
Chapter 1

Introduction

The idea that we learn by interacting with our environment is probably the
first to occur to us when we think about the nature of learning. When an
infant plays, waves its arms, or looks about, it has no explicit teacher, but it
does have a direct sensorimotor connection to its environment. Exercising this
connection produces a wealth of information about cause and effect, about
the consequences of actions, and about what to do in order to achieve goals.
Throughout our lives, such interactions are undoubtedly a major source of
knowledge about our environment and ourselves. Whether we are learning to
drive a car or to hold a conversation, we are acutely aware of how our environ-
ment responds to what we do, and we seek to influence what happens through
our behavior. Learning from interaction is a foundational idea underlying
nearly all theories of learning and intelligence.

In this book we explore a computational approach to learning from inter-
action. Rather than directly theorizing about how people or animals learn, we
explore idealized learning situations and evaluate the effectiveness of various
learning methods. That is, we adopt the perspective of an artificial intelligence
researcher or engineer. We explore designs for machines that are effective in
solving learning problems of scientific or economic interest, evaluating the
designs through mathematical analysis or computational experiments. The
approach we explore, called reinforcement learning , is much more focused on
goal-directed learning from interaction than are other approaches to machine
learning.

3



4 CHAPTER 1. INTRODUCTION

1.1 Reinforcement Learning

Reinforcement learning is learning what to do—how to map situations to
actions—so as to maximize a numerical reward signal. The learner is not
told which actions to take, as in most forms of machine learning, but instead
must discover which actions yield the most reward by trying them. In the most
interesting and challenging cases, actions may affect not only the immediate
reward but also the next situation and, through that, all subsequent rewards.
These two characteristics—trial-and-error search and delayed reward—are the
two most important distinguishing features of reinforcement learning.

Reinforcement learning is defined not by characterizing learning methods,
but by characterizing a learning problem. Any method that is well suited to
solving that problem, we consider to be a reinforcement learning method. A
full specification of the reinforcement learning problem in terms of optimal
control of Markov decision processes must wait until Chapter 3, but the basic
idea is simply to capture the most important aspects of the real problem facing
a learning agent interacting with its environment to achieve a goal. Clearly,
such an agent must be able to sense the state of the environment to some extent
and must be able to take actions that affect the state. The agent also must
have a goal or goals relating to the state of the environment. The formulation
is intended to include just these three aspects—sensation, action, and goal—in
their simplest possible forms without trivializing any of them.

Reinforcement learning is different from supervised learning, the kind of
learning studied in most current research in machine learning, statistical pat-
tern recognition, and artificial neural networks. Supervised learning is learn-
ing from examples provided by a knowledgable external supervisor. This is
an important kind of learning, but alone it is not adequate for learning from
interaction. In interactive problems it is often impractical to obtain examples
of desired behavior that are both correct and representative of all the situa-
tions in which the agent has to act. In uncharted territory—where one would
expect learning to be most beneficial—an agent must be able to learn from its
own experience.

One of the challenges that arise in reinforcement learning and not in other
kinds of learning is the trade-off between exploration and exploitation. To
obtain a lot of reward, a reinforcement learning agent must prefer actions
that it has tried in the past and found to be effective in producing reward.
But to discover such actions, it has to try actions that it has not selected
before. The agent has to exploit what it already knows in order to obtain
reward, but it also has to explore in order to make better action selections in
the future. The dilemma is that neither exploration nor exploitation can be
pursued exclusively without failing at the task. The agent must try a variety of



1.1. REINFORCEMENT LEARNING 5

actions and progressively favor those that appear to be best. On a stochastic
task, each action must be tried many times to gain a reliable estimate its
expected reward. The exploration–exploitation dilemma has been intensively
studied by mathematicians for many decades (see Chapter 2). For now, we
simply note that the entire issue of balancing exploration and exploitation
does not even arise in supervised learning as it is usually defined.

Another key feature of reinforcement learning is that it explicitly considers
the whole problem of a goal-directed agent interacting with an uncertain envi-
ronment. This is in contrast with many approaches that consider subproblems
without addressing how they might fit into a larger picture. For example,
we have mentioned that much of machine learning research is concerned with
supervised learning without explicitly specifying how such an ability would
finally be useful. Other researchers have developed theories of planning with
general goals, but without considering planning’s role in real-time decision-
making, or the question of where the predictive models necessary for planning
would come from. Although these approaches have yielded many useful results,
their focus on isolated subproblems is a significant limitation.

Reinforcement learning takes the opposite tack, starting with a complete,
interactive, goal-seeking agent. All reinforcement learning agents have ex-
plicit goals, can sense aspects of their environments, and can choose actions
to influence their environments. Moreover, it is usually assumed from the
beginning that the agent has to operate despite significant uncertainty about
the environment it faces. When reinforcement learning involves planning, it
has to address the interplay between planning and real-time action selection,
as well as the question of how environmental models are acquired and im-
proved. When reinforcement learning involves supervised learning, it does so
for specific reasons that determine which capabilities are critical and which
are not. For learning research to make progress, important subproblems have
to be isolated and studied, but they should be subproblems that play clear
roles in complete, interactive, goal-seeking agents, even if all the details of the
complete agent cannot yet be filled in.

One of the larger trends of which reinforcement learning is a part is that
toward greater contact between artificial intelligence and other engineering
disciplines. Not all that long ago, artificial intelligence was viewed as almost
entirely separate from control theory and statistics. It had to do with logic
and symbols, not numbers. Artificial intelligence was large LISP programs, not
linear algebra, differential equations, or statistics. Over the last decades this
view has gradually eroded. Modern artificial intelligence researchers accept
statistical and control algorithms, for example, as relevant competing methods
or simply as tools of their trade. The previously ignored areas lying between
artificial intelligence and conventional engineering are now among the most



6 CHAPTER 1. INTRODUCTION

active, including new fields such as neural networks, intelligent control, and our
topic, reinforcement learning. In reinforcement learning we extend ideas from
optimal control theory and stochastic approximation to address the broader
and more ambitious goals of artificial intelligence.

