
Steps to understanding 
Policy-gradient methods

• Policy approximation

• The average-reward (reward rate) objective

• Stochastic gradient ascent/descent

• The policy-gradient theorem and its proof

• Approximating the gradient

• Eligibility functions for a few cases

• A final algorithm
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Policy Approximation
• Policy = a function from state to action

• How does the agent select actions?

• In such a way that it can be affected by 
learning?

• In such a way as to assure exploration?

•  Approximation: there are too many states 
and/or actions to represent all policies

• To handle large/continuous action spaces



What is learned and 
stored?

1. Action-value methods: learn the value of each 
action; pick the max (usually)

2. Policy-gradient methods: learn the parameters u 
of a stochastic policy, update by                      

• including actor-critic methods, which learn 
both value and policy parameters

3. Dynamic Policy Programming

4. Drift-diffusion models (Psychology)

∇uPerformance



Actor-critic architecture

World



Action-value methods

• The value of an action in a state given a policy 
is the expected future reward starting from 
the state taking that first action, then 
following the policy thereafter

• Policy: pick the max most of the time  
 
but sometimes pick at random (!-greedy)
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Why approximate policies 
rather than values?

• In many problems, the policy is simpler to  
approximate than the value function

• In many problems, the optimal policy is 
stochastic

• e.g., bluffing, POMDPs

• To enable smoother change in policies

• To avoid a search on every step (the max)

• To better relate to biology



Gradient-bandit algorithm
• Store action preferences 

rather than action-value estimates

• Instead of !-greedy, pick actions by an exponential soft-max:

• Also store the sample average of rewards as

• Then update:
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Figure 2.5: Average performance of UCB action selection on the 10-armed testbed. As
shown, UCB generally performs better that "-greedy action selection, except in the first k
plays, when it selects randomly among the as-yet-unplayed actions. UCB with c = 1 would
perform even better but would not show the prominent spike in performance on the 11th
play. Can you think of an explanation of this spike?

no known practical way of utilizing the idea of UCB action selection.

2.7 Gradient Bandits

So far in this chapter we have considered methods that estimate action values and
use those estimates to select actions. This is often a good approach, but it is not the
only one possible. In this section we consider learning a numerical preference Ht(a)
for each action a. The larger the preference, the more often that action is taken, but
the preference has no interpretation in terms of reward. Only the relative preference
of one action over another is important; if we add 1000 to all the preferences there is
no e↵ect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:

Pr{At =a} .
=

eHt(a)

Pk
b=1 eHt(b)

.
= ⇡t(a), (2.9)

where here we have also introduced a useful new notation ⇡t(a) for the probability of
taking action a at time t. Initially all preferences are the same (e.g., H1(a) = 0, 8a)
so that all actions have an equal probability of being selected.

There is a natural learning algorithm for this setting based on the idea of stochastic
gradient ascent. On each step, after selecting the action At and receiving the reward
Rt, the preferences are updated by:

Ht+1(At)
.
= Ht(At) + ↵
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⇡t(a), 8a 6= At,

(2.10)

where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described
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The calculations showing this require only beginning calculus, but take several
steps. If you are mathematically inclined, then you will enjoy the rest of this section
in which we go through these steps. (And if you are not, then you may skip the rest
of this section without preventing understanding of the rest of this book.) First we
take a closer look at the exact performance gradient:
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where Xt can be any scalar that does not depend on b. We can include it here because
the gradient sums to zero over all the actions,

P
b
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@Ht(a) = 0. As Ht(a) is changed,

some actions’ probabilities go up and some down, but the sum of the changes must
be zero because the sum of the probabilities must remain one.
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The equation is now in the form of an expectation, summing over all possible values
b of the random variable At, then multiplying by the probability of taking those
values. Thus:
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where here we have chosen Xt = R̄t and substituted Rt for q⇤(At), which is permitted
because E[Rt] = q⇤(At) and because all the other factors are non-random. Shortly
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Recall that our plan has been to write the performance gradient as an expectation of
something that we can sample on each step, as we have just done, and then update
on each step proportional to the sample. Substituting a sample of the expectation
above for the performance gradient in (2.11) yields:
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, 8a,
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Exercise 2.4 The results shown in Figure 2.4 should be quite reliable because they
are averages over 2000 individual, randomly chosen 10-armed bandit tasks. Why,
then, are there oscillations and spikes in the early part of the curve for the optimistic
method? In other words, what might make this method perform particularly better
or worse, on average, on particular early steps?

