

The Increasing Role of Sensorimotor Experience in Al

Rich Sutton University of Alberta DeepMind Alberta Alberta Machine Intelligence Institute **Reinforcement Learning and Artificial Intelligence Lab**

with special thanks to Satinder Singh, Patrick Pilarski, Adam White, and Andy Barto

Sensorimotor experience is the sensations and actions of an agent's ordinary interaction with the world

- Reinforcement learning involves experience
- Predictive learning involves experience
- Supervised learning does not involve experience; it learns from *special training data*
- Experience is the agent's only access to the world
- Experience has meaning only by its relationship to other experience
 - except for *reward*, a special scalar part of the sensation, which is good

Will intelligence ultimately be explained in

OR

Experiential terms?

- sensations
- actions
- reward
- time steps
- things inside the agent

Objective terms?

- states of the external world
- objects, people, places, relationships, atoms
- space, motion, distances
- things outside the agent

Main points / outline

- Over Al's seven decades, experience has played an increasing role; I see four major steps in this progression:
 - Step 1: Agenthood (having experience)
 - Step 2: **Reward** (goals in terms of experience)
 - Step 3: Experiential state (state in terms of experience)
 - Step 4: **Predictive knowledge** (to know is to predict experience)
- For each step, AI has reluctantly moved toward experience in order to be more grounded, learnable, and scalable

Step 1: Agenthood (having experience)

Experience was rare in early AI systems (1954–1985)

Start State

Goal State

- - start to goal

-Figures from Russell & Norvig, 2008

 Most AI systems were problem solvers and question answerers with no sensations or actions (robotics was an exception)

 A typical problem was a start state and a goal state, with operators defined not as actions, but as state transitions

A solution was a sequence of operators guaranteed to go from

 There was no sensing or acting (operators were deterministic) The solution was never actually executed!

Early AI systems did not involve experience; They could:

"diagnose diseases,

plan the synthesis of complex organic chemical compounds,

solve differential equations in symbolic form,

understand limited amounts of human speech and natural language text, and

write small computer programs to meet formal specifications"

—*Principles of Artificial Intelligence* by Nils Nilsson 1980

For 30 years now AI has focused on building agents

- From the 1995 edition of the standard AI textbook (Russell & Norvig):
 - "The unifying theme of the book is the concept of an intelligent agent"
 - "In this view, the problem of AI is to describe and build agents that <u>receive percepts</u> from the environment and <u>perform actions</u>"
- Experience used to be rare in AI, but now it is the standard, modern approach

Main points / outline

• Over Al's seven decades, experience has played an increasing role; see four major steps in this progression:

- Step 2: Reward (goals in terms of experience)
- Step 3: Experiential state (state in terms of experience)
- Step 4: **Predictive knowledge** (to know is to predict experience)
- For each step, AI has reluctantly moved toward experience in order to be more grounded, learnable, and scalable

Step 2: Reward (goals in terms of experience)

Today, reward (a single number over time) is proposed as a sufficient way of formulating goals in Al

The reward-is-enough hypothesis

"intelligence, and its associated abilities, can be understood as subserving the maximisation of reward"

> —Silver, Singh, Precup & Sutton Artificial Intelligence 2021

But still, for many, reward is not enough

- Enough for animals maybe, enough for engineering okay, but not enough for people, not enough for intelligence
 - A single number? From outside the mind!?
- Reward just seems too small. Too reductive. Too demeaning.
- Surely peoples' goals are grander
 - to raise a family, to save the planet, to contribute to human understanding, or to make the world a better place
- Surely our goals are more than just maximizing our pleasure and comfort!

Al is still uneasy with reward, but is coming around

Goal State

- of goals is becoming standard
 - way of formulating planning in Al
 - (Yann LeCun)

 Early problem-solving AI, and even the latest edition of the standard AI textbook, define goals as world states to reach, not experience

• But it also has chapters on reinforcement learning, using reward

• With the rise of machine learning in AI, the reward formulation

• For example, Markov decision processes are now one standard

Reward is "the cherry on top of the cake of intelligence"

The Soar cognitive architecture now includes reward

- Soar is classic GOFAL (1980s, Newell, Laird, Rosenbloom...)
 - Production rules, symbols

 Since 2008 it has included* a form of reward and reinforcement learning

-Laird, Lebiere & Rosenbloom. A Standard Model of the Mind, AI Magazine 2017

Main points / outline

- Over Al's seven decades, experience has played an increasing role; I see four major steps in this progression:
 - Step 1: Agenthood (having experience)

- Step 3: Experiential state (state in terms of experience)
- Step 4: **Predictive knowledge** (to know is to predict experience)
- For each step, AI has reluctantly moved toward experience in order to be more grounded, learnable, and scalable

An interlude: Introduction to Experience

Experience — a concrete nonspecific example

Experience up to time step 7 (think of a time step as ≈ 0.1 sec)

gı	nal	ls i	nc	luc	din	g	Reward	
1	0	2	0	0	0	3	-5.3	
1	0	3	0	3	0	1	5.5	
C	2	2	3	1	0	0	-8.7	
2	1	0	2	3	2	1	-8.4	
3	1	0	2	2	3	3	-0.4	
1	1	2	0	0	1	3	2.7	
0	0	0	2	3	0	3	-5.3	
2	1	3	1	1	3	3	-2.8	most recent sensation

Experience — a concrete nonspecific example

Experience up to time step 7 (think of a time step as ≈ 0.1 sec)

Experience — a concrete nonspecific example

	Time step	Action signals	Sensory s
 Different sensory signals can be qualitatively different from each other 	0	$\bigcirc \bigcirc \bigcirc \bigcirc$	
quantatively amerent north saor strict	1	000	
 In their range of values 	2	000	
• In their predictive relationships	3	000	
 In their predictive relationships 	4		
 to action signals 	6	000	
e to ocob othor	7	$\circ \circ \circ$	
• to each other	8	000	
 to themselves 	9	$\bigcirc \bigcirc \bigcirc \bigcirc$	
	10	$\bigcirc \bigcirc \bigcirc \bigcirc$	
 There are short-term and long-term 	11	$\bigcirc \bigcirc \bigcirc$	
patterns in these data	12	000	
	13	000	
 There are many things to predict 	14	000	
 Prediction need not be just of the 	15	000	
sensorv signals	16		
	18		
 The most important predictions are of 	19	000	
<i>functions</i> of future sensory signals	20	000	
• a a pradictions of value the	21	000	
• e.g., predictions of value, the	22	$\bigcirc \bigcirc \bigcirc \bigcirc$	
discounted sum of future reward	23	$\bigcirc \bigcirc \bigcirc \bigcirc$	
 e.g., General value functions (GVFs) 	24	000	
	25	$\bigcirc \bigcirc \bigcirc \bigcirc$	
 predict any signal, not just reward 	26	$\bigcirc \bigcirc \bigcirc \bigcirc$	
• over a flavible temperal epyelepa	27	$\bigcirc \bigcirc \bigcirc \bigcirc$	
• over a nexible temporal envelope	28	$\bigcirc \bigcirc \bigcirc \bigcirc$	
 contingent on any policy 	29	$\bigcirc \bigcirc \bigcirc \bigcirc$	
	30	000	
 Predictions of different functions 	31	000	
can <i>vary greatly</i> in their ability to be	32	000	
learned with computational efficiency	33	000	
	34		

35 🔘 🔘 🔾

	Time step	Action signals	Sensory s
 Different sensory signals can be qualitatively different from each other 	0	000	
	1	000	
 In their range of values 	3		
 In their predictive relationships 	4	000	
e te estien signale	5	$\bigcirc \bigcirc \bigcirc \bigcirc$	
 to action signals 	6	000	
 to each other 	7 8	000	
	9	000	
 to themselves 	10	000	
 There are short-term and long-term 	11	$\bigcirc \bigcirc \bigcirc$	
patterns in these data	12	$\bigcirc \bigcirc \bigcirc \bigcirc$	
	13	$\bigcirc \bigcirc \bigcirc \bigcirc$	
 There are many things to predict 	14	$\bigcirc \bigcirc \bigcirc \bigcirc$	
 Dradiation need not be just of the 	15	$\bigcirc \bigcirc \bigcirc \bigcirc$	
	16	$\bigcirc \bigcirc \bigcirc \bigcirc$	
sensory signals	17	000	
 The most important predictions are of 	18	000	
<i>functions</i> of future sensory signals	19	000	
, , ,	20		
 e.g., predictions of value, the 	22		
discounted sum of future reward	23	000	
• e.a. <i>General</i> value functions (GV/Fs)	24	000	
• c.g., acheral value functions (GVFS)	25	$\bigcirc \bigcirc \bigcirc \bigcirc$	
 predict any signal, not just reward 	26	$\bigcirc \bigcirc \bigcirc \bigcirc$	
	27	$\bigcirc \bigcirc \bigcirc \bigcirc$	
 over a flexible temporal envelope 	28	$\bigcirc \bigcirc \bigcirc \bigcirc$	
 contingent on any policy 	29	$\bigcirc \bigcirc \bigcirc$	
contingent on any pency	30	000	
 Predictions of different functions 	31	000	
can vary greatly in their ability to be	32		
learned with computational efficiency	33		
	34		

L			
<u> </u>			
	_		

Step 3: Experiential state (state in terms of experience)

Conventionally in AI, state has been characterized in terms of the external world (objective state)

 Classically, perception produced symbolic propositions whose truth values were assumed to match the world, e.g.,

On(BlockC, BlockA), Loves (John, Mary)

• In probabilistic graphical models,

state is a probability distribution over world state variables

• In POMDPs (Partially observable Markov decision processes) state is a probability distribution over underlying discrete world states (belief state)

Such *objective state* representations are far from experience

The alternative to objective state is *experiential state*: a state of the world defined entirely in terms of experience

Experiential state is

a summary of past experience that is useful for predicting and controlling future experience

