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Sensorimotor experience is the sensations and actions 
of an agent’s ordinary interaction with the world

• Reinforcement learning involves experience
• Predictive learning involves experience
• Supervised learning does not involve experience; 

it learns from special training data

• Experience is the agent’s only access to the world

• Experience has meaning only by its relationship 
to other experience

• except for reward, a special scalar part of 
the sensation, which is good 
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Will intelligence ultimately be explained in

• sensations 

• actions 

• reward 

• time steps 

• things inside the agent

• states of the external world 

• objects, people, places, 
relationships, atoms 

• space, motion, distances 

• things outside the agent

Experiential terms? Objective terms?OR



• Over AI’s seven decades, experience has played an increasing role; 
I see four major steps in this progression: 

Step 1: Agenthood (having experience) 

Step 2: Reward (goals in terms of experience) 

Step 3: Experiential state (state in terms of experience) 

Step 4: Predictive knowledge (to know is to predict experience) 

• For each step, AI has reluctantly moved toward experience  
in order to be more grounded, learnable, and scalable

Main points / outline



Step 1: Agenthood 
(having experience)



Experience was rare in early AI systems (1954–1985)

• Most AI systems were problem solvers and question answerers 
with no sensations or actions (robotics was an exception) 

• A typical problem was a start state and a goal state,  
with operators defined not as actions, but as state transitions 

• A solution was a sequence of operators guaranteed to go from  
start to goal  

• There was no sensing or acting (operators were deterministic)  
The solution was never actually executed! 
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Init(On(A,Table) ∧ On(B,Table) ∧ On(C, A)

∧ Block (A) ∧ Block (B) ∧ Block (C) ∧ Clear (B) ∧ Clear (C))

Goal (On(A, B) ∧ On(B, C))

Action(Move(b, x, y),

PRECOND: On(b, x) ∧ Clear (b) ∧ Clear (y) ∧ Block (b) ∧ Block (y) ∧
(b "=x) ∧ (b "=y) ∧ (x"=y),

EFFECT: On(b, y) ∧ Clear (x) ∧ ¬On(b, x) ∧ ¬Clear (y))

Action(MoveToTable(b, x),

PRECOND: On(b, x) ∧ Clear (b) ∧ Block (b) ∧ (b "=x),
EFFECT: On(b,Table) ∧ Clear (x) ∧ ¬On(b, x))

Figure 10.3 A planning problem in the blocks world: building a three-block tower. One
solution is the sequence [MoveToTable(C, A),Move(B,Table , C),Move(A,Table , B)].
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Figure 10.4 Diagram of the blocks-world problem in Figure 10.3.

of what other blocks. For example, a goal might be to get block A on B and block B on C

(see Figure 10.4).
We use On(b, x) to indicate that block b is on x, where x is either another block or the

table. The action for moving block b from the top of x to the top of y will be Move(b, x, y).
Now, one of the preconditions on moving b is that no other block be on it. In first-order logic,
this would be ¬∃x On(x, b) or, alternatively, ∀x ¬On(x, b). Basic PDDL does not allow
quantifiers, so instead we introduce a predicate Clear(x) that is true when nothing is on x.
(The complete problem description is in Figure 10.3.)

The action Move moves a block b from x to y if both b and y are clear. After the move
is made, b is still clear but y is not. A first attempt at the Move schema is

Action(Move(b, x, y),

PRECOND:On(b, x) ∧ Clear(b) ∧ Clear(y),

EFFECT:On(b, y) ∧ Clear(x) ∧ ¬On(b, x) ∧ ¬Clear(y)) .

Unfortunately, this does not maintain Clear properly when x or y is the table. When x is the
Table , this action has the effect Clear(Table), but the table should not become clear; and
when y =Table , it has the precondition Clear(Table), but the table does not have to be clear
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Early AI systems did not involve experience;
They could: 

“diagnose diseases,  

plan the synthesis of complex organic chemical compounds,  

solve differential equations in symbolic form,  

understand limited amounts of human speech and natural 
language text, and 

write small computer programs to meet formal specifications”

—Principles of Artificial  Intelligence by Nils Nilsson 1980



For 30 years now AI has focused on building agents

From the 1995 edition of the standard AI textbook (Russell & Norvig): 

