
Myths of
Representation Learning

Rich Sutton
Reinforcement Learning & Artificial Intelligence Lab

University of Alberta, Canada

with thanks to
Rupam Mahmood, PhD student

R
A I
L

&

Representation Learning:
Learning Slow to

Enable Learning Fast
Rich Sutton

Reinforcement Learning & Artificial Intelligence Lab
University of Alberta, Canada

with thanks to
Rupam Mahmood, PhD student

R
A I
L

&

What is
Representation Learning (RL)?
• A learning process, generally over a long period of

time, that enables subsequent learning to be fast

• RL enables fast learning!

• That was the original idea, and for many it remains
the strongest idea

• But most of what goes on in our field is something
different

Representation learning (RL)
Four meanings

RL is a relatively slow (2nd-order) process that results in:

1. Faster learning

2. Greater expressive power
and thus better approximation of complex functions

3. Better generalization

4. Representations pleasing to people

Outline
• Representation learning should enable fast learning, but it

doesn’t

• How can we make RL about fast learning? What is required?

• Online, continual learning, thus nonstationary (or sequences
of learning tasks)

• A stronger methodology, allowing for more solid conclusions

• A proposal in the form of a synthetic challenge task

• Some results...almost on the challenge task

Online, continual learning
• How can RL, a slow, 2nd-order learning process, enable fast learning?

• How can slow learning enable fast learning?

• You have to have the slow learning first, then the opportunity for fast
learning

• Thus, learning must be online, continual

• It cannot be one batch of data, then no more learning

• It could be a sequence of tasks...

• But the most elegant way is a non-stationary task – non-stop learning,
with temporal symmetry

The GEOFF challenge
(GEneric Online Feature Finding)

• A generic, synthetic, feature-finding testbed – infinitely
many task instances

• Each task has different ideal features (randomly chosen)

• Online regression (i.i.d., squared-error loss, no test set)

• Target function is a two-layer network with random weights

• the hidden units are the ideal ‘target’ features

• the output layer is a single linear unit with non-stationary
weights

The GEOFF ‘target’ network
that generates the training data for learning

. . .

.

NoiseOutput unit
(Real-valued)

Feature layer
50 × {0,1}

(linear threshold units)

Input layer
20 × {0,1}

(random input bits)

Fixed random
 input weights

∈ {+1, -1}

Slowly changing
 output weights

∈ {+1, 0, -1}

. . .

.

Noise

Target network

. . .

Solution network

×50 ×5000

Both networks have the same structure, one is learned.
Tests our algorithms’ ability to find good features efficiently.

Few
target

features

Many
learned
features

Benefits of the GEOFF problem
• Direct measure of “RL enabling fast learning”

(as asymptotic error)

• Direct, sensitive measure of feature-finding ability
(as rate of reduction of error)

• Little domain knowledge; all of it explicit

• No possibility of test-set leakage

• No role for positive proxies (still a role for negative proxies)

• Objective; no reliance on human assessment of rep’n

• Small, easy to implement

because it’s
nonstationary

because it’s
synthetic

F:100

F:300

F:1K

F:10K
F:100K

F:1M

Examples

Problem: Stationary GEOFF
Solution #1: Many static features

• Solution network:

• input weights random
and static

• output weights learned
by gradient descent

• vary numbers of features

• 20 target features in the
target network

• Apparently, the more
features the better, up to a
point

(optimal)

F:100

F:300

F:1K

F:10K
F:100K

F:1M

Examples

Problem: Stationary GEOFF
Solution #2: Generate & test search

S:1K

S:100

S:10K

F:100

F:300

F:1K

F:10K
F:100K

F:1M

Examples

• Generate & test search is
static features plus:

• Rank utility of features

• Slowly replace the least
useful features with
newly minted ones

• Apparently, G&T search
enables better performance
with fewer features

(optimal)

F:100

F:300

F:1K

F:10K
F:100K

F:1M

Examples

Problem: Stationary GEOFF
Solution #3: Add backpropagation

• Now 500 target features and
1000 solution features

• Backpropagation (BP) is
gradient descent throughout
the solution network

• features are now tanh
units rather than
threshold units

• Modified BP removes the
effect of the magnitude of
the output weight

• Apparently, both gradient
descent and G&T search
contribute to efficient feature
finding

