panel), meaning that effectively half of the network

is not contributing to learning. Similarly, the stable rank of the representation drops

to about 75 by the last increment, meaning that a large part of the representation

is not providing unique information. The orange lines in the Figure 4.15 show that

Shrink and Perturb, significantly reduced the number of dormant units in the network

and kept a high stable rank.

This demonstration used larger networks and required more computation, but still

we were able to do extensive systematic tests. We found a robust pattern to the

41

results that was similar to what we found in ImageNet and Permuted MNIST. In all

cases, deep learning systems exhibit substantial loss of plasticity.

4.6 Discussion

The phenomenon of loss of plasticity has gained significant attention in the literature

since we first made our work publicly available in 2021 (Dohare et al., 2021). Various

people have studied loss of plasticity from different perspectives and added evidence

to the phenomenon in continual supervised learning (Lyle et al., 2023; Nikishin et al.,

2023; Kumar et al., 2024; Dohare et al., 2023; Lewandowski et al., 2023; Lee et al.,

2023; Elsayed and Mahmood, 2024; Lee et al., 2024; Dohare et al., 2024; Lewandowski

et al., 2025b), reinforcement learning problems (Nikishin et al., 2022; Lyle et al., 2022;

Abbas et al., 2023; Sokar et al., 2023; Nikishin et al., 2023; Lyle et al., 2024a; Delfosse

et al., 2024; Ahn et al., 2025), multi-agent systems (Zang et al., 2025), and modality-

incremental learning of large foundation models (Zhang et al., 2025).

There are many desirable properties for an efficient continual- learning system (Ve-

niat et al., 2021; Verwimp et al., 2024). It should be able to keep learning new things,

control what it remembers and forgets, have good computational and memory effi-

ciency and use previous knowledge to speed up learning on new data. The choice

of the benchmark affects which property is being focused on. Most benchmarks and

evaluations in this chapter only focused on plasticity but not on other aspects, such as

forgetting and speed of learning. For example, in Continual ImageNet, previous tasks

are almost never repeated, which makes it effective for studying plasticity but not

forgetting. In permuted MNIST, consecutive tasks are largely independent, which

makes it suitable for studying plasticity in isolation. However, this independence

means that previous knowledge cannot substantially speed up learning on new tasks.

On the other hand, in class-incremental CIFAR-100, previous knowledge can substan-

tially speed up learning of new classes. Overcoming loss of plasticity is an important,

but still the first step towards the goal of fast learning on future data. Once we have

42

networks that maintain plasticity, we can develop methods that use already acquired

knowledge to speed up learning on future data.

In the last few years, significant progress has been made in our understanding of the

phenomenon of loss of plasticity. Loss of plasticity can be generally categorized in two

different cases (Lee et al., 2024). The first is where the algorithm is unable to optimize

new objectives, this corresponds to the loss of the ability to reduce training losses

for new tasks. The second is where the system can keep optimizing new objectives

but lose the ability to generalize (Ash and Adams, 2020; Berariu et al., 2021). The

type of loss of plasticity studied in this dissertation is largely because of the loss of

the ability to optimize new objectives, as can be seen by reducing online training

accuracies. However, it is unclear if the two types of plasticity loss are fundamentally

different or if the same mechanism can explain both phenomena. Some methods,

such as Shrink and Perturb, that are able to bring back all advantages of random

initialization, are effective for mitigating both types of loss of plasticity. Future work

that improves our understanding of plasticity and finds the underlying causes of both

types of plasticity loss will be valuable.

In this chapter, we identified three correlates of loss plasticity, namely, increasing

number of dormant units, decreasing stable rank, and growing weight magnitudes.

Few recent works have focused on identifying mechanisms that cause the loss of

plasticity. They have mostly focused on the form of plasticity loss where the learning

system loses the ability to optimize. Lyle et al. (2024b) say that it is best to think of

the loss of plasticity being caused by multiple independent causes, and they show that

no single mechanism fully explains the loss of plasticity in all cases. They show that

the different mechanisms for loss of plasticity include growth of weight magnitude,

varying output scale (as happens when predicting value functions in reinforcement

learning), and pre-activation distribution shift (this covers the case of dormant units).

Their work argues that no single cause can explain the loss of plasticity. In contrast,

more recent work by Lewandowski et al. (2023) shows that in many cases, a reduction

43

in the number of curvature directions in the loss landscape coincides with the loss of

plasticity. And they suggest that a reduction in the number of curvature directions

could explain loss of plasticity on its own. It remains to be seen why exactly gradient

descent loses a number of curvature directions. Finding deeper mechanisms for loss of

plasticity remains an important area of research for improving our understanding of

the phenomenon and potentially developing better methods for mitigating the issue.

Loss of plasticity might also be connected to the lottery ticket hypothesis (Frankle

and Carbin, 2019). The hypothesis states that randomly initialized networks contain

subnetworks that can achieve performance close to that of the original network with a

similar number of updates. These subnetworks are called winning tickets. We found

that, in continual-learning problems, the effective rank of the representation at the

beginning of tasks reduces over time. In a sense, the network obtained after training

on several tasks has less randomness and diversity than the original random network.

The reduced randomness might mean that the network has fewer winning tickets. And

this reduction in the number of winning tickets might explain loss of plasticity. Our

understanding of loss of plasticity could be deepened by fully exploring its connection

with the lottery ticket hypothesis.

Loss of plasticity is a critical factor when learning continues for many tasks, but it

might be less important if learning happens for a small number of tasks. Usually, the

learning system can take advantage of previous learning in the first few tasks. For

example, in class-incremental CIFAR-100 (Fig. 2), the base deep-learning systems

performed better than the network trained from scratch for up to 40 classes. This

result is consistent with deep-learning applications in which the learning system is first

trained on a large dataset and then fine-tuned on a smaller, more relevant dataset.

Plasticity-preserving methods may still improve performance in such applications

based on fine-turning, but we do not expect that improvement to be large, as learning

happens only for a small number of tasks. We have observed that deep-learning

systems gradually lose plasticity, and this effect accumulates over tasks. Loss of

44

plasticity becomes an important factor when learning continues for a large number

of tasks; in class-incremental CIFAR-100, the performance of the base deep-learning

system was much worse after 100 classes.

4.7 Conclusion

Deep learning is a useful tool for settings where learning occurs in a special training

phase and not afterwards. However, in settings where learning continues for a long

time, we showed that deep learning does not work. By deep learning, we refer to the

commonly used algorithms for learning in artificial neural networks and by not work,

we mean that they lose the ability to learn new things over time. In this chapter,

we provided demonstrations of loss of plasticity using datasets where deep learning

methods have been successful. We showed such loss of plasticity in a wide range

of problems. Our experiments covered cases that include a wide range of memory

constraints, from online permuted MNIST on one end, where no old data can be

stored, to class-incremental CIFAR-100, where all the data is stored and used for

learning. These experiments included multiple network architectures, from simple

feedforward networks in online permuted MNIST to deep residual networks in class-

incremental CIFAR-100. We demonstrated loss of plasticity with over- and under-

parameterized networks and different optimizers using the online permuted MNIST

problem. We also found that methods like dropout, regularization, and normalization

are insufficient to overcome the loss of plasticity in online permuted MNIST or class-

incremental CIFAR-100. Overall, these chapter provide substantial evidence that loss

of plasticity is a widespread problem in deep learning.

45

Chapter 5

Formalizing the Phenomenon of
Loss of Plasticity

In the last chapter, we provided various demonstrations of loss of plasticity in con-

tinual supervised learning problems. Those demonstrations involved a sequence of

tasks. In some problems, like Online Permuted MNIST and Continual ImageNet, the

tasks were, on average, of equal difficulty. The worsening performance over time in

a sequence of equally difficult tasks demonstrated a loss of plasticity. On the other

hand, in the class-incremental CIFAR-100, the tasks got more difficult over time. In

this problem, the worse performance of the learning system compared to a retrained

system was evidence of loss of plasticity. We also saw that many units can die inside

the network during continual learning. Dead units, by definition, do not contribute

to the network and have lost all their plasticity because they cannot learn new things.

In this chapter, we look at various attempts at formalizing the phenomenon. We

look at the pros and cons of these formalisms in defining the phenomenon. The

intuition gained from the demonstrations in the last chapter will help us check if a

given formalism captures all instances of loss of plasticity.

The first question on the path to formalization is: Who loses plasticity? Is it

a property of the network or optimizer (eg, SGD or Adam) or the entire learning

system? Consider the case where the optimizer’s step size decreases to zero in a

continual learning problem. This system loses plasticity as it loses the ability to learn

46

new things. It is unreasonable to say that the network has lost plasticity because

it can learn new things if we use a different optimization algorithm. The remaining

question is: Is loss of plasticity a property of the optimizer or the entire learning

system? To answer this, consider a case where the network contains just one linear

layer, it uses stochastic gradient descent and faces a sequence of regression problems.

Lewandowski et al. (2025b) showed that there is no loss of plasticity in this setting.

It is a case where stochastic gradient descent does not lose plasticity; this means that

loss of plasticity is not a property of the optimizer. By the process of elimination, it

is most appropriate to think of loss of plasticity as a property of the entire learning

system.

To formalize the phenomenon, consider online supervised learning problems, where

the learning network, fθ : Rn → Rm, receives a sequence of training examples, (xt,yt),

where xt ∈ Rn and yt ∈ Rm. Recall from Chapter 2 that θ represents the network pa-

rameters and the loss function is ℓ : Rm×Rm → R. Let (xt,yt) be sampled from some

distribution pt. The learning objective at time t is Jt(θ) = E(xt,yt)∼pt [ℓ(fθt(xt),yt)].

The learning algorithms changes the network parameter to minimize Jt(θ). In many

cases, pt does not change at each step. For example, in the experiments we used in

the previous chapter, pt stayed the same for duration of a task. However, in general,

in continual learning, pt can change at each step.

5.1 Loss of Plasticity as Decreasing Performance

The first idea for formalizing loss of plasticity is to define it as a drop in performance

over a sequence of tasks. Let’s assume that the examples can be seen as a sequence

of tasks, where the defining characteristic of a task is that distribution from which

examples (xt,yt) are sampled remains the same. Let task τ last from t ∈ {(τ −1)T +

1, (τ − 1)T + 2, . . . , τT}, for some constant T , and let the distribution for this task

47

be pτ . The expected loss on task τ is

1

T

τT∑︂
t=(τ−1)T+1

E(xt,yt)∼pτ [ℓ(fθt(xt),yt)]. (5.1)

In this setting, we assume that tasks are of equal difficulty. An increase in expected

loss across tasks in this setting means the system loses the ability to optimize new

objectives. This is a useful definition of the phenomenon. It fully captures the drop

in performance that we saw in the Online Permuted MNIST and Continual ImageNet

problems in the last chapter.

However, this definition does not capture the case of class-incremental learning,

where the problem’s difficulty changes over time. In class-incremental problems, the

classification problem becomes more difficult over time, and the performance drops

even if the algorithm does not lose plasticity. This definition falls short of a fully

satisfactory formalization of the phenomenon, as it does not capture the case where

the difficulty of the problem varies over time. Lewandowski et al. (2025a) used this

definition and also pointed out the limitation of this definition.

5.2 Loss of Plasticity as Worse Performance than

Retraining

In class-incremental CIFAR-100, we said that a learning algorithm has lost plasticity if

it performed worse than a randomly initialized network trained on the same task. We

can formalize that intuition in a similar manner to the previous section. Again, let’s

assume that the examples can be seen as a sequence of tasks, where the distribution

from which examples (xt,yt) are sampled remains the same during a task. However,

this time, the tasks are not of equal length and difficulty. Let task τ last from

t ∈ {tτ−1 + 1, tτ−1 + 2, . . . tτ}, and t0 = 0. Note that unlike last section, tasks are

of different lengths in this setting, which requires us to explicitly specify the start

time of task as tτ−1 . Let the distribution of examples for this task be pτ . Again, the

48

expected loss for a learning system on task τ is

1

tτ − tτ−1

tτ∑︂
t=tτ−1+1

E(xt,yt)∼pτ [ℓ(fθt(xt),yt)]. (5.2)

In this setting, we say that the system has lost plasticity if its expected loss during

a task is larger than if the same system used a network that was randomly initialized

at tτ−1 + 1, i.e.,

1

tτ − tτ−1

tτ∑︂
t=tτ−1+1

E(xt,yt)∼pτ [ℓ(fθt(xt),yt)]− E(xt,yt)∼pτ [Eθ′
tτ−1+1

[ℓ(fθ′
t
(xt),yt)]] > 0

(5.3)

where θ′
t are the parameters of an alternative network at time t. The alternative net-

work is randomly initialized at then tτ−1+1 and then trained using the same algorithm

from that point onward. This definition of loss of plasticity captures the performance

of backpropagation for all three problems we used in the previous chapter. In all

three problems, the performance of backpropagation is worse at the last task than at

the first task. Lyle et al. (2023) used a similar definition of the phenomenon.

This definition fails to capture an important case of the phenomenon, which is the

pretraining-finetuning setting. In many deep learning applications, the network is first

trained on a large dataset and then fine-tuned on a small dataset of interest. The small

dataset generally only has a few hundred or thousand examples. A network trained

on just the small dataset has very poor performance. In this case, if the pretrained

system has lost some plasticity, its performance will still be substantially better than

a system trained from scratch, see Figure 5.1 for an illustration. The pretrained

system could have lost plasticity if some fraction, say 10%, of the units died out in its

network. In this case, even if the system loses plasticity, it will perform better than

a system trained from scratch, and the current definition of loss of plasticity will not

capture this case.

todo: Add a copy of Figure 4.10 here for illustration This definition also fails

to capture a key aspect of the phenomenon, i.e., reducing performance. Sometimes

49

Classification
Accuracy

Example number
1 500 1000

50%

60%

70%

80%

90%

100%

Plasticity preserving system

Training from scratch

Standard deep learing
system

Figure 5.1: Hypothetical performance of various algorithms in a pretraining-
finetuning problem. A randomly initialized network trained on the fine-tuning data
does not perform well. The base deep learning system was pretrained on a large
dataset, substantially outperforming training from scratch. However, it might have
lost plasticity during training. A plasticity-preserving algorithm with the standard
deep learning system can outperform the base system. Comparing performance to a
network trained from scratch does not tell us if a system has lost plasticity in this
case. In practice, it is difficult to answer whether a system has lost plasticity in a
pretraining-finetuning problem.

the performance of a network starts to drop, but it never gets below that of a network

trained from scratch (see L2 regularization in Figure 4.10). In such cases, there is

some loss of plasticity, but this definition of loss of plasticity fails to capture this case.

Although the current definition is helpful and captures a wide range of cases seen in

the last chapter, it is insufficient.

5.3 Plasticity Loss as Increasing Dynamic Regret

The final definition of loss of plasticity combines the key ideas of both previous defini-

tions. It defines loss of plasticity as a drop in performance with respect to a baseline.

However, this time, the baseline is not retraining but the optimal parameters. Let

θ∗
t be the value of the parameter vector that minimizes Jt(θ). Note that θ∗

t can be

50

different at each step. Then the average expected dynamic regret is

1

T

T∑︂
t=1

E(xt,yt)∼pt [ℓ(fθt(xt),yt)]− E(xt,yt)∼pt [ℓ(fθ∗
t
(xt),yt)]. (5.4)

In this case, a system is called to lose plasticity if the average expected regret

increases over time. Farias and Jozefiak (2025) proposed this definition of loss of

plasticity. It captures the phenomenon for all the examples we saw in the previous

chapter and the pretraining-finetuning setting discussed in the last section. In prac-

tice, θ∗ is not available, which limits the utility of this definition in practice. However,

some lower bounds of optimal performance, like the performance of a retrained net-

work, are available in many cases. The one unspecified component in this definition

is the distribution pt. We must carefully think about specific distribution before we

can call an increase in regret a loss of plasticity. One case where an increasing regret

does not mean a loss of plasticity is when the magnitude for data points increases

over time, for example, if E[∥xt∥2] = 10 ∗ E[∥xt−1∥2]. In this case, the regret can in-

crease just because the magnitude of the data point increases, but there is no loss of

the ability to learn. Despite its limitations, this definition captures the key intuition

behind our informal definition, i.e. loss of the ability to learn new things.

