Sutton, Richard PIN 278214 1

Temporal-difference algorithms for reinforcement learning and artificial intelligence

Research in my laboratory pursues an approach to artificial intelligence (Al) and engineering prob-
lems in which they are formulated as large optimal-control problems and approximately solved using
reinforcement learning, a new body of theory and techniques for optimal control that has been devel-
oped in the last thirty years primarily within the machine learning and operations research communities,
and which have separately become important in psychology and neuroscience. Reinforcement learning
researchers have developed novel methods to approximate solutions to optimal control problems that are
too large or too ill-defined for classical solution methods. My PhD supervisor, Andy Barto, and I played
a leading role in re-awakening interest in this area in the 1980s, culminating in the publication of our
popular introductory textbook (Sutton & Barto 1998). Some of the recent accomplishments of rein-
forcement learning include strategic decision-making in Watson (the computer player of Jeopardy! that
defeated the best human players (Tesauro et al. 2012, Thompson 2010)), achieving autonomous acro-
batic flight of computer controlled helicopters (Abbeel et al. 2007), and widespread application to com-
mercial advertisement placement on the internet (e.g., see Baccot 2010). Reinforcement learning and its
problem formulation—Markov decision processes—currently form the basis for one of the most active
and prominent modern approaches to Al.

The primary focus of the proposed NSERC-funded research is the development of new learning al-
gorithms and corresponding theory based on temporal-difference (TD) learning. TD algorithms, which I
introduced (Sutton 1988), are a core technology at the heart of much of the excitement and many of the
successes of modern reinforcement learning. TD methods are learning algorithms specially suited to
learning to predict long-term aspects of a dense, high-dimensional time series. Their initial use in rein-
forcement learning is to predict the total future reward for each of a set of possible choices and thereby
discover the optimal decision-making policy (other uses will be discussed shortly below). A key feature
of TD algorithms is that learning is driven by the difference in temporally successive predictions (thus
“temporal difference”). This 7D error is used to update the process by which the earlier prediction is
made such that in the future it produces predictions closer to the later prediction, which is presumed
more accurate. For example, if features of a chess position are being used to predict the probability of
ultimately winning the game, then the change in predicted probability from one position to the next
would be the TD error; if it increased, then the weighting of the first position’s features would be incre-
mented so that its predicted probability is increased, and vice versa.

The TD error should be contrasted with the conventional error obtained by comparing the earlier
prediction to the actual long-term outcome, which we here call the Monte Carlo error. The actual out-
come may arrive much later, maybe seconds, minutes, even years, depending on the application. This
makes using the Monte Carlo error computationally inconvenient; one has to remember all the predic-
tions made and the basis for making them for the entire time from making the predictions until the arri-
val of their corresponding actual outcomes. In TD methods, in contrast, the immediately available TD
error is used to update each prediction immediately after it is made. Vastly less memory and less detailed
bookkeeping in required by TD methods, and this computational advantage is perhaps the most impor-
tant reason to use them.

In addition to the computational advantages of TD methods, in certain circumstances they can be
proven to give statistically better answers with less data. In other situations (principally when the prob-
lem deviates significantly from the Markov property) Monte Carlo methods are superior. This motivates
methods such as TD(}) that can slide smoothly from TD methods (A=0) to Monte Carlo methods (A=1)
while retaining in all cases the computational congeniality of TD methods (all computation is temporally
local). Best performance is typically achieved at an intermediate value of A. All core reinforcement
learning methods have been generalized in this way, including Q-learning (Watkins 1989) and Sarsa
(Rummery 1995), to produce Q(A) and Sarsa(A), although not in a completely successful way. One of the
specific goals of the research proposed here is to do this more successfully, as I discuss further below.

Sutton, Richard PIN 278214 2

In the late 1990s it was recognized that the most prominent signal and neurotransmitter emitted from
the reward processing areas in the brains of many animals, including rats, honeybees, primates, and hu-
mans, was well understood as the TD error of the brain’s reward-prediction system (Schultz, Dayan &
Montague 1997). This perspective has proven extremely useful, explaining many experimental details,
and is now the standard view of reward processing in the brain against which all alternative proposals
must compete (e.g., see O’Doherty 2012). The story of TD errors in the brain is the most important posi-
tive example of the productive interplay of engineering and neuroscience since at least the Hebb (1949)
rule. The proposed NSERC-funded work remains within the realm of Al rather than biology, but I have
separately developed the TD()) algorithm as a model of animal learning behaviour (Sutton & Barto
1981, 1990, Ludvig, Sutton & Kehoe 2012). This confluence of engineering and biological constraints
provides further motivation for a thorough study of TD algorithms.