1.2 Examples

A good way to understand reinforcement learning is to consider some of the
examples and possible applications that have guided its development.

• A master chess player makes a move. The choice is informed both by
planning—anticipating possible replies and counterreplies—and by im-
mediate, intuitive judgments of the desirability of particular positions
and moves.

• An adaptive controller adjusts parameters of a petroleum refinery’s op-
eration in real time. The controller optimizes the yield/cost/quality
trade-off on the basis of specified marginal costs without sticking strictly
to the set points originally suggested by engineers.

• A gazelle calf struggles to its feet minutes after being born. Half an hour
later it is running at 20 miles per hour.

• A mobile robot decides whether it should enter a new room in search of
more trash to collect or start trying to find its way back to its battery
recharging station. It makes its decision based on how quickly and easily
it has been able to find the recharger in the past.

• Phil prepares his breakfast. Closely examined, even this apparently mun-
dane activity reveals a complex web of conditional behavior and inter-
locking goal–subgoal relationships: walking to the cupboard, opening it,
selecting a cereal box, then reaching for, grasping, and retrieving the box.
Other complex, tuned, interactive sequences of behavior are required to
obtain a bowl, spoon, and milk jug. Each step involves a series of eye
movements to obtain information and to guide reaching and locomotion.
Rapid judgments are continually made about how to carry the objects
or whether it is better to ferry some of them to the dining table before
obtaining others. Each step is guided by goals, such as grasping a spoon
or getting to the refrigerator, and is in service of other goals, such as
having the spoon to eat with once the cereal is prepared and ultimately
obtaining nourishment.



1.3. ELEMENTS OF REINFORCEMENT LEARNING 7

These examples share features that are so basic that they are easy to over-
look. All involve interaction between an active decision-making agent and
its environment, within which the agent seeks to achieve a goal despite un-
certainty about its environment. The agent’s actions are permitted to affect
the future state of the environment (e.g., the next chess position, the level
of reservoirs of the refinery, the next location of the robot), thereby affecting
the options and opportunities available to the agent at later times. Correct
choice requires taking into account indirect, delayed consequences of actions,
and thus may require foresight or planning.

At the same time, in all these examples the effects of actions cannot be
fully predicted; thus the agent must monitor its environment frequently and
react appropriately. For example, Phil must watch the milk he pours into
his cereal bowl to keep it from overflowing. All these examples involve goals
that are explicit in the sense that the agent can judge progress toward its goal
based on what it can sense directly. The chess player knows whether or not
he wins, the refinery controller knows how much petroleum is being produced,
the mobile robot knows when its batteries run down, and Phil knows whether
or not he is enjoying his breakfast.

In all of these examples the agent can use its experience to improve its per-
formance over time. The chess player refines the intuition he uses to evaluate
positions, thereby improving his play; the gazelle calf improves the efficiency
with which it can run; Phil learns to streamline making his breakfast. The
knowledge the agent brings to the task at the start—either from previous ex-
perience with related tasks or built into it by design or evolution—influences
what is useful or easy to learn, but interaction with the environment is essential
for adjusting behavior to exploit specific features of the task.

1.3 Elements of Reinforcement Learning

Beyond the agent and the environment, one can identify four main subele-
ments of a reinforcement learning system: a policy , a reward function, a value
function, and, optionally, a model of the environment.

A policy defines the learning agent’s way of behaving at a given time.
Roughly speaking, a policy is a mapping from perceived states of the environ-
ment to actions to be taken when in those states. It corresponds to what in
psychology would be called a set of stimulus–response rules or associations.
In some cases the policy may be a simple function or lookup table, whereas
in others it may involve extensive computation such as a search process. The
policy is the core of a reinforcement learning agent in the sense that it alone



8 CHAPTER 1. INTRODUCTION

is sufficient to determine behavior. In general, policies may be stochastic.

A reward function defines the goal in a reinforcement learning problem.
Roughly speaking, it maps each perceived state (or state–action pair) of the
environment to a single number, a reward, indicating the intrinsic desirability
of that state. A reinforcement learning agent’s sole objective is to maximize
the total reward it receives in the long run. The reward function defines what
are the good and bad events for the agent. In a biological system, it would
not be inappropriate to identify rewards with pleasure and pain. They are
the immediate and defining features of the problem faced by the agent. As
such, the reward function must necessarily be unalterable by the agent. It
may, however, serve as a basis for altering the policy. For example, if an
action selected by the policy is followed by low reward, then the policy may be
changed to select some other action in that situation in the future. In general,
reward functions may be stochastic.

Whereas a reward function indicates what is good in an immediate sense,
a value function specifies what is good in the long run. Roughly speaking, the
value of a state is the total amount of reward an agent can expect to accumulate
over the future, starting from that state. Whereas rewards determine the
immediate, intrinsic desirability of environmental states, values indicate the
long-term desirability of states after taking into account the states that are
likely to follow, and the rewards available in those states. For example, a state
might always yield a low immediate reward but still have a high value because
it is regularly followed by other states that yield high rewards. Or the reverse
could be true. To make a human analogy, rewards are like pleasure (if high)
and pain (if low), whereas values correspond to a more refined and farsighted
judgment of how pleased or displeased we are that our environment is in a
particular state. Expressed this way, we hope it is clear that value functions
formalize a basic and familiar idea.

