
CMPUT 366: Intelligent Systems Page 5 of 13

6. (3 pts) What three things form the “deadly triad” – the three things that cannot be combined in
the same learning situation without risking divergence? (circle three)

(a) eligibility traces

(b) bootstrapping

(c) sample backups

(d) "-greedy action selection

(e) linear function approximation

(f) off-line updating

(g) off-policy learning

(h) exploration bonuses

7. True or False: For any stationary MDP, assuming a step-size (↵) sequence satisfying the stan-
dard stochastic approximation criteria, and a fixed policy, convergence in the prediction problem
is guaranteed for

T F (2 pts) online, off-policy TD(1) with linear function approximation

T F (2 pts) online, on-policy TD(0) with linear function approximation

T F (2 pts) offline, off-policy TD(0) with linear function approximation

T F (2 pts) dynamic programming with linear function approximation

T F (2 pts) dynamic programming with nonlinear function approximation

T F (2 pts) gradient-descent Monte Carlo with linear function approximation

T F (2 pts) gradient-descent Monte Carlo with nonlinear function approximation

8. True or False: (3 pts) TD(0) with linear function approximation converges to a local minimum
in the MSE between the approximate value function and the true value function V ⇡.

9. In tile-coding function approximation,

(a) (2 pts) the primary determinate of the shape of generalization is:

(b) (2 pts) the primary determinate of the acuity (fineness, resolution) of the asymptotic ap-
proximation is the product of:

10. True or False: Sample-based planning methods

T F (3 pts) can be focused more precisely than full backups on particular sequences or state–
action pairs of interest

The Deadly Triad
the three things that together result in instability

1. Function approximation

2. Bootstrapping

3. Off-policy training data (e.g., Q-learning, DP)

even if:
• prediction (fixed given policies)
• linear with binary features
• expected updates (as in asynchronous DP, iid)

CMPUT 366: Intelligent Systems Page 5 of 13

6. (3 pts) What three things form the “deadly triad” – the three things that cannot be combined in
the same learning situation without risking divergence? (circle three)

(a) eligibility traces

(b) bootstrapping

(c) sample backups

(d) "-greedy action selection

(e) linear function approximation

(f) off-line updating

(g) off-policy learning

(h) exploration bonuses

7. True or False: For any stationary MDP, assuming a step-size (↵) sequence satisfying the stan-
dard stochastic approximation criteria, and a fixed policy, convergence in the prediction problem
is guaranteed for

T F (2 pts) online, off-policy TD(1) with linear function approximation

T F (2 pts) online, on-policy TD(0) with linear function approximation

T F (2 pts) offline, off-policy TD(0) with linear function approximation

T F (2 pts) dynamic programming with linear function approximation

T F (2 pts) dynamic programming with nonlinear function approximation

T F (2 pts) gradient-descent Monte Carlo with linear function approximation

T F (2 pts) gradient-descent Monte Carlo with nonlinear function approximation

8. True or False: (3 pts) TD(0) with linear function approximation converges to a local minimum
in the MSE between the approximate value function and the true value function V ⇡.

9. In tile-coding function approximation,

(a) (2 pts) the primary determinate of the shape of generalization is:

(b) (2 pts) the primary determinate of the acuity (fineness, resolution) of the asymptotic ap-
proximation is the product of:

10. True or False: Sample-based planning methods

T F (3 pts) can be focused more precisely than full backups on particular sequences or state–
action pairs of interest

CMPUT 366: Intelligent Systems Page 5 of 13

6. (3 pts) What three things form the “deadly triad” – the three things that cannot be combined in
the same learning situation without risking divergence? (circle three)

(a) eligibility traces

(b) bootstrapping

(c) sample backups

(d) "-greedy action selection

(e) linear function approximation

(f) off-line updating

(g) off-policy learning

(h) exploration bonuses

7. True or False: For any stationary MDP, assuming a step-size (↵) sequence satisfying the stan-
dard stochastic approximation criteria, and a fixed policy, convergence in the prediction problem
is guaranteed for

T F (2 pts) online, off-policy TD(1) with linear function approximation

T F (2 pts) online, on-policy TD(0) with linear function approximation

T F (2 pts) offline, off-policy TD(0) with linear function approximation

T F (2 pts) dynamic programming with linear function approximation

T F (2 pts) dynamic programming with nonlinear function approximation

T F (2 pts) gradient-descent Monte Carlo with linear function approximation

T F (2 pts) gradient-descent Monte Carlo with nonlinear function approximation

8. True or False: (3 pts) TD(0) with linear function approximation converges to a local minimum
in the MSE between the approximate value function and the true value function V ⇡.