5.4 Conclusion and Discussion

In this chapter, we looked at three formal definitions of loss of plasticity as well as the

limitations of each definition. Defining the phenomenon as a reduction in performance

is useful in cases where the problem’s difficulty stays the same over time. Nevertheless,

it fails in cases where the problem’s difficulty changes over time. On the other hand,

defining the phenomenon as worse performance compared to a retrained network fails

in the pretraining-finetuning setting. Finally, defining the phenomenon as increasing

dynamic regret can fail in cases when the scale of data distribution increases over

time. However, I believe loss of plasticity as increasing dynamic regret is the most

appropriate formalization of the phenomenon because it captures the key idea: losing

51

the ability to learn new things.

The definitions in this chapter have one major difference from the experimental

setting used in Chapter 4, namely, the use of held-out test sets. We used held-

out test sets in Chapter 4 for two reasons. First, we wanted to stay close to the

standard deep learning setting. Second, the existing supervised learning datasets are

not sufficiently rich and complex to capture the generalization requirements of real-

world data streams. The real world contains long data streams with abundant data,

but the system still needs to generalize well to achieve good performance. However,

existing supervised learning datasets are too small to effectively simulate the need for

generalization. Held-out test sets allow us to evaluate the generalization capabilities

of learning systems without needing massive labeled datasets. As the field of continual

learning grows, the need for held-out test sets will diminish as we find more realistic

data streams without any separation between a training and test set.

52

Chapter 6

Maintaining Plasticity via Selective
Reinitialization

Previous chapters in this thesis have focused on establishing and understanding the

phenomenon of plasticity loss. The next step is to develop algorithms that can main-

tain plasticity in continual learning problems. To this end, we develop the continual

backpropagation algorithm. This chapter describes the algorithm and evaluates its

effectiveness on all the problems where we observed loss of plasticity in Chapter 4.

We start with motivation and a description of the continual backpropagation al-

gorithm. Then, we deeply dive into the algorithm to understand its hyperparameters

and the behaviors they induce. Next, we evaluate the algorithms on various problems

where we observed loss of plasticity and look at how it affects various properties of

the networks. We end with a discussion of algorithms that have been built on top of

continual backpropagation or have been proposed to overcome loss of plasticity.

6.1 Description of Continual Backpropagation

In Chapter 4, we learned that Shrink and Perturb reduces the loss of plasticity in

many cases. The injection of variability into the network through the Shrink and

Perturb process reduces dormancy and increase the diversity of the representation.

However, the continual injection of randomness in Shrink and Perturb is tied to the

idea of shrinking the weights. There exists prior work (Mahmood and Sutton, 2013;

53

Mahmood, 2017) that proposed a more direct way of continually injecting randomness

by selectively reinitializing low-utility units in the network. But the ideas presented

were not developed for deep networks and could not be used with modern deep

learning. We fully developed the idea of selective reinitialization so it can be used

with modern deep learning. The resulting algorithm is continual backpropagation

and it combines conventional backpropagation with selective reinitialization.

In one sense, continual backpropagation is a simple and natural extension of the

conventional backpropagation algorithm to continual learning. The conventional

backpropagation algorithm has two parts: initialization with small random weights

and gradient descent at each step. This algorithm is designed for the stationary

setting, where learning only happens once. The initialization provides variability ini-

tially, but, as we have seen, in continual learning, variability tends to be lost, as well

as plasticity along with it. To maintain the variability, our new algorithm, continual

backpropagation, reinitializes a small number of units throughout training. The key

principle behind continual backpropagation is that good continual learning algorithms

should do time-symmetric computations, that is, similar computations at all times.

Continual backpropagation selectively reinitializes low-utility units in the network.

Our utility measure, called the contribution utility, is defined for each connection or

weight and each unit. The basic intuition behind the contribution utility is that the

magnitude of the product of units’ activation and outgoing weight gives information

about how valuable this connection is to its consumers. If a hidden unit’s contribution

to its consumer is small, its contribution can be overwhelmed by contributions from

other hidden units. In such a case, the hidden unit is not useful to its consumer.

We define the contribution utility of a hidden unit as the sum of the utilities of all

its outgoing connections. The contribution utility is measured as a running average

of instantaneous contributions with a decay rate, η. In a feed-forward network, the

54

contribution-utility, ul[i], of the ith hidden unit in layer l at time t is updated as

ul[i]← η ∗ ul[i] + (1− η) ∗ |hl,t[i]| ∗
nl+1∑︂
k=1

|Wl,t[i, k]|, (6.1)

where hl,t[i] is the output of the ith hidden unit in layer l at time t, Wl,t[i, k] is the

weight connecting the ith unit in layer l to the kth unit in layer l + 1 at time t, nl+1

is the number of units is layer l + 1.

When a hidden unit is reinitialized, its incoming weights are randomly sampled

from the same distribution that was used to initialize the weights in the beginning,

and its outgoing weights are set to zero. Initializing the incoming weights randomly

injects variability into the network. At the same time, initializing the outgoing weights

as zero ensures that the newly added hidden units do not affect the already learned

function. However, initializing the outgoing weight to zero makes the new unit vul-

nerable to immediate reinitialization as it has zero utility. To protect new units

from immediate reinitialization, they are protected from a reinitialization for matu-

rity threshold, m, number of updates.

Continual backpropagation finds low-utility units in each layer of the network. This

means that the utility of a unit is only compared to other units in the same layer.

The hyperparameter replacement rate, ρ ∈ [0, 1], controls the number of units that

are initialized per layer per step. The replacement rate is the fraction of eligible units

that are reinitialized in every layer at each step. A unit is called eligible if its age

exceeds the maturity threshold, m, where m is a non-negative integer. For example,

if ρ is 0.001 and the layer has ne eligible units, and let ne = 1000, then at that step,

ρ ∗ ne is one. This means that one unit would be reinitialized at that step. ρ is

typically very small, meaning that ρ ∗ ne is less than one. In such cases, ρ ∗ ne is

accumulated in another variable called c. When c becomes greater than one, the unit

with the smallest utility is reinitialized. For example, if ρ is 10−5, and ne = 1000,

then ρ∗ne is just 0.01. In this case, one unit is reinitialized after every hundred steps.

The final algorithm combines conventional backpropagation with selective reini-

55

Algorithm 1: Continual backpropagation (CBP) for a feed-forward network
with L hidden layers

Set: step size α, replacement rate ρ, decay rate η, and maturity threshold m
(e.g. 10−4, 10−4, 0.99, and 100)
Initialize: Initialize the weights W0, ...,WL. Let, Wl be sampled from a
distribution dl
Initialize: Utilities u1, ...,uL, accumulated number of features to reinitialize
c1, ..., cl, and ages a1, ..., aL to 0
for each input xt do

Forward pass: pass input through the network, get the prediction, ŷt
Evaluate: Receive loss l(fθt(xt),yt)
Backward pass: update the weights using stochastic gradient descent
for layer l in 1 : L do

Update age: al += 1
Update unit utility: Using Equation 6.1
Find eligible units: neligible = Number of units with age greater
than m
Update accumulated number of units to reinitialize:
cl = cl + neligible∗ρ
if cl > 1 then

Unit to reinitialize: Find the unit with smallest utility, let its
index be r
Initialize input weights: Reset the input weights Wl−1[:, r]
using samples from dl
Initialize output weights: Set Wl[r, :] to zero
Initialize utility, unit activation, and age: Set ul[r] and al[r]
to 0
Update accumulated number of units to reinitialize:
cl = cl − 1

56

tialization to continually inject random units from the initial distribution. Contin-

ual backpropagation performs a gradient-descent and selective reinitialization step

at each update. Algorithm 1 specifies the continual backpropagation algorithm for

a feed-forward network. In cases where the learning system uses mini-batches, the

instantaneous contribution utility can be used instead of keeping a running average

to save computation.

The selective reinitialization in continual backpropagation can also be understood

as a search process in the space of representation units or artificial neurons. Con-

tinual backpropagation builds on a long line of research on conducting search in

the space of representation units (Selfridge, 1958; Mucciardi and Gose, 1966; Klopf

and Gose, 1969; Holland and Reitman, 1977; Holland, 1992; Kaelbling, 1993; Stanley

and Miikkulainen, 2002; Mahmood and Sutton, 2013; Mahmood, 2017). The idea of

searching in the space of representations was first proposed by Selfridge (1958). They

proposed to use a network of representation units. The final output of the network

is a linear combination of the representation units, and the weights for the linear

combination are learned by zeroth-order optimization. The utility measure proposed

by Selfridge (1958) is similar to ours; it used the magnitude of the outgoing weights of

a unit as the measure of utility. However, it is not the same as ours because our util-

ity measure also considers the activity of a unit. In continual backpropagation, new

units are randomly reinitialized. However, they proposed more complicated methods

to generate new units, which included non-linear combinations of already useful units.

Mucciardi and Gose (1966) and Klopf and Gose (1969) built on the work by Sel-

fridge (1958). They showed the effectiveness of representation search methods over

methods that used a fixed representation. Note that the representation units in

these works differ from those commonly used in modern artificial neural networks.

For example, Mucciardi and Gose (1966) used units with binary inputs and a lin-

ear threshold activation function. Mucciardi and Gose (1966) used the same utility

measure as proposed by Selfridge (1958). Similar to continual backpropagation, Muc-

57

ciardi and Gose (1966) proposed setting the outgoing weights of new units to zero.

Klopf and Gose (1969) built on the work by Mucciardi and Gose (1966) and evaluated

various utility measures and found that a utility measure based on the magnitude of

the product of a unit’s output and its outgoing weight performed the best. Note that

this utility measure is exactly the same as the one used in continual backpropaga-

tion. Unlike Selfridge (1958) but similar to continual backpropagation, Klopf and

Gose (1969) used randomly generated new units. We can see an outline of continual

backpropagation emerge from these old papers, as they already contain some of the

key ideas of continual backpropagation: utility measure, setting outgoing weights to

zero, and random generation of new units.

More recent work by Mahmood and Sutton (Mahmood and Sutton, 2013; Mah-

mood, 2017) further refined and scaled up the idea of representation search. They

developed a new search process and introduced concepts protecting units using a

maturity threshold and continually replacing a small fraction of units using a replace-

ment rate. Their work used networks with two linear layers with Linear Threshold

Unit (LTU) (McCulloch and Pitts, 1943) in between. Similar to prior work, the repre-

sentation layer in their network was learned using the search process but not gradient

descent. All the prior work, starting from Selfridge’s 1958 paper (Seidenberg and

McClelland, 1989), laid the foundations for continual backpropagation.

Continual backpropagation is the first combination of the old idea of representation

search and modern deep learning. All the prior work on representation search had two

significant limitations. First, they did not use modern artificial neural networks, they

typically used networks with a single representation layer that did not learn using

gradient descent. Second, their networks generally only had a single output, so the

utility measure could not be applied to cases where a unit has multiple consumers. We

overcome these limitations and make the idea of representation search compatible with

modern artificial neural networks. Continual backpropagation works with arbitrary

feed-forward networks.

58

6.2 Different Behaviors of Continual Backpropa-

gation

In this section, we take a deeper look at the hyperparameters of the continual back-

propagation algorithm. These hyperparameters induce different behaviors of the al-

gorithm. On one extreme, the algorithm simply find dormant units and reinitializes

them. On the other end it acts as a search algorithm in the space of units.

One way to intuitively understand hyperparameters of continual backpropagation

is in terms of the number of units eligible for replacement in a given layer called ne.

The evolution of ne over time gives an insight into the behaviour of the algorithm.

Note that only a certain number of units would be eligible for replacement at a given

time because the age of other units will be less than the maturity threshold m. For

example, at step 0, all units are protected from replacement and ne is 0. Similarly,

at step m + 1, all units units become eligible for replacement and ne is equal to n,

where n is the total number of units in the layer. The first replacement happens a

few steps after m+ 1. At that point, one unit is replaced and n− 1 units are eligible

for replacement.

Figure 6.1 shows the evolution of ne for a wide range of values of replacement rate,

ρ and maturity threshold, m. In all cases, the number of units in the layer is 1000.

The figure shows an interesting trend; after some initial oscillation, ne plateaus at

some value. In continual learning, the initial oscillation does not matter as much.

The most important thing in the long term is the value at which ne plateaus.

Finding the stable value of ne is not difficult. At the stable point of ne, the size

of the pool of ineligible units in the layer stays stable. This means that the rate at

which new units are added to the pool must equal the rate at which units leave the

pool. New units continually join the pool of ineligible units because their age is zero,

and they are protected from replacement. They are added to the pool at a rate of

ne ∗ ρ per step.

59

Step Number

Number of
eligible
units

Figure 6.1: The evolution of ne for a wide range of hyperparameters ρ and m of con-
tinual backpropagation. For some settings of hyperparameters ne oscillates initially.
But for all hyperparameters ne eventually plateaus at some value.

60

A unit leaves the pool when its age becomes larger than m. Note that once the

process reaches the equilibrium, the age of units in the pool is uniformly distributed

between 0 and m, and at every step, the age of 1
m

fraction of the pool becomes larger

than m. Because the size of the pool is n− ne, the rate at which units leave the pool

is n−ne

m
. Equating the rate of new units joining the pool and older units leaving the

pool of ineligible units gives us,

ne ∗ ρ =
n− ne

m
(6.2)

m ∗ ne ∗ ρ = n− ne

ne(1 +m ∗ ρ) = n

ne =
n

1 +m ∗ ρ
(6.3)

Equation 6.3 describes the stable value of ne in terms of hyperparameters ρ and

m. When m ∗ ρ is significantly smaller than one, ne is very close to n, meaning that

almost all the units in the layer are eligible at the given step. On the other hand,

if m ∗ ρ is close to one, then ne is much smaller than n, meaning that a significant

fraction of the units are protected at that step. The stable value of ne given by the

equation 6.3 also matches the empirical values observed in Figure 6.1. For example,

for m = 100 and ρ = 10−5, ne plateaus at 999. Similarly, for m = 5000 and ρ = 10−3,

ne plateaus at 167, which is approximately equal to 1000/(1 + 5000 ∗ 10−3).

Different values of ne and m give rise to very different behaviors of continual

backpropagation. On the one extreme, ne can be almost equal to n, as in the top

left panel of Figure 6.1. This happens when m ∗ ρ is significantly smaller than one.

In such cases, m is generally small and new units do not have enough time to grow

their outgoing weights before they become eligible for reinitialization. Meaning they

generally have the lowest utility (see Equation 6.1) when the time comes to reinitialize

a unit. The only other type of units that can be reinitialized in this case are dormant

units because they have small utility due to low activity. In this case, when the

61

Mature/Eligible units, ne New (protected)
units, n - ne

Mature/eligible units, ne New (protected)
units, n - ne

Figure 6.2: A graphical depiction of two behaviours of continual backpropagation.
Top: m ∗ ρ is small and very few units are protected. In such a case, generally, m
is also small, and the algorithm only reinitializes low utility units like dormant ones.
Bottom: m ∗ ρ equals one, and half of the units are protected from replacement. In
such a case, m is generally large, and the algorithm performs an aggressive search
process where units with non-negligible utilities can be reintialized.

algorithm has to reinitialize a unit, it is either a dormant unit or the youngest unit.

If there are no dormant units, the youngest unit can keep getting reinitialized, and

the algorithm has minimal impact on the network.

Another interesting case is when continual backpropagation leads to an aggressive

search process. This happens when m∗ρ is close to one, for example, m = 10, 000 and

ρ = 10−4. In this case, half of the units in the layer are protected, and half are eligible

for reinitialization; see Figure 6.2 for a depiction. In such cases, m is typically large

and new units have enough time to grow their outgoing weights to have large utilities.

In this case, when a unit is reinitialized, it often has non-negligible utility. This means

62

that the threshold for a unit not to be reinitialized is much higher. This behaviour and

setting of hyperparameters of continual backpropagation are particularly powerful in

reinforcement learning problems, as we will see in the next chapter.

6.3 Evaluating Continual Backpropagation

In this section, we evaluate continual backpropagation on all the problems where we

observed loss of plasticity in Chapter 4. We start with the Online Permuted MNIST

problem, where we apply continual backpropagation to a feed-forward network as

described in Algorithm 1.

For the Continual ImageNet problem, we apply continual backpropagation to a

convolutional network. When using continual backpropagation for a convolutional

network, we treat each convolutional filter similar to how we treat a unit in a feed-

forward network. The key difference between a unit in a feed-forward network and a

convolutional filter is that a unit outputs one number while a filter outputs a matrix.