2.6 Upper-Confidence-Bound Action Selection

Exploration is needed because the estimates of the action values are uncertain. The
greedy actions are those that look best at present, but some of the other actions
may actually be better. "-greedy action selection forces the non-greedy actions to
be tried, but indiscriminately, with no preference for those that are nearly greedy or
particularly uncertain. It would be better to select among the non-greedy actions
according to their potential for actually being optimal, taking into account both how
close their estimates are to being maximal and the uncertainties in those estimates.
One e↵ective way of doing this is to select actions as

At
.
= argmax

a

"
Qt(a) + c

s
log t

Nt(a)

#
, (2.8)

where log t denotes the natural logarithm of t (the number that e ⇡ 2.71828 would
have to be raised to in order to equal t), Nt(a) denotes the number of times that
action a has been selected prior to time t (the denominator in (2.1)), and the number
c > 0 controls the degree of exploration. If Nt(a) = 0, then a is considered to be a
maximizing action.

The idea of this upper confidence bound (UCB) action selection is that the square-
root term is a measure of the uncertainty or variance in the estimate of a’s value.
The quantity being max’ed over is thus a sort of upper bound on the possible true
value of action a, with the c parameter determining the confidence level. Each time
a is selected the uncertainty is presumably reduced; Nt(a) is incremented and, as it
appears in the denominator of the uncertainty term, the term is decreased. On the
other hand, each time an action other than a is selected t is increased; as it appears in
the numerator the uncertainty estimate is increased. The use of the natural logarithm
means that the increase gets smaller over time, but is unbounded; all actions will
eventually be selected, but as time goes by it will be a longer wait, and thus a lower
selection frequency, for actions with a lower value estimate or that have already been
selected more times.

Results with UCB on the 10-armed testbed are shown in Figure 2.5. UCB will
often perform well, as shown here, but is more di�cult than "-greedy to extend
beyond bandits to the more general reinforcement learning settings considered in the
rest of this book. One di�culty is in dealing with nonstationary problems; something
more complex than the methods presented in Section 2.4 would be needed. Another
di�culty is dealing with large state spaces, particularly function approximation as
developed in Part II of this book. In these more advanced settings there is currently
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Figure 2.5: Average performance of UCB action selection on the 10-armed testbed. As
shown, UCB generally performs better that "-greedy action selection, except in the first k
plays, when it selects randomly among the as-yet-unplayed actions. UCB with c = 1 would
perform even better but would not show the prominent spike in performance on the 11th
play. Can you think of an explanation of this spike?

no known practical way of utilizing the idea of UCB action selection.

2.7 Gradient Bandits

So far in this chapter we have considered methods that estimate action values and
use those estimates to select actions. This is often a good approach, but it is not the
only one possible. In this section we consider learning a numerical preference Ht(a)
for each action a. The larger the preference, the more often that action is taken, but
the preference has no interpretation in terms of reward. Only the relative preference
of one action over another is important; if we add 1000 to all the preferences there is
no e↵ect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:
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where here we have also introduced a useful new notation ⇡t(a) for the probability of
taking action a at time t. Initially all preferences are the same (e.g., H1(a) = 0, 8a)
so that all actions have an equal probability of being selected.

There is a natural learning algorithm for this setting based on the idea of stochastic
gradient ascent. On each step, after selecting the action At and receiving the reward
Rt, the preferences are updated by:
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where ↵ > 0 is a step-size parameter, and R̄t 2 R is the average of all the rewards
up through and including time t, which can be computed incrementally as described
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Gradient-bandit algorithms 
on the 10-armed testbed2.7. GRADIENT BANDITS 39
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Figure 2.6: Average performance of the gradient-bandit algorithm with and without a
reward baseline on the 10-armed testbed when the q⇤(a) are chosen to be near +4 rather
than near zero.

in Section 2.3 (or Section 2.4 if the problem is nonstationary). The R̄t term serves
as a baseline with which the reward is compared. If the reward is higher than the
baseline, then the probability of taking At in the future is increased, and if the reward
is below baseline, then probability is decreased. The non-selected actions move in
the opposite direction.

Figure 2.6 shows results with the gradient-bandit algorithm on a variant of the
10-armed testbed in which the true expected rewards were selected according to a
normal distribution with a mean of +4 instead of zero (and with unit variance as
before). This shifting up of all the rewards has absolutely no a↵ect on the gradient-
bandit algorithm because of the reward baseline term, which instantaneously adapts
to the new level. But if the baseline were omitted (that is, if R̄t was taken to be
constant zero in (2.10)), then performance would be significantly degraded, as shown
in the figure.

