Myths of Representation Learning

Rich Sutton

Reinforcement Learning & Artificial Intelligence Lab University of Alberta, Canada

with thanks to Rupam Mahmood, PhD student

Representation Learning: Learning Slow to Enable Learning Fast

Rich Sutton

Reinforcement Learning & Artificial Intelligence Lab University of Alberta, Canada

with thanks to Rupam Mahmood, PhD student

What is Representation Learning (RL)?

- A learning process, generally over a long period of time, that enables subsequent learning to be *fast*
- RL enables fast learning!
- That was the original idea, and for many it remains the strongest idea
- But most of what goes on in our field is something different

Representation learning (RL) Four meanings

RL is a relatively slow (2nd-order) process that results in:

1. Faster learning

- 2. Greater expressive power and thus better approximation of complex functions
- 3. Better generalization

4. Representations pleasing to people

Outline

- Representation learning should enable fast learning, but it doesn't
- How can we make RL about fast learning? What is required?
	- Online, continual learning, thus nonstationary (or sequences of learning tasks)
	- A stronger methodology, allowing for more solid conclusions
- A proposal in the form of a synthetic challenge task
- Some results...almost on the challenge task

Online, continual learning

- How can RL, a slow, 2nd-order learning process, enable fast learning?
	- How can slow learning enable fast learning?
- You have to have the slow learning first, then the opportunity for fast learning
- Thus, learning must be online, continual
- It cannot be one batch of data, then no more learning
- It could be a sequence of tasks...
- But the most elegant way is a non-stationary task non-stop learning, with temporal symmetry

The GEOFF challenge (GEneric Online Feature Finding)

- A generic, synthetic, feature-finding testbed infinitely many task instances
- Each task has different ideal features (randomly chosen)
- *Online regression* (i.i.d., squared-error loss, no test set)
- Target function is a *two-layer network* with *random weights*
	- the hidden units are the ideal 'target' features
	- the output layer is a single linear unit with *non-stationary weights*

The GEOFF 'target' network

that generates the training data for learning

Both networks have the same structure, one is learned. Tests our algorithms' ability to find good features efficiently.

Benefits of the GEOFF problem

• Direct measure of "RL enabling fast learning" (as asymptotic error)

because it's nonstationary

- Direct, sensitive measure of feature-finding ability (as rate of reduction of error)
- Little domain knowledge; all of it explicit
- No possibility of test-set leakage
- No role for positive proxies (still a role for negative proxies)
- Objective; no reliance on human assessment of rep'n
- Small, easy to implement

because it's synthetic

Problem: Stationary GEOFF Solution #1: *Many static features*

F:100 Average MSE (50 runs) 3.0 F:300 2.5 F:1K 2.0 F:10K F:100K 1.5 F:1M (optimal) $1.0 \text{ } r$ **200K 400K 600K 800K** 1_M Ω Examples

 3.5

- Solution network:
	- input weights random and static
	- output weights learned by gradient descent
	- vary numbers of features
- 20 target features in the target network
- Apparently, the more features the better, up to a point

Problem: Stationary GEOFF Solution #2: *Generate & test search*

- Generate & test search is static features plus:
	- Rank utility of features
	- Slowly replace the least useful features with newly minted ones
- Apparently, G&T search enables better performance with fewer features

Problem: Stationary GEOFF Solution #3: *Add backpropagation*

- Now 500 target features and 1000 solution features
- Backpropagation (BP) is gradient descent throughout the solution network
	- features are now tanh units rather than threshold units
- Modified BP removes the effect of the magnitude of the output weight
- Apparently, both gradient descent and G&T search contribute to efficient feature finding

Problem: Stationary GEOFF Solution #4: *Add unsupervised learning*

- Now 100 target features and 200 solution features
- Now input distribution is not uniform
- Unsupervised learning adjusts the solution features
	- so that each is active on ~20% of the examples
	- so that each example has ~20% active features
- Protection means the top half of features are not adjusted
- Apparently, this negative proxy can significantly improve G&T search

But what about fast learning?

- And what about the non-stationarity needed to measure it?
- There is some evidence that backprop performs poorly on non-stationary tasks

Problem: Non-stationary MNIST Solution: *Backpropagation*

- MNIST modified to be a sequence of tasks, each with the same features, but different output labels
- Each task is full MNIST with 60,000 examples
- The mapping from number labels to the 10 output nodes is shifted by one in each successive task
- Backprop does not improve significantly on later tasks
- In fact, it tends to perform worse

But what about fast learning?

- And what about the non-stationarity needed to measure it?
- There is some evidence that backprop performs poorly on non-stationary tasks
	- it tends toward catastrophic interference
	- seems to be a need to protect useful features from being "taken over" for the new learning
- Step-size adaptation is part of the answer, and has been studied in a non-stationary setting

Non-stationary step-size problem

- Online linear regression (iid, squared error loss)
- 20 input signals, all standard normal $N(0,1)$
- Think of them as static features with output weights
- The target function is a weighted sum of the first five signals, where all the (target) weights are either +1 or -1
- The learned function is a weighted sum of all 20 input signals, with the learned weights adapted by gradient descent
- Step-size parameters, one per feature, are adapted by meta-gradient descent (the Incremental Delta-Bar-Delta algorithm, Sutton 1992)
- The step sizes shape the representation and generalization; learning them is RL

Sutton 1992; Mahmood 2010

Non-stationary step-size problem Target network

Sutton 1992; Mahmood 2010

Target network Solution network Non-stationary step-size problem

Can we find the relevant features and track their weights? The step sizes determine the rep'n and generalization.

The step-size learning algorithm

- Incremental Delta-Bar-Delta (Sutton 1992)
	- vector step size (one for each weight)
	- meta-gradient descent:
		- ΔStep-sizet « V_{Step-size} Errort 2
- Extended to Backprop networks by Schraudolph 1999

Problem: Non-stationary Step-size Solution: *IDBD*

IDBD sends step sizes of irrelevant signals to IDBD sends step sizes of irrelevant signals to \sim 0, and those of relevant signals to \sim 13

 -0 , These step-size values are near the empirically determined optimum

- IDBD slowly learns the step sizes that enable fast subsequent learning
- IDBD is true RL!

Summary

- RL should enable fast learning!
	- That was the original idea, but the field has strayed far from this goal
- Pursuing it requires online, continual learning
- The GEOFF challenge problem is generic, synthetic, online, non-stationary feature finding
	- it focuses on feature finding as an enabler of fast learning
	- and avoids many of the methodological problems
- I have presented results related to parts of this problem
- But so far the GEOFF challenge has not been squarely met