We define the instantaneous utility of a convolution filter as the product of the sum of

absolute values in its output matrix and the sum of the absolute values in its outgoing

weights. In a convolutional network, the contribution-utility, ul[i], of the ith filter in

layer l at time t is updated as

ul[i]← η ∗ ul[i] + (1− η) ∗
M∑︂

m=1

N∑︂
n=1

|Hl,t[i,m, n]| ∗
∑︂
k

|Wl,t[i, k]|, (6.4)

where Hl,i,t is the output of the i
th filter in layer l at time t, M and N are the number

of rows and columns of H respectively, Wl,t[i, k] is the kth outgoing weight of the

filter. Note that this equation is equivalent to Equation 6.1, but for convolutional

filters.

Finally, we apply continual backpropagation to a residual network in CIFAR 100.

The residual consists of convolutional filters and skip connections that cross over

multiple layers in the network. To apply continual backpropagation to the residual

63

91

92

93

94

95

96

0 200 400 600 800

Percent Correct
on MNIST
(averaged over 30 runs)

Task Number

Backpropagation

Continual Backpropagation

Dropout

Shrink and Perturb

L2-Regularization

Online Norm

Adam

Figure 6.3: The online classification accuracy of various algorithms on Online Per-
muted MNIST. The performance of all algorithms except continual backpropagation
degrades over time.

network, we treat convolutional filters as discussed above and ignore skip connections

because they do not have a learnable weight but rather a constant weight of one.

In Online Permuted MNIST, we used the same network as in Section 4.3. This

network had 3 hidden layers with 2000 units each. We used SGD with a step-size of

0.003 to train this network, as it was the best performing step-size with backpropaga-

tion in Figure 4.2. For continual backpropagation, we show the online classification

accuracy for various values of replacement rates and a fixed maturity threshold of 100.

As we saw in the previous section, replacement rate controls how rapidly units are

reinitialized in the network. For example, a replacement rate of 10−6 and maturity

threshold of 100 for our network with 2000 hidden units in each layer would mean

replacing one unit in each layer after every 501 examples. The online classification

accuracy of continual backpropagation on Online Permuted MNIST is presented in

Figure 6.3. Among all the algorithms, only continual backpropagation and Shrink

and Perturb have non-degrading performance. Additionally, continual backpropaga-

tion is stable for a wide range of replacement rates as shown in Figure 6.4. Both

continual backpropagation and Shrink and Perturb enable small weight magnitudes

64

91

92

93

94

95

96

Percent Correct
on MNIST
(averaged over 30 runs)

Task Number

Replacement rate: 1e-6

Replacement rate: 1e-5
Replacement rate: 1e-4

Figure 6.4: The performance of continual backpropagation for a wide range of re-
placement rates on Online Permuted MNIST. Continual backpropagation maintains
a good level of performance for a wide range of replacement rates.

and diversity of representation by their design.

Let us take a deeper look at the network that is learning via continual backprop-

agation. The evolution of the correlates of loss of plasticity is shown in Figure 6.5.

Continual backpropagation mitigates all three correlates of loss of plasticity. It has

almost no dead units, stops the network weights from growing, and maintains a high

effective rank across tasks. All algorithms that stop the weights from growing re-

duced loss of plasticity. This supports our claim that low weight magnitudes are

important for maintaining plasticity. The algorithms that maintain low weight mag-

nitudes were continual backpropagation, L2-regularization, and Shrink and Perturb.

Shrink and Perturb and continual backpropagation have an additional advantage over

L2-regularization: they inject randomness into the network. This injection of ran-

domness leads to a higher effective rank and lower number of dead units, which leads

to these algorithms outperforming L2-regularization. However, continual backprop-

agation injects randomness selectively, effectively removing all dead units from the

network and leading to a higher effective rank. The smaller number of dead units and

higher effective rank explains the better performance of continual backpropagation.

65

0

30

40

50

20

10

60

70

0 200 400 600 800

Effective Rank
(Computed before each task, Scaled to [0,100])

Backpropagation

Dropout

Shrink and Perturb

L2-Regularization

Online Norm

0

10

20

50

30

40

0 200 400 600 800

Percent of Dead Units
(Computed before each task)

Backpropagation

Continual Backpropagation

Dropout

Shrink and Perturb

L2-Regularization

0.00

0.02

0.04

0.06

0.08

0.10

0 200 400 600 800

Weight Magnitude
(Average over all weights)

Task Number

Backpropagation

Dropout

Shrink and Perturb L2-Regularization

Online Norm

Adam

Adam

Adam

Continual Backpropagation

Online Norm

Continual Backpropagation

Figure 6.5: A deeper look into various qualities of a deep network on Online Permuted
MNIST using different algorithms. Top Left: Over time, the percentage of dead
units increases in all methods except for continual backpropagation. It has almost
zero dead units throughout learning, and this happens because dead units have zero
utility so they are quickly reinitialized. Top Right: The average magnitude of the
weights increases over time for all methods except for L2-Regularization, Shrink and
Perturb, and continual backpropagation. And, these are the three best-performing
methods. This means that non-increasing weights are important for maintaining
plasticity. Bottom: The effective rank of the representation of all methods drops over
time. However, continual backpropagation maintains a higher effective rank than both
backpropagation and Shrink and Perturb. Among all the algorithms only continual
backpropagation maintains a high effective rank, non-increasing weight magnitude,
and low percent of dead units.

66

Accuracy on the test set

50 2,500 5,000
82%

84%

86%

88%

90%

92%
Continual backpropagation Continual backpropagation

L2 regularization
L2 regularization

Shrink and perturb

Shrink and perturb

Backpropagation Backpropagation

Online training accuracy

50 2,500 5,000
99%

99.5%

100%

Task number (bins of 50)

Figure 6.6: Continual backpropagation outperforms many commonly used algorithms
and fully maintains plasticity on Continual ImageNet. It performs well on the test set
as well as the training data. Its performance at the end of 5000 tasks is even better
than on the first task.

Then we tested continual backpropagation on Continual ImageNet. We also tried

L2 regularization, and Shrink and Perturb on Continual ImageNet, as these are the

only two methods that reduced loss of plasticity in Permuted MNIST. For all algo-

rithms, we present the performance of the hyperparameter value that had the largest

average classification accuracy on the test set over 5000 tasks. The classification ac-

curacy on the test set of various algorithms on Continual ImageNet is shown in the

left panel of Figure 6.6. And the online training accuracy is shown in the right panel

of Figure 6.6. The results are averaged over thirty runs.

The first point in Figure 6.6 is the average accuracy on the first 50 tasks; the next

is the average accuracy over the next 50 tasks, and so on. For continual backpropa-

gation, we used a maturity threshold of 100 and a replacement rate of 3 ∗ 10−4. The

details of hyperparameters for all other algorithms and their selection procedure are

described in Table B.1 in Appendix B.

Continual backpropagation fully mitigates the loss of plasticity in Continual Ima-

geNet. Its classification accuracy on the test set of the 5000th task is better than on

67

Retrained Network

75%

80%

85%

90%

95%
Base deep-learning

system with
continual backpropagation

Base deep-learning
system with

continual backpropagation

Base deep-learning
system with

shrink and perturb

Base deep-learning
system with

shrink and perturb

Base deep-learning
system

Base deep-learning
system

2%

0%

-2%

-4%

Accuracy on the test set
relative to retrained network

Online training accuracy

5 550 50100 100

Number of classes

Figure 6.7: Continual backpropagation fully maintains plasticity on class-incremental
CIFAR-100. Left: Its accuracy on the test set at the end of each increment is always
better than or equal to that of a network trained from scratch. Right: Its online
training accuracy is better than the network trained from scratch. Online training
accuracy captures the speed of learning in addition to the final accuracy. The higher
online training accuracy of continual backpropagation means that continual back-
propagation learns faster than the network trained from scratch and has about 2%
higher online training accuracy. All results are averaged over 30 runs and the shaded
region represents plus and minus one standard error.

the first. It also outperforms existing techniques like L2-regularization and Shrink and

Perturb. Additionally, by the 5000th task it also has the hightest average accuracy

during training.

Finally, we applied continual backpropagation with a residual network in class-

incremental CIFAR-100. Figure 6.7 shows the performance of various algorithms on

class-incremental CIFAR-100. Among all the algorithms, only continual backprop-

agation maintains plasticity, while all other algorithms lose plasticity (left panel of

Figure 6.7). The right panel of Figure 6.7 shows the online training accuracy of all

algorithms. Continual backpropagation has about 2% higher online training accuracy

than the retrained network. Online training accuracy captures the speed of learning

of an algorithm. Continual backpropagation learns faster than the network trained

68

5

Number of classes

50 100

-2%

-1%

+1%

+2%

Accuracy
relative to network
trained from scratch

Replacement rate: 1e-5

Replacement rate: 1e-6
Replacement rate: 1e-4

Figure 6.8: Continual backpropagation performs well for a wide range of replacement
rates on class-incremental CIFAR-100. All results are averaged over 30 runs and the
shaded region represents plus and minus one standard error.

from scratch, even though they both have the same final performance. In Figure 6.8,

we show the performance of continual backpropagation for various values of replace-

ment rate. It performs well for all values of replacement rate. However, only for a

replacement rate of 10−5, it performed better than the network trained from scratch.

We found that maturity threshold of 1000 performed best in this problem.

We took a deeper look at the network trained by continual backpropagation in

Figure 6.9. The blue lines in the Figure show the evolution of percentage of dormant

units and the stable rank of the representation of the network trained by continual

backpropagation. In continual backpropagation has almost no dead units and it

maintains a high stable rank throughout learning.

In this section, we evaluated continual backpropagation and found that it fully

maintains plasticity in Continual ImageNet, Online Permuted MNIST, and class-

incremental CIFAR-100. Continual backpropagation outperforms all the existing

methods on all three continual learning problems. It is much less sensitive to its

69

5 50 100
Number of classes

50

40

30

20

10

0

Percentage of dormant units

Base deep-learning
 system

Base deep-learning
system With

shrink and perturb

Base deep-learning
system with

continual backpropagation Base deep-learning
 system

95

90

85

80

75

5 50 100
Number of classes

Stable rank of the representation
scaled between 0 and 100

Base deep-learning
system with

shrink and perturb

Base deep-learning
system with

continual backpropagation

Figure 6.9: Continual backpropagation fully maintains plasticity on class-incremental
CIFAR-100. Additionally, it has almost no dead units and it maintain a high stable
rank.

hyperparameters than other algorithms like L2-regularization and Shrink and Per-

turb. It also mitigates all three correlates of plasticity as it maintains a low average

weight magnitude, a very small percentage of dead units, and a high effective rank.

The results in this section are consistent with the idea that non-increasing weights

are important for maintaining plasticity and that a continual injection of variability

further mitigates loss of plasticity. Although Shrink and Perturb adds variability to

all weights, continual backpropagation does so selectively, which seems to make it

better at maintain plasticity.

6.4 Discussion of Other Plasticity Preserving

Algorithms

The key idea behind continual backpropagation is to maintain plasticity by selectively

reinitializing units in the network. In the last few years, some work has built on this

idea and developed new algorithms for finding low utility units (Sokar et al., 2023;

Farias and Jozefiak, 2025; Liu et al., 2025). Sokar et al. (2023) proposed an algorithm

70

that reinitialize units with low activity. In their case, a unit is considered to have low

activity if its average activation is smaller than some small fraction of the average

activation in the layer. They showed that their proposed algorithm can significantly

improve the final performance and sample efficiency of deep reinforcement learning

algorithms. Recent work by Liu et al. (2025) shows that low activation might not be

a good indication of the low utility of a unit in complex network architectures that

involve normalization layers and non-ReLU activations. Instead, they show that a

small incoming gradient is a better indicator of low utility and that reinitializing units

with relatively small incoming gradients effectively maintains plasticity with complex

network architectures.

Farias and Jozefiak (2025) developed a new idea for selecting units for reinitial-

ization. In continual backpropagation, a unit is compared to other units in the layer

to decide if it should be reinitialized. However, the method developed by Farias and

Jozefiak (2025) compares units to their past selves. The key idea behind their algo-

rithm is to increase the resetting probability of a unit if its activity drops over time.

Their experiments show that their algorithm can be more effective at maintaining

plasticity in continual supervised learning problems than continual backpropagation

and other methods designed for maintaining plasticity. Additionally, they theoret-

ically analyze a simple case where the goal is to learn a target ReLU. They show

that their reinitializing algorithm can learn continually learn a sequence of target

ReLUs. However, even with L2 regularization, gradient descent can sometimes fail.

However, the algorithm they used requires keeping track of a large window of past

feature activations to maintain the distribution of inter-firing times. This results in a

memory complexity of O(w ∗ l) for their algorithm, where w represents the width of

the network and l denotes the length of the window. In supervised learning experi-

ments, they used window lengths of a few thousand, making the memory requirement

of the window much larger than that of the network. There is an approximate version

of the algorithm with memory complexity O(w). In the next chapter, we compare

71

this approximate version with continual backpropagation in a reinforcement learning

environment.

One natural variation of the idea of selectively reinitializing units is to be more

granular and selectively reinitialize weights. Extending the idea of reinitializing units

to attention layers in transformer models is non-trivial, which means that continual

backpropagation can not be applied to the full transformer models. Hernandez-Garcia

et al. (2025) developed a new algorithm for reinitializing weights for maintaining

plasticity. Their algorithm performs about as well as continual backpropagation with

residual networks and successfully maintains plasticity with transformer models. Con-

currently, Hofmann et al. (2025) showed that selective weight reinitialization could

be a useful addition even in stationary settings.

Continual backpropagation continually injects randomness into the network. The

idea of continually injecting randomness in present in deep learning in the form of

perturb gradient descent (Jin et al., 2017). This algorithm adds random noise to the

weights at each step. Shrink and Perturb (Ash and Adams, 2020) extends the idea of

perturb gradient descent to continual learning problems. The key difference between

these algorithms and continual backpropagation is that continual backpropagation

injects randomness selectively, and the magnitude of randomness is larger. As we have

seen in this thesis, Shrink and Perturb can effectively maintain plasticity. Galashov

et al. (2024) developed a new version of the Shrink and Perturb algorithm where

the amount of randomness added to each weight in the network is controlled by a

variable which is continually learned from the data stream. Their results show that

their method can outperform Shrink and Perturb as well as many other plasticity-

preserving algorithms. This idea could be extended to continual backpropagation to

adapt its hyperparameters to the changes in the data stream.

In settings where the learning system has a large memory and can store old data,

one of the most straightforward ways to maintain plasticity is to reset the entire net-

work or large parts of it. One such setting is deep reinforcement learning, where large

72

replay buffers allow the agent to store a large part of its old experience. In reinforce-

ment learning, the idea of periodically resetting the network has proven to be very

powerful in the last few years. Many papers have shown that resetting the network

can dramatically improve the sample efficiency and the final performance of reinforce-

ment learning agents (Nikishin et al., 2022, 2023; D’Oro et al., 2023; Schwarzer et al.,

2023). However, these methods are limited to cases where large replay buffers are

available and are ineffective in cases where the learning system can not store a large

amount of old data.

Another class of methods that have been proposed to maintain plasticity involve

architectural changes. Abbas et al. (2023) showed that the concatenated ReLU acti-

vation can be very effective at maintaining plasticity in continual deep reinforcement

learning as the concatenated ReLU activation gets rid of dormant neurons by design.

A line of work by Lyle et al. (2023; 2024b; 2024a) shows that layer normalization

combined with well-tuned L2 regularization effectively maintains plasticity in a wide

range of continual learning problems. This is because L2 regularization ensures that

weights do not grow over time, and layer normalization can generally ensure no dor-

mant units in the network.

The last class of methods developed for maintaining plasticity involve different

types of regularization methods. Kumar et al. (2024) proposed the idea of regulariz-

ing toward the initial values of the weights to ensure that properties of initialization

are maintained throughout learning. They found that this method can be effective

in many continual supervised learning problems. Lewandowski et al. (2025a) devel-

oped spectral regularization, which forces the maximum singular value of each layer

to stay close to one. This ensures a diverse flow of gradients throughout the network.

They show that spectral regularization effectively maintains plasticity and generally

outperforms regularizing toward the initial values. Most recently, Chung et al. (2024)

proposed a regularization method that forces the weight of different units in the net-

work to remain orthogonal. This orthogonality ensures that the units remain diverse

73

throughout learning. They found that this regularization method outperforms many

other normalization and regularization algorithms in continual reinforcement learning,

including those based on layer normalization, Shrink and Perturb, and regularization

towards initialization. Their results suggest that diversity of representation is useful

for maintaining plasticity.

