
Answers to Exercises

Reinforcement Learning: Chapter 4

Exercise 4.1 If π is the random policy, what is Qπ(11, down)? What is
Qπ(7, down)?

Answer: Qπ(11, down) = −1. Qπ(7, down) = −15.

Exercise 4.2 Suppose a new state 15 is added to the gridworld just below
state 13, and its actions, left, up, right, and down, take the agent to states
12, 13, 14, and 15, respectively. Assume that the transitions from the original
states are unchanged. What, then, is V π(15) for the equiprobable random
policy? Now suppose the dynamics of state 13 are also changed, such that
action down from state 13 takes the agent to the new state 15. What is
V π(15) for the equiprobable random policy in this case?
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r  =  -1
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T 1 2 3

4 5 6 7
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13 14 T   T

  T -14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

15 -20.

Answer: In the case where none of the other states have their outgoing
transitions changed, then the new state’s value under the random policy is

V π(15) = Eπ{rt+1 + V π(st+1)|st = s}

= −1 +
1

4
V π(12) +

1

4
V π(13) +

1

4
V π(14) +

1

4
V π(15)

Plugging in the asymptotic values for V∞ = V π for states 12, 13, and 14 from
Figure 4.1 (and above, right) and solving for V π(15) yields

V π(15) = −1−
1

4
22−

1

4
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1

4
14−

1

4
V π(15)

V π(15)
(

1−
1

4

)

= −15

V π(15) = −20
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If the dynamics of state 13 also change, then it turns out that the answer is
the same! This can be most easily seen by hypothesizing that V π(15) = −20
and then checking that all states still satify the Bellman equation for V π.

Exercise 4.3 What are the equations analogous to (4.3), (4.4) and (4.5)
for the action-value function Qπ and its approximation by a sequence of
functions Q0, Q1, Q2, . . . ?

Answer:

Qπ(s, a) = Eπ{rt+1 + γQπ(st+1, at+1)|st = s, at = a} (4.3)

=
∑

s′

Pa

ss′

[

Ra

ss′
+ γ

∑

a′

π(s′, a′)Qπ(s′, a′)

]

(4.4)

Qk+1(s, a) = Eπ{rt+1 + γQk(st+1, at+1)|st = s, at = a}

=
∑

s′

Pa

ss′

[

Ra

ss′
+ γ

∑

a′

π(s′, a′)Qk(s
′, a′)

]

(4.5)

Exercise 4.5 How would policy iteration be defined for action values? Give
a complete algorithm for computing Q∗, analogous to Figure 4.3 for com-
puting V ∗. Please pay special attention to this exercise because the ideas
involved will be used throughout the rest of the book.

Answer: Just as for state values, we would have an alternation of policy
improvement and policy evalution steps, only this time in Q rather than in
V :

π0
PE

−→ Qπ0
PI

−→ π1
PE

−→ Qπ1
PI

−→ π2
PE

−→ · · ·
PI

−→ π∗ PE

−→ Q∗

Each policy evaluation step, πi

PE

−→ Qπi, would involve multiple iterations of
equation (4.5) above, until convergence, or some other way of computing Qπi .

Each policy improvement step, Qπi
PI

−→ πi+1, would be a greedification with
respect to Qπi, i.e.:

πi+1(s) = arg max
a

Qπi(s, a).

A boxed algorithm for policy iteration to Q∗ is:
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1. Initialization
π ← an arbitrary deterministic policy
Q← an arbitrary function: S × A(s) 7→ <
θ ← small positive number

2. Policy Evaluation
Repeat

∆← 0
For each s ∈ S and a ∈ A(s):

q ← Q(s, a)
Q(s, a)←

∑

s′ P
a

ss′
[Ra

ss′
+ γQ(s′, π(s′))]

∆← max(∆, |q −Q(s, a)|)
until ∆ < θ

3. Policy Improvement
policy-improved← false

For each s ∈ S:
b← π(s)
π(s)← arg maxa Q(s, a)
If b 6= π(s) then policy-improved← true

If policy-improved, then go to 2
else stop

In the “arg max” step, it is important that ties be broken in a consistent
order.

Exercise 4.6 Suppose you are restricted to consideration only of algorithms
that are ε-soft , meaning that the probability of selecting each action in each
state, s, was at least ε

|A(s)|
. Describe qualitatively the changes that would be

required in each of the steps 3, 2, and 1, in that order, of the policy iteration
algorithm for V ∗ (Figure 4.3).

Answer: Step 3, the policy improvement step, would have to be changed
such that the new policy is not the deterministic greedy policy, but the
closest ε-soft policy. That is, all non-greedy actions would be given the
minimal probability, ε

|A(s)|
, and all the rest of the probability would go to

the greedy action. The check for termination would also need to be changed.
Somehow we would have to check for a change in the action with the bulk of
the probability.

Step 2, policy evalution, would need to be generalized to accomodate
stochastic policies. A new equation analogous to (4.5) would be needed.

Step 1, initialization, would need be changed only to permit the initial
policy to be stochastic.
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Exercise 4.7 Why does the optimal policy for the gambler’s problem have
such a curious form? In particular, for capital of 50 it bets it all on one flip,
but for capital of 51 it does not. Why is this a good policy?

Answer: In this problem, with p = 0.4, the coin is biased against the
gambler. Because of this, the gambler want to minimize his number of flips.
If he makes many small bets he is likely to lose. Thus, with a stake of 50
he can bet it all and have a .4 probability of winning. On the other hand,
with stake of 51 he can do slightly better. If he bets 1, then even if he loses
he still has 50 and thus a .4 chance of winning. And if he wins he ends up
with 52. With 52 he can bet 2 and maybe end up with 54 etc. In these cases
there is a chance he can get up to 75 without ever risking it all on one bet,
yet he can always fall back (if he loses) on one big bet. And if he gets to
75 he can safely bet 25, possibly winning in one, while still being able to fall
back to 50. It is this sort of logic which causes such big changes in the policy
with small changes in stake, particularly at multiples of the negative powers
of two.

Exercise 4.9 What is the analog of the value iteration equation (4.9) for
action values, Qk+1(s, a)?

Answer: Value iteration in action values is defined by

Qk+1(s, a) = E

{

rt+1 + γ max
a′

Qk(st+1, α)
∣

∣

∣

∣

st = s, at = a

}

=
∑

s′

Pa

ss′

[

Ra

ss′
+ γ max

a′

Qk(s
′, a′)

]

for all s ∈ S and a ∈ A(s). For arbitrary Q0, the sequence {Qk} converges
to Q∗.
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