
Course Notes�

The Reinforcement Learning Problem

Richard S� Sutton and Andrew G� Barto

c� All rights reserved

In this chapter we introduce the problem that we try to solve in the rest of
the book� For us� this problem de�nes the �eld of reinforcement learning� any
method that is suited to solving this problem we consider to be a reinforcement
learning method�

Our objective in this chapter is to describe the reinforcement learning prob�
lem in a broad sense� We try to convey the wide range of possible applications
that can be framed as reinforcement learning tasks� We also describe mathe�
matically idealized forms of the reinforcement learning problem for which precise
theoretical statements can be made� We introduce key elements of the problem�s
mathematical structure� such as value functions and Bellman equations� As in all
of arti�cial intelligence� there is a tension between breadth of applicability and
mathematical tractability� In this chapter we introduce this tension and discuss
some of the trade�o�s and challenges that it implies�

� The Agent�Environment Interface

The reinforcement learning problem is meant to be a straightforward framing
of the problem of learning from interaction to achieve a goal� The learner and
decision�maker is called the agent� The thing it interacts with� comprising every�
thing outside the agent� is called the environment� These interact continually� the
agent selecting actions and the environment responding to those actions and pre�
senting new situations to the agent�� The environment also gives rise to rewards�
special numerical values that the agent tries to maximize over time� A complete
speci�cation of an environment de�nes a task � one instance of the reinforcement
learning problem�

�These course notes are chapters from a textbook� Reinforcement Learning� An Introduction�
by Richard S� Sutton and Andrew G� Barto� to be published by MIT Press in January� �����

�We use the terms agent� environment� and action instead of the engineers� terms controller�
controlled system �or plant�� and control signal because they are meaningful to a wider audience�

�

Agent

Environment

action
atst

reward
rt

rt+1

st+1

state

Figure �� The agent�environment interaction in reinforcement learning�

More speci�cally� the agent and environment interact at each of a sequence of
discrete time steps� t 	
� �� �� �� � � ��� At each time step t� the agent receives some
representation of the environment�s state� st � S� where S is the set of possible
states� and on that basis selects an action� at � A
st�� where A
st� is the set of
actions available in state st� One time step later� in part as a consequence of its
action� the agent receives a numerical reward � rt�� � �� and �nds itself in a new
state� st���� Figure � diagrams the agent�environment interaction�

At each time step� the agent implements a mapping from states to probabil�
ities of selecting each possible action� This mapping is called the agent�s policy
and is denoted �t� where �t
s� a� is the probability that at 	 a if st 	 s� Rein�
forcement learning methods specify how the agent changes its policy as a result
of its experience� The agent�s goal� roughly speaking� is to maximize the total
amount of reward it receives over the long run�

This framework is abstract and �exible and can be applied to many di�erent
problems in many di�erent ways� For example� the time steps need not refer
to �xed intervals of real time� they can refer to arbitrary successive stages of
decision�making and acting� The actions can be low�level controls� such as the
voltages applied to the motors of a robot arm� or high�level decisions� such as
whether or not to have lunch or to go to graduate school� Similarly� the states
can take a wide variety of forms� They can be completely determined by low�
level sensations� such as direct sensor readings� or they can be more high�level and
abstract� such as symbolic descriptions of objects in a room� Some of what makes
up a state could be based on memory of past sensations or even be entirely mental
or subjective� For example� an agent could be in �the state� of not being sure
where an object is� or of having just been �surprised� in some clearly de�ned
sense� Similarly� some actions might be totally mental or computational� For
example� some actions might control what an agent chooses to think about� or

�We restrict attention to discrete time to keep things as simple as possible� even though many
of the ideas can be extended to the continuous�time case �e�g�� see Bertsekas and Tsitsiklis� ���	

Werbos� ����
 Doya� ���	��

�We use rt�� instead of rt to denote the immediate reward due to the action taken at time
t because it emphasizes that the next reward and the next state� st��� are jointly determined�

�

where it focuses its attention� In general� actions can be any decisions we want
to learn how to make� and the states can be anything we can know that might
be useful in making them�

In particular� the boundary between agent and environment is not often the
same as the physical boundary of a robot�s or animal�s body� Usually� the bound�
ary is drawn closer to the agent than that� For example� the motors and mechan�
ical linkages of a robot and its sensing hardware should usually be considered
parts of the environment rather than parts of the agent� Similarly� if we apply
the framework to a person or animal� the muscles� skeleton� and sensory organs
should be considered part of the environment� Rewards� too� presumably are
computed inside the physical bodies of natural and arti�cial learning systems�
but are considered external to the agent�

The general rule we follow is that anything that cannot be changed arbitrarily
by the agent is considered to be outside of it and thus part of its environment� We
do not assume that everything in the environment is unknown to the agent� For
example� the agent often knows quite a bit about how its rewards are computed
as a function of its actions and the states in which they are taken� But we always
consider the reward computation to be external to the agent because it de�nes the
task facing the agent and thus must be beyond its ability to change arbitrarily�
In fact� in some cases the agent may know everything about how its environment
works and still face a di�cult reinforcement learning task� just as we may know
exactly how a puzzle like Rubik�s cube works� but still be unable to solve it� The
agent�environment boundary represents the limit of the agent�s absolute control�
not of its knowledge�

The agent�environment boundary can be located at di�erent places for di�er�
ent purposes� In a complicated robot� many di�erent agents may be operating at
once� each with its own boundary� For example� one agent may make high�level
decisions which form part of the states faced by a lower�level agent that imple�
ments the high�level decisions� In practice� the agent�environment boundary is
determined once one has selected particular states� actions� and rewards� and
thus has identi�ed a speci�c decision�making task of interest�

The reinforcement learning framework is a considerable abstraction of the
problem of goal�directed learning from interaction� It proposes that whatever the
details of the sensory� memory� and control apparatus� and whatever objective one
is trying to achieve� any problem of learning goal�directed behavior can be reduced
to three signals passing back and forth between an agent and its environment�
one signal to represent the choices made by the agent
the actions�� one signal to
represent the basis on which the choices are made
the states�� and one signal to
de�ne the agent�s goal
the rewards�� This framework may not be su�cient to
represent all decision�learning problems usefully� but it has proved to be widely
useful and applicable�

Of course� the particular states and actions vary greatly from application to

�

application� and how they are represented can strongly a�ect performance� In
reinforcement learning� as in other kinds of learning� such representational choices
are at present more art than science� In this book we o�er some advice and
examples regarding good ways of representing states and actions� but our primary
focus is on general principles for learning how to behave once the representations
have been selected�

Example �� Bioreactor Suppose reinforcement learning is being applied to de�
termine moment�by�moment temperatures and stirring rates for a bioreactor
a
large vat of nutrients and bacteria used to produce useful chemicals�� The actions
in such an application might be target temperatures and target stirring rates that
are passed to lower�level control systems that� in turn� directly activate heating
elements and motors to attain the targets� The states are likely to be thermo�
couple and other sensory readings� perhaps �ltered and delayed� plus symbolic
inputs representing the ingredients in the vat and the target chemical� The re�
wards might be moment�by�moment measures of the rate at which the useful
chemical is produced by the bioreactor� Notice that here each state is a list� or
vector� of sensor readings and symbolic inputs� and each action is a vector con�
sisting of a target temperature and a stirring rate� It is typical of reinforcement
learning tasks to have states and actions with such structured representations�
Rewards� on the other hand� are always single numbers� �

Example �� Pick�and�Place Robot Consider using reinforcement learning to
control the motion of a robot arm in a repetitive pick�and�place task� If we want
to learn movements that are fast and smooth� the learning agent will have to
control the motors directly and have low�latency information about the current
positions and velocities of the mechanical linkages� The actions in this case might
be the voltages applied to each motor at each joint� and the states might be the
latest readings of joint angles and velocities� The reward might be �� for each
object successfully picked up and placed� To encourage smooth movements� on
each time step a small� negative reward can be given as a function of the moment�
to�moment �jerkiness� of the motion� �

Example �� Recycling Robot A mobile robot has the job of collecting empty
soda cans in an o�ce environment� It has sensors for detecting cans� and an
arm and gripper that can pick them up and place them in an onboard bin� it
runs on a rechargeable battery� The robot�s control system has components
for interpreting sensory information� for navigating� and for controlling the arm
and gripper� High�level decisions about how to search for cans are made by a
reinforcement learning agent based on the current charge level of the battery�
This agent has to decide whether the robot should
�� actively search for a can
for a certain period of time�
�� remain stationary and wait for someone to bring it
a can� or
�� head back to its home base to recharge its battery� This decision has
to be made either periodically or whenever certain events occur� such as �nding

�

an empty can� The agent therefore has three actions� and its state is determined
by the state of the battery� The rewards might be zero most of the time� but then
become positive when the robot secures an empty can� or large and negative if
the battery runs all the way down� In this example� the reinforcement learning
agent is not the entire robot� The states it monitors describe conditions within
the robot itself� not conditions of the robot�s external environment� The agent�s
environment therefore includes the rest of the robot� which might contain other
complex decision�making systems� as well as the robot�s external environment� �

Exercise � Devise three example tasks of your own that �t into the reinforcement
learning framework� identifying for each its states� actions� and rewards� Make
the three examples as di�erent from each other as possible� The framework is
abstract and �exible and can be applied in many di�erent ways� Stretch its limits
in some way in at least one of your examples�

Exercise � Is the reinforcement learning framework adequate to usefully represent
all goal�directed learning tasks� Can you think of any clear exceptions�

Exercise � Consider the problem of driving� You could de�ne the actions in
terms of the accelerator� steering wheel� and brake� that is� where your body
meets the machine� Or you could de�ne them farther out�say� where the rubber
meets the road� considering your actions to be tire torques� Or you could de�ne
them farther in�say� where your brain meets your body� the actions being muscle
twitches to control your limbs� Or you could go to a really high level and say
that your actions are your choices of where to drive� What is the right level� the
right place to draw the line between agent and environment� On what basis is
one location of the line to be preferred over another� Is there any fundamental
reason for preferring one location over another� or is it a free choice�

� Goals and Rewards

In reinforcement learning� the purpose or goal of the agent is formalized in terms
of a special reward signal passing from the environment to the agent� At each
time step� the reward is a simple number� rt � �� Informally� the agent�s goal is
to maximize the total amount of reward it receives� This means maximizing not
immediate reward� but cumulative reward in the long run�

The use of a reward signal to formalize the idea of a goal is one of the most
distinctive features of reinforcement learning� Although this way of formulating
goals might at �rst appear limiting� in practice it has proved to be �exible and
widely applicable� The best way to see this is to consider examples of how
it has been� or could be� used� For example� to make a robot learn to walk�
researchers have provided reward on each time step proportional to the robot�s
forward motion� In making a robot learn how to escape from a maze� the reward
is often zero until it escapes� when it becomes ��� Another common approach

�

in maze learning is to give a reward of �� for every time step that passes prior
to escape� this encourages the agent to escape as quickly as possible� To make a
robot learn to �nd and collect empty soda cans for recycling� one might give it a
reward of zero most of the time� and then a reward of �� for each can collected

and con�rmed as empty�� One might also want to give the robot negative
rewards when it bumps into things or when somebody yells at it� For an agent
to learn to play checkers or chess� the natural rewards are �� for winning� �� for
losing� and
 for drawing and for all nonterminal positions�

You can see what is happening in all of these examples� The agent always
learns to maximize its reward� If we want it to do something for us� we must
provide rewards to it in such a way that in maximizing them the agent will also
achieve our goals� It is thus critical that the rewards we set up truly indicate
what we want accomplished� In particular� the reward signal is not the place to
impart to the agent prior knowledge about how to achieve what we want it to do��

For example� a chess�playing agent should be rewarded only for actually winning�
not for achieving subgoals such taking its opponent�s pieces or gaining control of
the center of the board� If achieving these sorts of subgoals were rewarded� then
the agent might �nd a way to achieve them without achieving the real goal� For
example� it might �nd a way to take the opponent�s pieces even at the cost of
losing the game� The reward signal is your way of communicating to the robot
what you want it to achieve� not how you want it achieved�

Newcomers to reinforcement learning are sometimes surprised that the rewards�
which de�ne of the goal of learning�are computed in the environment rather than
in the agent� Certainly most ultimate goals for animals are recognized by com�
putations occurring inside their bodies� for example� by sensors for recognizing
food� hunger� pain� and pleasure� Nevertheless� as we discussed in the previous
section� one can redraw the agent�environment interface in such a way that these
parts of the body are considered to be outside of the agent
and thus part of the
agent�s environment�� For example� if the goal concerns a robot�s internal energy
reservoirs� then these are considered to be part of the environment� if the goal
concerns the positions of the robot�s limbs� then these too are considered to be
part of the environment�that is� the agent�s boundary is drawn at the interface
between the limbs and their control systems� These things are considered internal
to the robot but external to the learning agent� For our purposes� it is convenient
to place the boundary of the learning agent not at the limit of its physical body�
but at the limit of its control�

The reason we do this is that the agent�s ultimate goal should be something
over which it has imperfect control� it should not be able� for example� to simply

�Better places for imparting this kind of prior knowledge are the initial policy or value
function� or in in�uences on these� See Lin ������� Maclin and Shavlik ����
�� and Clouse
����	��

�

decree that the reward has been received in the same way that it might arbitrarily
change its actions� Therefore� we place the reward source outside of the agent�
This does not preclude the agent from de�ning for itself a kind of internal reward�
or a sequence of internal rewards� Indeed� this is exactly what many reinforcement
learning methods do�

� Returns

So far we have been imprecise regarding the objective of learning� We have said
that the agent�s goal is to maximize the reward it receives in the long run� How
might this be formally de�ned� If the sequence of rewards received after time
step t is denoted rt��� rt��� rt��� � � �� then what precise aspect of this sequence do
we wish to maximize� In general� we seek to maximize the expected return� where
the return� Rt� is de�ned as some speci�c function of the reward sequence� In the
simplest case the return is the sum of the rewards�

Rt 	 rt�� � rt�� � rt�� � � � �� rT �
��

where T is a �nal time step� This approach makes sense in applications in which
there is a natural notion of �nal time step� that is� when the agent�environment
interaction breaks naturally into subsequences� which we call episodes�� such as
plays of a game� trips through a maze� or any sort of repeated interactions� Each
episode ends in a special state called the terminal state� followed by a reset to a
standard starting state or to a sample from a standard distribution of starting
states� Tasks with episodes of this kind are called episodic tasks� In episodic
tasks we sometimes need to distinguish the set of all nonterminal states� denoted
S� from the set of all states plus the terminal state� denoted S��

On the other hand� in many cases the agent�environment interaction does not
break naturally into identi�able episodes� but goes on continually without limit�
For example� this would be the natural way to formulate a continual process�
control task� or an application to a robot with a long life span� We call these
continuing tasks� The return formulation
�� is problematic for continuing tasks
because the �nal time step would be T 	 �� and the return� which is what we
are trying to maximize� could itself easily be in�nite�
For example� suppose the
agent receives a reward of �� at each time step�� Thus� in this book we usually
use a de�nition of return that is slightly more complex conceptually but much
simpler mathematically�

The additional concept that we need is that of discounting� According to
this approach� the agent tries to select actions so that the sum of the discounted
rewards it receives over the future is maximized� In particular� it chooses at to

�Episodes are often called �trials� in the literature�

�

Figure �� The pole�balancing task�

maximize the expected discounted return�

Rt 	 rt�� � �rt�� � ��rt�� � � � � 	
�X
k��

�krt�k���
��

where � is a parameter�
 � � � �� called the discount rate�
The discount rate determines the present value of future rewards� a reward

received k time steps in the future is worth only �k�� times what it would be
worth if it were received immediately� If � � �� the in�nite sum has a �nite value
as long as the reward sequence frkg is bounded� If � 	
� the agent is �myopic�
in being concerned only with maximizing immediate rewards� its objective in this
case is to learn how to choose at so as to maximize only rt��� If each of the agent�s
actions happened to in�uence only the immediate reward� not future rewards as
well� then a myopic agent could maximize
�� by separately maximizing each
immediate reward� But in general� acting to maximize immediate reward can
reduce access to future rewards so that the return may actually be reduced� As
� approaches �� the objective takes future rewards into account more strongly�
the agent becomes more farsighted�

Example �� Pole�Balancing Figure � shows a task that served as an early
illustration of reinforcement learning� The objective here is to apply forces to a
cart moving along a track so as to keep a pole hinged to the cart from falling
over� A failure is said to occur if the pole falls past a given angle from vertical or
if the cart runs o� the track� The pole is reset to vertical after each failure� This
task could be treated as episodic� where the natural episodes are the repeated
attempts to balance the pole� The reward in this case could be �� for every time
step on which failure did not occur� so that the return at each time would be the
number of steps until failure� Alternatively� we could treat pole�balancing as a
continuing task� using discounting� In this case the reward would be �� on each
failure and zero at all other times� The return at each time would then be related
to ��k� where k is the number of time steps before failure� In either case� the
return is maximized by keeping the pole balanced for as long as possible� �

Exercise � Suppose you treated pole�balancing as an episodic task but also
used discounting� with all rewards zero except for �� upon failure� What then

�

would the return be at each time� How does this return di�er from that in the
discounted� continuing formulation of this task�

Exercise � Imagine that you are designing a robot to run a maze� You decide to
give it a reward of �� for escaping from the maze and a reward of zero at all other
times� The task seems to break down naturally into episodes�the successive runs
through the maze�so you decide to treat it as an episodic task� where the goal
is to maximize expected total reward
��� After running the learning agent for
a while� you �nd that it is showing no improvement in escaping from the maze�
What is going wrong� Have you e�ectively communicated to the agent what you
want it to achieve�

� Uni�ed Notation for Episodic and Continuing

Tasks

In the preceding section we described two kinds of reinforcement learning tasks�
one in which the agent�environment interaction naturally breaks down into a
sequence of separate episodes
episodic tasks�� and one in which it does not

continuing tasks�� The former case is mathematically easier because each action
a�ects only the �nite number of rewards subsequently received during the episode�
In this book we consider sometimes one kind of problem and sometimes the other�
but often both� It is therefore useful to establish one notation that enables us to
talk precisely about both cases simultaneously�

To be precise about episodic tasks requires some additional notation� Rather
than one long sequence of time steps� we need to consider a series of episodes�
each of which consists of a �nite sequence of time steps� We number the time
steps of each episode starting anew from zero� Therefore� we have to refer not
just to st� the state representation at time t� but to st�i� the state representation
at time t of episode i
and similarly for at�i� rt�i� �t�i� Ti� etc��� However� it turns
out that� when we discuss episodic tasks we will almost never have to distinguish
between di�erent episodes� We will almost always be considering a particular
single episode� or stating something that is true for all episodes� Accordingly� in
practice we will almost always abuse notation slightly by dropping the explicit
reference to episode number� That is� we will write st to refer to st�i� and so on�

We need one other convention to obtain a single notation that covers both
episodic and continuing tasks� We have de�ned the return as a sum over a �nite
number of terms in one case
�� and as a sum over an in�nite number of terms
in the other
��� These can be uni�ed by considering episode termination to
be the entering of a special absorbing state that transitions only to itself and
that generates only rewards of zero� For example� consider the state transition

�

diagram

r1 = +1
s0 s1

r2 = +1
s2

r3 = +1 r4 = 0
r5 = 0

Here the solid square represents the special absorbing state corresponding to the
end of an episode� Starting from s�� we get the reward sequence ���������
�
�
� � � ��
Summing these� we get the same return whether we sum over the �rst T rewards

here T 	 �� or over the full in�nite sequence� This remains true even if we
introduce discounting� Thus� we can de�ne the return� in general� according to

��� using the convention of omitting episode numbers when they are not needed�
and including the possibility that � 	 � if the sum remains de�ned
e�g�� because
all episodes terminate�� Alternatively� we can also write the return as

Rt 	
TX

k��

�krt�k���
��

including the possibility that T 	 � or � 	 �
but not both��� We use these
conventions throughout the rest of the book to simplify notation and to express
the close parallels between episodic and continuing tasks�

�� The Markov Property

In the reinforcement learning framework� the agent makes its decisions as a func�
tion of a signal from the environment called the environment�s state� In this
section we discuss what is required of the state signal� and what kind of informa�
tion we should and should not expect it to provide� In particular� we formally
de�ne a property of environments and their state signals that is of particular
interest� called the Markov property�

In this book� by �the state� we mean whatever information is available to the
agent� We assume that the state is given by some preprocessing system that is
nominally part of the environment� We do not address the issues of constructing�
changing� or learning the state signal in this book� We take this approach not
because we consider state representation to be unimportant� but in order to focus
fully on the decision�making issues� In other words� our main concern is not with
designing the state signal� but with deciding what action to take as a function of
whatever state signal is available�

Certainly the state signal should include immediate sensations such as sensory
measurements� but it can contain much more than that� State representations

�Ways to formulate tasks that are both continuing and undiscounted are the subject of
current research �e�g�� Mahadevan� ���	
 Schwartz� ����
 Tadepalli and Ok� ���
�� Some of
the ideas are discussed in Section 	���

�

can be highly processed versions of original sensations� or they can be complex
structures built up over time from the sequence of sensations� For example� we
can move our eyes over a scene� with only a tiny spot corresponding to the fovea
visible in detail at any one time� yet build up a rich and detailed representation of
a scene� Or� more obviously� we can look at an object� then look away� and know
that it is still there� We can hear the word �yes� and consider ourselves to be in
totally di�erent states depending on the question that came before and which is no
longer audible� At a more mundane level� a control system can measure position
at two di�erent times to produce a state representation including information
about velocity� In all of these cases the state is constructed and maintained on
the basis of immediate sensations together with the previous state or some other
memory of past sensations� In this book� we do not explore how that is done� but
certainly it can be and has been done� There is no reason to restrict the state
representation to immediate sensations� in typical applications we should expect
the state representation to be able to inform the agent of more than that�

On the other hand� the state signal should not be expected to inform the agent
of everything about the environment� or even everything that would be useful to
it in making decisions� If the agent is playing blackjack� we should not expect it
to know what the next card in the deck is� If the agent is answering the phone�
we should not expect it to know in advance who the caller is� If the agent is a
paramedic called to a road accident� we should not expect it to know immediately
the internal injuries of an unconscious victim� In all of these cases there is hidden
state information in the environment� and that information would be useful if the
agent knew it� but the agent cannot know it because it has never received any
relevant sensations� In short� we don�t fault an agent for not knowing something
that matters� but only for having known something and then forgotten it�

What we would like� ideally� is a state signal that summarizes past sensa�
tions compactly� yet in such a way that all relevant information is retained� This
normally requires more than the immediate sensations� but never more than the
complete history of all past sensations� A state signal that succeeds in retaining
all relevant information is said to be Markov� or to have the Markov property
we
de�ne this formally below�� For example� a checkers position�the current con�g�
uration of all the pieces on the board�would serve as a Markov state because it
summarizes everything important about the complete sequence of positions that
led to it� Much of the information about the sequence is lost� but all that really
matters for the future of the game is retained� Similarly� the current position and
velocity of a cannonball is all that matters for its future �ight� It doesn�t matter
how that position and velocity came about� This is sometimes also referred to
as an �independence of path� property because all that matters is in the current
state signal� its meaning is independent of the �path�� or history� of signals that
have led up to it�

We now formally de�ne the Markov property for the reinforcement learning

��

problem� To keep the mathematics simple� we assume here that there are a �nite
number of states and reward values� This enables us to work in terms of sums
and probabilities rather than integrals and probability densities� but the argument
can easily be extended to include continuous states and rewards� Consider how
a general environment might respond at time t � � to the action taken at time
t� In the most general� causal case this response may depend on everything that
has happened earlier� In this case the dynamics can be de�ned only by specifying
the complete probability distribution�

Pr fst�� 	 s�� rt�� 	 r j st� at� rt� st��� at��� � � � � r�� s�� a�g�
��

for all s�� r� and all possible values of the past events� st� at� rt� � � � � r�� s�� a�� If the
state signal has the Markov property� on the other hand� then the environment�s
response at t � � depends only on the state and action representations at t� in
which case the environment�s dynamics can be de�ned by specifying only

Pr fst�� 	 s�� rt�� 	 r j st� atg�
��

for all s�� r� st� and at� In other words� a state signal has the Markov property�
and is a Markov state� if and only if
�� is equal to
�� for all s�� r� and histories�
st� at� rt� � � � � r�� s�� a�� In this case� the environment and task as a whole are also
said to have the Markov property�

If an environment has the Markov property� then its one�step dynamics
��
enable us to predict the next state and expected next reward given the current
state and action� One can show that� by iterating this equation� one can predict
all future states and expected rewards from knowledge only of the current state
as well as would be possible given the complete history up to the current time�
It also follows that Markov states provide the best possible basis for choosing
actions� That is� the best policy for choosing actions as a function of a Markov
state is just as good as the best policy for choosing actions as a function of
complete histories�

Even when the state signal is non�Markov� it is still appropriate to think of
the state in reinforcement learning as an approximation to a Markov state� In
particular� we always want the state to be a good basis for predicting future
rewards and for selecting actions� In cases in which a model of the environment
is learned
see Chapter ��� we also want the state to be a good basis for predicting
subsequent states� Markov states provide an unsurpassed basis for doing all of
these things� To the extent that the state approaches the ability of Markov states
in these ways� one will obtain better performance from reinforcement learning
systems� For all of these reasons� it is useful to think of the state at each time
step as an approximation to a Markov state� although one should remember that
it may not fully satisfy the Markov property�

The Markov property is important in reinforcement learning because decisions
and values are assumed to be a function only of the current state� In order for

��

these to be e�ective and informative� the state representation must be informa�
tive� All of the theory presented in this book assumes Markov state signals� This
means that not all the theory strictly applies to cases in which the Markov prop�
erty does not strictly apply� However� the theory developed for the Markov case
still helps us to understand the behavior of the algorithms� and the algorithms
can be successfully applied to many tasks with states that are not strictly Markov�
A full understanding of the theory of the Markov case is an essential foundation
for extending it to the more complex and realistic non�Markov case� Finally�
we note that the assumption of Markov state representations is not unique to
reinforcement learning but is also present in most if not all other approaches to
arti�cial intelligence�

Example �� Pole�Balancing State In the pole�balancing task introduced earlier�
a state signal would be Markov if it speci�ed exactly� or made it possible to
reconstruct exactly� the position and velocity of the cart along the track� the
angle between the cart and the pole� and the rate at which this angle is changing

the angular velocity�� In an idealized cart�pole system� this information would
be su�cient to exactly predict the future behavior of the cart and pole� given the
actions taken by the controller� In practice� however� it is never possible to know
this information exactly because any real sensor would introduce some distortion
and delay in its measurements� Furthermore� in any real cart�pole system there
are always other e�ects� such as the bending of the pole� the temperatures of
the wheel and pole bearings� and various forms of backlash� that slightly a�ect
the behavior of the system� These factors would cause violations of the Markov
property if the state signal were only the positions and velocities of the cart and
the pole�

However� often the positions and velocities serve quite well as states� Some
early studies of learning to solve the pole�balancing task used a coarse state
signal that divided cart positions into three regions� right� left� and middle
and
similar rough quantizations of the other three intrinsic state variables�� This
distinctly non�Markov state was su�cient to allow the task to be solved easily
by reinforcement learning methods� In fact� this coarse representation may have
facilitated rapid learning by forcing the learning agent to ignore �ne distinctions
that would not have been useful in solving the task� �

Example �� Draw Poker In draw poker� each player is dealt a hand of �ve cards�
There is a round of betting� in which each player exchanges some of his cards
for new ones� and then there is a �nal round of betting� At each round� each
player must match or exceed the highest bets of the other players� or else drop
out
fold�� After the second round of betting� the player with the best hand who
has not folded is the winner and collects all the bets�

The state signal in draw poker is di�erent for each player� Each player knows
the cards in his own hand� but can only guess at those in the other players�

��

hands� A common mistake is to think that a Markov state signal should include
the contents of all the players� hands and the cards remaining in the deck� In a fair
game� however� we assume that the players are in principle unable to determine
these things from their past observations� If a player did know them� then she
could predict some future events
such as the cards one could exchange for� better
than by remembering all past observations�

In addition to knowledge of one�s own cards� the state in draw poker should
include the bets and the numbers of cards drawn by the other players� For
example� if one of the other players drew three new cards� you may suspect he
retained a pair and adjust your guess of the strength of his hand accordingly�
The players� bets also in�uence your assessment of their hands� In fact� much of
your past history with these particular players is part of the Markov state� Does
Ellen like to blu�� or does she play conservatively� Does her face or demeanor
provide clues to the strength of her hand� How does Joe�s play change when it
is late at night� or when he has already won a lot of money�

Although everything ever observed about the other players may have an e�ect
on the probabilities that they are holding various kinds of hands� in practice this
is far too much to remember and analyze� and most of it will have no clear
e�ect on one�s predictions and decisions� Very good poker players are adept at
remembering just the key clues� and at sizing up new players quickly� but no
one remembers everything that is relevant� As a result� the state representations
people use to make their poker decisions are undoubtedly non�Markov� and the
decisions themselves are presumably imperfect� Nevertheless� people still make
very good decisions in such tasks� We conclude that the inability to have access
to a perfect Markov state representation is probably not a severe problem for a
reinforcement learning agent� �

Exercise �� Broken Vision System Imagine that you are a vision system� When
you are �rst turned on for the day� an image �oods into your camera� You can
see lots of things� but not all things� You can�t see objects that are occluded�
and of course you can�t see objects that are behind you� After seeing that �rst
scene� do you have access to the Markov state of the environment� Suppose your
camera was broken that day and you received no images at all� all day� Would
you have access to the Markov state then�

� Markov Decision Processes

A reinforcement learning task that satis�es the Markov property is called a
Markov decision process� or MDP� If the state and action spaces are �nite� then it
is called a 	nite Markov decision process
	nite MDP�� Finite MDPs are partic�
ularly important to the theory of reinforcement learning� We treat them exten�
sively throughout this book� they are all you need to understand �
� of modern

��

reinforcement learning�
A particular �nite MDP is de�ned by its state and action sets and by the

one�step dynamics of the environment� Given any state and action� s and a� the
probability of each possible next state� s�� is

Pa
ss� 	 Pr fst��	s� j st	s� at	ag�
��

These quantities are called transition probabilities� Similarly� given any current
state and action� s and a� together with any next state� s�� the expected value of
the next reward is

Ra
ss� 	 E frt�� j st	s� at	a� st�� 	 s�g�
��

These quantities� Pa
ss� and Ra

ss� � completely specify the most important aspects of
the dynamics of a �nite MDP
only information about the distribution of rewards
around the expected value is lost�� Most of the theory we present in the rest of
this book implicitly assumes the environment is a �nite MDP�

Example �� Recycling Robot MDP The recycling robot
Example ���� can be
turned into a simple example of an MDP by simplifying it and providing some
more details�
Our aim is to produce a simple example� not a particularly realistic
one�� Recall that the agent makes a decision at times determined by external
events
or by other parts of the robot�s control system�� At each such time the
robot decides whether it should
�� actively search for a can�
�� remain stationary
and wait for someone to bring it a can� or
�� go back to home base to recharge
its battery� Suppose the environment works as follows� The best way to �nd cans
is to actively search for them� but this runs down the robot�s battery� whereas
waiting does not� Whenever the robot is searching� the possibility exists that its
battery will become depleted� In this case the robot must shut down and wait to
be rescued
producing a low reward��

The agent makes its decisions solely as a function of the energy level of the
battery� It can distinguish two levels� high and low� so that the state set is
S 	 fhigh� lowg� Let us call the possible decisions�the agent�s actions�wait�
search� and recharge� When the energy level is high� recharging would always
be foolish� so we do not include it in the action set for this state� The agent�s
action sets are

A
high� 	 fsearch� waitg

A
low� 	 fsearch� wait� rechargeg�

If the energy level is high� then a period of active search can always be
completed without risk of depleting the battery� A period of searching that
begins with a high energy level leaves the energy level high with probability �

and reduces it to low with probability � � �� On the other hand� a period of

��

s 	 st s� 	 st�� a 	 at Pa
ss� Ra

ss�

high high search � Rsearch

high low search �� � Rsearch

low high search �� � ��
low low search � Rsearch

high high wait � Rwait

high low wait
 Rwait

low high wait
 Rwait

low low wait � Rwait

low high recharge �

low low recharge

�

Table �� Transition probabilities and expected rewards for the �nite MDP of the
recycling robot example� There is a row for each possible combination of current
state� s� next state� s�� and action possible in the current state� a � A
s��

searching undertaken when the energy level is low leaves it low with probability �

and depletes the battery with probability ���� In the latter case� the robot must
be rescued� and the battery is then recharged back to high� Each can collected by
the robot counts as a unit reward� whereas a reward of �� results whenever the
robot has to be rescued� Let Rsearch and Rwait� with Rsearch � Rwait� respectively
denote the expected number of cans the robot will collect
and hence the expected
reward� while searching and while waiting� Finally� to keep things simple� suppose
that no cans can be collected during a run home for recharging� and that no cans
can be collected on a step in which the battery is depleted� This system is then a
�nite MDP� and we can write down the transition probabilities and the expected
rewards� as in Table ��

A transition graph is a useful way to summarize the dynamics of a �nite MDP�
Figure � shows the transition graph for the recycling robot example� There are
two kinds of nodes� state nodes and action nodes� There is a state node for each
possible state
a large open circle labeled by the name of the state�� and an action
node for each state�action pair
a small solid circle labeled by the name of the
action and connected by a line to the state node�� Starting in state s and taking
action a moves you along the line from state node s to action node
s� a�� Then
the environment responds with a transition to the next state�s node via one of
the arrows leaving action node
s� a�� Each arrow corresponds to a triple
s� s�� a��
where s� is the next state� and we label the arrow with the transition probability�
Pa

ss� � and the expected reward for that transition� Ra
ss� � Note that the transition

probabilities labeling the arrows leaving an action node always sum to �� �

Exercise � Assuming a �nite MDP with a �nite number of reward values� write

��

search

high low
1, 0

 1–β , –3

search

recharge

wait

wait

search1–α , R

β , R search

α, R search

1, R wait

1, R wait

Figure �� Transition graph for the recycling robot example�

an equation for the transition probabilities and the expected rewards in terms of
the joint conditional distribution in
���

� Value Functions

Almost all reinforcement learning algorithms are based on estimating value func�
tions�functions of states
or of state�action pairs� that estimate how good it is
for the agent to be in a given state
or how good it is to perform a given action
in a given state�� The notion of �how good� here is de�ned in terms of future
rewards that can be expected� or� to be precise� in terms of expected return�
Of course the rewards the agent can expect to receive in the future depend on
what actions it will take� Accordingly� value functions are de�ned with respect
to particular policies�

Recall that a policy� �� is a mapping from each state� s � S� and action�
a � A
s�� to the probability �
s� a� of taking action a when in state s� Informally�
the value of a state s under a policy �� denoted V �
s�� is the expected return
when starting in s and following � thereafter� For MDPs� we can de�ne V �
s�
formally as

V �
s� 	 E�fRtjst 	sg 	 E�

� �X
k��

�krt�k��

���� st 	s

�
�
��

where E�fg denotes the expected value given that the agent follows policy �� and
t is any time step� Note that the value of the terminal state� if any� is always
zero� We call the function V � the state�value function for policy ��

Similarly� we de�ne the value of taking action a in state s under a policy ��
denoted Q�
s� a�� as the expected return starting from s� taking the action a� and

