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�In which we try to give a basic intuitive sense of what reinforcement
learning is and how it di�ers and relates to other �elds� e�g�� supervised
learning and neural networks� genetic algorithms and arti�cial life� control
theory� Intuitively� RL is trial and error �variation and selection� search�
plus learning �association� memory�� We argue that RL is the only �eld
that seriously addresses the special features of the problem of learning
from interaction to achieve long�term goals��

The idea that we learn by interacting with our environment is probably the
�rst to occur to us when we think about the nature of learning� When an infant
plays� waves its arms� or looks about� it has no explicit teacher� but it does have
a direct sensorimotor connection to its environment� Exercising this connection
produces a wealth of information about cause and e�ect� about the consequences
of actions� and about what to do in order to achieve goals� Throughout our
lives� such interactions are undoubtedly a major source of knowledge about our
environment and ourselves� Whether we are learning to drive a car or to hold a
conversation� we are acutely aware of how our environment responds to what we
do� and we seek to in�uence what happens through our behavior� Learning from
interaction is a foundational idea underlying nearly all theories of learning and
intelligence�

In this book we explore a computational approach to learning from interaction�
Rather than directly theorizing about how people or animals learn� we explore
idealized learning situations and evaluate the e�ectiveness of various learning
methods� That is� we adopt the perspective of an arti�cial intelligence researcher
or engineer� We explore designs for machines that are e�ective in solving learn�
ing problems of scienti�c or economic interest� evaluating the designs through
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mathematical analysis or computational experiments� The approach we explore�
called reinforcement learning� is much more focused on goal�directed learning
from interaction than are other approaches to machine learning�

� The Problem of Reinforcement Learning

Reinforcement learning is learning what to do�how to map situations to actions�
so as to maximize a numerical reward signal� The learner is not told which ac�
tions to take� as in most forms of machine learning� but instead must discover
which actions yield the most reward by trying them� In the most interesting
and challenging cases� actions may a�ect not only the immediate reward but
also the next situation and� through that� all subsequent rewards� These two
characteristics�trial�and�error search and delayed reward�are the two most im�
portant distinguishing features of reinforcement learning�

Reinforcement learning is de�ned not by characterizing learning methods�
but by characterizing a learning problem� Any method that is well suited to
solving that problem� we consider to be a reinforcement learning method� A full
speci�cation of the reinforcement learning problem in terms of optimal control of
Markov decision processes must wait until Chapter �� but the basic idea is simply
to capture the most important aspects of the real problem facing a learning agent
interacting with its environment to achieve a goal� Clearly� such an agent must
be able to sense the state of the environment to some extent and must be able
to take actions that a�ect the state� The agent also must have a goal or goals
relating to the state of the environment� The formulation is intended to include
just these three aspects�sensation� action� and goal�in their simplest possible
forms without trivializing any of them�

Reinforcement learning is di�erent from supervised learning� the kind of learn�
ing studied in most current research in machine learning� statistical pattern recog�
nition� and arti�cial neural networks� Supervised learning is learning from ex�
amples provided by a knowledgable external supervisor� This is an important
kind of learning� but alone it is not adequate for learning from interaction� In
interactive problems it is often impractical to obtain examples of desired behavior
that are both correct and representative of all the situations in which the agent
has to act� In uncharted territory�where one would expect learning to be most
bene�cial�an agent must be able to learn from its own experience�

One of the challenges that arise in reinforcement learning and not in other
kinds of learning is the trade�o� between exploration and exploitation� To obtain
a lot of reward� a reinforcement learning agent must prefer actions that it has
tried in the past and found to be e�ective in producing reward� But to discover
such actions� it has to try actions that it has not selected before� The agent has
to exploit what it already knows in order to obtain reward� but it also has to

	



explore in order to make better action selections in the future� The dilemma is
that neither exploration nor exploitation can be pursued exclusively without fail�
ing at the task� The agent must try a variety of actions and progressively favor
those that appear to be best� On a stochastic task� each action must be tried
many times to gain a reliable estimate its expected reward� The exploration

exploitation dilemma has been intensively studied by mathematicians for many
decades �see Chapter 	�� For now� we simply note that the entire issue of bal�
ancing exploration and exploitation does not even arise in supervised learning as
it is usually de�ned�

Another key feature of reinforcement learning is that it explicitly considers
the whole problem of a goal�directed agent interacting with an uncertain envi�
ronment� This is in contrast with many approaches that consider subproblems
without addressing how they might �t into a larger picture� For example� we
have mentioned that much of machine learning research is concerned with su�
pervised learning without explicitly specifying how such an ability would �nally
be useful� Other researchers have developed theories of planning with general
goals� but without considering planning
s role in real�time decision�making� or
the question of where the predictive models necessary for planning would come
from� Although these approaches have yielded many useful results� their focus
on isolated subproblems is a signi�cant limitation�

Reinforcement learning takes the opposite tack� starting with a complete�
interactive� goal�seeking agent� All reinforcement learning agents have explicit
goals� can sense aspects of their environments� and can choose actions to in�uence
their environments� Moreover� it is usually assumed from the beginning that
the agent has to operate despite signi�cant uncertainty about the environment
it faces� When reinforcement learning involves planning� it has to address the
interplay between planning and real�time action selection� as well as the question
of how environmental models are acquired and improved� When reinforcement
learning involves supervised learning� it does so for speci�c reasons that determine
which capabilities are critical and which are not� For learning research to make
progress� important subproblems have to be isolated and studied� but they should
be subproblems that play clear roles in complete� interactive� goal�seeking agents�
even if all the details of the complete agent cannot yet be �lled in�

One of the larger trends of which reinforcement learning is a part is that
toward greater contact between arti�cial intelligence and other engineering disci�
plines� Not all that long ago� arti�cial intelligence was viewed as almost entirely
separate from control theory and statistics� It had to do with logic and symbols�
not numbers� Arti�cial intelligence was large LISP programs� not linear algebra�
di�erential equations� or statistics� Over the last decades this view has gradually
eroded� Modern arti�cial intelligence researchers accept statistical and control
algorithms� for example� as relevant competing methods or simply as tools of
their trade� The previously ignored areas lying between arti�cial intelligence and
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conventional engineering are now among the most active� including new �elds
such as neural networks� intelligent control� and our topic� reinforcement learn�
ing� In reinforcement learning we extend ideas from optimal control theory and
stochastic approximation to address the broader and more ambitious goals of
arti�cial intelligence�

� Examples

A good way to understand reinforcement learning is to consider some of the
examples and possible applications that have guided its development�

� A master chess player makes a move� The choice is informed both by
planning�anticipating possible replies and counterreplies�and by imme�
diate� intuitive judgments of the desirability of particular positions and
moves�

� An adaptive controller adjusts parameters of a petroleum re�nery
s opera�
tion in real time� The controller optimizes the yield�cost�quality trade�o�
on the basis of speci�ed marginal costs without sticking strictly to the set
points originally suggested by engineers�

� A gazelle calf struggles to its feet minutes after being born� Half an hour
later it is running at 	� miles per hour�

� A mobile robot decides whether it should enter a new room in search of
more trash to collect or start trying to �nd its way back to its battery
recharging station� It makes its decision based on how quickly and easily it
has been able to �nd the recharger in the past�

� Phil prepares his breakfast� Closely examined� even this apparently mun�
dane activity reveals a complex web of conditional behavior and interlocking
goal
subgoal relationships� walking to the cupboard� opening it� selecting
a cereal box� then reaching for� grasping� and retrieving the box� Other
complex� tuned� interactive sequences of behavior are required to obtain a
bowl� spoon� and milk jug� Each step involves a series of eye movements
to obtain information and to guide reaching and locomotion� Rapid judg�
ments are continually made about how to carry the objects or whether it
is better to ferry some of them to the dining table before obtaining others�
Each step is guided by goals� such as grasping a spoon or getting to the
refrigerator� and is in service of other goals� such as having the spoon to
eat with once the cereal is prepared and ultimately obtaining nourishment�
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These examples share features that are so basic that they are easy to over�
look� All involve interaction between an active decision�making agent and its
environment� within which the agent seeks to achieve a goal despite uncertainty
about its environment� The agent
s actions are permitted to a�ect the future
state of the environment �e�g�� the next chess position� the level of reservoirs of
the re�nery� the next location of the robot�� thereby a�ecting the options and
opportunities available to the agent at later times� Correct choice requires tak�
ing into account indirect� delayed consequences of actions� and thus may require
foresight or planning�

At the same time� in all these examples the e�ects of actions cannot be fully
predicted� thus the agent must monitor its environment frequently and react
appropriately� For example� Phil must watch the milk he pours into his cereal
bowl to keep it from over�owing� All these examples involve goals that are explicit
in the sense that the agent can judge progress toward its goal based on what it
can sense directly� The chess player knows whether or not he wins� the re�nery
controller knows how much petroleum is being produced� the mobile robot knows
when its batteries run down� and Phil knows whether or not he is enjoying his
breakfast�

In all of these examples the agent can use its experience to improve its per�
formance over time� The chess player re�nes the intuition he uses to evaluate
positions� thereby improving his play� the gazelle calf improves the e�ciency with
which it can run� Phil learns to streamline making his breakfast� The knowledge
the agent brings to the task at the start�either from previous experience with
related tasks or built into it by design or evolution�in�uences what is useful
or easy to learn� but interaction with the environment is essential for adjusting
behavior to exploit speci�c features of the task�

� Elements of Reinforcement Learning

Beyond the agent and the environment� one can identify four main subelements
of a reinforcement learning system� a policy� a reward function� a value function�
and� optionally� a model of the environment�

A policy de�nes the learning agent
s way of behaving at a given time� Roughly
speaking� a policy is a mapping from perceived states of the environment to
actions to be taken when in those states� It corresponds to what in psychology
would be called a set of stimulus
response rules or associations� In some cases
the policy may be a simple function or lookup table� whereas in others it may
involve extensive computation such as a search process� The policy is the core of
a reinforcement learning agent in the sense that it alone is su�cient to determine
behavior� In general� policies may be stochastic�

A reward function de�nes the goal in a reinforcement learning problem� Roughly
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speaking� it maps each perceived state �or state
action pair� of the environment
to a single number� a reward� indicating the intrinsic desirability of that state�
A reinforcement learning agent
s sole objective is to maximize the total reward
it receives in the long run� The reward function de�nes what are the good and
bad events for the agent� In a biological system� it would not be inappropriate
to identify rewards with pleasure and pain� They are the immediate and de�ning
features of the problem faced by the agent� As such� the reward function must
necessarily be unalterable by the agent� It may� however� serve as a basis for
altering the policy� For example� if an action selected by the policy is followed by
low reward� then the policy may be changed to select some other action in that
situation in the future� In general� reward functions may be stochastic�

Whereas a reward function indicates what is good in an immediate sense� a
value function speci�es what is good in the long run� Roughly speaking� the value
of a state is the total amount of reward an agent can expect to accumulate over
the future� starting from that state� Whereas rewards determine the immediate�
intrinsic desirability of environmental states� values indicate the long�term desir�
ability of states after taking into account the states that are likely to follow� and
the rewards available in those states� For example� a state might always yield a
low immediate reward but still have a high value because it is regularly followed
by other states that yield high rewards� Or the reverse could be true� To make
a human analogy� rewards are like pleasure �if high� and pain �if low�� whereas
values correspond to a more re�ned and farsighted judgment of how pleased or
displeased we are that our environment is in a particular state� Expressed this
way� we hope it is clear that value functions formalize a basic and familiar idea�

Rewards are in a sense primary� whereas values� as predictions of rewards� are
secondary� Without rewards there could be no values� and the only purpose of
estimating values is to achieve more reward� Nevertheless� it is values with which
we are most concerned when making and evaluating decisions� Action choices
are made based on value judgments� We seek actions that bring about states
of highest value� not highest reward� because these actions obtain the greatest
amount of reward for us over the long run� In decision�making and planning�
the derived quantity called value is the one with which we are most concerned�
Unfortunately� it is much harder to determine values than it is to determine
rewards� Rewards are basically given directly by the environment� but values
must be estimated and reestimated from the sequences of observations an agent
makes over its entire lifetime� In fact� the most important component of almost
all reinforcement learning algorithms is a method for e�ciently estimating values�
The central role of value estimation is arguably the most important thing we have
learned about reinforcement learning over the last few decades�

Although all the reinforcement learning methods we consider in this book
are structured around estimating value functions� it is not strictly necessary to
do this to solve reinforcement learning problems� For example� search methods
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such as genetic algorithms� genetic programming� simulated annealing� and other
function optimization methods have been used to solve reinforcement learning
problems� These methods search directly in the space of policies without ever
appealing to value functions� We call these evolutionary methods because their
operation is analogous to the way biological evolution produces organisms with
skilled behavior even when they do not learn during their individual lifetimes�
If the space of policies is su�ciently small� or can be structured so that good
policies are common or easy to �nd� then evolutionary methods can be e�ective�
In addition� evolutionary methods have advantages on problems in which the
learning agent cannot accurately sense the state of its environment�

Nevertheless� what we mean by reinforcement learning involves learning while
interacting with the environment� which evolutionary methods do not do� It is our
belief that methods able to take advantage of the details of individual behavioral
interactions can be much more e�cient than evolutionary methods in many cases�
Evolutionary methods ignore much of the useful structure of the reinforcement
learning problem� they do not use the fact that the policy they are searching for
is a function from states to actions� they do not notice which states an individual
passes through during its lifetime� or which actions it selects� In some cases this
information can be misleading �e�g�� when states are misperceived�� but more
often it should enable more e�cient search� Although evolution and learning
share many features and can naturally work together� as they do in nature� we
do not consider evolutionary methods by themselves to be especially well suited
to reinforcement learning problems� For simplicity� in this book when we use the
term �reinforcement learning� we do not include evolutionary methods�

The fourth and �nal element of some reinforcement learning systems is a
model of the environment� This is something that mimics the behavior of the
environment� For example� given a state and action� the model might predict
the resultant next state and next reward� Models are used for planning� by
which we mean any way of deciding on a course of action by considering possi�
ble future situations before they are actually experienced� The incorporation of
models and planning into reinforcement learning systems is a relatively new de�
velopment� Early reinforcement learning systems were explicitly trial�and�error
learners� what they did was viewed as almost the opposite of planning� Neverthe�
less� it gradually became clear that reinforcement learning methods are closely
related to dynamic programming methods� which do use models� and that they
in turn are closely related to state
space planning methods� In Chapter � we ex�
plore reinforcement learning systems that simultaneously learn by trial and error�
learn a model of the environment� and use the model for planning� Modern re�
inforcement learning spans the spectrum from low�level� trial�and�error learning
to high�level� deliberative planning�
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� An Extended Example� Tic�Tac�Toe

To illustrate the general idea of reinforcement learning and contrast it with other
approaches� we next consider a single example in more detail�

Consider the familiar child
s game of tic�tac�toe� Two players take turns
playing on a three�by�three board� One player plays Xs and the other Os until one
player wins by placing three marks in a row� horizontally� vertically� or diagonally�
as the X player has in this game�

X

X

X

O O

XO

If the board �lls up with neither player getting three in a row� the game is
a draw� Because a skilled player can play so as never to lose� let us assume
that we are playing against an imperfect player� one whose play is sometimes
incorrect and allows us to win� For the moment� in fact� let us consider draws
and losses to be equally bad for us� How might we construct a player that will
�nd the imperfections in its opponent
s play and learn to maximize its chances
of winning�

Although this is a simple problem� it cannot readily be solved in a satisfactory
way through classical techniques� For example� the classical �minimax� solution
from game theory is not correct here because it assumes a particular way of
playing by the opponent� For example� a minimax player would never reach a
game state from which it could lose� even if in fact it always won from that state
because of incorrect play by the opponent� Classical optimization methods for
sequential decision problems� such as dynamic programming� can compute an
optimal solution for any opponent� but require as input a complete speci�cation
of that opponent� including the probabilities with which the opponent makes each
move in each board state� Let us assume that this information is not available a
priori for this problem� as it is not for the vast majority of problems of practical
interest� On the other hand� such information can be estimated from experience�
in this case by playing many games against the opponent� About the best one
can do on this problem is �rst to learn a model of the opponent
s behavior� up to
some level of con�dence� and then apply dynamic programming to compute an
optimal solution given the approximate opponent model� In the end� this is not
that di�erent from some of the reinforcement learning methods we examine later
in this book�

An evolutionary approach to this problem would directly search the space of
possible policies for one with a high probability of winning against the opponent�
Here� a policy is a rule that tells the player what move to make for every state
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of the game�every possible con�guration of Xs and Os on the three�by�three
board� For each policy considered� an estimate of its winning probability would
be obtained by playing some number of games against the opponent� This evalu�
ation would then direct which policy or policies were considered next� A typical
evolutionary method would hill�climb in policy space� successively generating and
evaluating policies in an attempt to obtain incremental improvements� Or� per�
haps� a genetic�style algorithm could be used that would maintain and evaluate
a population of policies� Literally hundreds of di�erent optimization methods
could be applied� By directly searching the policy space we mean that entire
policies are proposed and compared on the basis of scalar evaluations�

Here is how the tic�tac�toe problem would be approached using reinforcement
learning and approximate value functions� First we set up a table of numbers�
one for each possible state of the game� Each number will be the latest estimate
of the probability of our winning from that state� We treat this estimate as the
state
s value� and the whole table is the learned value function� State A has higher
value than state B� or is considered �better� than state B� if the current estimate
of the probability of our winning from A is higher than it is from B� Assuming
we always play Xs� then for all states with three Xs in a row the probability of
winning is �� because we have already won� Similarly� for all states with three Os
in a row� or that are ��lled up�� the correct probability is �� as we cannot win
from them� We set the initial values of all the other states to ���� representing a
guess that we have a ��� chance of winning�

We play many games against the opponent� To select our moves we examine
the states that would result from each of our possible moves �one for each blank
space on the board� and look up their current values in the table� Most of the
time we move greedily� selecting the move that leads to the state with greatest
value� that is� with the highest estimated probability of winning� Occasionally�
however� we select randomly from among the other moves instead� These are
called exploratory moves because they cause us to experience states that we
might otherwise never see� A sequence of moves made and considered during a
game can be diagrammed as in Figure ��

While we are playing� we change the values of the states in which we �nd
ourselves during the game� We attempt to make them more accurate estimates
of the probabilities of winning� To do this� we �back up� the value of the state
after each greedy move to the state before the move� as suggested by the arrows
in Figure �� More precisely� the current value of the earlier state is adjusted to
be closer to the value of the later state� This can be done by moving the earlier
state
s value a fraction of the way toward the value of the later state� If we let
s denote the state before the greedy move� and s� the state after the move� then
the update to the estimated value of s� denoted V �s�� can be written as

V �s�� V �s� � �
h
V �s��� V �s�

i
�
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our move {
opponent's move {

our move {

starting position

�
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b

c*

d

ee*

opponent's move {

c

�f
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opponent's move {
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Figure �� A sequence of tic�tac�toe moves� The solid lines represent the moves
taken during a game� the dashed lines represent moves that we �our reinforce�
ment learning player� considered but did not make� Our second move was an
exploratory move� meaning that it was taken even though another sibling move�
the one leading to e�� was ranked higher� Exploratory moves do not result in any
learning� but each of our other moves does� causing backups as suggested by the
curved arrows and detailed in the text�

��



where � is a small positive fraction called the step�size parameter� which in�uences
the rate of learning� This update rule is an example of a temporal�di�erence
learning method� so called because its changes are based on a di�erence� V �s���
V �s�� between estimates at two di�erent times�

The method described above performs quite well on this task� For example�
if the step�size parameter is reduced properly over time� this method converges�
for any �xed opponent� to the true probabilities of winning from each state given
optimal play by our player� Furthermore� the moves then taken �except on ex�
ploratory moves� are in fact the optimal moves against the opponent� In other
words� the method converges to an optimal policy for playing the game� If the
step�size parameter is not reduced all the way to zero over time� then this player
also plays well against opponents that slowly change their way of playing�

This example illustrates the di�erences between evolutionary methods and
methods that learn value functions� To evaluate a policy� an evolutionary method
must hold it �xed and play many games against the opponent� or simulate many
games using a model of the opponent� The frequency of wins gives an unbiased
estimate of the probability of winning with that policy� and can be used to direct
the next policy selection� But each policy change is made only after many games�
and only the �nal outcome of each game is used� what happens during the games
is ignored� For example� if the player wins� then all of its behavior in the game is
given credit� independently of how speci�c moves might have been critical to the
win� Credit is even given to moves that never occurred� Value function methods�
in contrast� allow individual states to be evaluated� In the end� both evolutionary
and value function methods search the space of policies� but learning a value
function takes advantage of information available during the course of play�

This simple example illustrates some of the key features of reinforcement
learning methods� First� there is the emphasis on learning while interacting with
an environment� in this case with an opponent player� Second� there is a clear
goal� and correct behavior requires planning or foresight that takes into account
delayed e�ects of one
s choices� For example� the simple reinforcement learning
player would learn to set up multimove traps for a shortsighted opponent� It is
a striking feature of the reinforcement learning solution that it can achieve the
e�ects of planning and lookahead without using a model of the opponent and
without conducting an explicit search over possible sequences of future states
and actions�

While this example illustrates some of the key features of reinforcement learn�
ing� it is so simple that it might give the impression that reinforcement learning
is more limited than it really is� Although tic�tac�toe is a two�person game� rein�
forcement learning also applies in the case in which there is no external adversary�
that is� in the case of a �game against nature�� Reinforcement learning also is not
restricted to problems in which behavior breaks down into separate episodes� like
the separate games of tic�tac�toe� with reward only at the end of each episode�
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It is just as applicable when behavior continues inde�nitely and when rewards of
various magnitudes can be received at any time�

Tic�tac�toe has a relatively small� �nite state set� whereas reinforcement learn�
ing can be used when the state set is very large� or even in�nite� For example�
Gerry Tesauro ����	� ����� combined the algorithm described above with an ar�
ti�cial neural network to learn to play backgammon� which has approximately
���� states� With this many states it is impossible ever to experience more than
a small fraction of them� Tesauro
s program learned to play far better than any
previous program� and now plays at the level of the world
s best human play�
ers �see Chapter ���� The neural network provides the program with the ability
to generalize from its experience� so that in new states it selects moves based
on information saved from similar states faced in the past� as determined by its
network� How well a reinforcement learning system can work in problems with
such large state sets is intimately tied to how appropriately it can generalize from
past experience� It is in this role that we have the greatest need for supervised
learning methods with reinforcement learning� Neural networks are not the only�
or necessarily the best� way to do this�

In this tic�tac�toe example� learning started with no prior knowledge beyond
the rules of the game� but reinforcement learning by no means entails a tabula
rasa view of learning and intelligence� On the contrary� prior information can
be incorporated into reinforcement learning in a variety of ways that can be
critical for e�cient learning� We also had access to the true state in the tic�
tac�toe example� whereas reinforcement learning can also be applied when part
of the state is hidden� or when di�erent states appear to the learner to be the
same� That case� however� is substantially more di�cult� and we do not cover it
signi�cantly in this book�

Finally� the tic�tac�toe player was able to look ahead and know the states
that would result from each of its possible moves� To do this� it had to have a
model of the game that allowed it to �think about� how its environment would
change in response to moves that it might never make� Many problems are like
this� but in others even a short�term model of the e�ects of actions is lacking�
Reinforcement learning can be applied in either case� No model is required� but
models can easily be used if they are available or can be learned�

Exercise �� Self�Play Suppose� instead of playing against a random opponent�
the reinforcement learning algorithm described above played against itself� What
do you think would happen in this case� Would it learn a di�erent way of playing�

Exercise �� Symmetries Many tic�tac�toe positions appear di�erent but are
really the same because of symmetries� How might we amend the reinforcement
learning algorithm described above to take advantage of this� In what ways would
this improve it� Now think again� Suppose the opponent did not take advantage
of symmetries� In that case� should we� Is it true� then� that symmetrically
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equivalent positions should necessarily have the same value�

Exercise �� Greedy Play Suppose the reinforcement learning player was greedy�
that is� it always played the move that brought it to the position that it rated the
best� Would it learn to play better� or worse� than a nongreedy player� What
problems might occur�

Exercise �� Learning from Exploration Suppose learning updates occurred after
all moves� including exploratory moves� If the step�size parameter is appropri�
ately reduced over time� then the state values would converge to a set of proba�
bilities� What are the two sets of probabilities computed when we do� and when
we do not� learn from exploratory moves� Assuming that we do continue to make
exploratory moves� which set of probabilities might be better to learn� Which
would result in more wins�

Exercise �� Other Improvements Can you think of other ways to improve the
reinforcement learning player� Can you think of any better way to solve the
tic�tac�toe problem as posed�

� Summary

Reinforcement learning is a computational approach to understanding and au�
tomating goal�directed learning and decision�making� It is distinguished from
other computational approaches by its emphasis on learning by the individual
from direct interaction with its environment� without relying on exemplary su�
pervision or complete models of the environment� In our opinion� reinforcement
learning is the �rst �eld to seriously address the computational issues that arise
when learning from interaction with an environment in order to achieve long�term
goals�

Reinforcement learning uses a formal framework de�ning the interaction be�
tween a learning agent and its environment in terms of states� actions� and re�
wards� This framework is intended to be a simple way of representing essential
features of the arti�cial intelligence problem� These features include a sense of
cause and e�ect� a sense of uncertainty and nondeterminism� and the existence
of explicit goals�

The concepts of value and value functions are the key features of the reinforce�
ment learning methods that we consider in this book� We take the position that
value functions are essential for e�cient search in the space of policies� Their use
of value functions distinguishes reinforcement learning methods from evolution�
ary methods that search directly in policy space guided by scalar evaluations of
entire policies�
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� History of Reinforcement Learning

The history of reinforcement learning has two main threads� both long and rich�
that were pursued independently before intertwining in modern reinforcement
learning� One thread concerns learning by trial and error and started in the
psychology of animal learning� This thread runs through some of the earliest
work in arti�cial intelligence and led to the revival of reinforcement learning
in the early ����s� The other thread concerns the problem of optimal control
and its solution using value functions and dynamic programming� For the most
part� this thread did not involve learning� Although the two threads have been
largely independent� the exceptions revolve around a third� less distinct thread
concerning temporal�di�erence methods such as used in the tic�tac�toe example
in this chapter� All three threads came together in the late ����s to produce the
modern �eld of reinforcement learning as we present it in this book�

The thread focusing on trial�and�error learning is the one with which we are
most familiar and about which we have the most to say in this brief history�
Before doing that� however� we brie�y discuss the optimal control thread�

The term �optimal control� came into use in the late ����s to describe the
problem of designing a controller to minimize a measure of a dynamical system
s
behavior over time� One of the approaches to this problem was developed in
the mid�����s by Richard Bellman and others through extending a nineteenth
century theory of Hamilton and Jacobi� This approach uses the concepts of a
dynamical system
s state and of a value function� or �optimal return function��
to de�ne a functional equation� now often called the Bellman equation� The class
of methods for solving optimal control problems by solving this equation came
to be known as dynamic programming �Bellman� ����a�� Bellman �����b� also
introduced the discrete stochastic version of the optimal control problem known
as Markovian decision processes �MDPs�� and Ron Howard ������ devised the
policy iteration method for MDPs� All of these are essential elements underlying
the theory and algorithms of modern reinforcement learning�

Dynamic programming is widely considered the only feasible way of solving
general stochastic optimal control problems� It su�ers from what Bellman called
�the curse of dimensionality�� meaning that its computational requirements grow
exponentially with the number of state variables� but it is still far more e�cient
and more widely applicable than any other general method� Dynamic program�
ming has been extensively developed since the late ����s� including extensions
to partially observable MDPs �surveyed by Lovejoy� ������ many applications
�surveyed by White� ����� ����� ������ approximation methods �surveyed by
Rust� ������ and asynchronous methods �Bertsekas� ���	� ������ Many excellent
modern treatments of dynamic programming are available �e�g�� Bertsekas� �����
Puterman� ����� Ross� ����� and Whittle� ���	� ������ Bryson ������ provides
an authoritative history of optimal control�

��



In this book� we consider all of the work in optimal control also to be� in a
sense� work in reinforcement learning� We de�ne reinforcement learning as any
e�ective way of solving reinforcement learning problems� and it is now clear that
these problems are closely related to optimal control problems� particularly those
formulated as MDPs� Accordingly� we must consider the solution methods of
optimal control� such as dynamic programming� also to be reinforcement learning
methods� Of course� almost all of these methods require complete knowledge of
the system to be controlled� and for this reason it feels a little unnatural to say
that they are part of reinforcement learning� On the other hand� many dynamic
programming methods are incremental and iterative� Like learning methods�
they gradually reach the correct answer through successive approximations� As
we show in the rest of this book� these similarities are far more than super�cial�
The theories and solution methods for the cases of complete and incomplete
knowledge are so closely related that we feel they must be considered together as
part of the same subject matter�

Let us return now to the other major thread leading to the modern �eld
of reinforcement learning� that centered on the idea of trial�and�error learning�
This thread began in psychology� where �reinforcement� theories of learning are
common� Perhaps the �rst to succinctly express the essence of trial�and�error
learning was Edward Thorndike� We take this essence to be the idea that actions
followed by good or bad outcomes have their tendency to be reselected altered
accordingly� In Thorndike
s words�

Of several responses made to the same situation� those which are
accompanied or closely followed by satisfaction to the animal will�
other things being equal� be more �rmly connected with the situation�
so that� when it recurs� they will be more likely to recur� those which
are accompanied or closely followed by discomfort to the animal will�
other things being equal� have their connections with that situation
weakened� so that� when it recurs� they will be less likely to occur� The
greater the satisfaction or discomfort� the greater the strengthening
or weakening of the bond� �Thorndike� ����� p� 	���

Thorndike called this the �Law of E�ect� because it describes the e�ect of re�
inforcing events on the tendency to select actions� Although sometimes contro�
versial �e�g�� see Kimble� ����� ����� Mazur� ������ the Law of E�ect is widely
regarded as an obvious basic principle underlying much behavior �e�g�� Hilgard
and Bower� ����� Dennett� ����� Campbell� ����� Cziko� ������

The Law of E�ect includes the two most important aspects of what we mean
by trial�and�error learning� First� it is selectional� meaning that it involves trying
alternatives and selecting among them by comparing their consequences� Second�
it is associative� meaning that the alternatives found by selection are associated
with particular situations� Natural selection in evolution is a prime example of
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a selectional process� but it is not associative� Supervised learning is associative�
but not selectional� It is the combination of these two that is essential to the
Law of E�ect and to trial�and�error learning� Another way of saying this is that
the Law of E�ect is an elementary way of combining search and memory� search
in the form of trying and selecting among many actions in each situation� and
memory in the form of remembering what actions worked best� associating them
with the situations in which they were best� Combining search and memory in
this way is essential to reinforcement learning�

In early arti�cial intelligence� before it was distinct from other branches of en�
gineering� several researchers began to explore trial�and�error learning as an en�
gineering principle� The earliest computational investigations of trial�and�error
learning were perhaps by Minsky and by Farley and Clark� both in ����� In
his Ph�D� dissertation� Minsky discussed computational models of reinforcement
learning and described his construction of an analog machine composed of compo�
nents he called SNARCs �Stochastic Neural�Analog Reinforcement Calculators��
Farley and Clark described another neural�network learning machine designed
to learn by trial and error� In the ����s the terms �reinforcement� and �re�
inforcement learning� were used in the engineering literature for the �rst time
�e�g�� Waltz and Fu� ����� Mendel� ����� Fu� ����� Mendel and McClaren� ������
Particularly in�uential was Minsky
s paper �Steps Toward Arti�cial Intelligence�
�Minsky� ������ which discussed several issues relevant to reinforcement learning�
including what he called the credit assignment problem� How do you distribute
credit for success among the many decisions that may have been involved in pro�
ducing it� All of the methods we discuss in this book are� in a sense� directed
toward solving this problem�

The interests of Farley and Clark ������ Clark and Farley� ����� shifted from
trial�and�error learning to generalization and pattern recognition� that is� from
reinforcement learning to supervised learning� This began a pattern of confusion
about the relationship between these types of learning� Many researchers seemed
to believe that they were studying reinforcement learning when they were actu�
ally studying supervised learning� For example� neural network pioneers such as
Rosenblatt ����	� and Widrow and Ho� ������ were clearly motivated by rein�
forcement learning�they used the language of rewards and punishments�but
the systems they studied were supervised learning systems suitable for pattern
recognition and perceptual learning� Even today� researchers and textbooks often
minimize or blur the distinction between these types of learning� Some modern
neural�network textbooks use the term �trial�and�error� to describe networks
that learn from training examples because they use error information to update
connection weights� This is an understandable confusion� but it substantially
misses the essential selectional character of trial�and�error learning�

Partly as a result of these confusions� research into genuine trial�and�error
learning became rare in the the ����s and ����s� In the next few paragraphs we
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discuss some of the exceptions and partial exceptions to this trend�
One of these was the work by a New Zealand researcher named John Andreae�

Andreae ������ developed a system called STeLLA that learned by trial and error
in interaction with its environment� This system included an internal model of
the world and� later� an �internal monologue� to deal with problems of hidden
state �Andreae� ����a�� Andreae
s later work ������ placed more emphasis on
learning from a teacher� but still included trial and error� Unfortunately� his
pioneering research was not well known� and did not greatly impact subsequent
reinforcement learning research�

More in�uential was the work of Donald Michie� In ���� and ���� he de�
scribed a simple trial�and�error learning system for learning how to play tic�tac�
toe �or naughts and crosses� called MENACE �for Matchbox Educable Naughts
and Crosses Engine�� It consisted of a matchbox for each possible game po�
sition� each matchbox containing a number of colored beads� a di�erent color
for each possible move from that position� By drawing a bead at random from
the matchbox corresponding to the current game position� one could determine
MENACE
s move� When a game was over� beads were added to or removed from
the boxes used during play to reinforce or punish MENACE
s decisions� Michie
and Chambers ������ described another tic�tac�toe reinforcement learner called
GLEE �Game Learning Expectimaxing Engine� and a reinforcement learning con�
troller called BOXES� They applied BOXES to the task of learning to balance
a pole hinged to a movable cart on the basis of a failure signal occurring only
when the pole fell or the cart reached the end of a track� This task was adapted
from the earlier work of Widrow and Smith ������� who used supervised learning
methods� assuming instruction from a teacher already able to balance the pole�
Michie and Chambers
s version of pole�balancing is one of the best early exam�
ples of a reinforcement learning task under conditions of incomplete knowledge�
It in�uenced much later work in reinforcement learning� beginning with some
of our own studies �Barto� Sutton� and Anderson� ����� Sutton� ������ Michie
has consistently emphasized the role of trial and error and learning as essential
aspects of arti�cial intelligence �Michie� ������

Widrow� Gupta� and Maitra ������ modi�ed the LMS algorithm of Widrow
and Ho� ������ to produce a reinforcement learning rule that could learn from
success and failure signals instead of from training examples� They called this
form of learning �selective bootstrap adaptation� and described it as �learning
with a critic� instead of �learning with a teacher�� They analyzed this rule and
showed how it could learn to play blackjack� This was an isolated foray into
reinforcement learning by Widrow� whose contributions to supervised learning
were much more in�uential�

Research on learning automata had a more direct in�uence on the trial�and�
error thread leading to modern reinforcement learning research� These are meth�
ods for solving a nonassociative� purely selectional learning problem known as
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the n�armed bandit by analogy to a slot machine� or �one�armed bandit�� ex�
cept with n levers �see Chapter 	�� Learning automata are simple� low�memory
machines for solving this problem� Learning automata originated in Russia with
the work of Tsetlin ������ and has been extensively developed since then within
engineering �see Narendra and Thathachar� ����� ������ Barto and Anandan
������ extended these methods to the associative case�

John Holland ������ outlined a general theory of adaptive systems based on
selectional principles� His early work concerned trial and error primarily in its
nonassociative form� as in evolutionary methods and the n�armed bandit� In ����
he introduced classi�er systems� true reinforcement learning systems including
association and value functions� A key component of Holland
s classi�er systems
was always a genetic algorithm� an evolutionary method whose role was to evolve
useful representations� Classi�er systems have been extensively developed by
many researchers to form a major branch of reinforcement learning research �e�g��
see Goldberg� ����� Wilson� ������ but genetic algorithms�which by themselves
are not reinforcement learning systems�have received much more attention�

The individual most responsible for reviving the trial�and�error thread to re�
inforcement learning within arti�cial intelligence was Harry Klopf ����	� �����
���	�� Klopf recognized that essential aspects of adaptive behavior were being
lost as learning researchers came to focus almost exclusively on supervised learn�
ing� What was missing� according to Klopf� were the hedonic aspects of behavior�
the drive to achieve some result from the environment� to control the environment
toward desired ends and away from undesired ends� This is the essential idea of
trial�and�error learning� Klopf
s ideas were especially in�uential on the authors
because our assessment of them �Barto and Sutton� ����a� led to our apprecia�
tion of the distinction between supervised and reinforcement learning� and to our
eventual focus on reinforcement learning� Much of the early work that we and
colleagues accomplished was directed toward showing that reinforcement learn�
ing and supervised learning were indeed di�erent �Barto� Sutton� and Brouwer�
����� Barto and Sutton� ����b� Barto and Anandan� ������ Other studies showed
how reinforcement learning could address important problems in neural network
learning� in particular� how it could produce learning algorithms for multilayer
networks �Barto� Anderson� and Sutton� ���	� Barto and Anderson� ����� Barto
and Anandan� ����� Barto� ����� ����� Barto and Jordan� ������

We turn now to the third thread to the history of reinforcement learning� that
concerning temporal�di�erence learning� Temporal�di�erence learning methods
are distinctive in being driven by the di�erence between temporally successive
estimates of the same quantity�for example� of the probability of winning in
the tic�tac�toe example� This thread is smaller and less distinct than the other
two� but it has played a particularly important role in the �eld� in part because
temporal�di�erence methods seem to be new and unique to reinforcement learn�
ing�
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The origins of temporal�di�erence learning are in part in animal learning
psychology� in particular� in the notion of secondary reinforcers� A secondary
reinforcer is a stimulus that has been paired with a primary reinforcer such as
food or pain and� as a result� has come to take on similar reinforcing properties�
Minsky ������ may have been the �rst to realize that this psychological principle
could be important for arti�cial learning systems� Arthur Samuel ������ was
the �rst to propose and implement a learning method that included temporal�
di�erence ideas� as part of his celebrated checkers�playing program� Samuel made
no reference to Minsky
s work or to possible connections to animal learning� His
inspiration apparently came from Claude Shannon
s ������ suggestion that a
computer could be programmed to use an evaluation function to play chess� and
that it might be able to to improve its play by modifying this function on�line�
�It is possible that these ideas of Shannon
s also in�uenced Bellman� but we know
of no evidence for this�� Minsky ������ extensively discussed Samuel
s work in
his �Steps� paper� suggesting the connection to secondary reinforcement theories�
both natural and arti�cial�

As we have discussed� in the decade following the work of Minsky and Samuel�
little computational work was done on trial�and�error learning� and apparently
no computational work at all was done on temporal�di�erence learning� In ���	�
Klopf brought trial�and�error learning together with an important component of
temporal�di�erence learning� Klopf was interested in principles that would scale
to learning in large systems� and thus was intrigued by notions of local rein�
forcement� whereby subcomponents of an overall learning system could reinforce
one another� He developed the idea of �generalized reinforcement�� whereby ev�
ery component �nominally� every neuron� views all of its inputs in reinforcement
terms� excitatory inputs as rewards and inhibitory inputs as punishments� This
is not the same idea as what we now know as temporal�di�erence learning� and
in retrospect it is farther from it than was Samuel
s work� On the other hand�
Klopf linked the idea with trial�and�error learning and related it to the massive
empirical database of animal learning psychology�

Sutton �����a� ����b� ����c� developed Klopf
s ideas further� particularly the
links to animal learning theories� describing learning rules driven by changes in
temporally successive predictions� He and Barto re�ned these ideas and devel�
oped a psychological model of classical conditioning based on temporal�di�erence
learning �Sutton and Barto� ����a� Barto and Sutton� ���	�� There followed
several other in�uential psychological models of classical conditioning based on
temporal�di�erence learning �e�g�� Klopf� ����� Moore et al�� ����� Sutton and
Barto� ����� ������ Some neuroscience models developed at this time are well
interpreted in terms of temporal�di�erence learning �Hawkins and Kandel� �����
Byrne� Gingrich� and Baxter� ����� Gelperin� Hop�eld� and Tank� ����� Tesauro�
����� Friston et al�� ������ although in most cases there was no historical con�
nection� A recent summary of links between temporal�di�erence learning and
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neuroscience ideas is provided by Schultz� Dayan� and Montague �������
Our early work on temporal�di�erence learning was strongly in�uenced by

animal learning theories and by Klopf
s work� Relationships to Minsky
s �Steps�
paper and to Samuel
s checkers players appear to have been recognized only
afterward� By ����� however� we were fully aware of all the prior work mentioned
above as part of the temporal�di�erence and trial�and�error threads� At this
time we developed a method for using temporal�di�erence learning in trial�and�
error learning� known as the actor	critic architecture� and applied this method to
Michie and Chambers
s pole�balancing problem �Barto� Sutton� and Anderson�
������ This method was extensively studied in Sutton
s ������ Ph�D� dissertation
and extended to use backpropagation neural networks in Anderson
s ������ Ph�D�
dissertation� Around this time� Holland ������ incorporated temporal�di�erence
ideas explicitly into his classi�er systems� A key step was taken by Sutton in ����
by separating temporal�di�erence learning from control� treating it as a general
prediction method� That paper also introduced the TD��� algorithm and proved
some of its convergence properties�

As we were �nalizing our work on the actor
critic architecture in ����� we
discovered a paper by Ian Witten ������ that contains the earliest known publica�
tion of a temporal�di�erence learning rule� He proposed the method that we now
call tabular TD��� for use as part of an adaptive controller for solving MDPs�
Witten
s work was a descendant of Andreae
s early experiments with STeLLA
and other trial�and�error learning systems� Thus� Witten
s ���� paper spanned
both major threads of reinforcement learning research�trial�and�error learning
and optimal control�while making a distinct early contribution to temporal�
di�erence learning�

Finally� the temporal�di�erence and optimal control threads were fully brought
together in ���� with Chris Watkins
s development of Q�learning� This work ex�
tended and integrated prior work in all three threads of reinforcement learning
research� Paul Werbos ������ contributed to this integration by arguing for the
convergence of trial�and�error learning and dynamic programming since ����� By
the time of Watkins
s work there had been tremendous growth in reinforcement
learning research� primarily in the machine learning sub�eld of arti�cial intelli�
gence� but also in neural networks and arti�cial intelligence more broadly� In
���	� the remarkable success of Gerry Tesauro
s backgammon playing program�
TD�Gammon� brought additional attention to the �eld� Other important contri�
butions made in the recent history of reinforcement learning are too numerous to
mention in this brief account� we cite these at the end of the individual chapters
in which they arise�
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� Bibliographical Remarks

For additional general coverage of reinforcement learning� we refer the reader to
the books by Bertsekas and Tsitsiklis ������ and Kaelbling �����a�� Two special
issues of the journal Machine Learning focus on reinforcement learning� Sutton
����	� and Kaelbling ������� Useful surveys are provided by Barto �����b��
Kaelbling� Littman� and Moore ������� and Keerthi and Ravindran �������

The example of Phil
s breakfast in this chapter was inspired by Agre �������
We direct the reader to Chapter � for references to the kind of temporal�di�erence
method we used in the tic�tac�toe example�

Modern attempts to relate the kinds of algorithms used in reinforcement learn�
ing to the nervous system are made by Hampson ������� Friston et al� �������
Barto �����a�� Houk� Adams� and Barto ������� Montague� Dayan� and Sejnowski
������� and Schultz� Dayan� and Montague �������
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