“The unifying theme of the book is the concept of an intelligent agent” 

“In this view, the problem of AI is to describe and build agents  
that receive percepts from the environment and perform actions” 

Experience used to be rare in AI, but now it is the standard, modern approach



• Over AI’s seven decades, experience has played an increasing role; 
I see four major steps in this progression: 

Step 1: Agenthood (having experience) 

Step 2: Reward (goals in terms of experience) 

Step 3: Experiential state (state in terms of experience) 

Step 4: Predictive knowledge (to know is to predict experience) 

• For each step, AI has reluctantly moved toward experience  
in order to be more grounded, learnable, and scalable

Main points / outline



Step 2: Reward 
(goals in terms of experience)



“intelligence, and its associated abilities, can be understood  
 as subserving the maximisation of reward”  
                                                                         —Silver, Singh, Precup & Sutton 
                                                                                                                       Artificial Intelligence 2021

The reward-is-enough hypothesis

Today, reward (a single number over time) is proposed as 
a sufficient way of formulating goals in AI



But still, for many, reward is not enough
• Enough for animals maybe, enough for engineering okay,  

but not enough for people, not enough for intelligence 

• A single number? From outside the mind!? 

• Reward just seems too small. Too reductive. Too demeaning. 

• Surely peoples’ goals are grander 

• to raise a family, to save the planet, to contribute to human 
understanding, or to make the world a better place 

• Surely our goals are more than just maximizing our pleasure  
and comfort!



AI is still uneasy with reward, but is coming around
• Early problem-solving AI, and even the latest edition of the standard AI 

textbook, define goals as world states to reach, not experience 

• But it also has chapters on reinforcement learning, using reward 

• With the rise of machine learning in AI, the reward formulation 
of goals is becoming standard 

• For example, Markov decision processes are now one standard 
way of formulating planning in AI 

• Reward is “the cherry on top of the cake of intelligence”  
(Yann LeCun)
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The Soar cognitive architecture now includes reward

various stages of procedural matching, selection and
execution. Outside of direct connections between the
perception and motor modules, working memory
acts as the intercomponent communication buffer for
components. It can be considered as unitary, or con-
sist of separate modality-speci!c memories (for exam-
ple, verbal, visual) that together constitute an aggre-
gate working memory. Long-term declarative
memory, perception, and motor modules are all
restricted to accessing and modifying their associated
working memory buffers, whereas procedural memo-
ry has access to all of working memory (but no direct
access to the contents of long-term declarative mem-
ory or itself). All long-term memories have one or
more associated learning mechanisms that automati-
cally store, modify, or tune information based on the
architecture’s processing.

The heart of the standard model is the cognitive
cycle. Procedural memory induces the processing
required to select a single deliberate act per cycle. Each
action can perform multiple modi!cations to working
memory. Changes to working memory can corre-
spond to a step in abstract reasoning or the internal
simulation of an external action, but they can also ini-
tiate the retrieval of knowledge from long-term declar-

ative memory, initiate motor actions in an external
environment, or provide top-down in"uence to per-
ception. Complex behavior, both external and inter-
nal, arises from sequences of such cycles. In mapping
to human behavior, cognitive cycles operate at rough-
ly 50 ms, corresponding to the deliberate-act level in
Newell’s hierarchy, although the activities that they
trigger can take signi!cantly longer to execute.

The restriction to selecting a single deliberate act
per cycle yields a serial bottleneck in performance,
although signi!cant parallelism can occur during
procedural memory’s internal processing. Signi!cant
parallelism can also occur across components, each of
which has its own time course and runs independ-
ently once initiated. The details of the internal pro-
cessing of these components are not speci!ed as part
of the standard model, although they usually involve
signi!cant parallelism. The cognitive cycle that arises
from procedural memory’s interaction with working
memory provides the seriality necessary for coherent
thought in the face of the rampant parallelism with-
in and across components.

Although the expectation is that for a given system
there can be additional perceptual and motor mod-
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Figure 2. Soar Cognitive Architecture.