��

thereafter following policy ��

Q�
s� a� 	 E�fRtjst	s� at 	 ag 	 E�

� �X
k��

�krt�k��

���� st	s� at	a

�
�
��

We call Q� the action�value function for policy ��
The value functions V � and Q� can be estimated from experience� For ex�

ample� if an agent follows policy � and maintains an average� for each state
encountered� of the actual returns that have followed that state� then the average
will converge to the state�s value� V �
s�� as the number of times that state is
encountered approaches in�nity� If separate averages are kept for each action
taken in a state� then these averages will similarly converge to the action values�
Q�
s� a�� We call estimation methods of this kind Monte Carlo methods because
they involve averaging over many random samples of actual returns� These kinds
of methods are presented in Chapter �� Of course� if there are very many states�
then it may not be practical to keep separate averages for each state individu�
ally� Instead� the agent would have to maintain V � and Q� as parameterized
functions and adjust the parameters to better match the observed returns� This
can also produce accurate estimates� although much depends on the nature of
the parameterized function approximator
Chapter ���

A fundamental property of value functions used throughout reinforcement
learning and dynamic programming is that they satisfy particular recursive rela�
tionships� For any policy � and any state s� the following consistency condition
holds between the value of s and the value of its possible successor states�

V �
s� 	 E�fRtjst	sg

	 E�

� �X
k��

�krt�k��

���� st	s

�

	 E�

�
rt�� � �

�X
k��

�krt�k��

���� st	s

�

	
X
a

�
s� a�
X
s�

Pa
ss�

�
Ra

ss� � �E�

� �X
k��

�krt�k��

���� st��	s�
��

	
X
a

�
s� a�
X
s�

Pa
ss�

h
Ra

ss� � �V �
s��
i
�
�
�

where it is implicit that the actions� a� are taken from the set A
s�� and the next
states� s�� are taken from the set S� or from S� in the case of an episodic problem�
Equation
�
� is the Bellman equation for V �� It expresses a relationship between
the value of a state and the values of its successor states� Think of looking ahead
from one state to its possible successor states� as suggested by Figure �a� Each
open circle represents a state and each solid circle represents a state�action pair�
Starting from state s� the root node at the top� the agent could take any of some

��

s,as

a

s'

r

a'

s'
r

(b)(a)

Figure �� Backup diagrams for
a� V � and
b� Q��

set of actions�three are shown in Figure �a� From each of these� the environment
could respond with one of several next states� s�� along with a reward� r� The
Bellman equation
�
� averages over all the possibilities� weighting each by its
probability of occurring� It states that the value of the start state must equal the

discounted� value of the expected next state� plus the reward expected along the
way�

The value function V � is the unique solution to its Bellman equation� We show
in subsequent chapters how this Bellman equation forms the basis of a number of
ways to compute� approximate� and learn V �� We call diagrams like those shown
in Figure � backup diagrams because they diagram relationships that form the
basis of the update or backup operations that are at the heart of reinforcement
learning methods� These operations transfer value information back to a state

or a state�action pair� from its successor states
or state�action pairs�� We use
backup diagrams throughout the book to provide graphical summaries of the
algorithms we discuss�
Note that unlike transition graphs� the state nodes of
backup diagrams do not necessarily represent distinct states� for example� a state
might be its own successor� We also omit explicit arrowheads because time always
�ows downward in a backup diagram��

Example
� Gridworld Figure �a uses a rectangular grid to illustrate value
functions for a simple �nite MDP� The cells of the grid correspond to the states of
the environment� At each cell� four actions are possible� north� south� east� and
west� which deterministically cause the agent to move one cell in the respective
direction on the grid� Actions that would take the agent o� the grid leave its
location unchanged� but also result in a reward of ��� Other actions result in a
reward of
� except those that move the agent out of the special states A and B�
From state A� all four actions yield a reward of ��
 and take the agent to A��
From state B� all actions yield a reward of �� and take the agent to B��

Suppose the agent selects all four actions with equal probability in all states�
Figure �b shows the value function� V �� for this policy� for the discounted reward
case with � 	
��� This value function was computed by solving the system of
equations
�
�� Notice the negative values near the lower edge� these are the result

��

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0

A B

A'

B'+10

+5

actions

(a) (b)
Figure �� Grid example�
a� exceptional reward dynamics�
b� state�value func�
tion for the equiprobable random policy�

of the high probability of hitting the edge of the grid there under the random
policy� State A is the best state to be in under this policy� but its expected return
is less than �
� its immediate reward� because from A the agent is taken to A��
from which it is likely to run into the edge of the grid� State B� on the other
hand� is valued more than �� its immediate reward� because from B the agent is
taken to B�� which has a positive value� From B� the expected penalty
negative
reward� for possibly running into an edge is more than compensated for by the
expected gain for possibly stumbling onto A or B� �

Example �� Golf To formulate playing a hole of golf as a reinforcement learning
task� we count a penalty
negative reward� of �� for each stroke until we hit the
ball into the hole� The state is the location of the ball� The value of a state is
the negative of the number of strokes to the hole from that location� Our actions
are how we aim and swing at the ball� of course� and which club we select� Let
us take the former as given and consider just the choice of club� which we assume
is either a putter or a driver� The upper part of Figure � shows a possible state�
value function� V putt
s�� for the policy that always uses the putter� The terminal
state in�the�hole has a value of
� From anywhere on the green we assume we can
make a putt� these states have value ��� O� the green we cannot reach the hole
by putting� and the value is greater� If we can reach the green from a state by
putting� then that state must have value one less than the green�s value� that is�
��� For simplicity� let us assume we can putt very precisely and deterministically�
but with a limited range� This gives us the sharp contour line labeled �� in the
�gure� all locations between that line and the green require exactly two strokes to
complete the hole� Similarly� any location within putting range of the �� contour
line must have a value of ��� and so on to get all the contour lines shown in the
�gure� Putting doesn�t get us out of sand traps� so they have a value of ���
Overall� it takes us six strokes to get from the tee to the hole by putting� �

Exercise
 What is the Bellman equation for action values� that is� for Q�� It
must give the action value Q�
s� a� in terms of the action values� Q�
s�� a��� of
possible successors to the state�action pair
s� a�� As a hint� the backup dia�
gram corresponding to this equation is given in Figure �b� Show the sequence of

�

Q*(s,driver)

V putt

sand

green

−1

s a
n
d

−2−2
−3

−4

−1

−5
−6

−4

−3

−3 −2

−4

sand

green

−1

s a
n
d

−2

−3

−2

∞−

0

0

∞−

Figure �� A golf example� the state�value function for putting
above� and the
optimal action�value function for using the driver
below��

��

equations analogous to
�
�� but for action values�

Exercise � The Bellman equation
�
� must hold for each state for the value func�
tion V � shown in Figure �b� As an example� show numerically that this equation
holds for the center state� valued at �
��� with respect to its four neighboring
states� valued at ����� �
��� �
��� and �
���
These numbers are accurate only
to one decimal place��

Exercise �� In the gridworld example� rewards are positive for goals� negative for
running into the edge of the world� and zero the rest of the time� Are the signs of
these rewards important� or only the intervals between them� Prove� using
���
that adding a constant C to all the rewards adds a constant� K� to the values
of all states� and thus does not a�ect the relative values of any states under any
policies� What is K in terms of C and ��

Exercise �� Now consider adding a constant C to all the rewards in an episodic
task� such as maze running� Would this have any e�ect� or would it leave the task
unchanged as in the continuing task above� Why or why not� Give an example�

Exercise �� The value of a state depends on the the values of the actions possible
in that state and on how likely each action is to be taken under the current policy�
We can think of this in terms of a small backup diagram rooted at the state and
considering each possible action�

s

a1 a2 a3

Vπ(s)

Qπ(s,a)

taken with
probability π(s,a)

Give the equation corresponding to this intuition and diagram for the value at
the root node� V �
s�� in terms of the value at the expected leaf node� Q�
s� a��
given st 	 s� This expectation depends on the policy� �� Then give a second
equation in which the expected value is written out explicitly in terms of �
s� a�
such that no expected value notation appears in the equation�

Exercise �� The value of an action� Q�
s� a�� can be divided into two parts� the
expected next reward� which does not depend on the policy �� and the expected
sum of the remaining rewards� which depends on the next state and the policy�
Again we can think of this in terms of a small backup diagram� this one rooted
at an action
state�action pair� and branching to the possible next states�

s,a

Vπ(s)

Qπ(s,a)

s1' s2 s3

r1 r2 r3

' '
Give the equation corresponding to this intuition and diagram for the action
value� Q�
s� a�� in terms of the expected next reward� rt��� and the expected
next state value� V �
st���� given that st 	 s and at 	 a� Then give a second

��

equation� writing out the expected value explicitly in terms of Pa
ss� and Ra

ss� �
de�ned respectively by
�� and
��� such that no expected value notation appears
in the equation�

	 Optimal Value Functions

Solving a reinforcement learning task means� roughly� �nding a policy that achieves
a lot of reward over the long run� For �nite MDPs� we can precisely de�ne an
optimal policy in the following way� Value functions de�ne a partial ordering
over policies� A policy � is de�ned to be better than or equal to a policy �� if
its expected return is greater than or equal to that of �� for all states� In other
words� � � �� if and only if V �
s� � V ��

s� for all s � S� There is always at least
one policy that is better than or equal to all other policies� This is an optimal
policy� Although there may be more than one� we denote all the optimal policies
by ��� They share the same state�value function� called the optimal state�value
function� denoted V �� and de�ned as