No mention of external entities "out there" in the world

Some modern AI embraces experiential state

- Most commonly it is simply build in, e.g.,
 - the last four video frames of Atari video input to DQN
 - including one or more recent actions
- Compression approaches to AI
- LSTMs in deep learning
- Predictive State Representations, Spectral methods
- Such approaches learn (or discover) their experiential state

Experiential state should be recursively updated

Experiential state is a summary of past experience that is useful for predicting and controlling future experience

Experiential state should be recursively updated

Experiential state is a summary of past experience that is useful for predicting and controlling future experience

Combining all the experiential steps, we get a standard (basic) model of the experiential agent

- Step 1: Agenthood (sensation & action)
- Step 2: Reward
- Step 3: Experiential state **Sensation** (perception)
- Step 4: Predictive knowledge
 - state-to-experience prediction (value functions)
 - state-to-state prediction (transition model)

Step 4: Predictive knowledge (to know is to predict experience)

independent of experience

- Joe Biden is president of the US
- The Eiffel tower is in Paris
- Most birds have wings
- Oregon is North of California
- The car is 10 meters ahead
- Fire engines are red

Much world knowledge seems to be about the external world

Other knowledge seems more like predictions of experience

- It is a long walk to the city centre
- I can dead-lift 200 pounds
- It is cold outside today
- My spouse is blond
- My foot is sore

6

• The 7th pixel will be blue in 3 steps

Knowledge is becoming more predictive

President(*US*) = *Joe_Biden* Capital_of(France) = Paris

- ullet

• Early AI systems, lacking experience, could not predict

Much modern AI still treats knowledge as database entries

• Much modern AI (e.g., probabilistic graphical models) has knowledge only about *simultaneous* events

• Prediction of sequential events is a kind of knowledge with a clear semantics

• A predictive model of the world is Al's upcoming new view of world knowledge

The cutting edge of predictive knowledge (IMO) is general value functions (GVFs) and option models

Types of knowledge

- World knowledge does <u>not</u> include mathematical knowledge
 - math is true in any world, thus is not even about this world
- World knowledge can be divided into two types
 - knowledge about state (which we have already talked about)
 - predictive knowledge about state transitions, i.e., a predictive model of the world

A state-to-state predictive model need not be low level

- A model need not be differential equations or a Markov decision processes
- A model can be abstract in state (e.g., experiential state)
- A model can be abstract in time
 - Predictions can be conditioned on *entire ways of behaving* (options) \bullet
 - an option is a policy plus a termination condition
 - transition models for options are well understood, can be learned off-policy
- Are there limits to the expressiveness of option models and experiential state?
- Can we bridge the abstraction gap between experience and knowledge?

Experience is fundamental to world knowledge

- By definition,
 - we (agents) gain information about the world only thru our sensors
 - and we affect the world only thru our actions
- \Rightarrow We know the world only through our experience
 - \Rightarrow Everything we know about the world is a fact about our experience
- This perspective seems inescapable to me... and in the long run it is good for the science of Al
- But... still we don't *like* to think about experience

Why we dislike experience

- and so darn low-level

• Experience is unfamiliar, strange, unintuitive, temporal, complex,

• Experience is hard to talk about — subjective and private, impossible to communicate to others or to be verified by others

• Public, external terms are clearly superior to experiential terms for everything humans do... except perhaps for creating AI

Why we should like experience

- Experience offers a path to knowing the world:
 - If any fact about the world is a fact about experience, then it can be learned and verified from experience

• Experience comes from the ordinary operation of the AI; it is "free" data; it enables autonomous learning that scales with computation

In summary...

- have discussed four major steps in the increasing role of sensorimotor experience in AI: ulletStep 1: Agenthood (having experience) Step 2: **Reward** (goals in terms of experience) Step 3: Experiential state (state in terms of experience) Step 4: Predictive knowledge (to know is to predict experience)
- For each step, I have shown
 - That AI has chosen first to work in objective, non-experiential terms
 - But there is less-familiar approach, based on experience, growing in importance, with advantages in *grounding*, *learnability*, and *scaling*
- The trend toward experience in AI may have much further to go
 - Steps 3 and 4 are far from complete; there are research opportunities
- Ultimately, the story of intelligence may be told in terms of sensorimotor experience

Data drives Al

Experience is the ultimate data

with special thanks to Satinder Singh, Patrick Pilarski, Adam White, and Andy Barto

Thank you for your attention

Anticipating some objections and questions...

Q. Not everything is learned from experience; some things are built in

but that "everything is <u>about</u> experience"

we can add the links to experience later

Q. The abstraction gap between experience and knowledge is so big!

- A. True, but irrelevant. The point is not that "everything is learned from experience,"
- Q. Surely people can build in important abstractions, saving the agent a lot of time;
 - A. This has been tried, but never successfully at scale. Remember The Bitter Lesson
 - A. Possibly knowledge could be built in *after* the experiential abstractions exist
 - A. Yes, but so is computer power and human ingenuity. We should be ambitious!