• Soar is classic GOFAI 
(1980s, Newell, Laird, Rosenbloom…) 

• Production rules, symbols 

• Since 2008 it has included 
a form of reward and 
reinforcement learning

—Laird, Lebiere & Rosenbloom. A Standard Model of the Mind, AI Magazine 2017  



• Over AI’s seven decades, experience has played an increasing role; 
I see four major steps in this progression: 

Step 1: Agenthood (having experience) 

Step 2: Reward (goals in terms of experience) 
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• For each step, AI has reluctantly moved toward experience  
in order to be more grounded, learnable, and scalable

Main points / outline



An interlude: 

Introduction to Experience
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(think of a time step as 0.1 sec)≈
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Time
step

Action
signals Sensory signals including…   Reward Return

• Different sensory signals can be 
qualitatively different from each other 

• In their range of values 

• In their predictive relationships 

• to action signals 

• to each other 

• to themselves 

• There are short-term and long-term 
patterns in these data 

• There are many things to predict 

• Prediction need not be just of the 
sensory signals 

• The most important predictions are of 
functions of future sensory signals 

• e.g., predictions of value, the 
discounted sum of future reward 

• e.g., General value functions (GVFs) 

• predict any signal, not just reward 

• over a flexible temporal envelope 

• contingent on any policy 

• Predictions of different functions  
can vary greatly in their ability to be 
learned with computational efficiency



Time
step

Action
signals Sensory signals including…   Reward Return

• Different sensory signals can be 
qualitatively different from each other 

• In their range of values 

• In their predictive relationships 

• to action signals 

• to each other 

• to themselves 

• There are short-term and long-term 
patterns in these data 

• There are many things to predict 

• Prediction need not be just of the 
sensory signals 

• The most important predictions are of 
functions of future sensory signals 

• e.g., predictions of value, the 
discounted sum of future reward 

• e.g., General value functions (GVFs) 

• predict any signal, not just reward 

• over a flexible temporal envelope 

• contingent on any policy 

• Predictions of different functions  
can vary greatly in their ability to be 
learned with computational efficiency



Step 3: Experiential state 
(state in terms of experience)



Conventionally in AI, state has been characterized 
in terms of the external world (objective state)

• Classically, perception produced symbolic propositions  
whose truth values were assumed to match the world, e.g.,  

On(BlockC, BlockA), Loves (John, Mary) 

• In probabilistic graphical models,  
state is a probability distribution over world state variables 

• In POMDPs (Partially observable Markov decision processes) 
state is a probability distribution over underlying discrete  
world states (belief state) 

• Such objective state representations are far from experience
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Now, one of the preconditions on moving b is that no other block be on it. In first-order logic,
this would be ¬∃x On(x, b) or, alternatively, ∀x ¬On(x, b). Basic PDDL does not allow
quantifiers, so instead we introduce a predicate Clear(x) that is true when nothing is on x.
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The action Move moves a block b from x to y if both b and y are clear. After the move
is made, b is still clear but y is not. A first attempt at the Move schema is
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Figure 14.12 (a) A multiply connected network with conditional probability tables. (b) A
clustered equivalent of the multiply connected network.

includes inference in propositional logic as a special case, inference in Bayesian networks is
NP-hard. In fact, it can be shown (Exercise 14.16) that the problem is as hard as that of com-
puting the number of satisfying assignments for a propositional logic formula. This means
that it is #P-hard (“number-P hard”)—that is, strictly harder than NP-complete problems.

There is a close connection between the complexity of Bayesian network inference and
the complexity of constraint satisfaction problems (CSPs). As we discussed in Chapter 6,
the difficulty of solving a discrete CSP is related to how “treelike” its constraint graph is.
Measures such as tree width, which bound the complexity of solving a CSP, can also be
applied directly to Bayesian networks. Moreover, the variable elimination algorithm can be
generalized to solve CSPs as well as Bayesian networks.

14.4.4 Clustering algorithms

The variable elimination algorithm is simple and efficient for answering individual queries. If
we want to compute posterior probabilities for all the variables in a network, however, it can
be less efficient. For example, in a polytree network, one would need to issue O(n) queries
costing O(n) each, for a total of O(n2) time. Using clustering algorithms (also known asCLUSTERING

join tree algorithms), the time can be reduced to O(n). For this reason, these algorithms areJOIN TREE

widely used in commercial Bayesian network tools.
The basic idea of clustering is to join individual nodes of the network to form clus-

ter nodes in such a way that the resulting network is a polytree. For example, the multiply
connected network shown in Figure 14.12(a) can be converted into a polytree by combin-
ing the Sprinkler and Rain node into a cluster node called Sprinkler+Rain , as shown in
Figure 14.12(b). The two Boolean nodes are replaced by a “meganode” that takes on four
possible values: tt, tf , ft, and ff . The meganode has only one parent, the Boolean variable
Cloudy , so there are two conditioning cases. Although this example doesn’t show it, the
process of clustering often produces meganodes that share some variables.