Rewards are in a sense primary, whereas values, as predictions of rewards,
are secondary. Without rewards there could be no values, and the only purpose
of estimating values is to achieve more reward. Nevertheless, it is values with
which we are most concerned when making and evaluating decisions. Action
choices are made based on value judgments. We seek actions that bring about
states of highest value, not highest reward, because these actions obtain the
greatest amount of reward for us over the long run. In decision-making and
planning, the derived quantity called value is the one with which we are most
concerned. Unfortunately, it is much harder to determine values than it is to
determine rewards. Rewards are basically given directly by the environment,
but values must be estimated and reestimated from the sequences of obser-
vations an agent makes over its entire lifetime. In fact, the most important
component of almost all reinforcement learning algorithms is a method for



1.3. ELEMENTS OF REINFORCEMENT LEARNING 9

efficiently estimating values. The central role of value estimation is arguably
the most important thing we have learned about reinforcement learning over
the last few decades.

Although all the reinforcement learning methods we consider in this book
are structured around estimating value functions, it is not strictly necessary to
do this to solve reinforcement learning problems. For example, search methods
such as genetic algorithms, genetic programming, simulated annealing, and
other function optimization methods have been used to solve reinforcement
learning problems. These methods search directly in the space of policies
without ever appealing to value functions. We call these evolutionary methods
because their operation is analogous to the way biological evolution produces
organisms with skilled behavior even when they do not learn during their
individual lifetimes. If the space of policies is sufficiently small, or can be
structured so that good policies are common or easy to find, then evolutionary
methods can be effective. In addition, evolutionary methods have advantages
on problems in which the learning agent cannot accurately sense the state of
its environment.

Nevertheless, what we mean by reinforcement learning involves learning
while interacting with the environment, which evolutionary methods do not do.
It is our belief that methods able to take advantage of the details of individual
behavioral interactions can be much more efficient than evolutionary methods
in many cases. Evolutionary methods ignore much of the useful structure of the
reinforcement learning problem: they do not use the fact that the policy they
are searching for is a function from states to actions; they do not notice which
states an individual passes through during its lifetime, or which actions it
selects. In some cases this information can be misleading (e.g., when states are
misperceived), but more often it should enable more efficient search. Although
evolution and learning share many features and can naturally work together,
as they do in nature, we do not consider evolutionary methods by themselves
to be especially well suited to reinforcement learning problems. For simplicity,
in this book when we use the term “reinforcement learning” we do not include
evolutionary methods.

The fourth and final element of some reinforcement learning systems is a
model of the environment. This is something that mimics the behavior of the
environment. For example, given a state and action, the model might predict
the resultant next state and next reward. Models are used for planning, by
which we mean any way of deciding on a course of action by considering possi-
ble future situations before they are actually experienced. The incorporation
of models and planning into reinforcement learning systems is a relatively new
development. Early reinforcement learning systems were explicitly trial-and-
error learners; what they did was viewed as almost the opposite of planning.



10 CHAPTER 1. INTRODUCTION

Nevertheless, it gradually became clear that reinforcement learning methods
are closely related to dynamic programming methods, which do use models,
and that they in turn are closely related to state–space planning methods. In
Chapter 9 we explore reinforcement learning systems that simultaneously learn
by trial and error, learn a model of the environment, and use the model for
planning. Modern reinforcement learning spans the spectrum from low-level,
trial-and-error learning to high-level, deliberative planning.

1.4 An Extended Example: Tic-Tac-Toe

To illustrate the general idea of reinforcement learning and contrast it with
other approaches, we next consider a single example in more detail.

Consider the familiar child’s game of tic-tac-toe. Two players take turns
playing on a three-by-three board. One player plays Xs and the other Os until
one player wins by placing three marks in a row, horizontally, vertically, or
diagonally, as the X player has in this game:

X

X

X

O O

XO

If the board fills up with neither player getting three in a row, the game is
a draw. Because a skilled player can play so as never to lose, let us assume
that we are playing against an imperfect player, one whose play is sometimes
incorrect and allows us to win. For the moment, in fact, let us consider draws
and losses to be equally bad for us. How might we construct a player that will
find the imperfections in its opponent’s play and learn to maximize its chances
of winning?

Although this is a simple problem, it cannot readily be solved in a satisfac-
tory way through classical techniques. For example, the classical “minimax”
solution from game theory is not correct here because it assumes a particular
way of playing by the opponent. For example, a minimax player would never
reach a game state from which it could lose, even if in fact it always won from
that state because of incorrect play by the opponent. Classical optimization
methods for sequential decision problems, such as dynamic programming, can
compute an optimal solution for any opponent, but require as input a com-
plete specification of that opponent, including the probabilities with which
the opponent makes each move in each board state. Let us assume that this
information is not available a priori for this problem, as it is not for the vast



1.4. AN EXTENDED EXAMPLE: TIC-TAC-TOE 11

majority of problems of practical interest. On the other hand, such informa-
tion can be estimated from experience, in this case by playing many games
against the opponent. About the best one can do on this problem is first to
learn a model of the opponent’s behavior, up to some level of confidence, and
then apply dynamic programming to compute an optimal solution given the
approximate opponent model. In the end, this is not that different from some
of the reinforcement learning methods we examine later in this book.

An evolutionary approach to this problem would directly search the space
of possible policies for one with a high probability of winning against the op-
ponent. Here, a policy is a rule that tells the player what move to make for
every state of the game—every possible configuration of Xs and Os on the
three-by-three board. For each policy considered, an estimate of its winning
probability would be obtained by playing some number of games against the
opponent. This evaluation would then direct which policy or policies were con-
sidered next. A typical evolutionary method would hill-climb in policy space,
successively generating and evaluating policies in an attempt to obtain incre-
mental improvements. Or, perhaps, a genetic-style algorithm could be used
that would maintain and evaluate a population of policies. Literally hundreds
of different optimization methods could be applied. By directly searching the
policy space we mean that entire policies are proposed and compared on the
basis of scalar evaluations.

