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Artificial intelligence research is properly ambitious
• AI researchers seek to understand intelligence well enough  

to create beings of greater intelligence than current humans

• Reaching this profound intellectual milestone will enrich our economies  
and challenge our societal institutions

• It will be unprecedented and transformational,  
but also a continuation of trends that are thousands of years old

• People have always created tools and been changed by them; it’s what 
humans do

• The next big step is to understand ourselves

• This is a quest grand and glorious, and quintessentially human



My perspective

• The greatest impacts and advances in AI are still to come

• If AI is a race, it’s not a sprint. It’s a marathon 

• The creation of super-intelligent agents, and super-intelligent augmented 
humans, will be an unalloyed good for the world

• The path to intelligent agents runs through reinforcement learning

• The biggest bottleneck to ambitious AI is inadequate deep learning 
algorithms
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Conclusions
• All is not well with today’s deep learning and artificial neural networks

• They forget catastrophically, lose plasticity, and collapse under extended training

• To achieve the full potential of DL and ANNs, something more is needed

• We need an additional source of variation in under-utilized artificial neurons

• We need to protect and preserve neurons whose variations are found useful

• To me, these needs strongly suggest that neurons should have the decentralized goal  
of getting other neurons to listen to them

• Though I can’t demonstrate this yet



Outline
• The idea of neurons that have goals and want to connect and contribute

• New evidence of problems with conventional deep learning (Nature 2024)

• Deep learning loses plasticity in continual supervised learning

• Deep learning collapses with prolonged reinforcement learning

• These problems are solved by variation and selective survival (i.e., by 
decentralized goals)

• Normalization and step-size optimization can also help by enabling online 
streaming algorithms (Elsayed et. al 2024) and can be seen as decentralization



The definition that I will use in this talk:

A decentralized neural network is one whose neurons seek their 
own goals distinct from the goals of the network as a whole

• For example, the overall network might seek to maximize reward, 
or to classify images as instructed by a training set

• while individual neurons might have the goal 

• of providing signals that other neurons find useful

• of being active at least 10% of the time

• A decentralized neural network is a “goal-seeking system made 
from goal-seeking components”



Modern reinforcement learning was originally 
conceived of as decentralized neural networks

A. Harry Klopf (1941–1997)
Senior scientist with the 

Avionics Directorate of the 
Air Force Office of Scientific Research

1972, 1982

Klopf viewed neurons in a brain as goal-seeking 
agents, anologous to people in a society

Each was a “hedonist” that sought to maximize 
a local analog of pleasure (reward) 

“Goal-seeking sytems from goal-seeking 
components”

This decentralized perspective was otherwise 
absent from early work in cybernetics/neural 
networks

Klopf’s ideas led directly to the reinforcement 
learning research of Sutton & Barto

Klopf also enabled their Air Force funding

“the grandfather of 
modern reinforcement learning”



Neurons are active  
and appear to seek out 

connections to other neurons

https://www.youtube.com/watch?v=A9zLKmt2nHo
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A decentralized neural network should adapt at 3 levels

1. Adapting the wires and connections between artificial neurons

2. Adapting the weights

3. Adapting the step-size parameters

* Sutton, R.S., “Adapting Bias by Gradient Descent: An Incremental Version of Delta-Bar-Delta,” ICML 1992.



Conventional DL networks have 
a fixed, designed structure                  

I will not be giving a specific algorithm for how the network is grown

Decentralized DL networks might be  
accumulated neuron by neuron                   
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The first and most important algorithmic idea:

Distinguish the part of the network that has already been learned (the ‘backbone’) 
from the rest of the network (the ‘fringe’)

Preserve and protect the backbone; let the fringe explore



The backbone of a network
is the part that actually matters for its behavior

A full deep-learned

network has many

dead units—unused

units that can be

pruned away without

changing the i/o 

function of the network
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Decentralized NNs need multiple new algorithms

• Learning within the backbone (backpropagation)

• Learning within the fringe (seek to be listened to)

• Finding the backbone (slow propagation of utility)

Creating the fringe 
(imprinting, age, replacement rate, and minimal utility)
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Learning within the fringe

• By definition, the gradients of the incoming weights  of fringe 
neurons  are always zero; backprop cannot be used on them