—Figures from Russell & Norvig, 2008



The alternative to objective state is experiential state:  
a state of the world defined entirely in terms of experience

Experiential state is  

a summary of past experience  
that is useful for predicting and controlling future experience 

No mention of external entities “out there” in the world  



Some modern AI embraces experiential state
• Most commonly it is simply build in, e.g.,  

• the last four video frames of Atari video input to DQN 

• including one or more recent actions 

• Compression approaches to AI 

• LSTMs in deep learning 

• Predictive State Representations, Spectral methods

Such approaches learn (or discover) their experiential state
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Experiential state should be recursively updated

Experiential state is a summary of past experience  
that is useful for predicting and controlling future experience 
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Combining all the experiential steps, we get 
a standard (basic) model of the experiential agent

Action
Experiential

state
Perception

Reactive 
policies

Reward

Sensation

Value
functions

Agent

Last 
action

Transition 
model 

Learning

Planning

Step 1: Agenthood 
            (sensation & action) 

Step 2: Reward 

Step 3: Experiential state 
            (perception) 

Step 4: Predictive knowledge 
• state-to-experience prediction 

(value functions) 
• state-to-state prediction 

(transition model)



Step 4: Predictive knowledge 
(to know is to predict experience)



Much world knowledge seems to be about the external world 
independent of experience

• Joe Biden is president of the US 

• The Eiffel tower is in Paris 

• Most birds have wings 

• Oregon is North of California 

• The car is 10 meters ahead 

• Fire engines are red

• It is a long walk to the city centre 

• I can dead-lift 200 pounds 

• It is cold outside today 

• My spouse is blond 

• My foot is sore 

• The 7th pixel will be blue in 3 steps

Other knowledge seems more like
predictions of experience

quite a gap



Knowledge is becoming more predictive
• Early AI systems, lacking experience, could not predict 

• Much modern AI still treats knowledge as database entries 

• Much modern AI (e.g., probabilistic graphical models)  
has knowledge only about simultaneous events 

• Prediction of sequential events is a kind of knowledge  
with a clear semantics 

• A predictive model of the world is AI’s upcoming new view  
of world knowledge 

• The cutting edge of predictive knowledge (IMO)  
is general value functions (GVFs) and option models
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The variable elimination algorithm is simple and efficient for answering individual queries. If
we want to compute posterior probabilities for all the variables in a network, however, it can
be less efficient. For example, in a polytree network, one would need to issue O(n) queries
costing O(n) each, for a total of O(n2) time. Using clustering algorithms (also known asCLUSTERING

join tree algorithms), the time can be reduced to O(n). For this reason, these algorithms areJOIN TREE

widely used in commercial Bayesian network tools.
The basic idea of clustering is to join individual nodes of the network to form clus-

ter nodes in such a way that the resulting network is a polytree. For example, the multiply
connected network shown in Figure 14.12(a) can be converted into a polytree by combin-
ing the Sprinkler and Rain node into a cluster node called Sprinkler+Rain , as shown in
Figure 14.12(b). The two Boolean nodes are replaced by a “meganode” that takes on four
possible values: tt, tf , ft, and ff . The meganode has only one parent, the Boolean variable
Cloudy , so there are two conditioning cases. Although this example doesn’t show it, the
process of clustering often produces meganodes that share some variables.
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Figure 14.12 (a) A multiply connected network with conditional probability tables. (b) A
clustered equivalent of the multiply connected network.