Here is how the tic-tac-toe problem would be approached using reinforce-
ment learning and approximate value functions. First we set up a table of
numbers, one for each possible state of the game. Each number will be the
latest estimate of the probability of our winning from that state. We treat this
estimate as the state’s value, and the whole table is the learned value function.
State A has higher value than state B, or is considered “better” than state
B, if the current estimate of the probability of our winning from A is higher
than it is from B. Assuming we always play Xs, then for all states with three
Xs in a row the probability of winning is 1, because we have already won.
Similarly, for all states with three Os in a row, or that are “filled up,” the
correct probability is 0, as we cannot win from them. We set the initial values
of all the other states to 0.5, representing a guess that we have a 50% chance
of winning.

We play many games against the opponent. To select our moves we examine
the states that would result from each of our possible moves (one for each blank
space on the board) and look up their current values in the table. Most of the
time we move greedily, selecting the move that leads to the state with greatest
value, that is, with the highest estimated probability of winning. Occasionally,
however, we select randomly from among the other moves instead. These are
called exploratory moves because they cause us to experience states that we



12 CHAPTER 1. INTRODUCTION

..

•

our move {
opponent's move {

our move {

starting position

•

•

•

a

b

c*

d

ee*

opponent's move {

c

•f

•g*g

opponent's move {
our move {

.

•

Figure 1.1: A sequence of tic-tac-toe moves. The solid lines represent the
moves taken during a game; the dashed lines represent moves that we (our
reinforcement learning player) considered but did not make. Our second move
was an exploratory move, meaning that it was taken even though another
sibling move, the one leading to e∗, was ranked higher. Exploratory moves do
not result in any learning, but each of our other moves does, causing backups
as suggested by the curved arrows and detailed in the text.

might otherwise never see. A sequence of moves made and considered during
a game can be diagrammed as in Figure ??.

While we are playing, we change the values of the states in which we find
ourselves during the game. We attempt to make them more accurate estimates
of the probabilities of winning. To do this, we “back up” the value of the state
after each greedy move to the state before the move, as suggested by the arrows
in Figure ??. More precisely, the current value of the earlier state is adjusted
to be closer to the value of the later state. This can be done by moving the
earlier state’s value a fraction of the way toward the value of the later state.
If we let s denote the state before the greedy move, and s′ the state after
the move, then the update to the estimated value of s, denoted V (s), can be
written as

V (s)← V (s) + α
[
V (s′)− V (s)

]
,



1.4. AN EXTENDED EXAMPLE: TIC-TAC-TOE 13

where α is a small positive fraction called the step-size parameter, which in-
fluences the rate of learning. This update rule is an example of a temporal-
difference learning method, so called because its changes are based on a dif-
ference, V (s′)− V (s), between estimates at two different times.

The method described above performs quite well on this task. For example,
if the step-size parameter is reduced properly over time, this method converges,
for any fixed opponent, to the true probabilities of winning from each state
given optimal play by our player. Furthermore, the moves then taken (except
on exploratory moves) are in fact the optimal moves against the opponent. In
other words, the method converges to an optimal policy for playing the game.
If the step-size parameter is not reduced all the way to zero over time, then
this player also plays well against opponents that slowly change their way of
playing.

This example illustrates the differences between evolutionary methods and
methods that learn value functions. To evaluate a policy, an evolutionary
method must hold it fixed and play many games against the opponent, or
simulate many games using a model of the opponent. The frequency of wins
gives an unbiased estimate of the probability of winning with that policy, and
can be used to direct the next policy selection. But each policy change is made
only after many games, and only the final outcome of each game is used: what
happens during the games is ignored. For example, if the player wins, then
all of its behavior in the game is given credit, independently of how specific
moves might have been critical to the win. Credit is even given to moves that
never occurred! Value function methods, in contrast, allow individual states
to be evaluated. In the end, both evolutionary and value function methods
search the space of policies, but learning a value function takes advantage of
information available during the course of play.

This simple example illustrates some of the key features of reinforcement
learning methods. First, there is the emphasis on learning while interacting
with an environment, in this case with an opponent player. Second, there is a
clear goal, and correct behavior requires planning or foresight that takes into
account delayed effects of one’s choices. For example, the simple reinforce-
ment learning player would learn to set up multimove traps for a shortsighted
opponent. It is a striking feature of the reinforcement learning solution that it
can achieve the effects of planning and lookahead without using a model of the
opponent and without conducting an explicit search over possible sequences
of future states and actions.

While this example illustrates some of the key features of reinforcement
learning, it is so simple that it might give the impression that reinforcement
learning is more limited than it really is. Although tic-tac-toe is a two-person



14 CHAPTER 1. INTRODUCTION

game, reinforcement learning also applies in the case in which there is no exter-
nal adversary, that is, in the case of a “game against nature.” Reinforcement
learning also is not restricted to problems in which behavior breaks down into
separate episodes, like the separate games of tic-tac-toe, with reward only
at the end of each episode. It is just as applicable when behavior continues
indefinitely and when rewards of various magnitudes can be received at any
time.

Tic-tac-toe has a relatively small, finite state set, whereas reinforcement
learning can be used when the state set is very large, or even infinite. For
example, Gerry Tesauro (1992, 1995) combined the algorithm described above
with an artificial neural network to learn to play backgammon, which has
approximately 1020 states. With this many states it is impossible ever to
experience more than a small fraction of them. Tesauro’s program learned to
play far better than any previous program, and now plays at the level of the
world’s best human players (see Chapter 11). The neural network provides
the program with the ability to generalize from its experience, so that in new
states it selects moves based on information saved from similar states faced
in the past, as determined by its network. How well a reinforcement learning
system can work in problems with such large state sets is intimately tied to
how appropriately it can generalize from past experience. It is in this role that
we have the greatest need for supervised learning methods with reinforcement
learning. Neural networks are not the only, or necessarily the best, way to do
this.

