Steps to understanding
Policy-gradient methods

® Policy approximation m(als,)

® The average-reward (reward rate) objective 7(6)
or(0)

® Stochastic gradient ascent/descent Al ~ a—

® The policy-gradient theorem and its proof
® Approximating the gradient
® Eligibility functions for a few cases

® A final algorithm

Policy Approximation

® Policy = a function from state to action
® How does the agent select actions!?

® |n such a way that it can be affected by
learning!?

® |n such a way as to assure exploration?

® Approximation: there are too many states
and/or actions to represent all policies

® TJo handle large/continuous action spaces

What is learned and
stored!

| . Action-value methods: learn the value of each
action; pick the max (usually)

2. Policy-gradient methods: learn the parameters u
of a stochastic policy, update by V, Performance

* including actor-critic methods, which learn
both value and policy parameters

3. Dynamic Policy Programming

4. Drift-diffusion models (Psychology)

Actor-critic architecture

N
\ .
= Policy
\
Actor
y TD
Critic / error
Value
state r—®) '
Function action
/T
reward

Action-value methods

® The value of an action in a state given a policy
is the expected future reward starting from
the state taking that first action, then
following the policy thereafter

QW(S,GJ) = Z’yt_lRt S() — S,AO —
t=1

® Policy: pick the max most of the time
A; = arg max Qt(sta a)
but sometimes pick at random (e-greedy)

VVhy approximate policies
rather than values?

® |n many problems, the policy is simpler to
approximate than the value function

® |n many problems, the optimal policy is
stochastic

® e.g., bluffing, POMDPs
® Jo enable smoother change in policies
® TJo avoid a search on every step (the max)

® Jo better relate to biology

Gradient-bandit algorithm

Store action preferences H:(a)
rather than action-value estimates);(a)

Instead of e-greedy, pick actions by an exponential soft-max:

Pr{A;=a} = = m(a)

Also store the sample average of rewards as [?;

Then update:

Ht_|_1(CL) — Ht(a) -+ Oé(Rt — Rt) (]-a:At — Wt(&))

Gradient-bandit algorithms
on the |0-armed testbed

100%
80% I
Y% |

Optimal
action |
20% F ‘ WA
0% I, | l l]
0 250 500 750 =
Steps

Figure 2.6: Average performance of the gradient-bandit algorithm with and without a
reward baseline on the 10-armed testbed when the ¢.(a) are chosen to be near +4 rather
than near zero.

Of(x) q

ox

0 | f(=z)
ox | g(x)
(97rt(b) 8
— b
OH.(a) OHi(a) i (b)
o, i th(b)]
~ 0H(a) _Z](f:l eHi(e)
B 2
(Z];:l th(C))
C 1pett@ SF Hie) _ Hi(b) Hila)
o 2
(Zf:l th(C))
1a:bth(b) eHt(b) oHi(a)
lezl th(c) (21;1 th(c))
= 1,-pm(b) — (D) (@)

(by the quotient rule)

(because %65 — ¢%)

Q.E.D.

Steps to understanding
Policy-gradient methods

® Policy approximation m(als,)

® The average-reward (reward rate) objective 7(6)
or(0)

® Stochastic gradient ascent/descent Al ~ a—

® The policy-gradient theorem and its proof
® Approximating the gradient
® Eligibility functions for a few cases

® A complete algorithm

eg, linear-exponential policies
(discrete actions)

® The “preference” for action a in state s is linear
in 0 and a state-action feature vector ¢(s,a)

® The probability of action a in state s is
exponential in its preference

. exp(8 (s, a))
T O S exp 07605 1)
® Corresponding eligibility function:

vr(als,6) _ S, a) — w(bls S
Taleg) = 9050 ~ 7005, 01905,

Policy-gradient setup

parameterlizled w(als,0) = Pr{4;, =al S, = s}
policies

average-reward D 1 <
gobjective r(m) = nh_{go o Z Er R = Z dr(s) Z m(als) Zp(s’, r|s,a)r
t=1 S a s’,r

steady-state T o
distribution dr = tliglo Pr{S = s}

state-value fn

differential b (5) = ZEw[Rt+k — (7)) | S;=s]
k=1

diferental g (s.a) = 3" E[Riws — 1) | Sy=s, A =]
k=1

action-value fn

or(m)
06

stochastic
. | Agt ~ (X
gradient ascent

= aVr(n)

| Or(m
lstochastm: AG, ~ ()
gradient ascent 06

= aVr(r)

policy-gradient

theorem Vr(r) = Zdﬂ(s) Z Gr(s,a)Vr(als,0)

_ V(AS:, O
— E (C_[W(St, At) — U(St)) W((Ai“é)) ‘ St ~J dﬂ-, At ~~ W(-‘Stj 0)]
e v (A,|S,,)
_ A : ~ A~
=E _(Gt U(St,W)) (A8 ‘ St ~ dry Ao W]
~ . VW(At|St 9) .
~ A)
~ (Gt 0(St, W)) (A5 (by sampling under 7)
. ~ . Vr(ALS;, 0
0t—|—1 — Ht -+ OZ(G? — ’U(St, W)) W((Att“sz))

e.g., in the one-step linear case:

_ Vr(A,|S,. 0
:9t+OZ(Rt+1—Rt—|—W:¢t+1—W;r¢t)) (t| !)

(A Sy)

Deriving the policy-gradient theorem: Vr(m) = > d,(s) >, G=(s,a)Vm(als,8):
Vie(s) =V > w(als,0)dx(s,a)

=) Vr(als, 0)dx(s,a) + m(als, 0)Vix(s, a)}

— Z :Vﬂ(a\s, 0)q-(s,a) + m(als, O)V Zp(s’, rls,a)[r —r(m) + 0. (")

_ Z {Vﬁ(a‘sj 0)q.(s,a) + m(a|s,) {—VT(TF) + ZP(S/LS, a)V@W(S/)H

= Vr(m) = Y |Vn(als,)G (s,0) + m(als, 0) > p(s']s, a) Vir(s') | = Vin(s)

a

o Vr(m) = Z {Vﬂ(a\s, 0)G.(s,a)+m(als,O) Zp(s’]s, a)V@W(S’)] — V()

a

Y de(s)Vr(m) =) da(s) Z Vr(als, 0)d.(s, a)
| +32d Zm]se Z §'|s,a) Vi (s Zd)V (s
= st Zw als, 0)dx(s, a)

+> >‘ Zw als, 0)p(s'|s, a) Vi (s Zd NORE

— Z dw(s) Z VTF(CL‘S; H)QVW(S, CL)

Complete PG algorithm

Initialize parameters of policy 8 € R™, and state-value tunction w € R™

Initialize eligibility traces e’ € R" and e¥ € R™ to 0

Initialize R =0

On each step, in state S:

Choose A according to m(:|S, 0)
Take action A, observe S, R
J— R— R+ @(S’7 W) — @(S, W) form TD error from critic

R« R4+ a% update average reward estimate
eV + eV + Vy0(S, w) update eligibility trace for critic
w<—w+aVoeV update critic parameters

e? « \ef 4 Zﬁ;"‘ggg’) update eligibility trace for actor

O «— 0+ a?5e? update actor parameters

The generality of the
policy-gradient strategy

® Can be applied whenever we can compute the
effect of parameter changes on the action
probabilities, Vr(A;|S;, 6)

® E.g., has been applied to spiking neuron models

® There are many possibilities other than linear-
exponential and linear-gaussian

® e.g, mixture of random, argmax, and fixed-
width gaussian; learn the mixing weights, drift/
diffusion models

eg, linear-gaussian policies
(continuous actions)

LI A
[=0, 0%=0.2, ==/ _
=0, O?=1.0, m—| -
H=0, 0?=5.0, == |
H=-2, 0%=0.5, ==

action os| inear -

| u and o linear :
prob. N in the state -
density | ‘

action

eg, linear-gaussian policies
(continuous actions)

® The mean and std. dev. for the action taken in
state s are linear and linear-exponential in

0=(0,:0,)" uls)=0,0(s) o(s)=exp(6,¢(s)

® The probability density function for the action
taken in state s is gaussian

L1 (a—ps))
7T(a|3,9)—0(8)\/% P(20(s)? >

Gaussian eligibility functions

VQMW(OJ‘S,H) B 1 0 o .
W(&‘S,H) o 0'(8)2(:u())¢M()

Vo,r(als.0) _ ((a— u(s))’ S
R G L

The generality of the
policy-gradient strategy (2)

® Can be applied whenever we can compute the effect of
parameter changes
on the action probabilities, V7 (A4;|S;, 0)

® Can we apply PG when outcomes are viewed as action!?

® e.g,the action of “turning on the light”
or the action of “going to the bank”

® s this an alternate strategy for temporal abstraction!?

® Ve would need to learn—not compute—the gradient
of these states w.r.t. the policy parameter

Have we eliminated action?

If any state can be an action, then what is still special
about actions?

The parameters/weights are what we can really,
directly control

We have always, in effect, “sensed” our actions
(even in the e-greedy case)

Perhaps actions are just sensory signals that we can
usually control easily

Perhaps there is no longer any need for a special
concept of action in the RL framework