(optimal)

fixed rep'n

G&T search

standard BP

modified BP
G&T search + modified BP

Examples

Problem: Stationary GEOFF
Solution #4: Add unsupervised learning

• Now 100 target features and
200 solution features

• Now input distribution is not
uniform

• Unsupervised learning
adjusts the solution features

• so that each is active on
~20% of the examples

• so that each example
has ~20% active features

• Protection means the top half
of features are not adjusted

• Apparently, this negative
proxy can significantly
improve G&T search

(optimal)

fixed rep'n

simple generate and test

search + unsupervised learning

unsupervised learning

Examples

fixed rep'n

simple generate and test

search + unsupervised learning

unsupervised learning

Examples

fixed rep'n

G&T search

G&T search + unsupervised + protection

unsupervised learning

Examples

But what about fast learning?
• And what about the non-stationarity needed to measure it?

• There is some evidence that backprop performs poorly on
non-stationary tasks

• it tends toward catastrophic interference

• seems to be a need to protect useful features from
being “taken over” for the new learning

• Step-size adaptation is part of the answer, and has been
studied in a non-stationary setting

Problem: Non-stationary MNIST
Solution: Backpropagation

• MNIST modified to be a
sequence of tasks, each with
the same features, but
different output labels

• Each task is full MNIST with
60,000 examples

• The mapping from number
labels to the 10 output nodes
is shifted by one in each
successive task

• Backprop does not improve
significantly on later tasks

• In fact, it tends to perform
worse

BP optimized for first task

BP optimized for last task

Mahmood, 2012

But what about fast learning?
• And what about the non-stationarity needed to measure it?

• There is some evidence that backprop performs poorly on
non-stationary tasks

• it tends toward catastrophic interference

• seems to be a need to protect useful features from
being “taken over” for the new learning

• Step-size adaptation is part of the answer, and has been
studied in a non-stationary setting

Non-stationary step-size problem
• Online linear regression (iid, squared error loss)

• 20 input signals, all standard normal N(0,1)

• Think of them as static features with output weights

• The target function is a weighted sum of the first five signals, where
all the (target) weights are either +1 or -1

• The learned function is a weighted sum of all 20 input signals, with
the learned weights adapted by gradient descent

• Step-size parameters, one per feature, are adapted by meta-gradient
descent (the Incremental Delta-Bar-Delta algorithm, Sutton 1992)

• The step sizes shape the representation and generalization; learning
them is RL

Sutton 1992; Mahmood 2010

Non-stationary step-size problem
Sutton 1992; Mahmood 2010

Input/feature layer
20 × N(0,1)

(random-normal reals)

Output unit
(Real-valued) Five slowly

changing weights
∈ {+1, -1}

Noise

Other 15
input signals

have no effect

Target network

Sutton 1992; Mahmood 2010

Noise

Other 15
input signals

have no effect

Target network

Five slowly
changing weights

∈ {+1, -1}

20 learned
weights

(real valued)

20 learned
step sizes

(real valued)

Solution network

Can we find the relevant features and track their weights?
The step sizes determine the rep’n and generalization.

Non-stationary step-size problem

The step-size learning algorithm
• Incremental Delta-Bar-Delta (Sutton 1992)

• vector step size (one for each weight)

• meta-gradient descent:

• ΔStep-sizet ∝ ∇Step-size Errort2

• Extended to Backprop networks by Schraudolph 1999

Problem: Non-stationary Step-size
Solution: IDBD

0

0 50 100 150 200 250

TIME STEPS (1000's of Examples)

0.05

0.1

0.15

RELEVANT

IRRELEVANT

L
E

A
R

N
IN

G
 R

A
T

E
 (
!

)

Figure 4: Time course of learning-rate parameters, un-
der IDBD, for one relevant and one irrelevant input.

meta-learning rate, ✓ = 0.001, and ran for a very large
number of examples (250,000) to observe the asymp-
totic distribution of learning rates found by the algo-
rithm (as before, the learning rates were initialized to
0.05). Figure 4 shows the behavior over time of two of
the ↵i, one for a relevant input and one for an irrele-
vant input.

