
Reinforcement Learning:

Lessons for AI

Richard S. Sutton
University of Massachusetts

www.cs.umass.edu/~rich

Outline

• Definitions of RL
• History of RL
• State of the Art
• Lessons
• RL at the Knowledge Level

RL is Learning from Interaction

  

Environment

actionperception

reward
Agent

• complete agent
• temporally situated
• continual learning & planning
• object is to affect environment
• env stochastic & uncertain

RL is like life!

More Formally:
Markov Decision Problems (MDPs)

t

An MDP is defined by  !S, A, P, R, " #

S  – set of states of the environment

A(s) – set of actions possible in state s $S
P(s,s',a) – probability of transition from s  to s'  given action a
R(s,s',a) – expected reward on transition s  to s'   given a
"  – discount rate for delayed reward

 discrete time, t = 0, 1, 2, . . .

. . . st a
rt +1 st +1

t +1a
rt +2 st +2 t +2a

rt +3 st +3 . . .
t  +3a

The Objective

V  (s) = E {r     + " r     + "  r     +        s  =s, % }

• Find a way of behaving that gets a lot of
reward in the long run

• Find a policy % :  s$ S & a$ A(s)   (could be stochastic)

   that maximizes the  value (expected future reward) of each s :

   and each s,a  pair: rewards

These are called value functions - cf. evaluation functions

t +1          t +2            t +3                 t. . .2%

Q (s,a) = E {r    + " r     + "  r    +       s  =s, a =a, % }t +1         t +2           t +3               t            t. . .2%

Radical Generality
of the RL problem

Determinism

Goals of achievement

Complete knowledge

Closed world

Unlimited deliberation

General stochastic
dynamics

General goals

Uncertainty

Reactive decision-making

ClassicalRL



Definitions of Reinforcement Learning

Learning about, from, and while interacting with
an external environment to achieve a goal.

Learning what to do by trial and error.

Any way of solving the MDP problem
i.e., of finding a policy that maximizes long-term

reward

An approach to AI emphasizing the above.

AI's Founding Fathers
would find RL Familiar

Minsky's PhD thesis is earliest work in RL (1954)
SNARC - "Stochastic Neural-Analog Reinforcement" Calculator

Samuel (1959) learned evaluation functions using
a temporal-difference method

State/action/reward ideas commonplace in early AI
and in animal learning psychology,
and in optimal control theory

In the 1970s, RL Died Out

• Learning fell out of fashion in AI

• Learning fell out of fashion in Psychology

• RL was confused with supervised learning,
pattern recognition

• Little work on genuine trial-and-error learning
Exceptions: Michie, Andreae, Learning Automata, Klopf

Rebirth of RL in the 1980s

• Realization that trial-and-error learning had
been lost – Klopf (1972), Barto & Sutton (1981)

• TD(') – Sutton (1988)

• Q-learning and connections to dynamic
programming – Watkins (1989)

• TD-Gammon – Tesauro (1992)

Modern RL

Very active area, centered in
• Machine learning
• Neural Networks
• Operations Research
• MDP planning in AI

Also spin-offs in Psychology and Neuroscience

Not a separate field

Strands of History of RL

Trial-and-error
learning

Temporal-difference
learning

Optimal control,
value functions

Thordike (()
1911

Minsky

Klopf

Barto et al

Secondary
reinforcement (()

Samuel

Witten

Sutton

Hamilton (Physics)
1800s

Shannon
Bellman/Howard (OR)

Werbos

Watkins



Outline

• Definitions of RL
• History of RL
• State of the Art
• Lessons
• RL at the Knowledge Level

What RL Algorithms Do
Experience

REINFORCEMENT
LEARNING

        ALGORITHM

Value
Function

Policy• Continual, online
• Simultaneous acting and learning

ACTION
SELECTION

V &V*
Q &Q*

% &%*

All RL Algorithms work by
Interaction of Policy and Value

Policy Value
Function

policy
evaluation

policy
improvement

value
learning

greedification

%

V*,  Q*

V, Q

%*

1-Step Tabular Q-Learning

(Watkins, 1989)

On each state transition:

Q(st ,at ))Q(st ,at ) + * rt +1 + " max
a

Q(st +1,a) +Q(st ,at )[ ]
TD Error

lim
t&,

Q(s,a)& Q*(s,a)

lim
t&,

% t & % *

a table
entry

st at

rt +1 st +1

Update:

Assumes finite MDP

Optimal behavior found without
a model of the environment!

Dimensions of RL algorithms

• Function Approximation

• On-line Experience or Simulated Experience

• Amount of Search in Action Selection

• Exploration Method

• Kind of Backups
.
..