6.5 Discussing Related Ideas in Machine Learning

Previous works on the importance of initialization have focused on finding the correct

weight magnitude to initialize the weights. It has been shown that it is essential to

initialize the weights so that the gradients do not become exponentially small in the

initial layers of a network and the gradient is preserved across layers (He et al., 2015;

Glorot and Bengio, 2010). Furthermore, initialization with small weights is critical

for sigmoid activations as they may saturate if the weights are too large (Sutskever

et al., 2013). Despite all this work on the importance of initialization, the fact that

its benefits are only present initially but not continually has been overlooked, as these

papers focused on cases in which learning has to be done just once, not continually.

Continual backpropagation uses a utility measure to find and replace low-utility

units. One limitation of continual backpropagation is that the utility measure is based

on heuristics. Although it performs well, future work on more principled utility

measures will improve the foundations of continual backpropagation. Our current

utility measure is not a global measure of utility as it does not consider how a given

unit affects the overall represented function. One possibility is to develop utility

measures in which utility is propagated backwards from the loss function. The idea

of utility in continual backpropagation is closely related to connection utility in the

neural-network-pruning literature. Various papers (LeCun et al., 1989; Han et al.,

2016; Gale et al., 2019; Liu et al., 2020) have proposed different measures of connection

utility for the network-pruning problem. Adapting these utility measures to mitigate

loss of plasticity is a promising direction for new algorithms, and some recent work

74

by Elsayed and Mahmood (2024) has already made progress in this direction.

The idea of adding new units to neural networks is present in the continual-learning

literature (Yoon et al., 2018; Zhou et al., 2012; Rusu et al., 2016). This idea is

usually manifested in algorithms that dynamically increase the size of the network.

For example, one method (Rusu et al., 2016) expands the network by allocating

a new sub-network whenever there is a new task. These methods do not have an

upper limit on memory requirements. Although these methods are related to the

ideas in continual backpropagation, none are suitable for comparison, as continual

backpropagation is designed for learning systems with finite memory, which are well

suited for lifelong learning. And these methods would therefore require non-trivial

modification to apply to our setting of finite memory.

The idea of selective reinitialization is similar to the emerging idea of dynamic

sparse training (Mocanu et al., 2018; Bellec et al., 2018; Evci et al., 2020). In dy-

namic sparse training, a sparse network is trained from scratch and connections be-

tween different units are generated and removed during training. Removing connec-

tions requires a measure of utility, and the initialization of new connections requires

a generator similar to selective reinitialization. The main difference between dynamic

sparse training and continual backpropagation is that dynamic sparse training oper-

ates on connections between units, whereas continual backpropagation operates on

units. Consequently, the generator in dynamic sparse training must also decide which

new connections to grow. Dynamic sparse training has achieved promising results in

supervised and reinforcement-learning problems (Chen et al., 2021; Sokar et al., 2022;

Graesser et al., 2022), in which dynamic sparse net- works achieve performance close

to dense networks even at high sparsity levels. Dynamic sparse training is a promising

idea that can be useful to maintain plasticity.

One common strategy to deal with non-stationary data streams is reinitializing

the network entirely. In the Online Permuted MNIST experiment, full reinitialization

corresponds to a performance that stays at the level of the first point Figure 6.3.

75

In this case, continual backpropagation outperforms full reinitialization as it takes

advantage of what it has previously learned to speed up learning on new data. In

ImageNet experiments, the final performance of continual back- propagation is only

slightly better than a fully reinitialized network (the first point for backpropagation

in the left panel of Figure 6.6). However, Figure 6.6 does not show how fast an

algorithm reaches the final performance in each task. We observed that continual

backpropagation achieves the best accuracy ten times faster than a fully reinitial-

ized network on the 5,000th task of Continual ImageNet, ten epochs versus about

125 epochs. Furthermore, continual backpropagation could be combined with other

methods that mitigate forgetting, which can further speed up learning on new data.

Recent work by Verwimp et al. (2025) shows that the plasticity-preserving method

Shrink and Perturb significantly speeds up learning in later tasks. They show that

in some image classification problems, incrementally learning via Shrink and Perturb

can learn twice as fast as learning from scratch, leading to massive computational

savings.

Some recent works have focused on quickly adapting to the changes in the data

stream (Finn et al., 2017; Wang et al., 2017; Nagabandi et al., 2019). However, the

problem settings in these papers were offline as they had two separate phases, one

for learning and the other for evaluation. To use these methods online, they have to

be pretrained on tasks that represent tasks that the learner will encounter during the

online evaluation phase. This requirement of having access to representative tasks in

the pretraining phase is not realistic for lifelong learning systems as the real world

is non-stationary, and even the distribution of tasks can change over time. These

methods are not comparable with those we studied in our work, as we studied fully

online methods that do not require pretraining.

There are two main goals in continual learning: maintaining stability and main-

taining plasticity (Caruana, 1997; Ring, 1998; Parisi et al., 2019; Kumar et al., 2025).

Maintaining stability is concerned with memorizing useful information and main-

76

taining plasticity is about finding new useful information when the data distribution

changes. Current deep-learning methods struggle to maintain stability as they tend

to forget previously learned information (McCloskey and Cohen, 1989; French, 1999).

Many papers have been dedicated to maintaining stability in deep continual learning

(Kirkpatrick et al., 2017; Yoon et al., 2018; Aljundi et al., 2019; Golkar et al., 2019;

Riemer et al., 2019; Rajasegaran et al., 2019; Javed and White, 2019). We focused on

continually finding useful information, not on remembering useful information. Our

work on loss of plasticity is different but complementary to the work on maintaining

stability. Continual backpropagation in its current form does not tackle the forgetting

problem. Its current utility measure only considers the importance of units for cur-

rent data. One idea to tackle forgetting is to use a long-term measure of utility that

remembers which units were useful in the past. Developing methods that maintain

both stability and plasticity is an important direction for future work.

When continual backpropagation reinitializes a unit, its weights are randomly sam-

pled from a distribution. However, new weights can also be selected in other ways.

Prior work on representation search contains algorithms where new units are ini-

tialized in other ways (Holland and Reitman, 1977; Holland, 1992; Kaelbling, 1993;

Stanley and Miikkulainen, 2002; Whiteson and Stone, 2006). One idea is to initialize

new units that take pre-existing useful units as inputs and create a non-linear combi-

nation of them (Kaelbling, 1993). Another idea is to create new units as variants of

original units (Holland and Reitman, 1977; Stanley and Miikkulainen, 2002). In our

context, one limitation of these works is that they do not use artificial neural net-

works, but rather some other form of representation units. Recent work has already

shown promising results for generating new features that use existing useful features

as inputs in artificial neural networks (Javed, 2025). Further exploring these ideas

for smarter generation of new units with continual backpropagation is a promising

direction for future work.

Continual backpropagation injects randomness into the network and performs a

77

type of search process in the space of representation units. The idea of searching

through a trial-and-error process is widespread in sciences. Perhaps the most famous

version of this idea is the field of natural evolution, where evolution is best thought of

as selective survival of off-springs who are random variants of their parent(s) (Darwin,

1859). This idea is also present in fields of psychology and behavior (Thorndike, 1911;

Campbell, 1960; Dennett, 1975). Solution methods for stochastic approximation and

optimization also use variations of this ides (Kashyap et al., 1970; Powell, 1977).

Continual backpropagation is a version of this idea for artificial neural networks and

it opens many research directions to further refine this idea.

6.6 Discussing Connections to Neuroscience

Perhaps the most exciting connections to the ideas of continual backpropagation

are not in the machine learning literature but in neuroscience. Similar to continual

backpropagation, new biological neurons are born in adult brains, a phenomenon

called neurogenesis (Eriksson et al., 1998). New neurons created during neurogenesis

are highly plastic, and they are used to quickly learn new things (Altman, 1963;

Eriksson et al., 1998). A common view is that new neurons are used to learn new

things, while preserving old neurons and knowledge. This provides a way to balance

plasticity with stability (Aimone et al., 2010). In contrast, continual backpropagation,

in its current form, does not provide a way to preserve old knowledge. However, it is

possible that new methods can be developed that also preserve old artificial neurons

and knowledge based on some utility metric to balance plasticity with stability.

Power law remembering (Fusi et al., 2005; Benna and Fusi, 2016) in neuroscience

provides interesting directions to maintain both plasticity and stability in artificial

neural networks. The cascade model by Fusi et al. (2005) proposes that each synapse

has multiple weights, instead of a single weight. There are shallow weights that are

highly adaptive to new information, and there are deeper weights that change much

more slowly and are robust to catastrophic forgetting. Some ideas from continual

78

backpropagation can be used along with the cascade model to maintain both plasticity

and stability in continual learning. Low-utility shallow weights can be reset using a

continual backpropagation type method to inject plasticity into the network, while the

cascading of information through different weights can slowly accumulate knowledge

in deeper weights.

Continual backpropagation and Shrink and Perturb perform operations that are

largely independent of the input. There is evidence that synapses, which are similar to

weights in artificial neural networks, in some parts of the brain change independently

of any signal (Ziv and Brenner, 2018). A large fraction of the synapses reset every

day. Some estimates suggest resetting can be as significant as 1-3% per day (Kasai

et al., 2021). Some of the synapses change through a process that is surprisingly

similar to the Shrink and Perturb algorithm (Kasai et al., 2021). The purpose of

resetting and Shrink and Perturb in the brain is unclear. There are ongoing efforts to

test if these processes help with plasticity. If it is found that resetting and Shrink and

Perturb in the brain help with maintaining plasticity, it would be a great example of

the synergy between the fields of neuroscience and artificial intelligence. And perhaps

it would mean that continually doing similar computations is a fundamental principle

underlying intelligence.

6.7 Conclusion

In this chapter, we presented and evaluated the continual backpropagation algorithm.

Continual backpropagation combines gradient descent with selective reinitialization.

The results show that continual backpropagation, and to some extent Shrink and

Perturb, enable artificial neural networks to maintain plasticity. Continual back-

propagation and Shrink and Perturb add a source of randomness into the network,

which was absent in standard deep learning. This randomness mitigates the three

correlates of loss of plasticity that we found in Chapter 4 and maintains plasticity

in all problems. Furthermore, we saw that continual backpropagation learns faster

79

than the retrained network on class-incremental CIFAR-100. We saw two different

behaviors of continual backpropagation, where, depending on its hyperparameters, it

acts as an algorithm that reinitializes dormant units or performs an aggressive search

process. The selective reinitialization of continual backpropagation can be thought of

as a search process in the space of representation units. Continual backpropagation

builds on a long line of work on representation search in machine learning, bringing

this idea to modern deep learning (Selfridge, 1958; Mucciardi and Gose, 1966; Klopf

and Gose, 1969; Mahmood and Sutton, 2013). Continual backpropagation is the first

version of the idea of representation search in modern deep learning. Further develop-

ment of this idea can improve the effectiveness of modern deep learning in continual

learning problems.

80

Chapter 7

Plasticity Loss in on-policy Deep
Reinforcement Learning

This thesis has focused on the loss of plasticity in continual supervised learning

problems because it is the simplest setting where we can establish and study the

phenomenon of loss of plasticity without encountering other confounders. However,

continual learning is perhaps more natural for reinforcement learning. In many rein-

forcement learning problems, it is natural to expect the environment to change over

time. Additionally, the agent’s behaviour changes over time as it learns to get more

reward. This makes the agent’s data stream non-stationary even if the environment

does not change. Furthermore, modern reinforcement learning generally uses tempo-

ral difference learning methods where the target for learning is also a learned quantity,

which further necessitates continual learning. For these reasons, it is important to

study the phenomenon of loss of plasticity in reinforcement learning.

In this chapter, we study the phenomenon of policy collapse and its connection

with loss of plasticity. Policy collapse refers to the phenomenon where the learned

policy can dramatically worsen after some initial training as the agent continues to

interact with the environment. We focus on on-policy reinforcement learning algo-

rithms as they typically use the least amount of additional memory which makes

them most susceptible to loss of plasticity. Particularly, we study the PPO algorithm

(Schulman et al., 2017). In this chapter, we first demonstrate policy collapse in a

81

Mujoco environment, and then we take a deep dive into the phenomenon in a 2-state

MDP. Finally, we study algorithms to overcome the policy collapse and explore its

connection to loss of plasticity.

7.1 Policy Collapse

AI systems that take advantage of available data and computation tend to outperform

systems that do not (Sutton, 2019). Historically, in games like Chess and Go, sys-

tems that utilize the available data and computation have defeated all other systems

(Campbell et al., 2002; Silver et al., 2016). Most recently, large language models like

GPT-4 (OpenAI, 2023) have dramatically outperformed previous natural language

processing systems, primarily due to the amount of data and computation used by

them. The need to improve performance with data is particularly relevant for rein-

forcement learning systems (Sutton and Barto, 2018) as they experience a potentially

unending data stream.

Unfortunately, the performance of many existing deep reinforcement learning al-

gorithms does not always improve with more experience. The policy learned by these

algorithms can dramatically worsen as the agent continues interacting with the en-

vironment, a phenomenon we call policy collapse. The evidence of policy collapse

is scattered throughout the reinforcement learning literature. For instance, policy

collapse can be observed in several reinforcement learning algorithms such as DQN,

PPO, and DDPG, as shown in papers by Schaul et al. (2016, Figure 7), Henderson

et al. (2018, Figure 2), and Tassa et al. (2018, Figure 4), respectively.

Although we can observe policy collapse in several papers, it has not been pointed

out and studied in the literature. As the first step, we now establish that policy

collapse can occur in the widely used Proximal Policy Optimization (PPO) algorithm.

Its variants have been used in many applications ranging from robotics (OpenAI et al.,

2019) to post-training of large language models to improve their reasoning capabilities

(DeepSeek-AI, 2025). Additionally, PPO is computationally cheap, allowing us to

82

0 25M 50M
0

2,000

4,000

Ant-v3

Standard PPO

Total
episodic
reward

Time Step

Figure 7.1: PPO on Ant-v3. After initial learning, the policy learned by PPO kept
degrading, and its performance dropped below what it was in the beginning. PPO
did not scale with experience because instead of improving, its performance decreased
with more experience. These results are averaged over 30 runs. The solid lines repre-
sent the mean, and the shaded regions correspond to a 95% bootstrapped confidence
interval.

perform thorough and long experiments.

In the first experiment, we test if PPO scales with experience on a standard Mu-

joco environment, Ant-v3. Usually, PPO is only trained for 1-3 million time steps

on Mujoco environments. However, we ran PPO with standard setting of its hy-

perparameters for 50M time steps. Two separate networks were used for the policy

and the value function, and both had two hidden layers with 256 units. We used

the undiscounted episodic return as the measure of performance. The results of the

experiments are shown in Figure 7.1.

The x-axis in the plots is the time step, and the y-axis is the undiscounted episodic

return in bins of 100k times steps. The first points in the plots are the average return

for the episodes in the first 100k time steps, and the next point is the average return

83

for the episodes in the next 100k time steps and so on. We performed 30 independent

runs, and the shaded region shows the 95% bootstrapped confidence interval. In all

experiments in this chapter, we report the 95% bootstrapped confidence interval as

recommended by Patterson et al. (2024) for reinforcement learning problems.

The performance of PPO improved for the first few million time steps, then it hit a

plateau, and finally, it dropped to a level below what it had in the beginning. Another

thing to note is that once the performance dropped, it did not improve, suggesting

that the agent might have lost plasticity, which is the ability to learn new things.

These results mean that PPO does not scale with experience as its performance

degrades instead of improving. It point out a major problem with PPO: it is not

stable during training, and its scalability is limited due to policy collapse.

7.2 A Deeper Look at Policy Collapse in a 2-state

MDP

To overcome policy collapse, we first need to understand what happens to the learn-

ing agent when the policy collapses. However, fully understanding policy collapse in

modern deep reinforcement learning algorithms in standard environments is difficult

because deep reinforcement learning algorithms have many interacting parts, such as

bootstrapping, off-policy learning, function approximation, exploration, and changing

policy. Additionally, modern deep reinforcement learning algorithms have dozens of

hyper-parameters, and a wrong setting of any one of them could be causing policy

collapse. To make matters worse, the environments where deep reinforcement learn-

ing algorithms are tested are extremely complicated and computationally expensive,

which makes it impossible to do a full grid search over the hyperparameter space.