One can gain a deeper insight into this algorithm by understanding it as a stochas-
tic approximation to gradient ascent. In exact gradient ascent, each preference Ht(a)
would be incrementing proportional to the increment’s e↵ect on performance:

Ht+1(a)
.
= Ht(a) + ↵

@E [Rt]

@Ht(a)
, (2.11)

where the measure of performance here is the expected reward:

E[Rt]
.
=

X

b

⇡t(b)q⇤(b),

and the measure of the increment’s e↵ect is the partial derivative of this performance
measure with respect to the preference. Of course, it is not possible to implement
gradient ascent exactly in our case because by assumption we do not know the q⇤(b),
but in fact the updates of our algorithm (2.10) are equal to (2.11) in expected value,
making the algorithm an instance of stochastic gradient ascent.
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which you will recognize as being equivalent to our original algorithm (2.10).

Thus it remains only to show that @⇡t(b)
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We have just shown that the expected update of the gradient-bandit algorithm is
equal to the gradient of expected reward, and thus that the algorithm is an instance of
stochastic gradient ascent. This assures us that the algorithm has robust convergence
properties.

Note that we did not require any properties of the reward baseline other than that
it not depend on the selected action. For example, we could have set is to zero, or
to 1000, and the algorithm would still be an instance of stochastic gradient ascent.
The choice of the baseline does not a↵ect the expected update of the algorithm, but
it does a↵ect the variance of the update and thus the rate of convergence (as shown,
e.g., in Figure 2.6). Choosing it as the average of the rewards may not be the very
best, but it is simple and works well in practice.

2.8 Associative Search (Contextual Bandits)

So far in this chapter we have considered only nonassociative tasks, in which there
is no need to associate di↵erent actions with di↵erent situations. In these tasks the
learner either tries to find a single best action when the task is stationary, or tries
to track the best action as it changes over time when the task is nonstationary.

2.8. ASSOCIATIVE SEARCH (CONTEXTUAL BANDITS) 41

which you will recognize as being equivalent to our original algorithm (2.10).

Thus it remains only to show that @⇡t(b)
@Ht(a) = ⇡t(b)

�
1a=b � ⇡t(a)

�
, as we assumed.

Recall the standard quotient rule for derivatives:

@

@x


f(x)

g(x)

�
=

@f(x)
@x g(x) � f(x)@g(x)

@x

g(x)2
.

Using this, we can write

@⇡t(b)

@Ht(a)
=

@

@Ht(a)
⇡t(b)

=
@

@Ht(a)

"
eHt(b)

Pk
c=1 eHt(c)

#

=
@eHt(b)

@Ht(a)

Pk
c=1 eHt(c) � eHt(b) @

Pk
c=1 eHt(c)

@Ht(a)⇣Pk
c=1 eHt(c)

⌘2 (by the quotient rule)

=
1a=beHt(a) Pk

c=1 eHt(c) � eHt(b)eHt(a)

⇣Pk
c=1 eHt(c)

⌘2 (because @ex

@x = ex)

=
1a=beHt(b)

Pk
c=1 eHt(c)

� eHt(b)eHt(a)

⇣Pk
c=1 eHt(c)

⌘2

= 1a=b⇡t(b) � ⇡t(b)⇡t(a)

= ⇡t(b)
�
1a=b � ⇡t(a)

�
. Q.E.D.

We have just shown that the expected update of the gradient-bandit algorithm is
equal to the gradient of expected reward, and thus that the algorithm is an instance of
stochastic gradient ascent. This assures us that the algorithm has robust convergence
properties.

Note that we did not require any properties of the reward baseline other than that
it not depend on the selected action. For example, we could have set is to zero, or
to 1000, and the algorithm would still be an instance of stochastic gradient ascent.
The choice of the baseline does not a↵ect the expected update of the algorithm, but
it does a↵ect the variance of the update and thus the rate of convergence (as shown,
e.g., in Figure 2.6). Choosing it as the average of the rewards may not be the very
best, but it is simple and works well in practice.

2.8 Associative Search (Contextual Bandits)

So far in this chapter we have considered only nonassociative tasks, in which there
is no need to associate di↵erent actions with di↵erent situations. In these tasks the
learner either tries to find a single best action when the task is stationary, or tries
to track the best action as it changes over time when the task is nonstationary.