9. In tile-coding function approximation,

(a) (2 pts) the primary determinate of the shape of generalization is:

(b) (2 pts) the primary determinate of the acuity (fineness, resolution) of the asymptotic ap-
proximation is the product of:

10. True or False: Sample-based planning methods

T F (3 pts) can be focused more precisely than full backups on particular sequences or state–
action pairs of interest

The Deadly Triad
the three things that together result in instability

1. Function approximation
• linear or more with proportional complexity
• state aggregation ok; ok if “nearly Markov”

2. Bootstrapping
• λ=1 ok, ok if λ big enough (problem dependent)

3. Off-policy training
• may be ok if “nearly on-policy”
• if policies very different, variance may be too high anyway

Off-policy learning

• Learning about a policy different than the
policy being used to generate actions

• Most often used to learn optimal
behaviour from a given data set, or
from more exploratory behaviour

• Key to ambitious theories of
knowledge and perception as continual
prediction about the outcomes of many
options

Baird’s counter-example

V
k
(s) =

!(7)+2!(1)

terminal

state99%

1%

100%

V
k
(s) =

!(7)+2!(2)

V
k
(s) =

!(7)+2!(3)

V
k
(s) =

!(7)+2!(4)

V
k
(s) =

!(7)+2!(5)

V
k
(s) =

2!(7)+!(6)

• P and d are not linked

• d is all states with equal probability

• P is according to this Markov chain:

r = 0
on all transitions

TD can diverge:
Baird’s counter-example

� = 0.01 � = 0.99 �0 = (1, 1, 1, 1, 1, 10, 1)�

0

5

10

0 1000 2000 3000 4000 5000

10

10

/ -10

Iterations (k)

5
10

10
10

0
10

-

-

Parameter
values, !k(i)

(log scale,

broken at ±1)

!k(7)

!k(1) – !k(5)

!k(6)

deterministic updates

TD(0) can diverge:
A simple example

TD update:

TD fixpoint:

� 2�
r=1

⇥ = r + �⇤⇥⌅� � ⇤⇥⌅

= 0 + 2⇤ � ⇤

= ⇤

�⇤ = �⇥⌅

= �⇤

�� = 0

Diverges!

Previous attempts to solve
the off-policy problem

• Importance sampling

• With recognizers

• Least-squares methods, LSTD, LSPI,
iLSTD

• Averagers

• Residual gradient methods

Desiderata:
We want a TD algorithm that

• Bootstraps (genuine TD)

• Works with linear function approximation  
(stable, reliably convergent)

• Is simple, like linear TD — O(n)

• Learns fast, like linear TD

• Can learn off-policy (arbitrary P and d)

• Learns from online causal trajectories  
(no repeat sampling from the same state)

A little more theory
�⇤ / ⇥⌅ =

�
r + �⇤>⌅0 � ⇤>⌅

�
⌅

= ⇤>(�⌅0 � ⌅)⌅+ r⌅

= ⌅ (�⌅0 � ⌅)
>
⇤ + r⌅

E [�⇤] / �E
h
⌅ (⌅� �⌅0)

>
i
⇤ + E [r⌅]

E [�⇤] / �A⇤ + b
convergent if 
A is pos. def.

therefore, at  
the TD fixpoint:

C = E
⇥
��>⇤

covariance 
matrix

�1

2
r✓MSPBE = �A>C�1(A� � b)

always pos. def.

A�⇤ = b

�⇤ = A�1b
LSTD computes this directly

TD(0) Solution and Stability

Sutton, Mahmood & White

imation. We examine the conditions under which the expected update of on-policy TD(0)
is stable, then why those conditions do not apply under o↵-policy training, and finally how
they can be recovered for o↵-policy training using established importance-sampling methods
together with the emphasis idea. After introducing the basic idea of emphatic algorithms
using the special case of TD(0), we then develop the general case. In particular, we consider
a case with general state-dependent discounting and bootstrapping functions, and with a
user-specified allocation of function approximation resources. Our new theoretical results
and the emphatic TD(�) algorithm are presented fully for this general case. Empirical ex-
amples elucidating the main theoretical results are presented in the last section prior to the
conclusion.

2. On-policy Stability of TD(0)

To begin, let us review the conditions for stability of conventional TD(�) under on-policy
training with data from a continuing finite Markov decision process. Consider the simplest
function approximation case, that of linear TD(�) with � = 0 and constant discount-rate
parameter � 2 [0, 1). Conventional linear TD(0) is defined by the following update to the
parameter vector ✓t 2 Rn, made at each of a sequence of time steps t = 0, 1, 2, . . ., on
transition from state St 2 S to state St+1

2 S, taking action At 2 A and receiving reward
Rt+1

2 R:

✓t+1

.
= ✓t + ↵

⇣
Rt+1

+ �✓>
t �(St+1

) � ✓>
t �(St)

⌘
�(St), (1)

where ↵ > 0 is a step-size parameter, and �(s) 2 Rn is the feature vector corresponding to
state s. The notation “

.
=” indicates an equality by definition rather than one that follows

from previous definitions. In on-policy training, the actions are chosen according to a target
policy ⇡ : A⇥S ! [0, 1], where ⇡(a|s) .

= P{At =a|St =s}. The state and action sets S and A

are assumed to be finite, but the number of states is assumed much larger than the number
of learned parameters, |S| .