In this tic-tac-toe example, learning started with no prior knowledge be-
yond the rules of the game, but reinforcement learning by no means entails a
tabula rasa view of learning and intelligence. On the contrary, prior informa-
tion can be incorporated into reinforcement learning in a variety of ways that
can be critical for efficient learning. We also had access to the true state in the
tic-tac-toe example, whereas reinforcement learning can also be applied when
part of the state is hidden, or when different states appear to the learner to be
the same. That case, however, is substantially more difficult, and we do not
cover it significantly in this book.

Finally, the tic-tac-toe player was able to look ahead and know the states
that would result from each of its possible moves. To do this, it had to have
a model of the game that allowed it to “think about” how its environment
would change in response to moves that it might never make. Many problems
are like this, but in others even a short-term model of the effects of actions
is lacking. Reinforcement learning can be applied in either case. No model is
required, but models can easily be used if they are available or can be learned.

Exercise 1.1: Self-Play Suppose, instead of playing against a random



1.5. SUMMARY 15

opponent, the reinforcement learning algorithm described above played against
itself. What do you think would happen in this case? Would it learn a different
way of playing?

Exercise 1.2: Symmetries Many tic-tac-toe positions appear different but
are really the same because of symmetries. How might we amend the reinforce-
ment learning algorithm described above to take advantage of this? In what
ways would this improve it? Now think again. Suppose the opponent did not
take advantage of symmetries. In that case, should we? Is it true, then, that
symmetrically equivalent positions should necessarily have the same value?

Exercise 1.3: Greedy Play Suppose the reinforcement learning player was
greedy, that is, it always played the move that brought it to the position that
it rated the best. Would it learn to play better, or worse, than a nongreedy
player? What problems might occur?

Exercise 1.4: Learning from Exploration Suppose learning updates occurred
after all moves, including exploratory moves. If the step-size parameter is
appropriately reduced over time, then the state values would converge to a
set of probabilities. What are the two sets of probabilities computed when we
do, and when we do not, learn from exploratory moves? Assuming that we
do continue to make exploratory moves, which set of probabilities might be
better to learn? Which would result in more wins?

Exercise 1.5: Other Improvements Can you think of other ways to improve
the reinforcement learning player? Can you think of any better way to solve
the tic-tac-toe problem as posed?

1.5 Summary

Reinforcement learning is a computational approach to understanding and au-
tomating goal-directed learning and decision-making. It is distinguished from
other computational approaches by its emphasis on learning by the individual
from direct interaction with its environment, without relying on exemplary
supervision or complete models of the environment. In our opinion, reinforce-
ment learning is the first field to seriously address the computational issues
that arise when learning from interaction with an environment in order to
achieve long-term goals.

Reinforcement learning uses a formal framework defining the interaction
between a learning agent and its environment in terms of states, actions, and
rewards. This framework is intended to be a simple way of representing es-
sential features of the artificial intelligence problem. These features include a



16 CHAPTER 1. INTRODUCTION

sense of cause and effect, a sense of uncertainty and nondeterminism, and the
existence of explicit goals.

The concepts of value and value functions are the key features of the re-
inforcement learning methods that we consider in this book. We take the
position that value functions are essential for efficient search in the space
of policies. Their use of value functions distinguishes reinforcement learning
methods from evolutionary methods that search directly in policy space guided
by scalar evaluations of entire policies.

1.6 History of Reinforcement Learning

The history of reinforcement learning has two main threads, both long and rich,
that were pursued independently before intertwining in modern reinforcement
learning. One thread concerns learning by trial and error and started in the
psychology of animal learning. This thread runs through some of the earliest
work in artificial intelligence and led to the revival of reinforcement learning in
the early 1980s. The other thread concerns the problem of optimal control and
its solution using value functions and dynamic programming. For the most
part, this thread did not involve learning. Although the two threads have
been largely independent, the exceptions revolve around a third, less distinct
thread concerning temporal-difference methods such as used in the tic-tac-toe
example in this chapter. All three threads came together in the late 1980s
to produce the modern field of reinforcement learning as we present it in this
book.

The thread focusing on trial-and-error learning is the one with which we
are most familiar and about which we have the most to say in this brief history.
Before doing that, however, we briefly discuss the optimal control thread.

The term “optimal control” came into use in the late 1950s to describe
the problem of designing a controller to minimize a measure of a dynamical
system’s behavior over time. One of the approaches to this problem was de-
veloped in the mid-1950s by Richard Bellman and others through extending
a nineteenth century theory of Hamilton and Jacobi. This approach uses the
concepts of a dynamical system’s state and of a value function, or “optimal
return function,” to define a functional equation, now often called the Bell-
man equation. The class of methods for solving optimal control problems by
solving this equation came to be known as dynamic programming (Bellman,
1957a). Bellman (1957b) also introduced the discrete stochastic version of the
optimal control problem known as Markovian decision processes (MDPs), and
Ron Howard (1960) devised the policy iteration method for MDPs. All of



1.6. HISTORY OF REINFORCEMENT LEARNING 17

these are essential elements underlying the theory and algorithms of modern
reinforcement learning.