In this section we explore policy collapse in a simple MDP. The MDP consists of

two states, the agent can take two actions, left and right, in both states. Both actions

take the agent to the terminal state. However, the reward associated with each action

is different. The MDP is shown in Figure 7.2A. After termination, the agent starts

84

U

L

TT

Right, 1

Right, 0

Left, 0

Left, 2

[1, 0]

[0, 1] Inputs

Softmax

Network
output

A) A 2-state MDP B) Policy learning network

Hidden unit
(tanh)

Figure 7.2: Left: A 2-state MDP. Right: The network used by the learning agent to
represent the policy.

with equal probability in both states. There are four deterministic policies for this

MDP, and the best one is to choose the right action in state U and left action in

state L. The expected return for optimal policy is 1.5, while for other deterministic

policies, it is 1.0, 0.5, and 0.0.

We trained an agent using PPO on this MDP. The agent used a neural network

to learn a policy. The neural network had one hidden layer with one unit and tanh

activation. The input to the network is a two-dimensional vector, which is [1, 0] when

the agent is in state U and [0, 1] when the agent is in state L. The action probabilities

are obtained by passing the network outputs into a softmax operator. Figure 7.2B

shows the policy learning network. The agent used a different network with one

hidden layer and one hidden unit to learn a value function for the current policy.

We use the expected return as the performance measure in this experiment. Be-

cause we have access to the entire state space, we can calculate the exact expected

return instead of approximating it using the actual return. We performed 500 inde-

pendent runs for this experiment. The results are shown in Figure 7.3.

85

50k25k0
1.3

1.5

Expected
 Return

(500 runs) PPO

Time Step

2-state MDP

Figure 7.3: The performance of PPO on the 2-state MDP. A 2-dimensional vector
represents the states of the MDP. When PPO learns using the network shown in
Figure 7.2B, it lacks stability, and its performance degrades as the agent continues
interacting in the MDP.

The performance of PPO in Figure 7.3 follows the same trend as its performance

in the Mujoco environments. The performance of PPO improves at first, then it

plateaus at a high level and finally drops. There are two notable things when we look

at an individual run of PPO in Figure 7.4A. First, the agent gets stuck at different

sub-optimal policies. And second, the learned policy is very unstable. It fluctuates

rapidly between different policies.

The agent uses a neural network and a softmax policy parameterization. As the

optimal policy is deterministic, the optimal values of the weights have infinite mag-

nitude. This means that the gradient will force the outgoing weights in the network

to grow. The probability of taking a different action will decrease exponentially as

the weights increase. Once the weights become large enough, the agent almost never

takes an exploratory action. Figure 7.4B shows the evolution of the outgoing weights

of the policy network, as suspected, the weights kept increasing over time. The large

86

magnitude of outgoing weights explains why the learned policy gets stuck at different

deterministic policies.

The sudden jumps in the policy in Figure 7.4A suggest that there might be sudden

large changes in the representation provided by the single hidden unit. Figure 7.4C

provides evidence for this hypothesis. Figure 7.4C shows the absolute difference in

the output of the hidden unit for the two states. Let’s call the output of the hidden

unit for a given state the representation of the state. Note that when the difference

in the representation of the two states is small, the states will look similar to the

final layer. Figure 7.4 shows that sudden jumps in the policy happen whenever the

difference in the state representation changes dramatically. The sudden changes in

the representation should follow large changes in the input weights, which we observe

in Figure 7.4D. Figure 7.4E shows the average magnitude of the gradients of the input

layer. Perhaps surprisingly, there are large changes in the input weights even when

the gradient is small, such as at step 17495.

The large updates, even when the gradient is small, are due to the Adam optimizer.

Adam keeps running averages of the first and second moments of the gradient. The

averages use β1 and β2 to control the importance of recent gradients in the average. In

this experiment, we set β1 = 0.9 and β2 = 0.999, which are the most commonly used

values of βs in deep reinforcement learning. In the individual run, when the policy

changes at time step 17495, there is a sudden non-zero gradient. The sudden non-zero

gradient happened because the agent took an exploratory action. Assuming that the

gradient before and after time step 17495 is exactly zero, then during the next ten

updates, these values of β1 and β2 would lead to an update that is 20 times larger

than the gradient That is because the first update will be 3.16 times the gradient,

and the future updates will decay by a factor of 0.9 (β1), as β2 is very large. This

large weight change, even when the gradient was small, can lead to a large change in

the policy, which explains why the learned policy fluctuates so abruptly.

Policy collapse in the 2-state MDP gave us various insights into the phenomenon.

87

50k25k0

0.5

1

1.5

17495

A) Expected Return

Time step

50k25k0
0

4

8

17495

B) Mean Outgoing weight
magnitude

6

2

50k25k0
0

1

2

17495

C) Magnitude of difference in the
 representation of two states

1.5

0.5

50k25k0
0

.2

17495

D) Average change in the
magnitude of input weights

.3

.1

50k25k0
0

.08

17495

E) Average magnitude of
gradient of input weights

.12

.04

Figure 7.4: A deep look at one specific run of PPO on the 2-state MDP. Figures
plot the evolution of different quantities. The magnitude of the output weights of
the network kept increasing (Figure B) because the optima lie at infinity, making it
difficult to try exploratory actions. Once the representation of the two states became
sufficiently similar, at time step 17495 (Figure C), the agent kept taking the same
action in both states. This resulted in the agent getting stuck at a sub-optimal policy
(Figure A). The sudden large changes in input weights (Figure D) caused sudden
large changes in the representation and the learned policy. These large changes were
caused by the standard use of the Adam optimizer, which caused large weight changes
even when the gradient was small (Figure E).

88

We learned that the agent gets stuck at sub-optimal policies when the representation

does not separate the two states and outgoing weights become too large. And we

found that the instability in PPO is due to the standard use of Adam (β1 = 0.9,

β2 = 0.999), which caused sudden changes in the policy even when the gradient was

small. These sudden changes caused the agent to forget the previously learned policy.

This instability caused by the standard use of Adam could be the reason why Adam

has been observed to cause more forgetting than SGD (Ashley et al., 2021). Similar

to our analysis, Lyle et al. (2023) found that the standard use of Adam causes issues

learning from a non-stationary stream of data. They showed that standard use of

Adam worsens the loss of plasticity. In complement to that, we showed that the

standard use of Adam also causes forgetting.

7.3 Reducing Policy Collapse with Tuned Adam

Insights from policy collapse in the 2-state MDP guide us towards a potential solution

to policy collapse. If we can tackle the problem of larger-than-intended updates, we

might be able to mitigate the issue of policy collapse. Lyle et al. (2023) suggested

using equal values for β1 and β2. Recall that these parameters control the rate of the

running averages for the first and second moments of the gradient. We call Adam

with equal values for β1 and β2 tuned Adam.

First, we tested if PPO with tuned Adam can overcome policy collapse in the

2-state MDP. The experiment design and hyperparameters were the same as in the

previous section. For tuned Adam, we kept β1 = β2 and tried values of 0.9, 0.99, 0.999,

and found that β1 = β2 = 0.99 performed best in this problem. We conducted 500

independent runs on this problem. The results are plotted in Figure 7.5. The shaded

region in the graph shows the 95% boot-strapped confidence interval.

The data in Figure 7.5 shows that PPO with tuned Adam can maintain a good

level of performance. Tuned Adam mitigated policy collapse with PPO in the 2-state

MDP. Note that the performance of PPO with tuned Adam was stable. This is not

89

surprising as tuned Adam fixes the source of instability. Although it gets to a high

level of performance, it does not find the optimal policy, a return of 1.5, in all runs,

as its average performance is about 1.48.

We now test if tuned Adam can overcome policy collapse in the Ant environment.

The experiment design is the same as in Section 7.1. The results of this experiment

are shown in Figure 7.6. The data in Figure 7.6 shows the PPO with tuned Adam

performs significantly better than standard PPO, but even its performance worsens

after initial improvement.

To verify if tuned Adam has a similar effect of stabilizing learning in the Ant

environment, we measured the the largest total weight change in the network during a

single update cycle for bins of 1M steps. We plot this quantity in Figure 7.7. The first

50k25k0
1.3

1.5

Expected
 Return

(500 runs) PPO

PPO with tuned Adam

Time Step

2-state MDP

Figure 7.5: PPO with tuned Adam on the 2-state MDP. Tuned Adam uses the same
rate for keeping the averages for the first and second moments of the gradient. Tuned
Adam successfully mitigate policy collapse.Although, there is still room for improve-
ment as neither algorithm gets to the optimal policy (return of 1.5) in all runs.

90

0 25M 50M0

2,000

4,000

Standard PPO

PPO with tuned Adam

Time Step

Total
episodic
reward

Ant-v3

Figure 7.6: PPO with tuned Adam on Ant-v3. Tuned Adam substantially improves
the performance of PPO, but there is still a significant drop in performance over time.
These results are averaged over 30 runs. The solid lines represent the mean, and the
shaded regions correspond to a 95% bootstrapped confidence interval.

point in the plots shows the largest total weight change during a single update cycle in

the first 1M steps. The second point shows the largest weight change in the network

during a single update cycle the second 1M steps and so on. The Figure 7.7 shows

that standard Adam consistently causes very large updates to the weights which can

destabilize learning, while tuned Adam with β1 = β2 = 0.99 has significantly smaller

updates which leads to more stable learning. The failure of standard Adam with PPO

is similar to the failure of standard Adam in Permuted MNIST.

The failure of PPO with tuned Adam in the Ant problem suggests that there are

additional factors at play with the larger network in the Ant problem. We look deeper

into the policy networks in Figure 7.8. We plot the evolution of weight magnitudes,

dormant units, and stable rank in the policy network. The results are quite interest-

ing, and they show that as training continues, the weights in the network get larger,

the rank of the representation decreases, and a large fraction of units become dormant

91

50

100

0 10M 20M

Standard PPO

PPO with tuned Adam

Largest total weight
change in the network

(In periods of 1M steps)

Time Step

0

Ant-v3

Figure 7.7: PPO with standard Adam leads to larger updates in the policy network
compared with tuned Adam (β1 = β2 = 0.99) in Ant-v3, similar to what we saw in the
2-state-MDP. These large updates explains why PPO with tuned Adam is more stable
than standard PPO in Ant-v3. These results are averaged over 30 runs. The solid
lines represent the mean, and the shaded regions correspond to a 95% bootstrapped
confidence interval.

92

Stable rank Scaled [0, 100]

0 25M 50M

100

75

50

25
0 25M 50M0

20

40

60
Percentage of dormant units

Average weight magnitude

0 25M 50M0

0.05

0.1

PPO with tuned Adam

0.15

Standard PPO

PPO with tuned Adam

Standard PPO

Standard PPO

PPO with tuned Adam

Time Step

Figure 7.8: A closer look inside the policy network trained by PPO with tuned Adam
on Ant-v3. These plots reveal a similar pattern as in continual supervised learning.
The network continually loses plasticity as its weights keep growing, the fraction of
dormant units increases, and the stable rank of the representation decreases. Al-
though tuned Adam stabilizes weight updates, it does not mitigate the loss of plas-
ticity. These results are averaged over 30 runs. The solid lines represent the mean,
and the shaded regions correspond to a 95% bootstrapped confidence interval.

93

over time. These results are strikingly similar to the correlates of loss of plasticity we

saw in Chapter 4. They show that the networks are losing plasticity and suggest that

plasticity-injecting algorithms like continual backpropagation might mitigate policy

collapse.

7.4 Overcoming Policy Collapse using Continual

Backpropagation

In the last section, we saw that networks trained via PPO with tuned Adam lose

plasticity over time. A natural next step is to test if continual backpropagation can

mitigate this loss of plasticity in reinforcement learning and if it can overcome policy

collapse. We tested both L2 regularization and continual backpropagation (along

with a small amount of L2 regularization) applied to PPO with tuned Adam. The

performance of these algorithms on the Ant problem is shown in Figure 7.9. For all

the experiments presented in this section, all algorithms other than standard PPO

used tuned Adam with β1 = β2 = 0.99.

The data in Figure 7.9 shows that both L2 regularization and continual back-

propagation mitigate policy collapse. However, only the performance of continual

backpropagation improves over time, while PPO with L2 regularization plateaus at

a sub-optimal policy. PPO with continual backpropagation scales with experience as

its performance keeps improving over time.

In Figure 7.10, we plot the correlates of loss of plasticity for all the algorithms. The

Figure 7.10 shows that both PPO with continual backpropagation and L2 regular-

ization significantly reduce the fraction of dormant units and maintain a high stable

rank. Additionally, both algorithms have a non-growing average weight magnitude.

However, L2 regularization only worked well when aggressive regularization was used

with PPO (10−3). The algorithm still suffered from policy collapse for other smaller

regularization values, and for larger values, it never achieved good performance. This

strong value regularization strongly restricted the space of policies the agent could

94

0 25M 50M0

2,000

4,000

Total
episodic
reward

PPO with L2 regularization

Standard PPO

PPO with tuned Adam

PPO with continual backpropagation
and L2 regularization

Time Step

Ant-v3

Figure 7.9: The performance of various algorithms on Ant-v3. All algorithms other
than standard PPO use tuned Adam. These results are averaged over 30 runs. The
solid lines represent the mean, and the shaded regions correspond to a 95% boot-
strapped confidence interval. PPO with tuned Adam substantially improves over
standard PPO but still shows a significant drop in performance over time. Perfor-
mance of PPO with L2 regularization plateaus at a suboptimal level. The performance
of PPO with continual backpropagation (and weak regularization) keeps improving.

represent and prevented it from reaching better policies. On the other hand, contin-

ual backpropagation works well with weaker regularization, allowing the algorithm to

represent better policies.

We also evaluated PPO and its variants in two additional environments: Hopper-

v3 and Walker-v3. The results for these experiments are presented in Figure 7.11.

The results mirrored those from Ant-v3; standard PPO suffered from a dramatic

degradation in performance, where its performance dropped dramatically. However,

this time, L2 regularization did not fix the issue in all cases; there was some per-

formance degradation with L2 in Walker-v3. PPO, with continual backpropagation

and L2 regularization, completely fixed the issue in all environments. Note that the

only difference between our experiments and what is typically done in the literature

95

Stable rank Scaled [0, 100]

0 25M 50M

100

75

50

25
0 25M 50M0

20

40

60
Percentage of dormant units

Average weight magnitude

0 25M 50M0

0.05

0.1

PPO with tuned Adam

0.15

Standard PPO
PPO with L2 regularization

PPO with continual backpropagation
and L2 regularization

PPO with tuned Adam

Standard PPO

PPO with L2 regularization

PPO with continual backpropagation
and L2 regularization

Standard PPO

PPO with tuned Adam

PPO with continual backpropagation
and L2 regularization

PPO with L2 regularization

Time Step

Figure 7.10: The evolution of three correlates of plasticity in the Ant problems.
Continual backpropagation and L2 regularization mitigate all three correlates. Addi-
tionally, continual backpropagation maintains a higher stable rank and higher average
weight magnitude. These results are averaged over 30 runs. The solid lines represent
the mean, and the shaded regions correspond to a 95% bootstrapped confidence in-
terval.

96

0 50M 100M
0

1,000

2,000

Total
Episodic
Reward

Time Step

Continual backpropagation + L2

Standard PPO

L2 regularization

Tuned PPO

Hopper-v3 Walker-v3

0 25M 50M
0

1,000

2,000

Continual backpropagation + L2

Standard PPO

L2 regularization

Tuned PPO

3,000

Time Step

Figure 7.11: Performance of all algorithms on Hopper-v3 and Walker-v3. Similar to
the Ant environment, the performance of PPO and PPO with tuned Adam drops
over time in Hopper-v3 and Walker-v3. However, unlike in the Ant environment,
the performance of PPO with L2 regularization gets worse over time in Hopper-
v3. On the other hand, PPO with continual backpropagation and L2 regularization
can keep improving over time. These results are averaged over 30 runs. The solid
lines represent the mean, and the shaded regions correspond to a 95% bootstrapped
confidence interval.

is that we run the experiments for longer. Typically, these experiments are only done

for 3M steps, but we ran these experiments for up to 100M steps.

We tried a wide range of hyper-parameters for continual backpropagation in all

the environments. The common trend was that continual backpropagation required

a large value of maturity threshold in these reinforcement learning experiments. A

maturity threshold of at least 1000 was required for good performance in reinforce-

ment learning. Note that this is larger than the good value of the maturity threshold

for the continual supervised learning experiments in Chapter 4. A maturity threshold

of 100 was good in supervised learning problems. The optimal replacement rate and

maturity threshold value for all three environments were 10−4 and 104, respectively.