= N � n, so that function approximation is necessary. We use
linear function approximation, in which the inner product of the parameter vector and the
feature vector for a state is meant to be an approximation to the value of that state:

✓>
t �(s) ⇡ v⇡(s)

.
= E⇡[Gt|St =s] , (2)

where E⇡[·] denotes an expectation conditional on all actions being selected according to ⇡,
and Gt, the return at time t, is defined by

Gt
.
= Rt+1

+ �Rt+2

+ �2Rt+3

+ · · · . (3)

The TD(0) update (1) can be rewritten to make the stability issues more transparent:

✓t+1

= ✓t + ↵
⇣

Rt+1

�(St)| {z }
bt2Rn

��(St) (�(St) � ��(St+1

))>
| {z }

At2Rn⇥n

✓t

⌘

= ✓t + ↵(bt � At✓t) (4)

= (I � ↵At)✓t + ↵bt.

4

An Emphatic Approach to Off-policy TD Learning

The matrix At multiplies the parameter ✓t and is thereby critical to the stability of the
iteration. To develop intuition, consider the special case in which At is a diagonal matrix.
If any of the diagonal elements are negative, then the corresponding diagonal element of
I� ↵At will be greater than one, and the corresponding component of ✓t will be amplified,
which will lead to divergence if continued. (The second term (↵bt) does not a↵ect the
stability of the iteration.) On the other hand, if the diagonal elements of At are all positive,
then ↵ can be chosen smaller than one over the largest of them, such that I�↵At is diagonal
with all diagonal elements between 0 and 1. In this case the first term of the update tends
to shrink ✓t, and stability is assured. In general, ✓t will be reduced toward zero whenever
At is positive definite.1

In actuality, however, At and bt are random variables that vary from step to step,
in which case stability is determined by the steady-state expectation, limt!1 E[At]. In
our setting, after an initial transient, states will be visited according to the steady-state
distribution under ⇡ (which we assume exists). We represent this distribution by a vector
d⇡, each component of which gives the limiting probability of being in a particular state2

[d⇡]s
.
= d⇡(s)

.
= limt!1 P{St =s}, which we assume exists and is positive at all states (any

states not visited with nonzero probability can be removed from the problem). The special
property of the steady-state distribution is that once the process is in it, it remains in it. Let
P⇡ denote the N ⇥ N matrix of transition probabilities [P⇡]ij

.
=

P
a ⇡(a|i)p(j|i, a) where

p(j|i, a)
.
= P{St+1

=j|St = i, At =a}. Then the special property of d⇡ is that

P

>
⇡ d⇡ = d⇡. (5)

Consider any stochastic algorithm of the form (4), and let A

.
= limt!1 E[At] and

b

.
= limt!1 E[bt]. We define the stochastic algorithm to be stable if and only if the

corresponding deterministic algorithm,

✓̄t+1

.
= ✓̄t + ↵(b � A✓̄t), (6)

is convergent to a unique fixed point independent of the initial ✓̄
0

. This will occur i↵ the
A matrix has a full set of eigenvalues all of whose real parts are positive. If a stochastic
algorithm is stable and ↵ is reduced according to an appropriate schedule, then its parameter
vector may converge with probability one. However, in this paper we focus only on stability
as a prerequisite for convergence (of the original stochastic algorithm), leaving convergence
itself to future work. If the stochastic algorithm converges, it is to a fixed point ✓̄ of the
deterministic algorithm, at which A✓̄ = b, or ✓̄ = A

�1

b. (Stability assures existence of
the inverse.) In this paper we focus on establishing stability by proving that A is positive
definite. From definiteness it immediately follows that A has a full set of eigenvectors
(because y

>
Ay > 0, 8y 6= 0) and that the corresponding eigenvalues all have real parts.3

1. A real matrix A is defined to be positive definite in this paper i↵ y>Ay > 0 for any real vector y 6= 0.
2. Here and throughout the paper we use brackets with subscripts to denote the individual elements of

vectors and matrices.
3. To see the latter, let Re(x) denote the real part of a complex number x, and let y⇤ denotes the conjugate

transpose of a complex vector y. Then, for any eigenvalue–eigenvector pair �,y: 0 < Re(y⇤Ay) =
Re(y⇤

�y) = Re(�)y⇤y =) 0 < Re(�).

5

✓⇤ = A�1b

LSTD(0)

At =
X

k

⇢k�k

�
�k � ��k+1

�>
bt =

X

k

⇢kRk�k

✓t = A�1
t bt

✓⇤ = A�1b

A = lim
t!1

E⇡

⇥
�t(�t � ��t+1)

>⇤ b = lim
t!1

E⇡[Rt+1�t]

Ideal:

Algorithm:

lim
t!1

At = A lim
t!1

bt = b

lim
t!1

✓t = ✓⇤

A = lim
t!1

E⇡

⇥
et(�t � ��t+1)

>⇤

LSTD(λ)

✓t = A�1
t bt

✓⇤ = A�1b

Ideal:

Algorithm:

lim
t!1

At = A lim
t!1

bt = b

lim
t!1

✓t = ✓⇤

b = lim
t!1

E⇡[Rt+1et]

At =
X

k

⇢kek
�
�k � ��k+1

�>
bt =

X

k

⇢kRkek