Dynamic programming is widely considered the only feasible way of solv-
ing general stochastic optimal control problems. It suffers from what Bell-
man called “the curse of dimensionality,” meaning that its computational
requirements grow exponentially with the number of state variables, but it
is still far more efficient and more widely applicable than any other general
method. Dynamic programming has been extensively developed since the
late 1950s, including extensions to partially observable MDPs (surveyed by
Lovejoy, 1991), many applications (surveyed by White, 1985, 1988, 1993), ap-
proximation methods (surveyed by Rust, 1996), and asynchronous methods
(Bertsekas, 1982, 1983). Many excellent modern treatments of dynamic pro-
gramming are available (e.g., Bertsekas, 1995; Puterman, 1994; Ross, 1983;
and Whittle, 1982, 1983). Bryson (1996) provides an authoritative history of
optimal control.

In this book, we consider all of the work in optimal control also to be, in a
sense, work in reinforcement learning. We define reinforcement learning as any
effective way of solving reinforcement learning problems, and it is now clear
that these problems are closely related to optimal control problems, particu-
larly those formulated as MDPs. Accordingly, we must consider the solution
methods of optimal control, such as dynamic programming, also to be rein-
forcement learning methods. Of course, almost all of these methods require
complete knowledge of the system to be controlled, and for this reason it feels
a little unnatural to say that they are part of reinforcement learning. On the
other hand, many dynamic programming methods are incremental and itera-
tive. Like learning methods, they gradually reach the correct answer through
successive approximations. As we show in the rest of this book, these similar-
ities are far more than superficial. The theories and solution methods for the
cases of complete and incomplete knowledge are so closely related that we feel
they must be considered together as part of the same subject matter.

Let us return now to the other major thread leading to the modern field of
reinforcement learning, that centered on the idea of trial-and-error learning.
This thread began in psychology, where “reinforcement” theories of learning
are common. Perhaps the first to succinctly express the essence of trial-and-
error learning was Edward Thorndike. We take this essence to be the idea that
actions followed by good or bad outcomes have their tendency to be reselected
altered accordingly. In Thorndike’s words:

Of several responses made to the same situation, those which are
accompanied or closely followed by satisfaction to the animal will,
other things being equal, be more firmly connected with the sit-



18 CHAPTER 1. INTRODUCTION

uation, so that, when it recurs, they will be more likely to recur;
those which are accompanied or closely followed by discomfort to
the animal will, other things being equal, have their connections
with that situation weakened, so that, when it recurs, they will be
less likely to occur. The greater the satisfaction or discomfort, the
greater the strengthening or weakening of the bond. (Thorndike,
1911, p. 244)

Thorndike called this the “Law of Effect” because it describes the effect of
reinforcing events on the tendency to select actions. Although sometimes
controversial (e.g., see Kimble, 1961, 1967; Mazur, 1994), the Law of Effect is
widely regarded as an obvious basic principle underlying much behavior (e.g.,
Hilgard and Bower, 1975; Dennett, 1978; Campbell, 1960; Cziko, 1995).

The Law of Effect includes the two most important aspects of what we mean
by trial-and-error learning. First, it is selectional, meaning that it involves
trying alternatives and selecting among them by comparing their consequences.
Second, it is associative, meaning that the alternatives found by selection are
associated with particular situations. Natural selection in evolution is a prime
example of a selectional process, but it is not associative. Supervised learning
is associative, but not selectional. It is the combination of these two that is
essential to the Law of Effect and to trial-and-error learning. Another way of
saying this is that the Law of Effect is an elementary way of combining search
and memory: search in the form of trying and selecting among many actions in
each situation, and memory in the form of remembering what actions worked
best, associating them with the situations in which they were best. Combining
search and memory in this way is essential to reinforcement learning.

In early artificial intelligence, before it was distinct from other branches
of engineering, several researchers began to explore trial-and-error learning as
an engineering principle. The earliest computational investigations of trial-
and-error learning were perhaps by Minsky and by Farley and Clark, both in
1954. In his Ph.D. dissertation, Minsky discussed computational models of
reinforcement learning and described his construction of an analog machine
composed of components he called SNARCs (Stochastic Neural-Analog Rein-
forcement Calculators). Farley and Clark described another neural-network
learning machine designed to learn by trial and error. In the 1960s the terms
“reinforcement” and “reinforcement learning” were used in the engineering lit-
erature for the first time (e.g., Waltz and Fu, 1965; Mendel, 1966; Fu, 1970;
Mendel and McClaren, 1970). Particularly influential was Minsky’s paper
“Steps Toward Artificial Intelligence” (Minsky, 1961), which discussed several
issues relevant to reinforcement learning, including what he called the credit
assignment problem: How do you distribute credit for success among the many
decisions that may have been involved in producing it? All of the methods we



1.6. HISTORY OF REINFORCEMENT LEARNING 19

discuss in this book are, in a sense, directed toward solving this problem.

The interests of Farley and Clark (1954; Clark and Farley, 1955) shifted
from trial-and-error learning to generalization and pattern recognition, that
is, from reinforcement learning to supervised learning. This began a pattern
of confusion about the relationship between these types of learning. Many
researchers seemed to believe that they were studying reinforcement learning
when they were actually studying supervised learning. For example, neural
network pioneers such as Rosenblatt (1962) and Widrow and Hoff (1960) were
clearly motivated by reinforcement learning—they used the language of re-
wards and punishments—but the systems they studied were supervised learn-
ing systems suitable for pattern recognition and perceptual learning. Even
today, researchers and textbooks often minimize or blur the distinction be-
tween these types of learning. Some modern neural-network textbooks use the
term “trial-and-error” to describe networks that learn from training examples
because they use error information to update connection weights. This is an
understandable confusion, but it substantially misses the essential selectional
character of trial-and-error learning.

Partly as a result of these confusions, research into genuine trial-and-error
learning became rare in the the 1960s and 1970s. In the next few paragraphs
we discuss some of the exceptions and partial exceptions to this trend.