Steps to understanding 
Policy-gradient methods

• Policy approximation

• The average-reward (reward rate) objective

• Stochastic gradient ascent/descent

• The policy-gradient theorem and its proof

• Approximating the gradient

• Eligibility functions for a few cases

• A complete algorithm
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eg, linear-exponential policies 
(discrete actions)

• The “preference” for action a in state s is linear 
in " and a state-action feature vector #(s,a)

• The probability of action a in state s is 
exponential in its preference

• Corresponding eligibility function:

Final, complete policy-gradient algorithm:

Initialize parameters of policy ✓ 2 Rn, and state-value function w 2 Rm

Initialize eligibility traces e✓ 2 Rn and ew 2 Rm to 0

Initialize R̄ = 0

On each step, in state S:
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Policy-gradient setup
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rṽ⇡(s
0
)�

X

s

d⇡(s)rṽ⇡(s)
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Complete PG algorithm

update eligibility trace for critic

form TD error from critic

update average reward estimate

update critic parameters

update eligibility trace for actor

update actor parameters

Final, complete policy-gradient algorithm:

Initialize parameters of policy ✓ 2 Rn, and state-value function w 2 Rm

Initialize eligibility traces e✓ 2 Rn and ew 2 Rm to 0

Initialize R̄ = 0

On each step, in state S:

Choose A according to ⇡(·|S,✓)
Take action A, observe S 0, R

�  R� R̄ + v̂(S 0,w)� v̂(S,w)

R̄ R̄ + ↵✓�
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w w + ↵w �ew

e✓  �e✓ + r⇡(A|S,✓)
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✓  ✓ + ↵✓ �e✓
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The generality of the  
policy-gradient strategy

• Can be applied whenever we can compute the 
effect of parameter changes on the action 
probabilities, 

• E.g., has been applied to spiking neuron models

• There are many possibilities other than linear-
exponential and linear-gaussian

• e.g., mixture of random, argmax, and fixed-
width gaussian; learn the mixing weights, drift/
diffusion models
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eg, linear-gaussian policies 
(continuous actions)
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density

$ and % linear 
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eg, linear-gaussian policies 
(continuous actions)

• The mean and std. dev. for the action taken in 
state s are linear and linear-exponential in 

• The probability density function for the action 
taken in state s is gaussian
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Gaussian eligibility functions
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The generality of the  
policy-gradient strategy (2)
• Can be applied whenever we can compute the effect of 

parameter changes  
on the action probabilities, 

• Can we apply PG when outcomes are viewed as action?

• e.g., the action of “turning on the light”  
or the action of “going to the bank”

• is this an alternate strategy for temporal abstraction?

• We would need to learn—not compute—the gradient 
of these states w.r.t. the policy parameter
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ṽ⇡(s)
.
=

1X

k=1

E⇡[Rt+k � r(⇡) | St=s]

q̃⇡(s, a)
.
=

1X

k=1

E⇡[Rt+k � r(⇡) | St=s, At=a]

�✓t ⇡ ↵
@r(⇡)

@✓
.
= ↵rr(⇡)

rr(⇡) =
X

s

d⇡(s)
X

a

q̃⇡(s, a)r⇡(a|s,✓) (the policy-gradient theorem)

= E
⇣

q̃⇡(St, At)� v(St)
⌘r⇡(At|St,✓)

⇡(At|St,✓)

���� St ⇠ d⇡, At ⇠ ⇡(·|St,✓)

�

= E
⇣

G̃�
t � v̂(St,w)

⌘r⇡(At|St,✓)

⇡(At|St,✓)

���� St ⇠ d⇡, At:1 ⇠ ⇡

�

⇡
⇣
G̃�

t � v̂(St,w)
⌘r⇡(At|St,✓)

⇡(At|St,✓)
(by sampling under ⇡)

✓t+1
.
= ✓t + ↵

⇣
G̃�

t � v̂(St,w)
⌘r⇡(At|St,✓)

⇡(At|St,✓)

e.g., in the one-step linear case:

= ✓t + ↵
⇣
Rt+1 � R̄t +w>

t �t+1 �w>
t �t)

⌘r⇡(At|St,✓)

⇡(At|St,✓)
.
= ✓t + ↵�te(At, St)

i



Have we eliminated action?
• If any state can be an action, then what is still special 

about actions?

• The parameters/weights are what we can really, 
directly control

• We have always, in effect, “sensed” our actions  
(even in the !-greedy case)

• Perhaps actions are just sensory signals that we can 
usually control easily

• Perhaps there is no longer any need for a special 
concept of action in the RL framework