Recent Progress

My group has made major progress in the last six years by introducing the gradient-TD family of
algorithms, the first TD learning algorithms that are sound under off-policy training with linear function
approximation, and which also have superior convergence properties under nonlinear function approxi-
mation.

Linear function approximation refers to cases, like the chess example mentioned earlier, in which
states are represented by features, such as the number of pieces of each type and color, each of which
has a corresponding scalar weight. If the prediction for a state is a simple sum of the state’s features
weighted by the corresponding weights, then we have linear function approximation. Once the weights
have been learned the approximator can estimate the value of any chess position, whereas a table-lookup
approach can only offer informed estimates for positions it has seen before. If the weighted sum is trans-
formed into a probability estimate by applying a “squashing” function, such as the logistic function, then
the overall map is nonlinear and we have a case of nonlinear function approximation. The nonlinear case
also includes more complicated cases such neural networks (e.g., TD-Gammon, Tesauro’s (1995) world-
champion backgammon player based on TD(X)). Some form of function approximation is widely viewed
as essential to scaling reinforcement learning to large problems.

Off-policy learning refers to learning about one decision-making policy from data obtained while
following a different policy. The policy learned about is called the target policy, and the policy used to
generate the data is called the behaviour policy. If the two policies are the same, then we have the on-
policy case. Typically the thing being learned is the value function for the target policy—the expected
total upcoming reward given that we start in each state (or each state—action pair) and that actions in
subsequent states are selected according to the target policy. For example, suppose you are observing a
chemical plant while it is controlled by a person (the behaviour policy) but hoping to learn the value
function for a different policy (the target policy) that you would use if you were allowed to take control
of the plant. This is a case of off-policy learning. In general, off-policy learning is important whenever
you want to take full advantage of the available data without completely interfering with an existing
controller—a very common case indeed.

Off-policy learning arises even in Q-learning (Watkins 1989), perhaps the most popular of all rein-
forcement learning methods, and is in fact one of its most appealing features. Q-learning accepts data
from any behaviour policy and attempts to estimate the state—action value function for the optimal pol-
icy (the target policy). Of course, convergence is only assured if the behaviour policy repeatedly tries
every action in every state, but the optimal (target) policy will necessarily be more selective (it is typi-
cally deterministic). Thus the two policies are different and we have a case of off-policy learning. Part of
the appeal of Q-learning is that the behaviour policy can be exploratory, even completely random, and
still the optimal policy is guaranteed to be found (in the table-lookup case).

Now we can state the problem that we have solved with gradient-TD methods. If a TD method such
as TD(L) or Q-learning is used without function approximation (that is, in a table-lookup form, with one
learned estimate for each state) then all is fine; convergence is guaranteed for both on-policy and off-

Sutton, Richard PIN 278214 3

policy learning (Watkins & Dayan 1992; Jaakkolla, Jordan & Singh 1994, Tsitsiklis 1994). If linear
function approximation is used together with on-policy training, then the theoretical properties are still
good; convergence to a point is guaranteed for fixed target and behaviour policies, and to a region for
greedy target policies (Gordon 1995). For off-policy learning, however, there is a subtle change, and
convergence can no longer be assured with linear function approximation even for fixed policies. Impor-
tance sampling techniques are required to correct for the difference in the two policies, but if they are
used then a certain matrix is no longer guaranteed to be positive definite, and as a result the weights may
diverge to infinity on some problems. In particular, examples were found in which divergence occurs
even for Q-learning (Baird 1995).

After the early negative results, many new ideas and algorithms were proposed to remedy the prob-
lem, too many to identify all here, but none (prior to our recent work) were fully satisfactory. Good algo-
rithms were found whose complexity scaled with the square of the number of weights, such as LSTD
(Bradtke & Barto 1996, Boyan 2002). This was not a satisfying solution both because the original on-
policy algorithms required only linear complexity, and because many of the large applications tended to
involve very large numbers of weights for which quadratic complexity was prohibitive (e.g., Computer
Go, with millions of features, Silver et al. 2007). Baird (1999) proposed an initially promising linear-
complexity solution based on gradient descent, but it converged slowly and required double sampling,
which meant a simulation model was required. Averagers (Gordon 1995) and other interpolation meth-
ods were stable but have scaling issues and enabled only a weaker form of function approximation.

We believe that we have largely solved this problem with the introduction of gradient-TD algorithms
(Sutton, Szepesvari, & Maei 2009, Sutton et al. 2009) and their elaboration into a complete family of TD
methods, including GQ(A), a multi-dimensional generalization of Q-learning (Maei & Sutton 2010, Maei
et al. 2010a). Like Baird’s methods, gradient-TD methods are based on true gradient-descent and inherit
its robust convergence properties, but learning is faster and no double sampling is needed. Arbitrary tar-
get and (exciting) behaviour policies are permitted, and convergence guarantees are available in all
cases, including cases of nonlinear function approximation (Maei et al. 2010b).

Objectives

Gradient-TD methods were an important advance, making linear complexity function approximation
compatible with off-policy TD learning. They are more than a first step, but they are not the final step. It
is better to say that they open the door to a host of new possibilities in off-policy learning. Some of these
are concrete problems that are immediately plain to me and others are more long term. Some directly
build upon the solution provided by gradient-TD and others concern other issues that can be addressed
now that off-policy learning is possible.

In the short term, we have begun work on yet another new family of TD methods that can be viewed
as a hybrid of gradient-TD methods and conventional on-policy TD methods. These hybrid-TD methods
are just enough like gradient-TD methods to ensure convergence but are otherwise as close as possible
to on-policy TD methods. On-policy updates are preferred, when they can be made safely, because they
seem to result in faster convergence (Hackman 2012). Hybrid-TD methods gradually and automatically
shift toward or away from on-policy methods as the target policy comes closer to or further from the be-
haviour policy. This happens even on a state-by-state basis, so that an on-policy TD update can be made
in some states while more gradient-TD updates are made in others. Hybrid-TD methods are not true
gradient-descent methods, just as on-policy methods are not, but we can show that their key matrix is
positive definite and thus convergence can probably be assured. Establishing it absolutely is one objec-
tive of the proposed research.

Other near-term objectives concern completing the extension of gradient-TD methods to cover all
important cases. One of these which remains incomplete is the extension to policy-gradient actor-critic
methods (Sutton et al. 2000, Konda & Tsitsiklis 2003) for off-policy learning. We have some initial posi-
tive results (Degris, White & Sutton 2012) but the central theoretical problem remains unsolved. Work is
ongoing here in collaboration with Hamid Maei at McGill and Susan Murphy at Michigan on some new

Sutton, Richard PIN 278214 4

algorithmic ideas that we hope will provide an elegant solution. Related to this work are some ideas for
extending all of the gradient-TD work to the average-reward-per-step setting that is most appropriate
when working on control (as opposed to prediction) when using function approximation.

Once off-policy learning is efficient, stable, and reliable, many new issues can be investigated in the
longer term. One of these is the issue of computational analogs of curiosity. The major benefit of off-
policy learning is that the target and behaviour policies are decoupled. That is, the behaviour policy no
longer has to slavishly follow whatever policy is being learned about at the time; it can be selected to
achieve other purposes. One natural idea is to choose and shape the behaviour policy to maximize the
total amount that is learned per unit time (Schmidhuber 1991, see Baldassarre & Mirolli 2013). Notice
that, with reliable oft-policy learning available, it is possible for the first time to learn about many dif-
ferent target policies in parallel. Previously a target policy could only be learned about only if it was fol-
lowed exactly. Any deviation risked divergence. Of course, it is inevitable that one will learn more about
a target policy if its actions overlap with those of the behaviour policy. But any behaviour policy will
overlap with many possible target policies, and those will in general be in different stages of being
learned and thus have greater and lesser needs for additional data. Shaping the behaviour to maximize
the total learning per time step should greatly speed the overall learning of a large set of predictions. In
my lab we have just completed several extensive studies of parallel learning of large numbers of predic-
tions about the interaction between a robot and its environment (Modayil, White & Sutton, in press).
These predictions are intended to eventually form a rich and detailed model of the robot’s world, such as
would be useful in planning. This setting is ripe for a sophisticated demonstration of the potentially
powerful effect of computational curiosity.

We noted earlier that all of the core TD methods have been generalized to include A, known as the
bootstrapping parameter, but that these generalizations are not entirely satisfactory in off-policy cases
such as Q(A). In particular, when A=1, on-policy methods such as TD(L) become equivalent in their off-
line forms to a Monte Carlo method (and approximately equivalent in their online forms). However, the
same cannot be said for any off-policy method, including Watkins’s Q(A), Peng’s Q(A), GQ()L), or
GTD(A) (Watkins 1989, Peng & Williams 1996, Maei & Sutton 2010, Maei 2011). All these methods
choose to bootstrap completely, in effect setting A to 0 (and cutting off the eligibility traces), whenever
the behaviour policy deviates from the target policy (i.e., whenever a non-max, exploratory action is
taken). Because they bootstrap, these methods cannot be equivalent to a Monte Carlo method (which
would only include complete actual outcomes). Up until last year this had seemed unavoidable to me; I
could imagine no way in which an online algorithm could update its weights while the target policy was
being followed and then, if there was a deviation from the target policy, go back and selectively “un-
make” just the right updates now that the current outcome was no longer valid. And, even if it was
somehow possible, I really could not imagine it could be done with a complexity and simplicity similar
to existing TD methods. To my surprise, [now see how I believe this can be done. If this is successful, it
would mean that the off-policy learning and the A parameter can be completely decoupled, that one
could separately choose the degree of bootstrapping and the target and behaviour policies.

The equivalences mentioned above, between what are called the forward and backward views of the
TD algorithms, are only exact for off-line methods, in which updates are computed “on the side” and the
weights are only actually changed at the end of an episode. They hold only approximately if the weights
are updated online at each step as the updates are computed. This has also seemed unavoidable to me,
but recent work by my postdoc, Harm van Seijen, suggests that an exact forward-backward equivalence
may be possible for the online case, again without significantly increasing computational complexity.

In closing, let me mention a few more areas in which core TD methods can be generalized and im-
proved. One is simple generalization. The A parameter could not only be set to any value, it could be an
entire function, with A taking on a different value for each state (this idea is mentioned by Sutton &
Barto (1998) but it has yet to be developed). Another potentially powerful generalization is to let the
“discount rate” parameter y also be a function of state. Here y should be thought of not as a discount, but

Sutton, Richard PIN 278214 5

as a degree of termination, or better, as a horizon on the prediction—rewards are predicted up until they
are sunset-ed by y falling or multiplying to zero. With these and other generalizations (see Modayil,

White & Sutton, in press, Section 5) we have been able to turn computationally simple and uniform TD
algorithms into a surprisingly expressive representation language for capturing information about the
dynamics of the world that can be used, like “options” (Sutton, Precup & Singh 1999) in dynamic-
programming style planning methods.

Impact

Computationally efficient model-free TD learning methods form the core of modern reinforcement
learning, which is itself a core technology for modern artificial intelligence. Many might believe that
there is little more to be done with model-free TD methods, that they have already reached the limit of
their usefulness. I could not disagree more. As we seek fundamental principles of learning and intelli-
gence, we should seek above all to strengthen the core algorithms. The better we understand these com-
ponents, and the more we will be able to do reliably and scalably with them, and the more powerful sys-
tems we will be able to build with them.

In the field of reinforcement learning I think there is a widespread realization of the importance of
core TD methods. TD(A), Sarsa(L), and Q(A) are very widely used today, and I believe this is due most of
all to their reliability, computational simplicity, and relatively clear theory. If replacement algorithms are
proposed that do not compromise these positive features, they are likely to become widely accepted and
used. Neuroscientists also appreciate the simplicity of TD algorithms and may look for biological ana-
logs of the new methods if they are stated and explained simply.

The greatest long-term impact of the proposed work would be if we succeeded in putting forth gen-
eral, uniform TD algorithms that are capable of learning and expressing general world knowledge, com-
patible with planning methods. This has been a long-standing goal of my research group (Sutton 2012,
2009) which we have not yet achieved. As we strive toward it, working with robots or with computa-
tional worlds such as gridworlds, we keep being pushed back toward refining the basic toolkit of core
TD algorithms. Each time we make them fundamentally more general, powerful, or robust, each time we
identify a flaw and correct it, we come closer to the point at which the learning of world knowledge can
be demonstrated with enough generality to capture the imagination of the research community. I don’t
know when this will happen, but it is coming closer.

Methodology

Much of the research and algorithm development in my lab is conceptual and done on paper and
whiteboard. Simple worlds are imagined as well as the corresponding behaviour of the algorithm. At a
certain point we switch to formal analysis and computations, leading ultimately to formal proofs of con-
vergence or equivalences. We also make extensive use of computational microworlds, small imaginary
worlds that are completely understood as Markov decision processes and that can be used to test learn-
ing algorithms and to compare their performance. The members of my group get extensive training in
the appropriate way to vary step-size and other algorithm parameters to permit fair comparisons.

In the last five years, we have added a substantial robotic component to our methodology. We still
focus on relatively small and simple environments—robot microworlds we call them. Most of our robots
simply roll around low to the ground and sense their local environment. One of our robots is custom
build and has a few dozen sensors, but no cameras or auditory processing. Most of the others are iRobot
creates, the hobbyist version of the iRobot Roomba without the vacuum cleaner. These have even fewer
sensors, providing a minimalist interface with lots of hidden state. Robot microworlds bring us all the
worthy complexities of real-time behaviour, including rapid response and the need for computational
simplicity, yet are simple and reliable enough to bring in a minimum of additional distractions.

We also sometimes challenge our TD learning algorithms with a real application of importance to
individuals and society: assisting amputees with interfaces to their prosthetic arms (e.g., Pilarski et al.
2013).