One of these was the work by a New Zealand researcher named John An-
dreae. Andreae (1963) developed a system called STeLLA that learned by trial
and error in interaction with its environment. This system included an internal
model of the world and, later, an “internal monologue” to deal with problems
of hidden state (Andreae, 1969a). Andreae’s later work (1977) placed more
emphasis on learning from a teacher, but still included trial and error. Un-
fortunately, his pioneering research was not well known, and did not greatly
impact subsequent reinforcement learning research.

More influential was the work of Donald Michie. In 1961 and 1963 he
described a simple trial-and-error learning system for learning how to play
tic-tac-toe (or naughts and crosses) called MENACE (for Matchbox Educable
Naughts and Crosses Engine). It consisted of a matchbox for each possible
game position, each matchbox containing a number of colored beads, a dif-
ferent color for each possible move from that position. By drawing a bead at
random from the matchbox corresponding to the current game position, one
could determine MENACE’s move. When a game was over, beads were added
to or removed from the boxes used during play to reinforce or punish MEN-
ACE’s decisions. Michie and Chambers (1968) described another tic-tac-toe
reinforcement learner called GLEE (Game Learning Expectimaxing Engine)
and a reinforcement learning controller called BOXES. They applied BOXES



20 CHAPTER 1. INTRODUCTION

to the task of learning to balance a pole hinged to a movable cart on the basis
of a failure signal occurring only when the pole fell or the cart reached the end
of a track. This task was adapted from the earlier work of Widrow and Smith
(1964), who used supervised learning methods, assuming instruction from a
teacher already able to balance the pole. Michie and Chambers’s version of
pole-balancing is one of the best early examples of a reinforcement learning
task under conditions of incomplete knowledge. It influenced much later work
in reinforcement learning, beginning with some of our own studies (Barto,
Sutton, and Anderson, 1983; Sutton, 1984). Michie has consistently empha-
sized the role of trial and error and learning as essential aspects of artificial
intelligence (Michie, 1974).

Widrow, Gupta, and Maitra (1973) modified the LMS algorithm of Widrow
and Hoff (1960) to produce a reinforcement learning rule that could learn from
success and failure signals instead of from training examples. They called this
form of learning “selective bootstrap adaptation” and described it as “learning
with a critic” instead of “learning with a teacher.” They analyzed this rule and
showed how it could learn to play blackjack. This was an isolated foray into
reinforcement learning by Widrow, whose contributions to supervised learning
were much more influential.

Research on learning automata had a more direct influence on the trial-
and-error thread leading to modern reinforcement learning research. These
are methods for solving a nonassociative, purely selectional learning problem
known as the n-armed bandit by analogy to a slot machine, or “one-armed
bandit,” except with n levers (see Chapter 2). Learning automata are simple,
low-memory machines for solving this problem. Learning automata originated
in Russia with the work of Tsetlin (1973) and has been extensively developed
since then within engineering (see Narendra and Thathachar, 1974, 1989).
Barto and Anandan (1985) extended these methods to the associative case.

John Holland (1975) outlined a general theory of adaptive systems based
on selectional principles. His early work concerned trial and error primar-
ily in its nonassociative form, as in evolutionary methods and the n-armed
bandit. In 1986 he introduced classifier systems, true reinforcement learn-
ing systems including association and value functions. A key component of
Holland’s classifier systems was always a genetic algorithm, an evolutionary
method whose role was to evolve useful representations. Classifier systems
have been extensively developed by many researchers to form a major branch
of reinforcement learning research (e.g., see Goldberg, 1989; Wilson, 1994),
but genetic algorithms—which by themselves are not reinforcement learning
systems—have received much more attention.

The individual most responsible for reviving the trial-and-error thread to



1.6. HISTORY OF REINFORCEMENT LEARNING 21

reinforcement learning within artificial intelligence was Harry Klopf (1972,
1975, 1982). Klopf recognized that essential aspects of adaptive behavior
were being lost as learning researchers came to focus almost exclusively on
supervised learning. What was missing, according to Klopf, were the hedonic
aspects of behavior, the drive to achieve some result from the environment, to
control the environment toward desired ends and away from undesired ends.
This is the essential idea of trial-and-error learning. Klopf’s ideas were espe-
cially influential on the authors because our assessment of them (Barto and
Sutton, 1981a) led to our appreciation of the distinction between supervised
and reinforcement learning, and to our eventual focus on reinforcement learn-
ing. Much of the early work that we and colleagues accomplished was directed
toward showing that reinforcement learning and supervised learning were in-
deed different (Barto, Sutton, and Brouwer, 1981; Barto and Sutton, 1981b;
Barto and Anandan, 1985). Other studies showed how reinforcement learning
could address important problems in neural network learning, in particular,
how it could produce learning algorithms for multilayer networks (Barto, An-
derson, and Sutton, 1982; Barto and Anderson, 1985; Barto and Anandan,
1985; Barto, 1985, 1986; Barto and Jordan, 1987).

We turn now to the third thread to the history of reinforcement learn-
ing, that concerning temporal-difference learning. Temporal-difference learn-
ing methods are distinctive in being driven by the difference between tempo-
rally successive estimates of the same quantity—for example, of the probability
of winning in the tic-tac-toe example. This thread is smaller and less distinct
than the other two, but it has played a particularly important role in the field,
in part because temporal-difference methods seem to be new and unique to
reinforcement learning.