Recall from Chapter 6 that one way to understand the behaviour of continual

backpropagation is to look at the number of eligible units for replacement. For re-

placement rate and maturity threshold of 10−4 and 104, there are 128 eligible units

97

in each layer of 256 units. This means that continual backpropagation is performing

an aggressive search process in this problem, reinitializing units with non-negligible

utility. We found that continual backpropagation with a small value of maturity

threshold (close to 100) did not mitigate policy collapse in this problem. Continual

backpropagation with a small maturity threshold generally behaves like an algorithm

that only removes dormant units. A high value of maturity threshold in these en-

vironments suggests that just removing dormant units is insufficient for maintaining

plasticity, and a more aggressive search process is needed in these problems.

ReDo (Sokar et al., 2023) and Self-normalizing Resets (SNR) (Farias and Joze-

fiak, 2025) are variations of continual backpropagation that are explicitly designed

to remove dormant units from networks. We want to test if the intuition we gained

from the hyperparameters of continual backpropagation is useful. Failure of ReDo,

SNR, and continual backpropagation with a small maturity threshold will support

the intuition that removing dormant units is insufficient for maintaining plasticity in

these problems.

We tested ReDo and SNR on Ant-v3. ReDo requires two parameters: threshold

and the reinitialization period. We tested ReDo for all combinations of threshold in

{0.01, 0.03, 0.1} and reinitialization period in {10, 102, 103, 104, 105}; a threshold of

0.1 and with reinitialization period of 102 performed the best. Similar to ReDo, SNR

requires two parameters: rejection percentile and window size for threshold updates.

We tested SNR for all combinations of rejection percentile in {0.1, 0.01, 0.001} and

window size of {102, 103, 104}. All combinations of these parameters had statistically

similar performance. This aligns with the results by Farias and Jozefiak (2025),

where they showed that SNR is highly insensitive to its parameters. ReDo, SNR and

continual backpropagation were used with weight decay of 10−4. The performance of

PPO with ReDo and PPO with SNR is plotted in Figure 7.12. For SNR, we plot the

performance for a rejection percentile of 0.1 and a window length of 1000.

Another method that has been recently proposed to mitigate loss of plasticity is

98

2,000

4,000

0 50M 100M

ReDo+L2

Continual backpropagation + L2

Ant-v3

Time Step

Regenerative regularization

0

Total
Episodic
Reward

SNR+L2

Figure 7.12: Comparison of continual backpropagation, ReDo, SNR, and regenera-
tive regularization on Ant-v3. ReDo and SNR are selective reinitialization methods
that use different utility measures and reinitialization strategies than continual back-
propagation. Only the performance of PPO with continual backpropagation and L2
regularization keeps improving over time. These results are averaged over 30 runs.
The solid lines represent the mean, and the shaded regions correspond to a 95% boot-
strapped confidence interval.

regenerative regularization. In regenerative regularization, the weights are regular-

ized towards their initial value. We also tested regenerative regularization on Ant-v3.

Regenerative regularization requires a parameter that controls the strength of regu-

larization. We test regenerative regularization with regularization strength parameter

in {1, 10−1, 10−2, 10−3, 10−4, 10−5}. Regenerative regularization with regularization

strength of 0.1 performed the best. We did not use weight decay towards zero with re-

generative regularization. The performance of PPO with regenerative regularization

is plotted in Figure 7.12.

Figure 7.12 shows that PPO with ReDo and L2 regularization performs signifi-

cantly better than standard PPO. However, it still suffers from slight performance

degradation, and its performance is worse than PPO with continual backpropagation

and L2 regularization. On the other hand, PPO with SNR and L2 regularization suf-

99

2,000

4,000

0 25M 50M

Continual backpropagation with
a running average of utility

Continual backpropagation with utility calculated on
one mini-batch

Total
Episodic
Reward

Time Step

Ant-v3

0

Figure 7.13: Comparison of two forms of utility in continual backpropagation in Ant-
v3. The first form of utility calculated utility over just one mini-batch, while the other
kept a running average of utilities over mini-batches. Both variations have similar
performance. The utility in continual backpropagation can be calculated over just
one mini-batch without a performance drop, reducing its computational requirements.
These results are averaged over 30 runs. The solid lines represent the mean, and the
shaded regions correspond to a 95% bootstrapped confidence interval.

fers from significant performance degradation. Although the policy does not entirely

collapse with SNR. Finally, PPO with regenerative regularization does not suffer from

performance degradation, but its performance is always poor.

The failure of ReDo and SNR suggests that just removing dormant units is insuffi-

cient to maintain plasticity in this problem, and a more aggressive search process, as

provided by continual backpropagation with a large maturity threshold, is required

in these problems. Additionally, regenerative regularization only mitigated perfor-

mance degradation for aggressive regularization. However, when regularization is too

aggressive, the weights in the network become too restricted, preventing the network

from representing effective policies.

Recall from Algorithm 1 in Chapter 6 that continual backpropagation uses a run-

ning average of instantaneous utility to estimate true utility. In these reinforcement

learning problems, data is processed in mini-batches. This allows us to estimate the

100

true utility using the samples in the mini-batch without keeping a running average.

Removing the need to keep a running average reduces the computational requirement

for continual backpropagation. In the next experiment, we test if continual backprop-

agation with utility calculated over one mini-batch is sufficient for good performance.

The results are presented in Figure 7.13, and they show that continual backpropa-

gation has the same performance on Ant whether we use utility calculated over a

mini-batch or if we keep running average over mini-batches.

This section showed that plasticity-injecting algorithms like continual backpropa-

gation can maintain plasticity in reinforcement learning problems. This plasticity, in

turn, is sufficient to overcome policy collapse. Continual backpropagation maintained

a high stable rank, a low percentage of dormant units and a non-growing weight mag-

nitude. PPO with continual backpropagation scaled with experience in three Mujoco

environments, and it outperforms ReDo, which is another selective reinitialization

algorithm. Additionally, continual backpropagation works just as well if we only use

one mini-batch to calculate utility, which reduces its computational usage.

7.5 Maintaining Plasticity in Non-Stationary Re-

inforcement Learning

In this section, we study loss of plasticity in a non-stationary reinforcement learning

problem. In one sense, non-stationary reinforcement learning is the most challenging

setting we study in this thesis because it involves many sources of non-stationary.

There is non-stationarity due to a changing environment, the continually changing

data distribution due to the agent’s changing behaviour, and the use of temporal

difference learning. All the sources of non-stationarity make it a challenging problem

for continual learning algorithms.

We use the ant problem to create a non-stationary problem. In the ant problem,

a simulated ant-like robot is tasked with moving forward as rapidly and efficiently as

possible. The agent receives a reward depending on the forward distance travelled

101

Figure 7.14: We make a non-stationary reinforcement learning problem by changing
the friction between the simulated ant robot and the ground. The changing friction
forces the agent to learn different behaviours to walk on different surfaces.

by the robot. One way to make this task non-stationary is to change the friction

between the agent and the ground. The agent must adapt its walking method each

time the friction changes to cover the most distance in an episode, see Figure 7.14

for an illustration. This will force the agent to learn different behaviours for different

friction values, similar to how humans learn to walk differently on different surfaces

like ice, sand, paved ground, and dirt trails. Specifically, the coefficient of friction

between the feet of the ant and the floor is changed after every 2 million time steps.

We changed the coefficient of friction by sampling it log-uniformly from the range

[0.02, 2], using a logarithm with base 10. The coefficient of friction changed at the

first episode boundary after 2M time steps had passed since the last change.

We evaluate standard PPO, PPO with tuned Adam (β1 = β2 = 0.99), PPO with

tuned Adam and L2-regularization, and PPO with tuned Adam and continual back-

propagation and L2-regularization on this problem. We conducted 100 independent

runs for all algorithms. We needed 100 runs to establish statistical significance be-

cause different friction values across different runs add another source of uncertainty

in the results. For all algorithms, we used the same 100 sequences of frictions; this

ensures that the problem’s difficulty is the same for all algorithms. The results of this

experiment are plotted in Figure 7.15.

102

PPO with continual backpropagation
and L2 regularization

Total
episodic
reward

Standard PPO

PPO with tuned Adam
PPO with L2 regularization

0

2,000

4,000

0 10M 20M
Time Step

Figure 7.15: Performance of various algorithms on the Ant problem with changing
friction. These results are averaged over 100 runs. The solid lines represent the
mean, and the shaded regions correspond to a 95% bootstrapped confidence interval.
Standard PPO algorithm fails catastrophically on the non-stationary ant problem.
Similar to the stationary Ant problem, when we set β1 = β2 = 0.99 for Adam, then
the failure is less severe, but adding continual backpropagation or L2 regularization
is necessary to perform well indefinitely.

The performance curves in Figure 7.15 are jagged, similar to a saw tooth. The

sudden drops in performance correspond to the change in friction. Every time the

friction changes, the old behaviour is not as effective, which results in a low perfor-

mance. The performance of standard PPO follows the same trend as in the stationary

Ant problem; see Figure 7.9. It performs well initially, but over time, its performance

drops, and it performs worse than it did in the beginning. PPO with tuned Adam

performs much better than standard PPO, but even its performance worsened after

the 2nd change in friction. PPO with L2 regularization and PPO with continual

backpropagation and L2 regularization kept adapting and maintained a high level of

performance as the friction kept changing. We also tested shrink-and-pertrub on this

problem and found that it did not provide a significant performance improvement

over L2 regularization.

In this section, we evaluated various algorithms in non-stationary reinforcement

103

learning algorithms. The results followed a similar trend as the stationary prob-

lems we studied earlier in the chapter. Standard PPO failed catastrophically under

extended learning. Properly tuned, Adam improved the performance, but plasticity-

preserving algorithms like L2 regularization and Continual backpropagation were

needed to keep adapting to the changes in the environment.

7.6 Discussion

Following our work, Moalla et al. (2024) took a deeper dive into policy collapse with

PPO and provided valuable insights into the phenomenon. We saw in this chapter

that as learning continues, features saturate, and the representation of different states

becomes similar. Moalla et al. (2024) found that these close representations affect the

ability of PPO to stay in the trust region, and PPO makes updates that break the

trust region. Because of the loss of plasticity, the learning system cannot recover and

learn good representations that can separate different states and learn the optimal

behaviour for all states.

One important result from this chapter is that setting β1 = β2 in Adam is crucial

for stabilizing long-term learning in reinforcement learning. This year, many papers

have come out that argue that Adam with β1 = β2 is the best choice for large-scale

learning (Zhao et al., 2025; Shah et al., 2025; Orvieto and Gower, 2025). In a large-

scale empirical study of language models, Orvieto and Gower (2025) find that Adam

with β1 = β2 is the best choice for Adam’s parameters. They show that Adam with

β1 = β2 has a special property, where the update of Adam is sign(mk)/(1 +m2
k/σ

2
k),

where mk is the estimate of the mean (momentum) and σk is the estimate of variance

of the gradient. This means that Adam’s update is bounded, and the signal-to-noise

ratio controls the size of the update. They show that if β2 > β1 (which is the case in

all applications of Adam), the updates can be significantly larger than the gradient.

The bounded size of Adam’s updates is important for non-stationary problems to

ensure that the network remains stable.

104

Loss of plasticity expresses itself in various forms in deep reinforcement learning.

Some work found that deep reinforcement learning systems can lose their generaliza-

tion abilities in the presence of non-stationarities (Igl et al., 2021). A reduction in the

effective rank, similar to the rank reduction in CIFAR-100, has been observed in some

deep reinforcement learning algorithms (Kumar et al., 2021). Nikishin et al. (2022)

showed that many reinforcement learning systems perform better if their network

is occasionally reset to its naive initial state, retaining only the replay buffer. This

is because the learning networks got worse than a reinitialized network at learning

from new data. Recent work has improved performance in many reinforcement learn-

ing problems by applying plasticity-preserving methods (Sokar et al., 2023; Nikishin

et al., 2023; D’Oro et al., 2023; Schwarzer et al., 2023; Lee et al., 2023; Delfosse et al.,

2024). These works focused on deep reinforcement learning systems that use large

replay buffers. Our work complements this line of research as we studied systems

with much smaller replay buffers. Loss of plasticity is most relevant for systems that

use small or no replay buffers, as large buffers can hide the effect of new data.

In recent years, there has been an increase in the interest in continual reinforcement

learning (Abel et al., 2023). Abbas et al. (2023) showed that standard deep reinforce-

ment learning algorithms suffer from a dramatic loss of plasticity when tasked to learn

a sequence of Atari games. Some work has also studied various plasticity-preserving

algorithms for on-policy learning in non-stationary reinforcement learning problems

(Chung et al., 2024; Juliani and Ash, 2024). Ahn et al. (2025) studied loss of plasticity

in conjunction with catastrophic forgetting in continual reinforcement learning.

7.7 Conclusion

In Mujoco environments and a 2-state MDP, we showed that the PPO algorithm does

not scale with experience. After initial performance improvement, PPOs’ performance

starts to drop until they eventually perform worse than the initial random policy. A

closer look at the algorithm in the 2-state MDP revealed that the default setting of the

105

Adam optimizer causes large updates, destabilizing the network and causing policy

collapse. Fixing these large updates by setting β1 = β2 in Adam stabilized the learning

and mitigated policy collapse in the 2-state MDP. This finding suggests that directly

taking up tools from supervised learning is not always good for reinforcement learning

problems. We should be more careful when borrowing tools from other domains.

Schlegel et al. (2023) made a similar observation, but for recurrent networks. They

showed that there is a big difference between the best design choices for recurrent

networks in supervised and reinforcement learning problems.

We found that PPO loses plasticity in Mujoco environments. Similar to continual

supervised learning, a large part of the network became dormant, the rank of the

representation dropped, and the weights in the network increased. This reduced

diversity in the representation meant that states started to look similar, which caused

the system to make updates that affected too many states and worsened the policy.

The loss of plasticity, in turn, meant that the system could not recover and relearn a

good representation. Continual backpropagation overcame the loss of plasticity and

enabled PPO to scale with experience.

106

Chapter 8

Conclusion and Future Work

The first key result of this dissertation is that standard deep learning methods do

not work in continual learning problems. By standard deep learning methods, we

mean the existing standard algorithms designed for learning from a fixed dataset.

And by not working, we mean they lose the ability to learn new things over time.

We provided evidence of loss of plasticity in both supervised and reinforcement learn-

ing problems. Our demonstrations of loss of plasticity included problems with a

wide range of memory constraints, optimizers, activation functions, hyperparame-

ters, under- and over-parameterized networks, rates of distribution change, network

architectures, and various additional techniques like dropout, regularization and nor-

malization. Altogether, these demonstrations provide substantial evidence of loss of

plasticity in deep continual learning.

The second result is that algorithms like continual backpropagation and shrink and

perturb that continually inject randomness and variability into the network can en-

able artificial neural networks to learn forever. Continual backpropagation maintained

plasticity in all supervised and reinforcement learning problems we tested. Continual

backpropagation performs a search process in the space of units. For some settings of

its hyperparameters, the search can be slow, removing only near zero-utility units like

dormant units. While for some other hyperparameters, the search can be much more

aggressive, and units with non-negligible utility get replaced. Continual backprop-

107

agation learned faster than retraining from scratch. It also mitigated all correlates

of loss of plasticity that we observed. It maintained non-growing weights, removed

all dormant units from the network, and maintained a high stable rank throughout

learning. By continually injecting new units into the network, continual backpropaga-

tion enables the benefits of initialization throughout learning, which enables artificial

neural networks to learn continually.

8.1 Directions for Future Work

In recent years, very large-scale machine learning models have shown impressive capa-

bilities (OpenAI, 2023; DeepSeek-AI, 2025). However, these systems are only trained

once and do not learn continually. One direction for future work is to test whether

these systems can maintain plasticity when learning from new data. Some recent

results suggest that these systems might be losing plasticity (Zhang et al., 2025;

Springer et al., 2025). However, the plasticity of these large-scale models has not

been systematically studied. Such studies will be useful theoretically as they will

deepen our understanding of these models. They will also be valuable from a practi-

cal perspective because continually learning models can be much more cost-efficient

at absorbing new information on the internet than models retrained from scratch.

Machine learning systems that can continue to adapt to changes in their data

stream can enable many new applications. Traditionally, machine learning applica-

tions have been limited to cases where the system does not have to learn new things,

because deep learning systems struggle to learn new things. However, in recent years,

some companies like Lyft and RL Core have started to use continual learning in

applications. Progress in learning systems that can maintain plasticity enables appli-

cations in forecasting in highly complicated domains like stock markets or weather.