includes inference in propositional logic as a special case, inference in Bayesian networks is
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puting the number of satisfying assignments for a propositional logic formula. This means
that it is #P-hard (“number-P hard”)—that is, strictly harder than NP-complete problems.
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the complexity of constraint satisfaction problems (CSPs). As we discussed in Chapter 6,
the difficulty of solving a discrete CSP is related to how “treelike” its constraint graph is.
Measures such as tree width, which bound the complexity of solving a CSP, can also be
applied directly to Bayesian networks. Moreover, the variable elimination algorithm can be
generalized to solve CSPs as well as Bayesian networks.
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costing O(n) each, for a total of O(n2) time. Using clustering algorithms (also known asCLUSTERING

join tree algorithms), the time can be reduced to O(n). For this reason, these algorithms areJOIN TREE
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ter nodes in such a way that the resulting network is a polytree. For example, the multiply
connected network shown in Figure 14.12(a) can be converted into a polytree by combin-
ing the Sprinkler and Rain node into a cluster node called Sprinkler+Rain , as shown in
Figure 14.12(b). The two Boolean nodes are replaced by a “meganode” that takes on four
possible values: tt, tf , ft, and ff . The meganode has only one parent, the Boolean variable
Cloudy , so there are two conditioning cases. Although this example doesn’t show it, the
process of clustering often produces meganodes that share some variables.

President(US) = Joe_Biden
Capital_of(France) = Paris

—Figure from Russell & Norvig, 2008



Types of knowledge

• World knowledge does not include mathematical knowledge 

• math is true in any world, thus is not even about this world 

• World knowledge can be divided into two types 

• knowledge about state (which we have already talked about) 

• predictive knowledge about state transitions,  
i.e., a predictive model of the world



A state-to-state predictive model need not be low level
• A model need not be differential equations or a Markov decision processes 

• A model can be abstract in state (e.g., experiential state) 

• A model can be abstract in time 

• Predictions can be conditioned on entire ways of behaving (options) 

• an option is a policy plus a termination condition 

• transition models for options are well understood, can be learned off-policy 

• Are there limits to the expressiveness of option models and experiential state? 

• Can we bridge the abstraction gap between experience and knowledge?



The gap is great but, 
Experience is fundamental to world knowledge

• By definition,  
we (agents) gain information about the world only thru our sensors 
and we affect the world only thru our actions 

⇒ We know the world only through our experience 

⇒ Everything we know about the world is a fact about our experience 

• This perspective seems inescapable to me…  
and in the long run it is good for the science of AI 

• But… still we don’t like to think about experience 



Why we dislike experience

• Experience is unfamiliar, strange, unintuitive, temporal, complex,  
and so darn low-level 

• Experience is hard to talk about — subjective and private,  
impossible to communicate to others or to be verified by others 

• Public, external terms are clearly superior to experiential terms 
for everything humans do… except perhaps for creating AI



Why we should like experience

• Experience comes from the ordinary operation of the AI; it is “free” data;  
it enables autonomous learning that scales with computation 

• Experience offers a path to knowing the world: 

• If any fact about the world is a fact about experience,  
then it can be learned and verified from experience



In summary…
• I have discussed four major steps in the increasing role of sensorimotor experience in AI: 

Step 1: Agenthood (having experience) 

Step 2: Reward (goals in terms of experience) 

Step 3: Experiential state (state in terms of experience) 

Step 4: Predictive knowledge (to know is to predict experience) 

• For each step, I have shown 

• That AI has chosen first to work in objective, non-experiential terms 

• But there is less-familiar approach, based on experience, growing in importance,  
with advantages in grounding, learnability, and scaling  

• The trend toward experience in AI may have much further to go 

• Steps 3 and 4 are far from complete; there are research opportunities 

• Ultimately, the story of intelligence may be told in terms of sensorimotor experience



Data drives AI 

Experience is the ultimate data



Thank you for your attention

with special thanks to Satinder Singh, Patrick Pilarski, Adam White, and Andy Barto



Anticipating some objections and questions…
Q.Not everything is learned from experience; some things are built in 

A. True, but irrelevant. The point is not that “everything is learned from experience,” 
but that “everything is about experience” 

Q.Surely people can build in important abstractions, saving the agent a lot of time;  
we can add the links to experience later 

A. This has been tried, but never successfully at scale. Remember The Bitter Lesson 

A. Possibly knowledge could be built in after the experiential abstractions exist 

Q.The abstraction gap between experience and knowledge is so big! 

A. Yes, but so is computer power and human ingenuity. We should be ambitious!