The origins of temporal-difference learning are in part in animal learning
psychology, in particular, in the notion of secondary reinforcers. A secondary
reinforcer is a stimulus that has been paired with a primary reinforcer such as
food or pain and, as a result, has come to take on similar reinforcing proper-
ties. Minsky (1954) may have been the first to realize that this psychological
principle could be important for artificial learning systems. Arthur Samuel
(1959) was the first to propose and implement a learning method that included
temporal-difference ideas, as part of his celebrated checkers-playing program.
Samuel made no reference to Minsky’s work or to possible connections to ani-
mal learning. His inspiration apparently came from Claude Shannon’s (1950)
suggestion that a computer could be programmed to use an evaluation function
to play chess, and that it might be able to to improve its play by modifying this
function on-line. (It is possible that these ideas of Shannon’s also influenced
Bellman, but we know of no evidence for this.) Minsky (1961) extensively
discussed Samuel’s work in his “Steps” paper, suggesting the connection to



22 CHAPTER 1. INTRODUCTION

secondary reinforcement theories, both natural and artificial.

As we have discussed, in the decade following the work of Minsky and
Samuel, little computational work was done on trial-and-error learning, and
apparently no computational work at all was done on temporal-difference
learning. In 1972, Klopf brought trial-and-error learning together with an
important component of temporal-difference learning. Klopf was interested
in principles that would scale to learning in large systems, and thus was in-
trigued by notions of local reinforcement, whereby subcomponents of an overall
learning system could reinforce one another. He developed the idea of “gen-
eralized reinforcement,” whereby every component (nominally, every neuron)
views all of its inputs in reinforcement terms: excitatory inputs as rewards
and inhibitory inputs as punishments. This is not the same idea as what we
now know as temporal-difference learning, and in retrospect it is farther from
it than was Samuel’s work. On the other hand, Klopf linked the idea with
trial-and-error learning and related it to the massive empirical database of
animal learning psychology.

Sutton (1978a, 1978b, 1978c) developed Klopf’s ideas further, particu-
larly the links to animal learning theories, describing learning rules driven
by changes in temporally successive predictions. He and Barto refined these
ideas and developed a psychological model of classical conditioning based on
temporal-difference learning (Sutton and Barto, 1981a; Barto and Sutton,
1982). There followed several other influential psychological models of classical
conditioning based on temporal-difference learning (e.g., Klopf, 1988; Moore
et al., 1986; Sutton and Barto, 1987, 1990). Some neuroscience models devel-
oped at this time are well interpreted in terms of temporal-difference learning
(Hawkins and Kandel, 1984; Byrne, Gingrich, and Baxter, 1990; Gelperin,
Hopfield, and Tank, 1985; Tesauro, 1986; Friston et al., 1994), although in
most cases there was no historical connection. A recent summary of links
between temporal-difference learning and neuroscience ideas is provided by
Schultz, Dayan, and Montague (1997).

Our early work on temporal-difference learning was strongly influenced
by animal learning theories and by Klopf’s work. Relationships to Minsky’s
“Steps” paper and to Samuel’s checkers players appear to have been recognized
only afterward. By 1981, however, we were fully aware of all the prior work
mentioned above as part of the temporal-difference and trial-and-error threads.
At this time we developed a method for using temporal-difference learning in
trial-and-error learning, known as the actor–critic architecture, and applied
this method to Michie and Chambers’s pole-balancing problem (Barto, Sutton,
and Anderson, 1983). This method was extensively studied in Sutton’s (1984)
Ph.D. dissertation and extended to use backpropagation neural networks in
Anderson’s (1986) Ph.D. dissertation. Around this time, Holland (1986) incor-



1.7. BIBLIOGRAPHICAL REMARKS 23

porated temporal-difference ideas explicitly into his classifier systems. A key
step was taken by Sutton in 1988 by separating temporal-difference learning
from control, treating it as a general prediction method. That paper also in-
troduced the TD(λ) algorithm and proved some of its convergence properties.

As we were finalizing our work on the actor–critic architecture in 1981, we
discovered a paper by Ian Witten (1977) that contains the earliest known pub-
lication of a temporal-difference learning rule. He proposed the method that
we now call tabular TD(0) for use as part of an adaptive controller for solving
MDPs. Witten’s work was a descendant of Andreae’s early experiments with
STeLLA and other trial-and-error learning systems. Thus, Witten’s 1977 pa-
per spanned both major threads of reinforcement learning research—trial-and-
error learning and optimal control—while making a distinct early contribution
to temporal-difference learning.

Finally, the temporal-difference and optimal control threads were fully
brought together in 1989 with Chris Watkins’s development of Q-learning.
This work extended and integrated prior work in all three threads of reinforce-
ment learning research. Paul Werbos (1987) contributed to this integration by
arguing for the convergence of trial-and-error learning and dynamic program-
ming since 1977. By the time of Watkins’s work there had been tremendous
growth in reinforcement learning research, primarily in the machine learning
subfield of artificial intelligence, but also in neural networks and artificial in-
telligence more broadly. In 1992, the remarkable success of Gerry Tesauro’s
backgammon playing program, TD-Gammon, brought additional attention to
the field. Other important contributions made in the recent history of rein-
forcement learning are too numerous to mention in this brief account; we cite
these at the end of the individual chapters in which they arise.

1.7 Bibliographical Remarks

For additional general coverage of reinforcement learning, we refer the reader
to the books by Bertsekas and Tsitsiklis (1996) and Kaelbling (1993a). Two
special issues of the journal Machine Learning focus on reinforcement learning:
Sutton (1992) and Kaelbling (1996). Useful surveys are provided by Barto
(1995b); Kaelbling, Littman, and Moore (1996); and Keerthi and Ravindran
(1997).

The example of Phil’s breakfast in this chapter was inspired by Agre (1988).
We direct the reader to Chapter 6 for references to the kind of temporal-
difference method we used in the tic-tac-toe example.

Modern attempts to relate the kinds of algorithms used in reinforcement



24 CHAPTER 1. INTRODUCTION

learning to the nervous system are made by Hampson (1989), Friston et al.
(1994), Barto (1995a), Houk, Adams, and Barto (1995), Montague, Dayan,
and Sejnowski (1996), and Schultz, Dayan, and Montague (1997).