Kinds of Backups

Dynamic 
programming

Temporal-
difference
learning

Monte Carlo

Exhaustive
search

bootstrapping, '

full
backups

sample
backups

shallow
backups

deep
backups



Summary of Convergence theory
Asymptotic results only – almost no rate results

tabular
function

approximation

state
aggregation averagers linear general

on-policy off-policy

prediction control

convergent
to Q*

convergent
to -Q*

convergent
to -Q*

diverges

diverges

convergent
to -Q%

chatters
bound unknown

World-Class Applications of RL

• TD-Gammon and Jellyfish – Tesauro, Dahl
World's best backgammon player

• Elevator Control – Crites & Barto
World's best down-peak elevator controller

• Inventory Management – Van Roy, Bertsekas, Lee & Tsitsiklis
10-15% improvement over industry standard methods

• Dynamic Channel Assignment – Singh & Bertsekas, Nie & Haykin
World's best assigner of radio channels to mobile telephone calls

Lesson #1:
Approximate the Solution, Not the Problem

All these applications are large, stochastic,
optimal control problems

- too hard for conventional methods to
solve exactly

- require problem to be simplified

RL just finds an approximate solution
. . . which can be much better!

TD-Gammon
Tesauro, 1992–1995

Start with a random network

Play millions of games against self

Learn a value function from this simulated experience

This produces arguably the best player in the world

Action selection
by 2–3 ply searchValue

TD error
Vt+1 + Vt

Lesson #2:
The Power of Learning from Experience

# hidden units

performance
against

gammontool

50%

70%

0 10 20 40 80

TD-Gammon
self-play

Neurogammon
same network, but
trained from 15,000

expert-labeled examples

Tesauro, 1992

Expert examples are expensive and scarce
Experience is cheap and plentiful!
And teaches the real solution

Lesson #3:
The Central Role of Value Functions

...of modifiable moment-by-moment estimates of
how well things are going

All RL methods learn value functions

All state-space planners compute value functions

Both are based on "backing up" value

Recognizing and reacting to the ups and downs
of life is an important part of intelligence



Lesson #4:
Learning and Planning
can be radically similar

Historically, planning and trial-and-error
learning have been seen as opposites

But RL treats both as processing of
experience

environment

environment
model

experience value/policy

on-line
interaction

simulation

learning
planning

1-Step Tabular Q-Planning

1. Generate a state, s, and action, a

2. Consult model for next state, s', and reward, r

3. Learn from the experience, s,a,r,s' :

4. go to 1

Q(s,a))Q(s,a) + * r + " max
a'

Q(s' ,a' ) +Q(s,a).
/0

1
23

With function approximation and cleverness in
search control (Step 1), this is a viable, perhaps
even superior, approach to state-space planning

Lesson #5:
Accretive Computation

"Solves" Planning Dilemmas

Processes only loosely
coupled

Can proceed in parallel,
asynchronously

Quality of solution
accumulates in value
& model memories

Reactivity/Deliberation dilemma
"solved" simply by not opposing search and memory

Intractability of planning
"solved" by anytime improvement of solution

value/policy

model experience

acting

model
learning

direct
RL

planning

RL at the Knowledge Level

RL has a form of planning/reasoning
but it seems too low-level, too flat

RL learns values and models
but needs to re-learn values when goal changes

How can we learn re-usable components?
How can we learn to do A, B, and C
   and then recombine them in new ways?

Need Actions at a Higher Level

Macro Actions
• take variable number of time steps
• specified by a whole (sub)policy
• and by a termination condition

e.g., open-the-door  rather than twitch-muscle-17
walk-to-work rather than 1-step-forward

Macro
%, 4

state
"next" state

reward along the way

Can be treated much like primitive actions

policy termination

st +k

r      + " r     +      +"     rt +1            t +2                         t +k
k -1. . .

st

cf. macro-
     operators

Rooms Example

HALLWAYS

MA2

MA1

8 macro actions
(to each room's 2 hallways)

G?

4 unreliable 
primitive actions

Fail 33% 
of the time 

G?



4 Learning Problems
for Macro Actions

Selection among macro actions
Treat them as regular actions, learn their values

Learn models of macro actions
predict outcome of executing macro action

Subgoal Credit Assignment
Learn the policy inside a macro action
e.g., reward the way you did something,    

while punishing the decision to do it

Discovery of suitable macro actions
Which subgoals?  Utility issues

Value Iteration in Rooms Example

Iteration #1 Iteration #2

V0 (s) = 0 5s $S V0 (goal) = 1

Vk+1(s) = max
a

P(s, 6s ,a) R(s, 6s ,a) + "Vk ( 6s )[ ]
6s
7 5s $S

Value Iteration with
Models of Macro Actions

Iteration #1 Iteration #2

Example with Goal8Subgoal
using models of both primitive and macro actions

Iteration #1 Iteration #2 Iteration #3

Iteration #4 Iteration #5 Iteration #6

Models of Macro Actions

• Produce guaranteed correct plans

• Can be learned by TD methods

• Can be based on subgoals
policies to achieve subgoals can be learned
user can provide subgoals
agent can propose own subgoals

• Enable learning at the Knowledge level
re-usable knowledge with a clear semantics
for a general context: stochastic, closed-loop, reward goals

Lesson #6: Generality is no impediment to
working with higher-level knowledge

Summary of Lessons

1. Approximate the Solution, Not the Problem

2. The Power of Learning from Experience

3. The Central Role of Value Functions
in finding optimal sequential behavior

4. Learning and Planning can be Radically Similar

5. Accretive Computation "Solves Dilemmas"

6. A General Approach need not be Flat, Low-level


