
The Need for 
Dynamic Deep Learning

Rich Sutton with
Shibhansh Dohare, Fernando Hernandez-Garcia, Qingfeng Lan,  

Parash Rahman, and Rupam Mahmood
Keen Technologies

University of Alberta
Alberta Machine Intelligence Institute

Reinforcement Learning and Artificial Intelligence Lab
Openmind Research Institute

R
A I
L

&



Artificial intelligence research is ambitious
• AI researchers seek to understand intelligence well enough  

to create beings of greater intelligence than current humans

• Reaching this profound intellectual milestone will enrich our economies  
and challenge our societal institutions

• It will be unprecedented and transformational,  
but also a continuation of trends that are thousands of years old

• People have always created tools and been changed by them; it’s what humans do

• The next big step is to understand ourselves

• This is a quest grand and glorious, and quintessentially human

• Of course, it is also totally hyped up



My perspective
• I seek to understand and create maximally intelligent agents

• An agent is defined to be intelligent to the extent that it is able to 
predict and control its input stream, particularly its reward

• The creation of super-intelligent agents, and super-intelligent 
augmented humans, will be an unalloyed good for the world  
(though the near future will be tough, as we are in a 4th turning)

• The path to intelligent agents runs through reinforcement learning 
(and not through LLMs, however amazing and useful those might be)

• The biggest current bottleneck to ambitious RL-based AI 
 is inadequate deep learning methods



The standard agent architecture* of RL and the Alberta Plan** 

The common agent comprises four components:

Perception produces the state representation  
used by all components 

Reactive Policies quickly produce actions  
that achieve high rewards or features 

Value Functions evaluates how well  
things are going, and changes the policy (learning) 

Transition model predicts the consequences of 
alternate choices, and changes the policy (planning) 

(Subtasks*** are not explicitly shown)
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* The Quest for a Common Model of the Intelligent Agent, by Sutton, RLDM 2022, arXiv. 
** The Alberta Plan for AI Research, by Sutton, Bowling, & Pilarski, 2023, arXiv. 
*** Reward Respecting Subtasks for Model-based Reinforcement Learning, by Sutton, Machado, Holland, Timbers, Tanner, White, AIj 2023. 
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Main message: 

Deep learning does not work for continual learning
• by “not work”, I mean that learning slows, eventually to a very low level (loss of plasticity)

• by “deep learning”, I mean the standard artificial-neural-network methods,  
specialized as they are for non-continual learning

• without replay buffers (which themselves are an acknowledgement that DL doesn’t work)

Better learning algorithms, specialized for continual learning, are not hard to find.

But we have to start looking for them



Outline

• Demonstrations of Loss of Plasticity in deep learning  
and attempts to maintain it (w/L2 reg, Shrink & Perturb, Continual Backprop)

• in convolutional networks on continual versions of ImageNet

• in residual networks on continual versions CIFAR-100

• in stationary and non-stationary reinforcement learning

• Some goals and ideas for a next generation of deep learning



A lesson in perseverance
• Paper submissions based on this work were rejected 5 times over 5 years
• But now it is published in Nature

References:
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Plasticity = the ability to learn

Loss of Plasticity = loss of the ability to learn   
                                         = not being able to learn continually  

                      = not continual learning

 Maintaining Plasticity = maintaining the ability to learn

In AI, we should prioritize maintaining plasticity



Early indications of problems with deep continual learning

• Catastrophic Forgetting (French, 1999; McCloskey & Cohen, 1989)

• Loss of Plasticity in early neural networks in the psych literature (Ellis & Ralph, 
2000; Zevin & Seidenberg, 2002; Bonin et al., 2004)

• The failure of warm-starting (Ash & Adams, 2020)

• Primacy Bias and resetting in Deep RL (Nikishin et al., 2022)

• Capacity Loss in RL (Lyle et al, 2022)

But no one has previously done a thorough demonstration of Loss of Plasticity 
in supervised learning



Loss of Plasticity in Supervised Learning

ImageNet



ImageNet
a classic deep-learning problem

• A database of millions of images labelled by nouns (classes)

• 1000 classes with 700 or more images

• Widely used in deep learning to classify images:  image⇒class

ImageNet Dataset



The Continual ImageNet Problem

• The classical ImageNet problem was minimally changed to make it continual

• Each class was separated into 600 training examples and 100 test examples

• Classes were taken in pairs to produce a sequence of 500+ binary classification tasks

• e.g., Class1 vs Class2 for 1200 training examples and 200 test examples,  
then Class3 vs Class4 for 1200 training examples and 200 test examples, etc

• Performance measure: %correct on test set (by argmax) at end of each task

• Averaged over 30 independent runs, varying class pairings, test sets

Accuracy 
on the 
test set

70%

75%

80%

85%

90%

1 5 10 50 1,000 2,000 50 2,500 5,000
82%

84%

86%

88%

90%

92%

Mitigating loss of plasticity in 
Continual ImageNet 

Task 1

Backpropagation loses plasticity in Continual ImageNet

VS

Task 2 Task 3

VS

Task 4

VS

Task 5

VSVS

Pictures of two kinds of
objects must be distinguished  

Pictures of a new pair of
objects must be distinguished  

 The process continues for
 thousands of pairs of objects



Network and Training Procedure (ImageNet)
• All 500+ binary classification tasks share the same network; both heads reset at task switch

• Standard neural network, though slightly narrow for ImageNet (bc. only 2 classes at a time)  
(3 convolution layers of 32/64/128 filters + 3 fully-interconnected layers of 128/128/2 units)

• For each task, 12 batches of 100 examples, 250 epochs (passes through the data)

• Weights initialized by the standard Kaiming distribution, only once, before the first task

• Backpropagation with momentum on the cross-entropy loss, ReLU activations

• Many variations on the network and hyper-parameters were tested  
to obtain good and representative performance on the first task

How will performance evolve over the sequence of tasks?
Will performance be better on the 1st task or the 2nd task? the 500th?



BackProp on Continual ImageNet (first 10 tasks)

• Chance performance is 50% 

• Best performance on first task is ≈89% 

• Shaded region is one standard error 

• Linear baseline is the performance of 
linear heads direct from pixels

%Correct
on Test Set

(at end of each task,  
averaged over 30 runs)

Learning rate (plasticity) sometimes improves over early tasks, then…?

1



BackProp on Continual ImageNet (2000 tasks)

For good hyper-parameters, plasticity decreases across tasks, 
nearing the poor performance level of a one-layer (linear) network, or worse

• This data is representative, the details 
depend on the details: 

• #epochs 

• step-sizes 

• network sizes 

• Each line takes ≈24 hours to compute 

• Most other variations of BackProp 
(Adam, Dropout, Batch norm) are 
worse1

BackProp shows “Catastrophic” Loss of Plasticity

%Correct
on Test Set

(at end of each task,  
averaged over 30 runs)

Task number (bins of 50)

First-task performance



There are better Algorithms on Continual ImageNet

• Dropout, Adam, other activations are 
even worse than vanilly backprop 

• L2 regularization adds a penalty for 
large weights 

• Shrink and Perturb is L2 reg. plus 
random variation of all weights 

• Continual Backpropagation continually 
re-initializes a small fraction of units 

• otherwise its just like BackProp
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Continual Backpropagation:  
Stochastic Gradient Descent with Selective Reinitialization

• Just like backprop, except continually re-initialize a small fraction of 
the units (re-initialization rate)

• And it is better to re-initialize selectively,  
for example, dormant units or some other notion of utility

• The idea of selective random re-initialization was introduced by 
Mahmood and Sutton (2012); they called it generate and test

• Continual Backprop extends the idea to general multi-layer networks



Loss of Plasticity in Residual Networks

Cifar-100



Loss of Plasticity in class-incremental CIFAR-100 with 18-layer Residual Networks
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A closer look at the results

Many units go dormant unless random variation is continually injected
Causing a collapse of representational diversity

(active <1% of the time) 

Loss of Plasticity in class-incremental CIFAR-100 with 18-layer Residual Networks



This pattern of results is very robust
• In ImageNet, in CIFAR-100, in MNIST, in idealized problems, and in RL,  

across network architectures, activation functions, and hyper-parameters:

• Deep supervised learning loses plasticity dramatically 
under continued training

• L2 regularization reduces the loss of plasticity, but just a little

• Shrink & Perturb (L2 + weight randomizing) often helps further

• Continual BackProp (BackProp + re-initialization of un-used units) 
does the best at maintaining plasticity 

• and has little sensitivity to its hyper-parameter (re-initialization rate)



Loss of Plasticity in Reinforcement Learning

Ant Locomotion



Loss of plasticity in ant locomotion with 
changing friction

Ant locomotiona

Ant locomotion with changing frictionb

c
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Loss of plasticity in ant locomotion with 
changing friction
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Loss of Plasticity in Stationary Ant Locomotion

• The same pattern of results

• RL itself involves nonstationarity 
and continual learning

(and S&P)
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Loss of Plasticity in Stationary Ant Locomotion
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Conclusions
• Deep-learning networks are optimized for one-time learning,  

and in a sense they totally fail for continual learning

• Simple changes, like Continual Backprop, can make them effective for continual learning

• Continual Backprop ranks units by their utility to the network, and preserves the most useful

• The specific way ranking is done in Continual Backprop is probably not the last word;  
for example, new ideas are needed to extend to recurrent networks

• There is an exciting world ahead of deep-learning networks that can learn continually

• Deep continual learning opens up new possibilities in RL (which is inherently continual due 
to policy iteration) and model-based RL (with multiple interacting learning components)



Outline

• Demonstrations of Loss of Plasticity in deep continual learning  
and attempts to maintain it (w/L2 reg, Shrink & Perturb, Continual Backprop)

• in convolution networks on continual versions of ImageNet

• in residual networks on continual versions CIFAR-100

• in stationary and non-stationary reinforcement learning

• Some goals and ideas for a new streaming version of deep learning



We need new deep learning methods that

• Can learn continually without loss of plasticity

• Can learn non-linear functions of great depth and complexity

• Are maximally efficient in data and computational resources

• Computational complexity O(#weights) per example

• Streaming (each example processed once, no replay buffer)

• Can meta-learn to generalize better



Ideally, streaming deep learning should adapt at 3 levels

1. Adapting the weights  (SGD w/randomness)

2. Adapting the step sizes  (building on IDBD*)

3. Adapting the connections between units (who connects to who)

wt

αt

* Sutton, R.S., “Adapting Bias by Gradient Descent: An Incremental Version of Delta-Bar-Delta,” ICML 1992.



The first and most important idea:

Distinguish the part of the network that has already been learned (the ‘backbone’) 
from the rest of the network (the ‘fringe’)

Preserve and protect the backbone; let the fringe explore



Some first principles questions

• Are artificial neural networks enough? (as a structure)

• Is it enough to study supervised learning (rather than, e.g., RL)?

• Is stochastic gradient descent enough?  

• Must some form of search/randomness be added?



Re-examining stochastic gradient descent (SGD)

• This is a vector equation

•  could be a scalar or a matrix. But for us it must be a vector

• It might be better to call this algorithm “derivative descent”

•  cannot change rapidly from example to example

• Changing  slowly is OK and powerful: structural credit assignment, 
meta-learning, representation learning, learning to generalize well

αt

αt

αt

wt+1 = wt + αt ∘ ∇wErrortSGD:



Status:

Streaming deep learning is under active development
• The network version of the step-size optimization algorithm exists

• for a very general case (paper under review*)
• for a practical, approximate case (implemented in Lisp)

• We have cool new ideas for adding and adapting new units
• for the linear case (paper at RLC2024**)
• demonstrated live in talks (e.g., at Upperbound, Amii TeaTime)

• I am not quite done designing and testing the full DDL algorithm

* Sharifnassab, A., Sutton, R.S., “MetaOptimize: A Framework for Optimizing Step Sizes and Other Meta-parameters” 
** Javed, K., Sharifnassab, A., Sutton, R.S., “SwiftTD: A Fast and Robust Algorithm for Temporal Difference Learning,” RLC 2024.



Thank you for your attention