• Each fringe neuron has outgoing connections to successor neurons 
on the backbone that it hopes will listen to it

• Only the successor neurons can change those weights

• The fringe neuron can treat any increase in its outgoing weights as 
reward

∂E2
t

∂wijj



Step-size optimization* is an integral part
of learning on the backbone

• Controlling step sizes prevents catastrophic forgetting

• and protects the backbone from the more-dynamic fringe

• If the fringe creates a useful neuron, the backbone will eventually 
incorporate it by increasing its step size and then its weight

* Sutton, R.S., “Adapting Bias by Gradient Descent: An Incremental Version of Delta-Bar-Delta,” ICML 1992.
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Early indications of problems with deep continual learning

• Catastrophic Forgetting (French, 1999; McCloskey & Cohen, 1989)

• Loss of Plasticity in early neural networks in the psych literature (Ellis & Ralph, 
2000; Zevin & Seidenberg, 2002; Bonin et al., 2004)

• The failure of warm-starting (Ash & Adams, 2020)

• Primacy Bias and resetting in Deep RL (Nikishin et al., 2022)

• Capacity Loss in RL (Lyle et al, 2022)

But no one has previously done a thorough demonstration of Loss of Plasticity 
using modern deep learning methods



• A database of millions of images labelled by nouns (classes)

• 1000 classes with 700 or more images

• Widely used in deep learning to classify images:  image⇒class

ImageNet — a classic deep-learning problem

Deep learning loses plasticity in continual supervised learning

Dohare, S., Hernandez-Garcia, J.F., Rahman, P., Lan, Q., Sutton, R.S., Mahmood, A.R.
     “Loss of plasticity in deep continual learning.” Nature 632, pp. 768-774, August 22, 2024. 



The Continual ImageNet Problem
• The classical ImageNet problem was minimally changed to make it continual

• Classes were taken in pairs to produce a sequence of binary classification tasks
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• The classical ImageNet problem was minimally changed to make it continual

• Classes were taken in pairs to produce a sequence of binary classification tasks

• Performance measure: %correct on test set (by argmax) at end of each task
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Network and Training Procedure (for ImageNet)
• All binary classification tasks shared the same network; both heads reset at task switch

• Standard neural network, though slightly narrow for ImageNet (bc. only 2 classes at a time) 
(3 convolution layers of 32/64/128 filters + 3 fully-interconnected layers of 128/128/2 artificial neurons)

• For each task, 12 batches of 100 examples, 250 epochs (passes through the data)

• Weights initialized by the standard Kaiming distribution, only once, before the first task

• Backpropagation with momentum on the cross-entropy loss, ReLU activations

• Many variations on the network and hyper-parameters were tested to obtain good and 
representative performance on the first task

How will performance evolve over the sequence of tasks?
Will performance be better on the 1st task or the 2nd task? the 500th?



BackProp on Continual ImageNet (first 10 tasks)

• Chance performance is 50% 

• Best performance on first task is ≈89% 

• Shaded region is one standard error 

• Linear baseline is the performance of 
linear heads direct from pixels

%Correct
on Test Set

(at end of each task,  
averaged over 30 runs)

Learning rate (plasticity) sometimes improves over early tasks, then…?

1



BackProp on Continual ImageNet (2000 tasks)

For good hyper-parameters, plasticity decreases across tasks, 
nearing the poor performance level of a one-layer (linear) network, or worse

• This data is representative, the details 
depend on the details: 

• #epochs 

• step-sizes 

• network sizes 

• Each line takes ≈24 hours to compute 

• Most other variations of BackProp 
(Adam, Dropout, Batch norm) are 
worse1

BackProp shows “Catastrophic” Loss of Plasticity

%Correct
on Test Set

(at end of each task,  
averaged over 30 runs)

Task number (bins of 50)

First-task performance



There are better algorithms on Continual ImageNet

• L2 regularization adds a penalty for 
large weights 

• Shrink and Perturb is L2 reg. plus 
random variation of all weights 

• Continual Backpropagation continually 
re-initializes a small fraction of units 

• otherwise its just like BackProp
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Loss of plasticity in ant locomotion with 
changing friction

Ant locomotiona
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Continual Backpropagation:  
Stochastic Gradient Descent with Selective Reinitialization

• Just like backprop, except re-initializes a small fraction of the artificial 
neurons on every step

• Re-initialization is selective; the neurons are ranked by a notion of utility, 
and only the least useful are re-initialized

       utility update for neuron :   

• Neurons re-initialize until other neurons grow a weight from them; they 
“seek attention”; they have their own goal different from the network’s

i ut+1
i ← ηut

i + (1 − η)|yt
i|∑

k

|wt
ik|

activation of neuron i weight from  to i k



Why is deep learning failing?
Many of the artificial neurons become forever inactive
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responsibility for their own 
operation, then it would be 
easy for them to notice that 
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i.e., decentralization would 
solve this problem
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Streaming reinforcement learning algorithms* are  
competitive with batch algorithms for the first time

Elsayed, Vasan, and Mahmood
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Figure 2: Stream barrier. Both classic streaming methods (e.g., Classic Q) and streaming
versions of batch RL methods (e.g., PPO1) perform poorly due to stream barrier. In
contrast, our stream-x algorithms (e.g., stream Q) overcome stream barrier and perform
competitively with their batch RL counterparts, demonstrating its stability and robustness.
The performance is shown as zero if some of the runs for an algorithm diverged.

updates, facing issues such as loss of plasticity (Lyle et al. 2023, Dohare et al. 2024), poor
learning dynamics (Lyle et al. 2024), failure to achieve further improvement (e.g., Lyle et
al. 2023, 2022), and gradual performance degradation (e.g., Dohare et al. 2023, Abbas
et al. 2023, Elsayed & Mahmood 2024). In addition, streaming deep RL presents unique
challenges since the observation and reward distributions used for updating change rapidly
over time, exacerbating the issues. The lack of application of eligibility traces with neural
networks can also be attributed to the issues of instability (see Anand & Precup 2021, Harb
& Precup 2017), which can even lead to divergence (Veeriah et al. 2017). As a result, deep
RL methods face stream barrier and have largely been overlooked. However, a few studies
(Elfwing et al. 2018, Young & Tian 2019) have shown nascent performance with streaming
learning, suggesting that this area holds potential for further exploration and development.

In this paper, we address stream barrier by introducing streaming deep RL methods—
stream TD(�), stream Q(�), and stream AC(�)—that are collectively called the stream-x

algorithms and utilize eligibility traces. Our approach enables learning from the most recent
experiences without using replay bu↵ers, batch updates, or target networks. Contrary to the
common belief, we demonstrate that streaming deep RL can be stable and as sample e�cient
as batch RL. The e↵ectiveness of our approach hinges on a set of key techniques that are
common to all stream-x algorithms. They include a novel optimizer to adjust step size for
stability, appropriate data scaling, a new initialization scheme, and maintaining a standard
normal distribution of pre-activations. Our approach requires no hyperparameter tuning,
and the results with di↵erent algorithms on the electricity consumption prediction task
(Zhou et al. 2021), MuJoCo (Todorov et al. 2012), DM Control Suite (Tunyasuvunakool
et al. 2020), MinAtar (Young & Tian 2019), and Atari 2600 (Bellemare et al. 2013)
environments are achieved using the same set of hyperparameters. The results demonstrate
our approach’s ability to work as an o↵-the-shelf solution, overcome stream barrier, provide
results previously unattainable with streaming methods, and even surpass the performance
of batch RL, achieving the best model-free performance on some complex environments.

3

*Elsayed, M., Vasan, G., Mahmood, A. R. (2024) “Streaming deep reinforcement learning finally works,”
arXiv:2410.14606 



The innovations of the new streaming algorithms can be 
seen as following from the decentralized perspective

• The new streaming algorithms differ from prior attempts mainly in

• signal normalization

• constraining the step-size parameters to reasonable bounds

• Both are natural for an artificial neuron that takes responsibility for 
the conditioning of its local signals and learning processes



Conclusions
• All is not well with today’s deep learning and artificial neural networks

• They forget catastrophically, lose plasticity, and collapse under extended training

• To achieve the full potential of DL and ANNs, something more is needed

• We need an additional source of variation in under-utilized artificial neurons

• We need to protect and preserve neurons whose variations are found useful

• To me, these needs strongly suggest that neurons should have the decentralized goal  
of getting other neurons to listen to them

• Though I can’t demonstrate this yet
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