After 250,000 steps, the learning rates for the 15 ir-
relevant inputs were all found to be less than 0.007
while the learning rates for the 5 relevant inputs were
all 0.13±0.015. The learning rates for the irrelevant in-
puts were apparently heading towards zero (recall that
they cannot be exactly zero unless �i = �1), which is
clearly optimal, but what of the relevant inputs? They
should all share the same optimal learning rate, but
is it ⇡ 0.13, as found by the IDBD algorithm, or is it
some other value? We can determine this empirically
simply by trying various sets of fixed learning rates.
The irrelevant inputs were all given fixed zero learning
rates and the relevant inputs were fixed at a variety of
values between 0.05 and 0.25. Again I ran for 20,000
examples, to get past transients, and then recorded the
average squared error over the next 10,000 examples.
The results, plotted in figure 5, show a clear minimum
somewhere near 0.13±0.01, confirming that the IDBD
algorithm found learning rates that were close to opti-
mal on this task.

Derivation of the IDBD Algorithm
as Gradient Descent

Many useful learning algorithms can be understood as
gradient descent, including the LMS rule, backpropa-
gation, Boltzmann machines, and reinforcement learn-
ing methods. Gradient descent analysis can also be
used to derive learning algorithms, and that in fact is
the way in which the IDBD algorithm was invented. In
this section I derive the IDBD algorithm as gradient
descent.

To illustrate the basic idea of gradient-descent anal-
ysis, it is useful to first review how the base learn-

 with fixed

1.4

1.6

1.8

2.0

2.2

0.05 0.10 0.15 0.20

!'s of Relevant Inputs

Performance

!' s

A
s
y
m

p
to

ti
c
 E

rr
o

r

Figure 5: Average error as a function of the learning-
rate parameter of the relevant inputs (the irrelevant
inputs had zero learning-rate parameters). Error is
minimized near ↵ = 0.13, the value found by the IDBD
algorithm.

ing rule, the LMS rule (2), can be derived as gradient
descent. Recall that we are trying to minimize the
expected value of the squared error �2(t), where �(t) =
y⇤(t) � y(t). The expected error as a function of the
weights forms a surface. In gradient descent, a current
value for w is moved in the opposite direction of the
slope of that surface. This is the direction in which
the expected error falls most rapidly, the direction of
steepest descent. Because the expected error is not
itself known, we use instead the gradient of the sample
error �2(t):

wi(t + 1) = wi(t)�
1
2
↵

@�2(t)
@wi(t)

. (7)

The scalar quantity 1
2↵ is the step-size, determining

how far the weight vector moves in the direction of
steepest descent. The 1

2 drops out as we expand the
righthand side:

wi(t + 1) = wi(t)�
1
2
↵

@�2(t)
@wi(t)

= wi(t)� ↵�(t)
@�(t)
@wi(t)

= wi(t)� ↵�(t)
@[y⇤(t)� y(t)]

@wi(t)
(8)

= wi(t) + ↵�(t)
@y(t)
@wi(t)

= wi(t) + ↵�(t)
@

@wi(t)

h nX

j=1

wj(t)xj(t)
i

= wi(t) + ↵�(t)xi(t),

thus deriving the LMS rule (2).
The derivation for the IDBD algorithm is very sim-

ilar in principle. In place of (7), we start with

�i(t + 1) = �i(t)�
1
2
✓
@�2(t)
@�i

, (9)

Examples x 1000

Step size of one of the 5 relevant signals

Step size of one of the 15 irrelevant signals

0

0 50 100 150 200 250

TIME STEPS (1000's of Examples)

0.05

0.1

0.15

RELEVANT

IRRELEVANT

L
E

A
R

N
IN

G
 R

A
T

E
 (
!

)

Figure 4: Time course of learning-rate parameters, un-
der IDBD, for one relevant and one irrelevant input.

meta-learning rate, ✓ = 0.001, and ran for a very large
number of examples (250,000) to observe the asymp-
totic distribution of learning rates found by the algo-
rithm (as before, the learning rates were initialized to
0.05). Figure 4 shows the behavior over time of two of
the ↵i, one for a relevant input and one for an irrele-
vant input.

After 250,000 steps, the learning rates for the 15 ir-
relevant inputs were all found to be less than 0.007
while the learning rates for the 5 relevant inputs were
all 0.13±0.015. The learning rates for the irrelevant in-
puts were apparently heading towards zero (recall that
they cannot be exactly zero unless �i = �1), which is
clearly optimal, but what of the relevant inputs? They
should all share the same optimal learning rate, but
is it ⇡ 0.13, as found by the IDBD algorithm, or is it
some other value? We can determine this empirically
simply by trying various sets of fixed learning rates.
The irrelevant inputs were all given fixed zero learning
rates and the relevant inputs were fixed at a variety of
values between 0.05 and 0.25. Again I ran for 20,000
examples, to get past transients, and then recorded the
average squared error over the next 10,000 examples.
The results, plotted in figure 5, show a clear minimum
somewhere near 0.13±0.01, confirming that the IDBD
algorithm found learning rates that were close to opti-
mal on this task.

Derivation of the IDBD Algorithm
as Gradient Descent

Many useful learning algorithms can be understood as
gradient descent, including the LMS rule, backpropa-
gation, Boltzmann machines, and reinforcement learn-
ing methods. Gradient descent analysis can also be
used to derive learning algorithms, and that in fact is
the way in which the IDBD algorithm was invented. In
this section I derive the IDBD algorithm as gradient
descent.

To illustrate the basic idea of gradient-descent anal-
ysis, it is useful to first review how the base learn-

 with fixed

1.4

1.6

1.8

2.0

2.2

0.05 0.10 0.15 0.20

!'s of Relevant Inputs

Performance

!' s

A
s
y
m

p
to

ti
c
 E

rr
o

r

Figure 5: Average error as a function of the learning-
rate parameter of the relevant inputs (the irrelevant
inputs had zero learning-rate parameters). Error is
minimized near ↵ = 0.13, the value found by the IDBD
algorithm.

ing rule, the LMS rule (2), can be derived as gradient
descent. Recall that we are trying to minimize the
expected value of the squared error �2(t), where �(t) =
y⇤(t) � y(t). The expected error as a function of the
weights forms a surface. In gradient descent, a current
value for w is moved in the opposite direction of the
slope of that surface. This is the direction in which
the expected error falls most rapidly, the direction of
steepest descent. Because the expected error is not
itself known, we use instead the gradient of the sample
error �2(t):

wi(t + 1) = wi(t)�
1
2
↵

@�2(t)
@wi(t)

. (7)

The scalar quantity 1
2↵ is the step-size, determining

how far the weight vector moves in the direction of
steepest descent. The 1

2 drops out as we expand the
righthand side:

wi(t + 1) = wi(t)�
1
2
↵

@�2(t)
@wi(t)

= wi(t)� ↵�(t)
@�(t)
@wi(t)

= wi(t)� ↵�(t)
@[y⇤(t)� y(t)]

@wi(t)
(8)

= wi(t) + ↵�(t)
@y(t)
@wi(t)

= wi(t) + ↵�(t)
@

@wi(t)

h nX

j=1

wj(t)xj(t)
i

= wi(t) + ↵�(t)xi(t),

thus deriving the LMS rule (2).
The derivation for the IDBD algorithm is very sim-

ilar in principle. In place of (7), we start with

�i(t + 1) = �i(t)�
1
2
✓
@�2(t)
@�i

, (9)

IDBD sends step sizes of irrelevant signals to ~0,
and those of relevant signals to ~.13

As
ym

pt
ot

ic
 e

rro
r

Step size of relevant inputs
(Step size of irrelevant inputs = 0)

These step-size values are near the
empirically determined optimum

• IDBD slowly learns the step sizes that enable fast subsequent learning
• IDBD is true RL!

Summary
• RL should enable fast learning!

• That was the original idea, but the field has strayed far
from this goal

• Pursuing it requires online, continual learning

• The GEOFF challenge problem is generic, synthetic, online,
non-stationary feature finding

• it focuses on feature finding as an enabler of fast learning

• and avoids many of the methodological problems

• I have presented results related to parts of this problem

• But so far the GEOFF challenge has not been squarely met