Continual adaptation is also important for developing control systems in factories, as

there is a need for continual learning due to regular wear and tear. Problems requir-

ing on-device learning, like prosthetics, robots, and deep space exploration, require

108

continual adaptation due to the ever-changing real world.

Continual backpropagation combines search with gradient descent. However, it is

just the first version of this idea, and there are many open questions. It is unclear

what the best way to measure the utility is. Should the utility be based on the effect

of a unit on the current data point or its effect on the entire future data stream?

Another open question is whether we can use utility to protect useful information

and mitigate forgetting. A long-term utility measure instead of instantaneous utility

can be useful to protect useful information from catastrophic forgetting. Perhaps

the most important question is how do we scale this form of search. The search in

continual backpropagation is quite slow, as only one unit is typically replaced once

every few hundred steps. If more units are replaced, the network’s output is severely

affected, and the performance worsens. Wide networks can be useful for scaling

search, as more units can be replaced without severely affecting the network’s output.

Another idea is to use gradient descent to learn through a core/backbone network

and perform search in a large fringe. Future versions of continual backpropagation

might significantly improve the capabilities of continual learning systems and act as

a powerful complement to gradient descent-based deep learning.

109

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al. (2016). TensorFlow: A System for Large-
Scale Machine Learning. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16).

Abbas, Z., Zhao, R., Modayil, J., White, A., and Machado, M. C. (2023). Loss of
Plasticity in Continual Deep Reinforcement Learning. In Conference on Lifelong
Learning Agents.

Abel, D., Barreto, A., Roy, B. V., Precup, D., van Hasselt, H., and Singh, S. (2023). A
Definition of Continual Reinforcement Learning. In Advances in Neural Information
Processing Systems 37.

Ahn, H., Hyeon, J., Oh, Y., Hwang, B., and Moon, T. (2025). Reset & Distill: A
Recipe for Overcoming Negative Transfer in Continual Reinforcement Learning. In
13th International Conference on Learning Representations.

Aimone, J. B., Deng, W., and Gage, F. H. (2010). Adult Neurogenesis: Integrating
Theories and Separating Functions. Trends in Cognitive Sciences, 14(7):325–337.

Aljundi, R., Belilovsky, E., Tuytelaars, T., Charlin, L., Caccia, M., Lin, M., and Page-
Caccia, L. (2019). Online Continual Learning with Maximal Interfered Retrieval.
In Advances in Neural Information Processing Systems 33.

Altman, J. (1963). Autoradiographic Investigation of Cell Proliferation in the Brains
of Rats and Cats. The Anatomical Record, 145(4):573–591.

Ash, J. and Adams, R. P. (2020). On Warm-Starting Neural Network Training. In
Advances in Neural Information Processing Systems 33.

Ashley, D. R., Ghiassian, S., and Sutton, R. S. (2021). Does the Adam Optimizer
Exacerbate Catastrophic Forgetting? Preprint at https://arxiv.org/abs/2102.
07686.

Bellec, G., Kappel, D., Maass, W., and Legenstein, R. (2018). Deep Rewiring: Train-
ing Very Sparse Deep Networks. In 6th International Conference on Learning Rep-
resentations.

Benna, M. K. and Fusi, S. (2016). Computational Principles of Synaptic Memory
Consolidation. Nature Neuroscience, 19(12):1697–1706.

Berariu, T., Czarnecki, W., De, S., Bornschein, J., Smith, S., Pascanu, R., and
Clopath, C. (2021). A Study on the Plasticity of Neural Networks. Preprint at
https://arxiv.org/abs/2106.00042.

110

https://arxiv.org/abs/2102.07686
https://arxiv.org/abs/2102.07686
https://arxiv.org/abs/2106.00042

Bonin, P., Barry, C., Méot, A., and Chalard, M. (2004). The Influence of Age of
Acquisition in Word Reading and Other Tasks: A Never Ending Story? Journal
of Memory and Language, 50(4):456–476.

Boyd, S. P. and Vandenberghe, L. (2004). Convex Optimization. Cambridge Univer-
sity Press.

Campbell, D. T. (1960). Blind Variation and Selective Survival as a General Strategy
in Knowledge-processes. Self-organizing Systems, 2:205–231.

Campbell, M., Hoane Jr, A. J., and Hsu, F.-h. (2002). Deep Blue. Artificial Intelli-
gence, 134(1-2):57–83.

Carpenter, G. A. and Grossberg, S. (1988). The ART of Adaptive Pattern Recognition
by a Self-Organizing Neural Network. Computer, 21(3):77–88.

Caruana, R. (1997). Multitask Learning. Machine Learning, 28(1):41–75.

Chaudhry, A., Dokania, P. K., Ajanthan, T., and Torr, P. H. (2018). Riemannian
Walk for Incremental Learning: Understanding Forgetting and Intransigence. In
Proceedings of the European Conference on Computer Vision.

Chen, T., Cheng, Y., Gan, Z., Yuan, L., Zhang, L., and Wang, Z. (2021). Chas-
ing Sparsity in Vision Transformers: An End-to-end Exploration. In Advances in
Neural Information Processing Systems 35.

Chiley, V., Sharapov, I., Kosson, A., Koster, U., Reece, R., Samaniego de la Fuente,
S., Subbiah, V., and James, M. (2019). Online Normalization for Training Neural
Networks. In Advances in Neural Information Processing Systems 33.

Chrabaszcz, P., Loshchilov, I., and Hutter, F. (2017). A Downsampled Variant of
ImageNet as an Alternative to the CIFAR Datasets. Preprint at https://arxiv.org/
abs/1707.08819.

Chung, W., Cherif, L., Precup, D., and Meger, D. (2024). Parseval Regularization for
Continual Reinforcement Learning. In Advances in Neural Information Processing
Systems 38.

Citri, A. and Malenka, R. C. (2008). Synaptic Plasticity: Multiple Forms, Functions,
and Mechanisms. Neuropsychopharmacology, 33(1):18–41.

Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or the
Preservation of Favoured Races in the Struggle for Life. John Murray, London.

DeepSeek-AI (2025). DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning. Preprint at https://arxiv.org/abs/2501.12948.

Delfosse, Q., Schramowski, P., Mundt, M., Molina, A., and Kersting, K. (2024).
Adaptive Rational Activations to Boost Deep Reinforcement Learning. In 12th
International Conference on Learning Representations.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A
Large-scale Hierarchical Image Database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition.

Dennett, D. C. (1975). Why the Law of Effect Will Not Go Away. Journal for the
Theory of Social Behaviour.

111

https://arxiv.org/abs/1707.08819
https://arxiv.org/abs/1707.08819
https://arxiv.org/abs/2501.12948

Dohare, S. (2020). The Interplay of Search and Gradient Descent in Semi-stationary
Learning Problems. Master’s thesis, University of Alberta.

Dohare, S., Hernandez-Garcia, J. F., Lan, Q., Rahman, P., Mahmood, A. R., and
Sutton, R. S. (2024). Loss of Plasticity in Deep Continual Learning. Nature,
632(8026):768–774.

Dohare, S., Hernandez-Garcia, J. F., Rahman, P., Mahmood, A. R., and Sutton,
R. S. (2023). Maintaining Plasticity in Deep Continual Learning. Preprint at
https://arxiv.org/abs/2306.13812.

Dohare, S., Sutton, R. S., and Mahmood, A. R. (2021). Continual Backprop:
Stochastic Gradient Descent with Persistent Randomness. Preprint at https:
//arxiv.org/abs/2108.06325.

D’Oro, P., Schwarzer, M., Nikishin, E., Bacon, P.-L., Bellemare, M. G., and Courville,
A. (2023). Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio
Barrier. In 11th International Conference on Learning Representations.

Ellis, A. W. and Lambon Ralph, M. A. (2000). Age of Acquisition Effects in Adult
Lexical Processing Reflect Loss of Plasticity in Maturing Systems: Insights from
Connectionist Networks. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 26(5):1103.

Elsayed, M. and Mahmood, A. R. (2024). Addressing Catastrophic Forgetting and
Loss of Plasticity in Neural Networks. In 12th International Conference on Learning
Representations.

Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.-M., Nordborg, C., Pe-
terson, D. A., and Gage, F. H. (1998). Neurogenesis in the Adult Human Hip-
pocampus. Nature Medicine, 4(11):1313–1317.

Evci, U., Gale, T., Menick, J., Castro, P. S., and Elsen, E. (2020). Rigging the
Lottery: Making All Tickets Winners. In 37th International Conference on Machine
Learning.

Farias, V. and Jozefiak, A. D. (2025). Self-Normalized Resets for Plasticity in Con-
tinual Learning. In 13th International Conference on Learning Representations.

Finn, C., Abbeel, P., and Levine, S. (2017). Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks. In 34th International Conference on Machine Learn-
ing.

Frankle, J. and Carbin, M. (2019). The Lottery Ticket Hypothesis: Finding Sparse,
Trainable Neural Networks. In 7th International Conference on Learning Repre-
sentations.

French, R. M. (1999). Catastrophic Forgetting in Connectionist Networks. Trends in
Cognitive Sciences, 3(4):128–135.

Fukushima, K. (1975). Cognitron: A Self-organizing Multilayered Neural Network.
Biological Cybernetics, 20(3):121–136.

Fusi, S., Drew, P. J., and Abbott, L. F. (2005). Cascade Models of Synaptically
Stored Memories. Neuron, 45(4):599–611.

112

https://arxiv.org/abs/2306.13812
https://arxiv.org/abs/2108.06325
https://arxiv.org/abs/2108.06325

Galashov, A., Titsias, M., György, A., Lyle, C., Pascanu, R., Teh, Y. W., and Sa-
hani, M. (2024). Non-Stationary Learning of Neural Networks with Automatic Soft
Parameter Reset. Advances in Neural Information Processing Systems 38.

Gale, T., Elsen, E., and Hooker, S. (2019). The State of Sparsity in Deep Neural
Networks. Preprint at https://arxiv.org/abs/1902.09574.

Glorot, X. and Bengio, Y. (2010). Understanding the Difficulty of Training Deep
Feedforward Neural Networks. In 13th International Conference on Artificial In-
telligence and Statistics.

Golkar, S., Kagan, M., and Cho, K. (2019). Continual Learning via Neural Pruning.
In Real Neurons & Hidden Units: Future Directions at the Intersection of Neuro-
science and Artificial Intelligence, Workshop at Advances in Neural Information
Processing Systems 33.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.

Goodfellow, I., Mirza, M., Xiao, D., and Aaron Courville, Y. B. (2014). An Empirical
Investigation of Catastrophic Forgeting in Gradient-Based Neural Networks. In 2nd
International Conference on Learning Representations.

Graesser, L., Evci, U., Elsen, E., and Castro, P. S. (2022). The State of Sparse
Training in Deep Reinforcement Learning. In 39th International Conference on
Machine Learning.

Han, S., Huizi, M., and Dally, W. J. (2016). Deep Compression: Compressing Deep
Neural Networks with Pruning, Trained Quantization and Huffman Coding. In 4th
International Conference on Learning Representations.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving Deep into Rectifiers: Surpass-
ing Human-level Performance on ImageNet Classification. In IEEE International
Conference on Computer Vision.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual Learning for Image
Recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D. (2018).
Deep Reinforcement Learning That Matters. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence.

Hernandez-Garcia, J. F., Dohare, S., Luo, J., and Sutton, R. S. (2025). Reinitializing
Weights Vs Units for Maintaining Plasticity in Neural Networks. In Conference on
Lifelong Learning Agents.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R.
(2012). Improving Neural Networks by Preventing Co-adaptation of Feature De-
tectors. Preprint at https://arxiv.org/abs/1207.0580.

Hofmann, M., Becker, M. F. P., Tetzlaff, C., and Mäder, P. (2025). Concept Trans-
fer of Synaptic Diversity from Biological to Artificial Neural Networks. Nature
Communications, 16(1):1–16.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems. MIT Press.

113

https://arxiv.org/abs/1902.09574
https://arxiv.org/abs/1207.0580

Holland, J. H. and Reitman, J. S. (1977). Cognitive Systems Based on Adaptive
Algorithms. ACM Sigart Bulletin, (63):49–49.

Householder, A. S. (1941). A Theory of Steady-state Activity in Nerve-fiber Networks:
I. Definitions and Preliminary Lemmas. The Bulletin of Mathematical Biophysics,
3:63–69.

Hu, J., Shen, L., and Sun, G. (2018). Squeeze-and-Excitation Networks. In IEEE
Conference on Computer Vision and Pattern Recognition.

Igl, M., Farquhar, G., Luketina, J., Boehmer, W., and Whiteson, S. (2021). Tran-
sient Non-stationarity and Generalisation in Deep Reinforcement Learning. In 9th
International Conference on Learning Representations.

Ioffe, S. and Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. In 32nd International Conference
on Machine Learning.

Javed, K. (2025). Real-time Reinforcement Learning for Achieving Goals in Big
Worlds. PhD thesis, University of Alberta.

Javed, K. and White, M. (2019). Meta-Learning Representations for Continual Learn-
ing. In Advances in Neural Information Processing Systems 33.

Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., and Jordan, M. I. (2017). How to
Escape Saddle Points Efficiently. In 34th International Conference on Machine
Learning.

Juliani, A. and Ash, J. T. (2024). A Study of Plasticity Loss in On-Policy Deep
Reinforcement Learning. In Advances in Neural Information Processing Systems
38.

Kaelbling, L. P. (1993). Learning in Embedded Systems. MIT Press.

Kasai, H., Ziv, N. E., Okazaki, H., Yagishita, S., and Toyoizumi, T. (2021). Spine
Dynamics in the Brain, Mental Disorders and Artificial Neural Networks. Nature
Reviews Neuroscience, 22(7):407–422.

Kashyap, R. L., Blaydon, C. C., and Fu, K. S. (1970). Stochastic Approximation.
Adaptive, Learning and Pattern Recognition Systems: Theory and Applications,
66:329–356.

Kingma, D. P. and Ba, J. (2015). Adam: A Method for Stochastic Optimization. In
3rd International Conference on Learning Representations.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A.,
Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D., Clopath,
C., Kumaran, D., and Hadsell, R. (2017). Overcoming Catastrophic Forgetting in
Neural Networks. Proceedings of the National Academy of Sciences, 114(13):3521–
3526.

Klopf, A. H. and Gose, E. (1969). An Evolutionary Pattern Recognition Network.
IEEE Transactions on Systems Science and Cybernetics, 5(3):247–250.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet Classification
with Deep Convolutional Neural Networks. In Advances in Neural Information
Processing Systems 25.

114

Kumar, A., Agarwal, R., Ghosh, D., and Levine, S. (2021). Implicit Under-
Parameterization Inhibits Data-Efficient Deep Reinforcement Learning. In 9th In-
ternational Conference on Learning Representations.

Kumar, S., Marklund, H., Rao, A., Zhu, Y., Jun Jeon, H., Yueyang, L., and Van Roy,
B. (2025). Continual learning as computationally constrained reinforcement learn-
ing. Foundations and Trends in Machine Learning, 18(5):913–1053.

Kumar, S., Marklund, H., and Van Roy, B. (2024). Maintaining Plasticity in Contin-
ual Learning via Regenerative Regularization. In Conference on Lifelong Learning
Agents.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based Learning
Applied to Document Recognition. Proceedings of the IEEE, 86(11):2278–2324.

LeCun, Y., Denker, J., and Solla, S. (1989). Optimal Brain Damage. In Advances in
Neural Information Processing Systems 2.

Lee, H., Cho, H., Kim, H., Gwak, D., Kim, J., Choo, J., Yun, S.-Y., and Yun,
C. (2023). PLASTIC: Improving Input and Label Plasticity for Sample Efficient
Reinforcement Learning. In Advances in Neural Information Processing Systems
37.

Lee, H., Cho, H., Kim, H., Kim, D., Min, D., Choo, J., and Lyle, C. (2024). Slow and
Steady Wins the Race: Maintaining Plasticity with Hare and Tortoise Networks.
In 41st International Conference on Machine Learning.

Lewandowski, A., Bortkiewicz, M., Kumar, S., György, A., Schuurmans, D., Os-
taszewski, M., and Machado, M. C. (2025a). Learning Continually by Spectral
Regularization. In 13th International Conference on Learning Representations.

Lewandowski, A., Schuurmans, D., and Machado, M. C. (2025b). Plastic Learning
with Deep Fourier Features. In 13th International Conference on Learning Repre-
sentations.

