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Artificial intelligence research is properly ambitious

- Al researchers seek to understand intelligence well enough
to create beings of greater intelligence than current humans

- Reaching this profound intellectual milestone will enrich our economies
and challenge our societal institutions

- |t will be unprecedented and transformational,
but also a continuation of trends that are thousands of years old

- People have always created tools and been changed by them; it’s what
humans do

- The next big step Is to understand ourselves

- This Is a quest grand and glorious, and quintessentially human



My perspective

+  The greatest impacts and advances in Al are still to come
If Al Is a race, it’s not a sprint. It’'s a marathon

- The creation of super-intelligent agents, and super-intelligent augmented
humans, will be an unalloyed good for the world

- The path to intelligent agents runs through reinforcement learning

+ The biggest bottleneck to ambitious Al is inadequate deep learning
algorithms
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Conclusions

- All Is not well with today’s deep learning and artificial neural networks

- They forget catastrophically, lose plasticity, and collapse under extended training
- To achieve the full potential of DL and ANNs, something more is needed

- We need an additional source of variation in under-utilized artificial neurons

- We need to protect and preserve neurons whose variations are found useful

- To me, these needs strongly suggest that neurons should have the decentralized goal
of getting other neurons to listen to them

- Though | can’t demonstrate this yet



Outline

- The idea of neurons that have goals and want to connect and contribute

+ New evidence of problems with conventional deep learning (Nature 2024)
-+ Deep learning loses plasticity in continual supervised learning
- Deep learning collapses with prolonged reinforcement learning

+ These problems are solved by variation and selective survival (i.e., by
decentralized goals)

-+ Normalization and step-size optimization can also help by enabling online
streaming algorithms (Elsayed et. al 2024) and can be seen as decentralization



The definition that | will use in this talk:

A decentralized neural network iIs one whose neurons seek their
own goals distinct from the goals of the network as a whole

-+ For example, the overall network might seek to maximize reward,
or to classify images as instructed by a training set

- while individual neurons might have the goal
- of providing signals that other neurons find useful
- of being active at least 10% of the time

-+ A decentralized neural network is a “goal-seeking system made
from goal-seeking components”



Modern reinforcement learning was originally
concelved of as decentralized neural networks

“the grandfather of
modern reinforcement learning” A. Harry Klopf

. Hedonistic
A. Harry Klopf (1941-1997) Neuron

Senior scientist with the A Theory of Memory,

Avionics Directorate of the ;’:fliril;?egl’li bt
Air Force Office of Scientific Research [ E

1972, 1982

Klopf viewed neurons in a brain as goal-seeking
agents, anologous to people in a society

Each was a “hedonist” that sought to maximize
a local analog of pleasure (reward)

“Goal-seeking sytems from goal-seeking
components”

This decentralized perspective was otherwise
absent from early work in cybernetics/neural

networks

Klopf’s ideas led directly to the reinforcement
learning research of Sutton & Barto

Klopf also enabled their Air Force funding



Neurons are active
and appear to seek out
connections to other neurons

8DV | 73 Hours


https://www.youtube.com/watch?v=A9zLKmt2nHo
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A decentralized neural network should adapt at 3 levels

1. Adapting the wires and connections between artificial neurons
2. Adapting the weights

3. Adapting the step-size parameters

* Sutton, R.S., "Adapting Bias by Gradient Descent: An Incremental Version of Delta-Bar-Delta,” ICML 1992.



onventional DL networks have Decentralized DL networks might be
a fixed, designed structure accumulated neuron by neuron
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| will not be giving a specific algorithm for how the network is grown



The first and most important algorithmic idea:

Distinguich the part of the network that hag already been learned (the ‘backbone’)

from the rest of the network (the “fringe’)

Preserve and protect the backbone; let the fringe explore



The backbone of a network

Is the part that actually matters for its behavior

A full deep-learned
network has many

- dead units—unused
2 | units that can be
pruned away without
- changing the i/o
- function of the network
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Decentralized NNs need multiple new algorithms

- Learning within the backbone
- Learning within the fringe

- Finding the backbone



Decentralized NNs need multiple new algorithms

- Learning within the backbone (backpropagation)
- Learning within the fringe

- Finding the backbone



Decentralized NNs need multiple new algorithms

- Learning within the backbone (backpropagation)
- Learning within the fringe (seek to be listened to)

- Finding the backbone



L earning within the fringe

. By definition, the gradients of the incoming weights aif of fringe

neurons J are always zero; backprop cannot be used on them

- Each fringe neuron has outgoing connections to successor neurons
on the backbone that it hopes will listen to it

- Only the successor neurons can change those weights

- The fringe neuron can treat any increase in its outgoing weights as
reward



Step-size optimization™ is an integral part
of learning on the backbone

- Controlling step sizes prevents catastrophic forgetting
- and protects the backbone from the more-dynamic fringe

- |f the fringe creates a useful neuron, the backbone will eventually
iIncorporate it by increasing its step size and then its weight

* Sutton, R.S., "Adapting Bias by Gradient Descent: An Incremental Version of Delta-Bar-Delta,” ICML 1992.