V �
s� 	 max
�

V �
s��
���

for all s � S�
Optimal policies also share the same optimal action�value function� denoted

Q�� and de�ned as
Q�
s� a� 	 max

�
Q�
s� a��
���

for all s � S and a � A
s�� For the state�action pair
s� a�� this function gives the
expected return for taking action a in state s and thereafter following an optimal
policy� Thus� we can write Q� in terms of V � as follows�

Q�
s� a� 	 E frt�� � �V �
st��� j st 	s� at	ag�
���

Example ��� Optimal Value Functions for Golf The lower part of Figure � shows
the contours of a possible optimal action�value function Q�
s� driver�� These are
the values of each state if we �rst play a stroke with the driver and afterward
select either the driver or the putter� whichever is better� The driver enables
us to hit the ball farther� but with less accuracy� We can reach the hole in one
shot using the driver only if we are already very close� thus the �� contour for
Q�
s� driver� covers only a small portion of the green� If we have two strokes�
however� then we can reach the hole from much farther away� as shown by the ��
contour� In this case we don�t have to drive all the way to within the small ��
contour� but only to anywhere on the green� from there we can use the putter� The
optimal action�value function gives the values after committing to a particular
	rst action� in this case� to the driver� but afterward using whichever actions are

��

best� The �� contour is still farther out and includes the starting tee� From the
tee� the best sequence of actions is two drives and one putt� sinking the ball in
three strokes� �

Because V � is the value function for a policy� it must satisfy the self�consistency
condition given by the Bellman equation for state values
�
�� Because it is the
optimal value function� however� V ��s consistency condition can be written in a
special form without reference to any speci�c policy� This is the Bellman equation
for V �� or the Bellman optimality equation� Intuitively� the Bellman optimality
equation expresses the fact that the value of a state under an optimal policy must
equal the expected return for the best action from that state�

V �
s� 	 max
a�A	s

Q��

s� a�

	 max
a

E��

�
Rt

���� st	s� at	a

�

	 max
a

E��

� �X
k��

�krt�k��

���� st 	s� at	a

�

	 max
a

E��

�
rt�� � �

�X
k��

�krt�k��

���� st 	s� at	a

�

	 max
a

E frt�� � �V �
st��� j st	s� at	ag
���

	 max
a�A	s

X
s�

Pa
ss�

h
Ra

ss� � �V �
s��
i
�
���

The last two equations are two forms of the Bellman optimality equation for V ��
The Bellman optimality equation for Q� is

Q�
s� a� 	 E

�
rt�� � � max

a�
Q�
st��� a

��

���� st 	 s� at 	 a

�

	
X
s�

Pa
ss�

h
Ra

ss� � � max
a�

Q�
s�� a��
i
�

The backup diagrams in Figure � show graphically the spans of future states
and actions considered in the Bellman optimality equations for V � and Q�� These
are the same as the backup diagrams for V � and Q� except that arcs have been
added at the agent�s choice points to represent that the maximum over that choice
is taken rather than the expected value given some policy� Figure �a graphically
represents the Bellman optimality equation
����

For �nite MDPs� the Bellman optimality equation
��� has a unique solution
independent of the policy� The Bellman optimality equation is actually a system
of equations� one for each state� so if there are N states� then there are N equa�
tions in N unknowns� If the dynamics of the environment are known
Ra

ss� and
Pa

ss��� then in principle one can solve this system of equations for V � using any

��

s,as

a

s'

r

a'

s'
r

(b)(a)

max

max

Figure �� Backup diagrams for
a� V � and
b� Q�

one of a variety of methods for solving systems of nonlinear equations� One can
solve a related set of equations for Q��

Once one has V �� it is relatively easy to determine an optimal policy� For
each state s� there will be one or more actions at which the maximum is obtained
in the Bellman optimality equation� Any policy that assigns nonzero probability
only to these actions is an optimal policy� You can think of this as a one�step
search� If you have the optimal value function� V �� then the actions that appear
best after a one�step search will be optimal actions� Another way of saying
this is that any policy that is greedy with respect to the optimal evaluation
function V � is an optimal policy� The term greedy is used in computer science to
describe any search or decision procedure that selects alternatives based only on
local or immediate considerations� without considering the possibility that such a
selection may prevent future access to even better alternatives� Consequently� it
describes policies that select actions based only on their short�term consequences�
The beauty of V � is that if one uses it to evaluate the short�term consequences of
actions�speci�cally� the one�step consequences�then a greedy policy is actually
optimal in the long�term sense in which we are interested because V � already
takes into account the reward consequences of all possible future behavior� By
means of V �� the optimal expected long�term return is turned into a quantity
that is locally and immediately available for each state� Hence� a one�step�ahead
search yields the long�term optimal actions�

Having Q� makes choosing optimal actions still easier� With Q�� the agent
does not even have to do a one�step�ahead search� for any state s� it can simply
�nd any action that maximizes Q�
s� a�� The action�value function e�ectively
caches the results of all one�step�ahead searches� It provides the optimal expected
long�term return as a value that is locally and immediately available for each
state�action pair� Hence� at the cost of representing a function of state�action
pairs� instead of just of states� the optimal action�value function allows optimal
actions to be selected without having to know anything about possible successor
states and their values� that is� without having to know anything about the
environment�s dynamics�

��

Example ��� Bellman Optimality Equations for the Recycling Robot Using
����
we can explicitly give the the Bellman optimality equation for the recycling robot
example� To make things more compact� we abbreviate the states high and low�
and the actions search� wait� and recharge respectively by h� l� s� w� and re�
Since there are only two states� the Bellman optimality equation consists of two
equations� The equation for V �
h� can be written as follows�

V �
h� 	 max

�
Ps
hh�R

s
hh � �V �
h� � Pshl�R

s
hl � �V �
l� �

Pw
hh�R

w
hh � �V �
h� � Pw

hl�R
w
hl � �V �
l�

�

	 max

�
��Rs � �V �
h� �
�� ���Rs � �V �
h� �
��Rw � �V �
h� �
�Rw � �V �
l�

�

	 max

�
Rs � ���V �
h� �
� � ��V �
l� �
Rw � �V �
h�

�
�

Following the same procedure for V �
l� yields the equation

V �
l� 	 max

��	
�

�Rs � �
� � �� � ��
�� ��V �
h� � �V �
l�
Rw � �V �
l��
�V �
h�

���
�
 �

For any choice of Rs� Rw� �� �� and �� with
 � � � ��
 � �� � � �� there is
exactly one pair of numbers� V �
h� and V �
l�� that simultaneously satisfy these
two nonlinear equations�

Example ��� Solving the Gridworld Suppose we solve the Bellman equation
for V � for the simple grid task introduced in Example ��� and shown again in
Figure �a� Recall that state A is followed by a reward of ��
 and transition
to state A�� while state B is followed by a reward of �� and transition to state
B�� Figure �b shows the optimal value function� and Figure �c shows the corre�
sponding optimal policies� Where there are multiple arrows in a cell� any of the
corresponding actions is optimal�

a) Gridworld b) V* c) π*

22.0 24.4 22.0 19.4 17.5

19.8 22.0 19.8 17.8 16.0

17.8 19.8 17.8 16.0 14.4

16.0 17.8 16.0 14.4 13.0

14.4 16.0 14.4 13.0 11.7

A B

A'

B'+10

+5

Figure �� Optimal solutions to the gridworld example�

Explicitly solving the Bellman optimality equation provides one route to �nd�
ing an optimal policy� and thus to solving the reinforcement learning problem�

��

However� this solution is rarely directly useful� It is akin to an exhaustive search�
looking ahead at all possibilities� computing their probabilities of occurrence and
their desirabilities in terms of expected rewards� This solution relies on at least
three assumptions that are rarely true in practice�
�� we accurately know the
dynamics of the environment�
�� we have enough computational resources to
complete the computation of the solution� and
�� the Markov property� For the
kinds of tasks in which we are interested� one is generally not able to implement
this solution exactly because various combinations of these assumptions are vio�
lated� For example� although the �rst and third assumptions present no problems
for the game of backgammon� the second is a major impediment� Since the game
has about �
�� states� it would take thousands of years on today�s fastest com�
puters to solve the Bellman equation for V �� and the same is true for �nding Q��
In reinforcement learning one typically has to settle for approximate solutions�

Many di�erent decision�making methods can be viewed as ways of approxi�
mately solving the Bellman optimality equation� For example� heuristic search
methods can be viewed as expanding the right�hand side of
��� several times�
up to some depth� forming a �tree� of possibilities� and then using a heuristic
evaluation function to approximate V � at the �leaf� nodes�
Heuristic search
methods such as A� are almost always based on the episodic case�� The meth�
ods of dynamic programming can be related even more closely to the Bellman
optimality equation� Many reinforcement learning methods can be clearly un�
derstood as approximately solving the Bellman optimality equation� using actual
experienced transitions in place of knowledge of the expected transitions� We
consider a variety of such methods in the following chapters�

Exercise �� Draw or describe the optimal state�value function for the golf exam�
ple�

Exercise �� Draw or describe the contours of the optimal action�value function
for putting� Q�
s� putter�� for the golf example�

Exercise �� Give the Bellman equation for Q� for the recycling robot�

Exercise �� Figure � gives the optimal value of the best state of the gridworld as
����� to one decimal place� Use your knowledge of the optimal policy and
�� to
express this value symbolically� and then to compute it to three decimal places�

 Optimality and Approximation

We have de�ned optimal value functions and optimal policies� Clearly� an agent
that learns an optimal policy has done very well� but in practice this rarely hap�
pens� For the kinds of tasks in which we are interested� optimal policies can be
generated only with extreme computational cost� A well�de�ned notion of opti�
mality organizes the approach to learning we describe in this book and provides

��

a way to understand the theoretical properties of various learning algorithms�
but it is an ideal that agents can only approximate to varying degrees� As we
discussed above� even if we have a complete and accurate model of the environ�
ment�s dynamics� it is usually not possible to simply compute an optimal policy
by solving the Bellman optimality equation� For example� board games such as
chess are a tiny fraction of human experience� yet large� custom�designed com�
puters still cannot compute the optimal moves� A critical aspect of the problem
facing the agent is always the computational power available to it� in particular�
the amount of computation it can perform in a single time step�

The memory available is also an important constraint� A large amount of
memory is often required to build up approximations of value functions� policies�
and models� In tasks with small� �nite state sets� it is possible to form these
approximations using arrays or tables with one entry for each state
or state�
action pair�� This we call the tabular case� and the corresponding methods we
call tabular methods� In many cases of practical interest� however� there are far
more states than could possibly be entries in a table� In these cases the functions
must be approximated� using some sort of more compact parameterized function
representation�

Our framing of the reinforcement learning problem forces us to settle for ap�
proximations� However� it also presents us with some unique opportunities for
achieving useful approximations� For example� in approximating optimal behav�
ior� there may be many states that the agent faces with such a low probability
that selecting suboptimal actions for them has little impact on the amount of re�
ward the agent receives� Tesauro�s backgammon player� for example� plays with
exceptional skill even though it might make very bad decisions on board con�g�
urations that never occur in games against experts� In fact� it is possible that
TD�Gammon makes bad decisions for a large fraction of the game�s state set� The
on�line nature of reinforcement learning makes it possible to approximate opti�
mal policies in ways that put more e�ort into learning to make good decisions
for frequently encountered states� at the expense of less e�ort for infrequently
encountered states� This is one key property that distinguishes reinforcement
learning from other approaches to approximately solving MDPs�

�� Summary

Let us summarize the elements of the reinforcement learning problem that we
have presented in this chapter� Reinforcement learning is about learning from
interaction how to behave in order to achieve a goal� The reinforcement learn�
ing agent and its environment interact over a sequence of discrete time steps�
The speci�cation of their interface de�nes a particular task� the actions are the
choices made by the agent� the states are the basis for making the choices� and

��

the rewards are the basis for evaluating the choices� Everything inside the agent
is completely known and controllable by the agent� everything outside is incom�
pletely controllable but may or may not be completely known� A policy is a
stochastic rule by which the agent selects actions as a function of states� The
agent�s objective is to maximize the amount of reward it receives over time�

The return is the function of future rewards that the agent seeks to maxi�
mize� It has several di�erent de�nitions depending upon the nature of the task
and whether one wishes to discount delayed reward� The undiscounted formula�
tion is appropriate for episodic tasks� in which the agent�environment interaction
breaks naturally into episodes� the discounted formulation is appropriate for con�
tinuing tasks� in which the interaction does not naturally break into episodes but
continues without limit�

An environment satis�es the Markov property if its state signal compactly
summarizes the past without degrading the ability to predict the future� This
is rarely exactly true� but often nearly so� the state signal should be chosen or
constructed so that the Markov property holds as nearly as possible� In this
book we assume that this has already been done and focus on the decision�
making problem� how to decide what to do as a function of whatever state signal
is available� If the Markov property does hold� then the environment is called a
Markov decision process
MDP�� A 	nite MDP is an MDP with �nite state and
action sets� Most of the current theory of reinforcement learning is restricted to
�nite MDPs� but the methods and ideas apply more generally�

A policy�s value functions assign to each state� or state�action pair� the ex�
pected return from that state� or state�action pair� given that the agent uses the
policy� The optimal value functions assign to each state� or state�action pair� the
largest expected return achievable by any policy� A policy whose value functions
are optimal is an optimal policy� Whereas the optimal value functions for states
and state�action pairs are unique for a given MDP� there can be many optimal
policies� Any policy that is greedy with respect to the optimal value functions
must be an optimal policy� The Bellman optimality equations are special consis�
tency condition that the optimal value functions must satisfy and that can� in
principle� be solved for the optimal value functions� from which an optimal policy
can be determined with relative ease�

A reinforcement learning problem can be posed in a variety of di�erent ways
depending on assumptions about the level of knowledge initially available to the
agent� In problems of complete knowledge� the agent has a complete and accurate
model of the environment�s dynamics� If the environment is an MDP� then such
a model consists of the one�step transition probabilities and expected rewards for
all states and their allowable actions� In problems of incomplete knowledge� a
complete and perfect model of the environment is not available�

Even if the agent has a complete and accurate environment model� the agent
is typically unable to perform enough computation per time step to fully use it�

��

The memory available is also an important constraint� Memory may be required
to build up accurate approximations of value functions� policies� and models� In
most cases of practical interest there are far more states than could possibly be
entries in a table� and approximations must be made�

A well�de�ned notion of optimality organizes the approach to learning we
describe in this book and provides a way to understand the theoretical properties
of various learning algorithms� but it is an ideal that reinforcement learning agents
can only approximate to varying degrees� In reinforcement learning we are very
much concerned with cases in which optimal solutions cannot be found but must
be approximated in some way�

�� Bibliographical and Historical Remarks

The reinforcement learning problem is deeply indebted to the idea of Markov
decision processes
MDPs� from the �eld of optimal control� These historical
in�uences and other major in�uences from psychology are described in the brief
history given in Chapter �� Reinforcement learning adds to MDPs a focus on ap�
proximation and incomplete information for realistically large problems� MDPs
and the reinforcement learning problem are only weakly linked to traditional
learning and decision�making problems in arti�cial intelligence� However� arti��
cial intelligence is now vigorously exploring MDP formulations for planning and
decision�making from a variety of perspectives� MDPs are more general than pre�
vious formulations used in arti�cial intelligence in that they permit more general
kinds of goals and uncertainty�

Our presentation of the reinforcement learning problem was in�uenced by
Watkins
������

� The bioreactor example is based on the work of Ungar
���
� and Miller
and Williams
������ The recycling robot example was inspired by the
can�collecting robot built by Jonathan Connell
������

��� The terminology of episodic and continuing tasks is di�erent from that
usually used in the MDP literature� In that literature it is common to dis�
tinguish three types of tasks�
�� �nite�horizon tasks� in which interaction
terminates after a particular 	xed number of time steps�
�� inde�nite�
horizon tasks� in which interaction can last arbitrarily long but must even�
tually terminate� and
�� in�nite�horizon tasks� in which interaction does
not terminate� Our episodic and continuing tasks are similar to inde�nite�
horizon and in�nite�horizon tasks� respectively� but we prefer to emphasize
the di�erence in the nature of the interaction� This di�erence seems more
fundamental than the di�erence in the objective functions emphasized by
the usual terms� Often episodic tasks use an inde�nite�horizon objective

�

function and continuing tasks an in�nite�horizon objective function� but
we see this as a common coincidence rather than a fundamental di�erence�

The pole�balancing example is from Michie and Chambers
����� and
Barto� Sutton� and Anderson
������

� For further discussion of the concept of state� see Minsky
������

� The theory of MDPs is treated by� e�g�� Bertsekas
������ Ross
������
White
������ and Whittle
����� ������ This theory is also studied under
the heading of stochastic optimal control� where adaptive optimal control
methods are most closely related to reinforcement learning
e�g�� Kumar�
����� Kumar and Varaiya� ������

The theory of MDPs evolved from e�orts to understand the problem of
making sequences of decisions under uncertainty� where each decision can
depend on the previous decisions and their outcomes� It is sometimes
called the theory of multistage decision processes� or sequential decision
processes� and has roots in the statistical literature on sequential sampling
beginning with the papers by Thompson
����� ����� and Robbins
�����
that we cited in Chapter � in connection with bandit problems
which are
prototypical MDPs if formulated as multiple�situation problems��

The earliest instance of which we are aware in which reinforcement learning
was discussed using the MDP formalism is Andreae�s
����b� description
of a uni�ed view of learning machines� Witten and Corbin
����� exper�
imented with a reinforcement learning system later analyzed by Witten