Lewandowski, A., Tanaka, H., Schuurmans, D., and Machado, M. C. (2023). Curva-
ture Explains Loss of Plasticity. Preprint at https://arxiv.org/abs/2312.00246.

Liu, J., Wu, Z., Obando-Ceron, J., Castro, P. S., Courville, A., and Pan, L. (2025).
Measure Gradients, Not Activations! Enhancing Neuronal Activity in Deep Rein-
forcement Learning. Preprint at https://arxiv.org/abs/2505.24061.

Liu, J., Xu, Z., Shi, R., Cheung, R. C. C., and So, H. K. (2020). Dynamic Sparse
Training: Find Efficient Sparse Network From Scratch With Trainable Masked
Layers. In 8th International Conference on Learning Representations.

Lu, L., Shin, Y., Su, Y., and Karniadakis, G. E. (2019). Dying ReLU and Initializa-
tion: Theory and Numerical Examples. Preprint at https://arxiv.org/abs/1903.
06733.

Luo, Y., Yang, Z., Meng, F., Li, Y., Zhou, J., and Zhang, Y. (2023). An Empirical
Study of Catastrophic Forgetting in Large Language Models During Continual
Fine-tuning. Preprint at https://arxiv.org/abs/2308.08747.

Lyle, C., Rowland, M., and Dabney, W. (2022). Understanding and Preventing
Capacity Loss in Reinforcement Learning. In 10th International Conference on
Learning Representations.

115

https://arxiv.org/abs/2312.00246
https://arxiv.org/abs/2505.24061
https://arxiv.org/abs/1903.06733
https://arxiv.org/abs/1903.06733
https://arxiv.org/abs/2308.08747

Lyle, C., Zheng, Z., Khetarpal, K., Martens, J., van Hasselt, H. P., Pascanu, R., and
Dabney, W. (2024a). Normalization and Effective Learning Rates in Reinforcement
Learning. In Advances in Neural Information Processing Systems 37.

Lyle, C., Zheng, Z., Khetarpal, K., van Hasselt, H., Pascanu, R., Martens, J., and
Dabney, W. (2024b). Disentangling the Causes of Plasticity Loss in Neural Net-
works. In Conference on Lifelong Learning Agents.

Lyle, C., Zheng, Z., Nikishin, E., Avila Pires, B., Pascanu, R., and Dabney, W.
(2023). Understanding Plasticity in Neural Networks. In Proceedings of the 40th
International Conference on Machine Learning.

Mahmood, A. (2017). Incremental Off-policy Reinforcement Learning Algorithms.
PhD thesis, University of Alberta.

Mahmood, A. R. and Sutton, R. S. (2013). Representation Search through Generate
and Test. In AAAI Workshop: Learning Rich Representations from Low-Level
Sensors, Volume 10.

McCloskey, M. and Cohen, N. J. (1989). Catastrophic Interference in Connectionist
Networks: The Sequential Learning Problem. Psychology of Learning and Motiva-
tion, 24:109–165.

McCulloch, W. S. and Pitts, W. (1943). A Logical Calculus of the Ideas Immanent
in Nervous Activity. The Bulletin of Mathematical Biophysics, 5(4):115–133.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-
level Control through Deep Reinforcement Learning. Nature, 518(7540):529–533.

Moalla, S., Miele, A., Pyatko, D., Pascanu, R., and Gulcehre, C. (2024). No Rep-
resentation, No Trust: Connecting Representation, Collapse, and Trust Issues in
PPO. In Advances in Neural Information Processing Systems 38.

Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H., Gibescu, M., and Liotta,
A. (2018). Scalable Training of Artificial Neural Networks with Adaptive Sparse
Connectivity Inspired by Network Science. Nature Communications, 9(1):1–12.

Mucciardi, A. N. and Gose, E. E. (1966). Evolutionary Pattern Recognition in In-
complete Nonlinear Multithreshold Networks. IEEE Transactions on Electronic
Computers, EC-15(2):257–261.

Nagabandi, A., Clavera, I., Liu, S., Fearing, R. S., Abbeel, P., Levine, S., and Finn,
C. (2019). Learning to Adapt in Dynamic, Real-World Environments through
Meta-Reinforcement Learning. In 7th International Conference on Learning Rep-
resentations.

Nikishin, E., Oh, J., Ostrovski, G., Lyle, C., Pascanu, R., Dabney, W., and Barreto,
A. (2023). Deep Reinforcement Learning with Plasticity Injection. In Advances in
Neural Information Processing Systems 37.

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.-L., and Courville, A. (2022). The
Primacy Bias in Deep Reinforcement Learning. In 39th International Conference
on Machine Learning.

OpenAI (2023). GPT-4 Technical Report. Preprint at https://arxiv.org/abs/2303.
08774.

116

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774

OpenAI, Berner, C., Brockman, G., Chan, B., Cheung, V., Dkebiak, P., Dennison,
C., Farhi, D., Fischer, Q., Hashme, S., Hesse, C., et al. (2019). Dota 2 with Large
Scale Deep Reinforcement Learning. Preprint at https://arxiv.org/abs/1912.06680.

Orvieto, A. and Gower, R. (2025). In Search of Adam’s Secret Sauce. Preprint at
https://arxiv.org/abs/2505.21829.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S. (2019). Continual
Lifelong Learning with Neural Networks: A Review. Neural Networks, 113:54–71.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., et al. (2019). PyTorch: An Imperative Style, High-
Performance Deep Learning Library. Advances in Neural Information Processing
Systems, 32.

Patterson, A., Neumann, S., White, M., and White, A. (2024). Empirical Design in
Reinforcement Learning. Journal of Machine Learning Research, 25(318):1–63.

Powell, M. J. D. (1977). Restart Procedures for the Conjugate Gradient Method.
Mathematical Programming, 12:241–254.

Rajasegaran, J., Hayat, M., Khan, S. H., Khan, F. S., and Shao, L. (2019). Ran-
dom Path Selection for Continual Learning. In Advances in Neural Information
Processing Systems 33.

Rakitianskaia, A. and Engelbrecht, A. (2015). Measuring Saturation in Neural Net-
works. In IEEE Symposium Series on Computational Intelligence, pages 1423–1430.

Razin, N. and Cohen, N. (2020). Implicit Regularization in Deep Learning May Not
Be Explainable by Norms. In Advances in Neural Information Processing Systems
34.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H. (2017). iCaRL: Incre-
mental Classifier and Representation Learning. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition.

Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., , and Tesauro, G. (2019).
Learning to Learn Without Forgetting By Maximizing Transfer and Minimizing
Interference. In 7th International Conference on Learning Representations.

Ring, M. B. (1998). CHILD: A First Step Towards Continual Learning. In Learning
to Learn, pages 261–292. Springer.

Roy, O. and Vetterli, M. (2007). The Effective Rank: A Measure of Effective Dimen-
sionality. In 15th European Signal Processing Conference.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning Representa-
tions by Back-propagating Errors. Nature, 323(6088):533–536.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al. (2015). ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision, 115(3):211–252.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J.,
Kavukcuoglu, K., Pascanu, R., and Hadsell, R. (2016). Progressive Neural Net-
works. Preprint at https://arxiv.org/abs/1606.04671.

117

https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/2505.21829
https://arxiv.org/abs/1606.04671

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016). Prioritized Experience
Replay. In 4th International Conference on Learning Representations.

Schlegel, M. K., Tkachuk, V., White, A. M., and White, M. (2023). Investigat-
ing Action Encodings in Recurrent Neural Networks in Reinforcement Learning.
Transactions on Machine Learning Research.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. (2016). High-
Dimensional Continuous Control Using Generalized Advantage Estimation. In 4th
International Conference on Learning Representations.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
Policy Optimization Algorithms. Preprint at https://arxiv.org/abs/1707.06347.

Schwarzer, M., Obando Ceron, J. S., Courville, A., Bellemare, M. G., Agarwal, R.,
and Castro, P. S. (2023). Bigger, Better, Faster: Human-level Atari with Human-
level Efficiency. In 40th International Conference on Machine Learning.

Seidenberg, M. S. and McClelland, J. L. (1989). A Distributed, Developmental Model
of Word Recognition and Naming. Psychological Review, 96(4):523.

Selfridge, O. G. (1958). Pandemonium: A Paradigm for Learning. Mechanization
of Thought Processes: Proceedings of a Symposium Held at the National Physical
Laboratory, page 511–531.

Shah, I., Polloreno, A. M., Stratos, K., Monk, P., Chaluvaraju, A., Hojel, A., Ma, A.,
Thomas, A., Tanwer, A., Shah, D. J., et al. (2025). Practical Efficiency of Muon
for Pretraining. Preprint at https://arxiv.org/abs/2505.02222.

Shin, Y. and Karniadakis, G. E. (2020). Trainability of ReLU Networks and Data-
dependent Initialization. Journal of Machine Learning for Modeling and Comput-
ing, 1(1):39–74.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016). Mastering the Game of
Go with Deep Neural Networks and Tree Search. Nature, 529(7587):484–489.

Smith, S. L., Dherin, B., Barrett, D., and De, S. (2021). On the Origin of Implicit
Regularization in Stochastic Gradient Descent. In 9th International Conference on
Learning Representations.

Sokar, G., Agarwal, R., Castro, P. S., and Evci, U. (2023). The Dormant Neuron Phe-
nomenon in Deep Reinforcement Learning. In Proceedings of the 40th International
Conference on Machine Learning.

Sokar, G., Mocanu, E., Mocanu, D. C., Pechenizkiy, M., and Stone, P. (2022). Dy-
namic Sparse Training for Deep Reinforcement Learning. The 31st International
Joint Conference on Artificial Intelligence.

Springer, J. M., Goyal, S., Wen, K., Kumar, T., Yue, X., Malladi, S., Neubig, G., and
Raghunathan, A. (2025). Overtrained Language Models Are Harder to Fine-Tune.
Preprint at https://arxiv.org/abs/2503.19206.

Stanley, K. O. and Miikkulainen, R. (2002). Evolving Neural Networks through
Augmenting Topologies. Evolutionary Computation, 10(2):99–127.

118

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2505.02222
https://arxiv.org/abs/2503.19206

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the Importance of
Initialization and Momentum in Deep Learning. In 30th International Conference
on Machine Learning.

Sutton, R. (2019). The Bitter Lesson. Incomplete Ideas (Blog) at http://www.
incompleteideas.net/IncIdeas/BitterLesson.html.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction.
MIT Press.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D. d. L., Budden, D.,
Abdolmaleki, A., Merel, J., Lefrancq, A., et al. (2018). Deepmind Control Suite.
Preprint at https://arxiv.org/abs/1801.00690.

Thorndike, E. L. (1911). Animal Intelligence. The Macmillan Company.

van de Ven, G. M., Tuytelaars, T., and Tolias, A. S. (2022). Three Types of Incre-
mental Learning. Nature Machine Intelligence, 4(12):1185–1197.

Veniat, T., Denoyer, L., and Ranzato, M. (2021). Efficient Continual Learning with
Modular Networks and Task-Driven Priors. In 9th International Conference on
Learning Representations.

Verwimp, E., Aljundi, R., Ben-David, S., Bethge, M., Cossu, A., Gepperth, A., Hayes,
T. L., Hüllermeier, E., Kanan, C., Kudithipudi, D., Lampert, C. H., Mundt, M.,
Pascanu, R., Popescu, A., Tolias, A. S., van de Weijer, J., Liu, B., Lomonaco, V.,
Tuytelaars, T., and van de Ven, G. M. (2024). Continual Learning: Applications
and the Road Forward. Transactions on Machine Learning Research.

Verwimp, E., Hacohen, G., and Tuytelaars, T. (2025). Same Accuracy, Twice As
Fast: Continual Learning Surpasses Retraining From Scratch. Preprint at https:
//arxiv.org/abs/2502.21147.

Wang, Y.-X., Ramanan, D., and Hebert, M. (2017). Growing a Brain: Fine-tuning by
Increasing Model Capacity. In IEEE Conference on Computer Vision and Pattern
Recognition.

Whiteson, S. and Stone, P. (2006). Evolutionary Function Approximation for Rein-
forcement Learning. Journal of Machine Learning Research, 7(31):877–917.

Yang, Y., Zhang, G., Xu, Z., and Katabi, D. (2019). Harnessing Structures for Value-
based Planning and Reinforcement Learning. In 7th International Conference on
Learning Representations.

Yoon, J., Yang, E., Lee, J., and Hwang, S. J. (2018). Lifelong Learning with Dynam-
ically Expandable Networks. In 6th International Conference on Learning Repre-
sentations.

Zang, Z., Sun, C., Liu, L., Sun, F., and Zheng, C. (2025). Loss of Plasticity: A
New Perspective on Solving Multi-Agent Exploration for Sparse Reward Tasks.
In Proceedings of the 24th International Conference on Autonomous Agents and
Multiagent Systems.

Zenke, F., Poole, B., and Ganguli, S. (2017). Continual Learning Through Synaptic
Intelligence. In 34th International Conference on Machine Learning.

119

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://arxiv.org/abs/1801.00690
https://arxiv.org/abs/2502.21147
https://arxiv.org/abs/2502.21147

Zevin, J. D. and Seidenberg, M. S. (2002). Age of Acquisition Effects in Word Reading
and Other Tasks. Journal of Memory and Language, 47(1):1–29.

Zhang, D., Qi, S., Xiao, X., Chen, K., and Wang, X. (2025). Merge Then Re-
align: Simple and Effective Modality-Incremental Continual Learning for Multi-
modal LLMs. Preprint at https://arxiv.org/abs/2503.07663.

Zhao, R., Morwani, D., Brandfonbrener, D., Vyas, N., and Kakade, S. M. (2025). De-
constructing What Makes a Good Optimizer for Autoregressive Language Models.
In 13th International Conference on Learning Representations.

Zhou, G., Sohn, K., and Lee, H. (2012). Online Incremental Feature Learning with
Denoising Autoencoders. In Artificial Intelligence and Statistics.

Ziv, N. E. and Brenner, N. (2018). Synaptic Tenacity or Lack Thereof: Spontaneous
Remodeling of Synapses. Trends in Neurosciences, 41(2):89–99.

120

https://arxiv.org/abs/2503.07663

Appendix A: Network
Architectures

Table A.1: Network architecture used for the Continual ImageNet problem. The
network consists of three convolutional layers followed by three fully connected layers.

121

Table A.2: Details of the 18 layer residual network used for the Class Incremental
CIFAR-100 problem. Convolutional layers used a kernel size of (3,3), reshape layers
used a kernel size of (1,1), and the pool layer used a kernel size of (4,4).

122

Appendix B: Hyperparameters

Table B.1: Hyperparameter in Continual ImageNet. Values used for the grid searches
to find the best set of hyper-parameters for all algorithms tested on Continual Ima-
geNet. The best-performing set of values for each algorithm is boldened.

Table B.2: Hyper-parameters for PPO.

123

	Introduction
	Background
	Artificial Neural Networks
	Training Artificial Neural Networks
	Reinforcement Learning

	Prior Work on Loss of Plasticity
	Demonstrations of Loss of Plasticity in Supervised Learning
	Loss of Plasticity in Permuted MNIST
	Correlates of Loss of Plasticity in Permuted MNIST
	Evaluating Existing Methods on Online Permuted MNIST
	Loss of Plasticity in Continual ImageNet
	Plasticity Loss in Class-Incremental Learning
	Discussion
	Conclusion

	Formalizing the Phenomenon of Loss of Plasticity
	Loss of Plasticity as Decreasing Performance
	Loss of Plasticity as Worse Performance than Retraining
	Plasticity Loss as Increasing Dynamic Regret
	Conclusion and Discussion

	Maintaining Plasticity via Selective Reinitialization
	Description of Continual Backpropagation
	Different Behaviors of Continual Backpropagation
	Evaluating Continual Backpropagation
	Discussion of Other Plasticity Preserving Algorithms
	Discussing Related Ideas in Machine Learning
	Discussing Connections to Neuroscience
	Conclusion

	Plasticity Loss in on-policy Deep Reinforcement Learning
	Policy Collapse
	A Deeper Look at Policy Collapse in a 2-state MDP
	Reducing Policy Collapse with Tuned Adam
	Overcoming Policy Collapse using Continual Backpropagation
	Maintaining Plasticity in Non-Stationary Reinforcement Learning
	Discussion
	Conclusion

	Conclusion and Future Work
	Directions for Future Work

	Appendix A: Network Architectures
	Appendix B: Hyperparameters