Outline

+ New evidence of problems with conventional deep learning (Nature 2024)
-+ Deep learning loses plasticity in continual supervised learning
- Deep learning collapses with prolonged reinforcement learning

+ These problems are solved by variation and selective survival (i.e., by
decentralized goals)

-+ Normalization and step-size optimization can also help by enabling online
streaming algorithms (Elsayed et. al 2024) and can be seen as decentralization



Early indications of problems with deep continual learning

- Catastrophic Forgetting (French, 1999; McCloskey & Cohen, 1989)

- Loss of Plasticity in early neural networks in the psych literature (Ellis & Ralph,
2000; Zevin & Seidenberg, 2002; Bonin et al., 2004)

- The failure of warm-starting (Ash & Adams, 2020)
- Primacy Bias and resetting in Deep RL (Nikishin et al., 2022)

- Capacity Loss in RL (Lyle et al, 2022)

But no one has previously done a thorough demonstration of Loss of Plasticity
using modern deep learning methods



Deep learning loses plasticity in continual supervised learning

ImageNet — a classic deep-learning problem

- A database of millions of images labelled by nouns (classes)

-+ 1000 classes with 700 or more images

-+ Widely used in deep learning to classify images: image=-class

Dohare, S., Hernandez-Garcia, J.F., Rahman, P., Lan, Q., Sutton, R.S., Mahmood, A.R.
“Loss of plasticity in deep continual learning.” Nature 632, pp. 768-774, August 22, 2024.



The Continual ImageNet Problem

+ The classical ImageNet problem was minimally changed to make it continual

- Classes were taken in pairs to produce a sequence of binary classification tasks

Task 1 Task 2 Task 3 Task 4 Task 5
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Pictures of two kinds of

objects must be distinguished

Pictures of a new pair of

objects must be distinguished

The process continues for

thousands of pairs of objects




The Continual ImageNet Problem

+ The classical ImageNet problem was minimally changed to make it continual

- Classes were taken in pairs to produce a sequence of binary classification tasks

Task 1 Task 2 Task 3 Task 4 Task 5
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Pictures of two kinds of Pictures of a new pair of The process continues for
objects must be distinguished | objects must be distinguished thousands of pairs of objects

- Performance measure: %correct on test set (by argmax) at end of each task

- Averaged over 30 independent runs, varying class pairings, test sets



Network and Training Procedure (for ImageNet)

- All binary classification tasks shared the same network; both heads reset at task switch

- Standard neural network, though slightly narrow for ImageNet (bc. only 2 classes at a time)
(3 convolution layers of 32/64/128 filters + 3 fully-interconnected layers of 128/128/2 artificial neurons)

- For each task, 12 batches of 100 examples, 250 epochs (passes through the data)
-+ Weights initialized by the standard Kaiming distribution, only once, before the first task
- Backpropagation with momentum on the cross-entropy loss, ReLLU activations

- Many variations on the network and hyper-parameters were tested to obtain good and
representative performance on the first task

How will performance evolve over the sequence of tasks?
Will performance be better on the 1st task or the 2nd task? the 500th?



BackProp on Continual ImageNet (first 10 tasks)
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Learning rate (plasticity) sometimes improves over early tasks, then...?



BackProp on Continual ImageNet (2000 tasks)

O
Backprop (a = 0.01) * This data Is representative, the details
385 - depend on the details:
%Correct Backprop (a = 0.001) e #epochs
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AN
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For good hyper-parameters, plasticity decreases across tasks,
nearing the poor performance level of a one-layer (linear) network, or worse

BackProp shows “Catastrophic” Loss of Plasticity



There are better algorithms on Continual ImageNet
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Deep learning collapses with prolonged reinforcement learning

Reward per episode

6 Ant locomotion

Continual backpropagation + L2
Agent controls the torque applied to highlighted joints
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Continual Backpropagation:

Stochastic Gradient Descent with Selective Reinitialization

- Just like backprop, except re-initializes a small fraction of the artificial
neurons on every step

Re-initialization is selective; the neurons are ranked by a notion of utility,
and only the least useful are re-initialized

utility update for neuron i: ul.t e r/uit + (1 — 77)|yit‘ Z ‘W,-tk‘

activation of neuron 1™ weight from i to k

Neurons re-initialize until other neurons grow a weight from them; they
“seek attention”; they have their own goal different from the network’s



Why is deep learning failing?
Many of the artificial neurons become forever inactive

Percentage of dormant units (active <1% of the time) in ant locomotion

Most neurons go dormant

60% W .
Standard PPO | 4',"" Wlth PPO
a, | U104 PPO_ AV If neurons were taking
responsibility for their own
operation, then it would be
easy for them to notice that
T they had gone dormant
L2 regularization _ _ _
I.e., decentralization would
0% [/ Continual blackpropagation+L2 SOIVG thlS prOblem

o) 25M S50M
Time step



Outline

- The idea of neurons that have goals and want to connect and contribute

- New evidence of problems with conventional deep learning (Nature 2024)
-+ Deep learning loses plasticity in continual supervised learning
-+ Deep learning collapses with prolonged reinforcement learning

+ These problems are solved by variation and selective survival (i.e., by
decentralized goals)

-+ Normalization and step-size optimization can also help by enabling online
streaming algorithms (Elsayed et. al 2024) and can be seen as decentralization



Streaming reinforcement learning algorithms™ are
competitive with batch algorithms for the first time
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*Elsayed, M., Vasan, G., Mahmood, A. R. (2024) “Streaming deep reinforcement learning finally works,”
arxXiv:2410.14606



The innovations of the new streaming algorithms can be
seen as following from the decentralized perspective

- The new streaming algorithms differ from prior attempts mainly in
- signal normalization
+constraining the step-size parameters to reasonable bounds

- Both are natural for an artificial neuron that takes responsibility for
the conditioning of its local signals and learning processes



Conclusions

- All Is not well with today’s deep learning and artificial neural networks

- They forget catastrophically, lose plasticity, and collapse under extended training
- To achieve the full potential of DL and ANNs, something more is needed

- We need an additional source of variation in under-utilized artificial neurons

- We need to protect and preserve neurons whose variations are found useful

- To me, these needs strongly suggest that neurons should have the decentralized goal
of getting other neurons to listen to them

- Though | can’t demonstrate this yet
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