����� using the MDP formalism� Although he did not explicitly men�
tion MDPs� Werbos
����� suggested approximate solution methods for
stochastic optimal control problems that are related to modern reinforce�
ment learning methods
see also Werbos� ����� ����� ����� ����� ������
Although Werbos�s ideas were not widely recognized at the time� they were
prescient in emphasizing the importance of approximately solving optimal
control problems in a variety of domains� including arti�cial intelligence�
The most in�uential integration of reinforcement learning and MDPs is
due to Watkins
������ His treatment of reinforcement learning using the
MDP formalism has been widely adopted�

Our characterization of the reward dynamics of an MDP in terms of Ra
ss�

is slightly unusual� It is more common in the MDP literature to describe
the reward dynamics in terms of the expected next reward given just the
current state and action� that is� by Ra

s 	 E frt�� j st 	 s� at 	 ag� This
quantity is related to our Ra

ss� as follows�

Ra
s 	

X
s�

Pa
ss�R

a
ss� �

��

In conventional MDP theory� Ra
ss� always appears in an expected value

sum like this one� and therefore it is easier to use Ra
s � In reinforcement

learning� however� we more often have to refer to individual actual or
sample outcomes� In teaching reinforcement learning� we have found the
Ra

ss� notation to be more straightforward conceptually and easier to un�
derstand�

��� Assigning value on the basis of what is good or bad in the long run has
ancient roots� In control theory� mapping states to numerical values
representing the long�term consequences of control decisions is a key part
of optimal control theory� which was developed in the ���
s by extend�
ing nineteenth century state�function theories of classical mechanics
see�
e�g�� Schultz and Melsa� ������ In describing how a computer could be
programmed to play chess� Shannon
���
� suggested using an evaluation
function that took into account the long�term advantages and disadvan�
tages of chess positions�

Watkins�s
����� Q�learning algorithm for estimating Q�
Chapter ��
made action�value functions an important part of reinforcement learn�
ing� and consequently these functions are often called Q�functions� But
the idea of an action�value function is much older than this� Shannon

���
� suggested that a function h
P�M� could be used by a chess�playing
program to decide whether a move M in position P is worth explor�
ing� Michie�s
����� ����� MENACE system and Michie and Chambers�s

����� BOXES system can be understood as estimating action�value func�
tions� In classical physics� Hamilton�s principal function is an action�value
function� Newtonian dynamics are greedy with respect to this function

e�g�� Goldstein� ������ Action�value functions also played a central role
in Denardo�s
����� theoretical treatment of DP in terms of contraction
mappings�

What we call the Bellman equation for V � was �rst introduced by Richard
Bellman
����a�� who called it the �basic functional equation�� The coun�
terpart of the Bellman optimality equation for continuous time and state
problems is known as the Hamilton�Jacobi�Bellman equation
or often
just the Hamilton�Jacobi equation�� indicating its roots in classical physics

e�g�� Schultz and Melsa� ������

The golf example was suggested by Chris Watkins�

References

Andreae� JH
������ Learning machines�a uni�ed view� In� Encyclopedia of

��

Information� Linguistics� and Control�
AR Meetham and RA Hudson� eds�
pp� ������
� Oxford� Pergamon�

Barto� AG� Sutton� RS� and Anderson� CW
������ Neuronlike elements that
can solve di�cult learning control problems� IEEE Transactions on Sys�
tems� Man� and Cybernetics� ��� �������� Reprinted in J� A� Anderson
and E� Rosenfeld� Neurocomputing� Foundations of Research� MIT Press�
Cambridge� MA� �����

Bertsekas� DP
������ Dynamic Programming and Optimal Control� Belmont�
MA� Athena�

Bertsekas� DP and Tsitsiklis� JN
������ Neural Dynamic Programming� Belmont�
MA� Athena Scienti�c�

Clouse� J
������ On Integrating Apprentice Learning and Reinforcement Learn�
ing TITLE�� PhD thesis University of Massachusetts� Amherst� Appeared
as CMPSCI Technical Report ���
���

Connell� J
������ A colony architecture for an arti�cial creature� Technical
Report AI�TR����� MIT Arti�cial Intelligence Laboratory Cambridge� MA�

Denardo� EV
������ Contraction mappings in the theory underlying dynamic
programming� SIAM Review� �� ��������

Doya� K
������ Temporal di�erence learing in continuous time and space� In�
Advances in Neural Information Processing Systems� Proceedings of the ����
Conference�
DS Touretzky� MC Mozer� and ME Hasselmo� eds� pp� �
���
�
��� Cambridge� MA� MIT Press�

Goldstein� H
������ Classical Mechanics� Reading� MA� Addison�Wesley�

Kuman� PR and Varaiya� P
������ Stochastic Systems� Estimation� Identi	ca�
tion� and Adaptive Control� Englewood Cli�s� NJ� Prentice�Hall�

Kumar� PR
������ A survey of some results in stochastic adaptive control� SIAM
Journal of Control and Optimization� 	�� ������
�

Lin� LJ
������ Self�improving reactive agents based on reinforcement learning�
planning and teaching� Machine Learning� �� ��������

Maclin� R and Shavlik� JW
������ Incorporating advice into agents that learn
from reinforcements� In� Proceedings of the Twelfth National Conference on
Arti	cial Intelligence
AAAI���� ��

��

Mahadevan� S
������ Average reward reinforcement learning� Foundations�
algorithms� and empirical results� Machine Learning� 		� ��������

Michie� D
������ Trial and error� In� Science Survey� Part ��
SA Barnett and
A McLaren� eds� pp� �������� Harmondsworth� Penguin�

Michie� D
������ Experiments on the mechanisation of game learning� �� charac�
terization of the model and its parameters� Computer Journal� �� ��������

Michie� D and Chambers� RA
������ BOXES� An experiment in adaptive con�
trol� In� Machine Intelligence ��
E Dale and D Michie� eds� pp� ��������
Edinburgh� Oliver and Boyd�

Miller� S and Williams� RJ
������ Learning to control a bioreactor using a
neural net dyna�q system� In� Proceedings of the Seventh Yale Workshop
on Adaptive and Learning Systems pp� �������� Center for Systems Science�
Dunham Laboratory� Yale University��

Minsky� ML
������ Computation� Finite and In	nite Machines� Englewood
Cli�s� NJ� Prentice Hall�

Robbins� H
������ Some aspects of the sequential design of experiments� Bulletin
of the American Mathematical Society� ��� ��������

Ross� S
������ Introduction to Stochastic Dynamic Programming� New York�
Academic Press�

Schultz� DG and Melsa� JL
������ State Functions and Linear Control Systems�
New York� McGraw�Hill�

Schwartz� A
������ A reinforcement learning method for maximizing undis�
counted rewards� In� Proceedings of the Tenth International Conference on
Machine Learning pp� �����
�� Morgan Kaufmann�

Shannon� CE
���
�� Programming a computer for playing chess� Philosophical
Magazine� ��� ��������

Tadepally� P and Ok� D
������ H�learning� A reinforcement learning method to
optimize undiscounted average reward� Technical Report ����
�
� Oregon
State University�

Thompson� WR
������ On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples� Biometrika� 	�� ��������

Thompson� WR
������ On the theory of apportionment� American Journal of
Mathematics� ��� ��
�����

��

Ungar� LH
���
�� A bioreactor benchmark for adaptive network�based process
control� In� Neural Networks for Control�
WT Miller� RS Sutton� and PJ
Werbos� eds� pp� �����
�� Cambridge� MA� MIT Press�

Watkins� CJCH
������ Learning from Delayed Rewards� PhD thesis Cambridge
University� Cambridge� England�

Werbos� P
������ Approximate dynamic programming for real�time control and
neural modeling� In� Handbook of Intelligent Control� Neural� Fuzzy� and
Adaptive Approaches�
DA White and DA Sofge� eds� pp� �������� New
York� Van Nostrand Reinhold�

Werbos� PJ
������ Advanced forecasting methods for global crisis warning and
models of intelligence� General Systems Yearbook� 		� ������

Werbos� PJ
������ Applications of advances in nonlinear sensitivity analysis� In�
System Modeling an Optimization�
RF Drenick and F Kosin� eds�� Springer�
Verlag� Proceedings of the Tenth IFIP Conference� New York� �����

Werbos� PJ
������ Building and understanding adaptive systems� A statisti�
cal!numerical approach to factory automation and brain research� IEEE
Transactions on Systems� Man� and Cybernetics� ��� ���
�

Werbos� PJ
������ Generalization of back propagation with applications to a
recurrent gas market model� Neural Networks� �� ��������

Werbos� PJ
������ Neural networks for control and system identi�cation� In�
Proceedings of the �
th Conference on Decision and Control pp� ��
�����
Tampa� Florida��

White� DJ
������ Dynamic Programming� San Francisco� Holden�Day�

Whittle� P
������ Optimization over Time� volume �� NY� Wiley�

Whittle� P
������ Optimization over Time� volume �� NY� Wiley�

Witten� IH
������ An adaptive optimal controller for discrete�time Markov
environments� Information and Control� ��� ��������

Witten� IH and Corbin� MJ
������ Human operators and automatic adaptive
controllers� A comparative study on a particular control task� International
Journal of Man�Machine Studies� �� ����
��

��

