
Name:________________________________________________________________________________

CMPUT 609 Written 5: Planning, Learning, and Exam Practice 
Due: Friday Oct 16 in class (no slip days) 

There are a total of 63 points available on this assignment. 

The first two questions are exercises are from the Sutton and Barto textbook, 2nd edition in progress.  

8.2 [6 points]  
Why did the Dyna agent with exploration bonus, Dyna-Q+, perform better in the first phase as well as in 
the second phase of the blocking and shortcut experiments?  

8.3 [6 points]  
Careful inspection of Figure 8.8 reveals that the difference between Dyna-Q+ and Dyna-Q narrowed 
slightly over the first part of the experiment. What is the reason for this?  



1. [6 points total] What are the backup diagrams for the following methods?  

a. [3pts] 1-step Q-learning 

b. [3pts] DP for v* 

2. [6 points] Why is Dyna-Q considered a planning method? A good way to answer this is to say in words 
what makes something a planning method, and then say, in words, why Dyna-Q is such a something. 
(Do not say that something is a planning method because it plans.) 

3. [22pts total] Consider the following MDP. There are three states, X, Y, and Z, and two actions, right 
and left. From X, if action left is taken, then there is a fifty-fifty chance of going to the two other states, 
Y and Z, with a reward of +2 in either case. If the right action is taken from state X, then there is a 
fifty-fifty chance of going to states X and Y, with a reward of 0 in each case. From state Y, the left 
action half the time leads to Z with a reward of 2 and half the time leads to Y with a reward of +3, and 
the right action always leads back to Y with a reward of 1. From state Z, the left action always leads to 
state X with a reward of 0, and the right action always leads to state Y with a reward of 1. 

a. [1pt] What is the state set? 𝓢=  

b. [1pt] What is the action set? 𝓐= 

c. [1pt] What is the reward set? R= 



d. [4pts] What is the dynamics function, p? Make a table with five columns with headings across the 
top for s, a, s’, r, and p(s’,r|s,a). Add a row to the table for any values of the first four for which the 
last, p(s’,r|s,a), is non-zero. 

e. [4pts] Draw a picture of the states and actions of the MDP (open circles for states, solid dark ones 
for actions). Use the convention that the action leaving a state from its left side is the left action 
and the action leaving a state from its right side is the right action. You may also use the 
convention that when there are two arcs leaving an action node, then the two possibilities occur 
with equal probability. Label the states. Label the arcs from actions to states with the appropriate 
reward. 

f. [5pts] Suppose the discount-rate parameter 𝜸 is 0.5. What is the optimal deterministic policy? 



g. [6pts] What is the state-value function for the optimal policy? Give the numerical values of the 
three states. Show your work. 

4. [2 points each] What are the names of the algorithms with these backup diagrams? 

a.                                                     b.                                                     c. 5.1. MONTE CARLO POLICY EVALUATION 111

terminal state

Figure 5.3: The backup diagram for Monte Carlo estimation of v⇡.

Can we generalize the idea of backup diagrams to Monte Carlo algorithms?
The general idea of a backup diagram is to show at the top the root node to be
updated and to show below all the transitions and leaf nodes whose rewards
and estimated values contribute to the update. For Monte Carlo estimation
of v⇡, the root is a state node, and below is the entire sequence of transitions
along a particular episode, ending at the terminal state, as in Figure 5.3.
Whereas the DP diagram (Figure 3.4a) shows all possible transitions, the
Monte Carlo diagram shows only those sampled on the one episode. Whereas
the DP diagram includes only one-step transitions, the Monte Carlo diagram
goes all the way to the end of the episode. These di↵erences in the diagrams
accurately reflect the fundamental di↵erences between the algorithms.

An important fact about Monte Carlo methods is that the estimates for
each state are independent. The estimate for one state does not build upon
the estimate of any other state, as is the case in DP. In other words, Monte
Carlo methods do not “bootstrap” as we described it in the previous chapter.

In particular, note that the computational expense of estimating the value
of a single state is independent of the number of states. This can make Monte
Carlo methods particularly attractive when one requires the value of only a
subset of the states. One can generate many sample episodes starting from
these states, averaging returns only from of these states ignoring all others.
This is a third advantage Monte Carlo methods can have over DP methods
(after the ability to learn from actual experience and from simulated experi-
ence).

6.6. EXPECTED SARSA 141

Q-learning Expected Sarsa

Figure 6.12: The backup diagrams for Q-learning and expected Sarsa.

6.6 Expected Sarsa

Consider the learning algorithm that is just like Q-learning except that instead of
the maximum over next state–action pairs it uses the expected value, taking into
account how likely each action is under the current policy. That is, consider the
algorithm with the update rule
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but that otherwise follows the schema of Q-learning (as in Figure 6.10). Given the
next state, St+1, this algorithm moves deterministically in the same direction as
Sarsa moves in expectation, and accordingly it is called expected Sarsa. Its backup
diagram is shown in Figure 6.12.

Expected Sarsa is more complex computationally than Sarsa but, in return, it
eliminates the variance due to the random selection of At+1. Given the same amount
of experience we might expect it to perform slightly better than Sarsa, and indeed it
generally does. Figure 6.13 shows summary results on the cli↵-walking task with Ex-
pected Sarsa compared to Sarsa and Q-learning. As an on-policy method, Expected
Sarsa retains the significant advantage of Sarsa over Q-learning on this problem. In
addition, Expected Sarsa shows a significant improvement over Sarsa over a wide
range of values for the step-size parameter ↵. In cli↵ walking the state transitions
are all deterministic and all randomness comes from the policy. In such cases, Ex-
pected Sarsa can safely set ↵ = 1 without su↵ering any degradation of asymptotic
performance, whereas Sarsa can only perform well in the long run at a small value
of ↵, at which short-term performance is poor. In this and other examples there is
a consistent empirical advantage of Expected Sarsa over Sarsa.

In these cli↵ walking results we have taken Expected Sarsa to be an on-policy
algorithm, but in general we can use a policy di↵erent from the target policy ⇡ to
generate behavior, in which case Expected Sarsa becomes an o↵-policy algorithm.
For example, suppose ⇡ is the greedy policy while behavior is more exploratory;
then Expected Sarsa is exactly Q-learning. In this sense Expected Sarsa subsumes
and generalizes Q-learning while reliably improving over Sarsa. Except for the small
additional computational cost, Expected Sarsa may completely dominate both of the
other more-well-known TD control algorithms.
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5. (15 points total) Consider the gridworld shown below. There is a start state S

and three terminal states, T1, T2, and T3. The task is episodic and discounted,

with each episode starting in S and ending in one of the terminal states. Actions

move one square at a time step (no diagonal moves). Terminal states T1, T2,

and T3 respectively deliver rewards of 2, 4, and 6. Moving into the state

marked * delivers a reward of �1. All other rewards are 0. The optimal policy

depends on the value of the discount rate �, 0  �  1.

(a) (5 pts) For what range of � values does an optimal policy take the agent

to T1?

(b) (5 pts) For what range of � values does an optimal policy take the agent

to T2?

(c) (5 pts) For what range of � values does an optimal policy take the agent

to T3?


