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What is  
temporal-difference learning?

• The most important and distinctive idea in 
reinforcement learning

• A way of learning to predict,  
from changes in your predictions,  
without waiting for the final outcome

• A way of taking advantage of state  
in multi-step prediction problems

• Learning a guess from a guess



Examples of TD learning 
opportunities

• Learning to evaluate backgammon 
positions from changes in evaluation 
within a game

• Learning where your tennis opponent 
will hit the ball from his approach

• Learning what features of a market 
indicate that it will have a major decline

• Learning to recognize your friend’s face 



Function approximation

• TD learning is sometimes done in a table-
lookup context - where every state is 
distinct and treated totally separately

• But really, to be powerful, we must 
generalize between states

• The same state never occurs twice

For example, in Computer Go, 
we use 106 parameters to learn about 10170 positions



Advantages of TD methods 
for prediction

1. Data efficient.  
Learn much faster on Markov problems

2. Cheap to implement.  
Require less memory, peak computation; 

3. Able to learn from incomplete sequences.  
In particular, able to learn off-policy



Off-policy learning

• Learning about a policy different than the 
one being used to generate actions

• Most often used to learn optimal 
behavior from a given data set, or from 
more exploratory behavior

• Key to ambitious theories of 
knowledge and perception as continual 
prediction about the outcomes of 
options
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Value-function approximation 
from sample trajectories
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From terminal outcomes to 
per-step rewards
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TD methods operate on 
individual transitions

• True values:
1
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Training set is now a bag of transitions
Select from them i.i.d.

(independently, identically distributed)

ds - distribution of first state s
rs - expected reward given s

Pss’ - prob of next state s’ given s

Sample transition: (s, r, s�) or (�, r, ��)

P and d 
are linked

trajectories transitions

TD(0) algorithm: ⇤ � ⇤ + �⇥⌅

⇥ = r + �⇤⇥⌅� � ⇤⇥⌅



Off-policy training

• True values:
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trajectories transitions

P and d are no longer 
linked

TD(0) may diverge!



Baird’s counter-example
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• d is all states with equal probability
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TD can diverge:  
Baird’s counter-example
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TD(0) can diverge:  
A simple example

TD update:

TD fixpoint:

� 2�
r=1

⇥ = r + �⇤⇥⌅� � ⇤⇥⌅

= 0 + 2⇤ � ⇤

= ⇤

�⇤ = �⇥⌅

= �⇤

�� = 0

Diverges!



Previous attempts to solve 
the off-policy problem

• Importance sampling

• With recognizers

• Least-squares methods, LSTD, LSPI, iLSTD

• Averagers

• Residual gradient methods



Desiderata: 
We want a TD algorithm that

• Bootstraps (genuine TD)

• Works with linear function approximation  
(stable, reliably convergent)

• Is simple, like linear TD — O(n)

• Learns fast, like linear TD

• Can learn off-policy (arbitrary P and d)

• Learns from online causal trajectories  
(no repeat sampling from the same state)
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Gradient-descent learning 
methods - the recipe

1. Pick an objective function       , a 
parameterized function to be minimized

2. Use calculus to analytically compute the 
gradient 

3. Find a “sample gradient” that you can sample 
on every time step and whose expected value 
equals the gradient

4. Take small steps in    proportional to the 
sample gradient:

J(�)

��J(�)

�

⇥ ⇥ ⇥ � �⇤�Jt(⇥)



⇥ = r + �⇤⇥⌅� � ⇤⇥⌅

Conventional TD is not the 
gradient of anything

�⇤ = �⇥⌅

⇧2J

⇧⇤j⇧⇤i
=

⇧(⇥⌅i)
⇧⇤j

= (�⌅�
j � ⌅j)⌅i

⇧2J

⇧⇤i⇧⇤j
=

⇧(⇥⌅j)
⇧⇤i

= (�⌅�
i � ⌅i)⌅j

⌅J

⌅⇥i
= �⇤iAssume there is a J such that:

Then look at the second derivative:

⇥2J

⇥�j⇥�i
�= ⇥2J

⇥�i⇥�j

TD(0) algorithm:

}
Real 2nd derivatives must be symmetric

Contradiction!
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Gradient descent for TD: 
What should the objective function be?

• Close to the true values?

• Or close to satisfying the Bellman equation?  
 
 
where T is the Bellman operator defined by

V = r + �PV

= TV

Mean-Square
Value Error

MSE(�) =
�

s

ds (V�(s)� V (s))2

= ⇥ V� � V ⇥2
D

Mean-Square
Bellman Error MSBE(�) = ⇥ V� � TV� ⇥2

D

True value  
function



Value function geometry
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The space spanned by the feature vectors,  
weighted by the state visitation distribution

T takes you outside  
the space

Π projects you back  
into it

D = diag(d)

V� = �TV�

Is the TD fix-point

Better objective fn?

Previous work on 
gradient methods for TD 

minimized this objective fn
(Baird 1995, 1999)

Mean Square Projected Bellman Error (MSPBE)



A-split example (Dayan 1992)

A

B

1 0

50%50%

100%

A1 A2

B

1 0

100%

100%

100%

Clearly, the true values are  
V (A) = 0.5
V (B) = 1

But if you minimize the naive
objective fn, 
                       , 
then you get the solution

Even in the tabular case (no FA)   

J(⇥) = E[�2]

V (B) = 2/3

V (A) = 1/3



Split-A example

A1 A2

B

1 0

100%

100%

100%

The two ‘A’ states look the 
same, they share a single 
feature and must be given the 
same approximate value

The example appears just like 
the previous, and the 
minimum MSBE solution is 

V (B) = 2/3

V (A) = 1/3
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Three new algorithms

• GTD, the original gradient TD algorithm 
(Sutton, Szepevari & Maei, 2008)

• GTD-2, a second-generation GTD

• TD-C, TD with gradient correction

• GTD(λ), GQ(λ)



First relate the geometry  
to the iid statistics
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Figure 1. Geometric relationships between (the square root of) the
two Bellman-error objective functions.

point. That is, we use as our objective function the mean-
square projected Bellman error:

MSPBE(⇤) = ⇥ V� ��TV� ⇥2
D . (5)

Figure 1 shows the relationship between this and the
MSBE objective function geometrically.

Further insight can be gained by considering the episodic
examples in Figure 2. In the system on the left, trajectories
start in state A and then either terminate immediately with
a reward of zero, or transition to state B with a reward of
zero and then terminate with a reward of 1. The two choices
occur each with 50% probability, and � = 1, so the right
values for states A and B are clearly 0.5 and 1 respectively
(these values minimize both MSBE and MSPBE). Dayan
(1992) used this example to show that a naive gradient-
descent approach (based on gradient descent in the mean-
squared TD error, E

�
⇥2

⇥
) works poorly in that it ends up as-

signing values of 1/3 and 2/3 to A and B even in the tabular
case. The example also illustrates the need for two inde-
pendent samples in the residual-gradient algorithm (Baird
1995) as, with a single example, that algorithm finds the
1/3, 2/3 solution. With two samples, residual gradient cor-
rectly finds the 0.5, 1 solution. However, consider now the
example in the right panel. Here function approximation is
in play, in that we have two states, A1 and A2, that share the
same feature representation; they look the same and must
be given the same approximate value. Trajectories start in
each of the two A states with 50% probability; one leads de-
terministically to B and 1, while the other leads determinis-
tically to 0. From the observed feature vectors, this exam-
ple looks like the previous, except that here taking multiple
samples is no help as the system is deterministic and they
will all be the same. Because of this, the residual-gradient
algorithm will find the 1/3, 2/3 solution here. However,
the problem is not with the algorithm, but with the objec-
tive. The 1/3, 2/3 solution is in fact the minimum-MSBE
solution on this problem; only the MSPBE criterion puts
the minimum at 0.5, 1 on this problem. The MSBE ob-
jective causes function approximation resources to be ex-
pended trying to reduce the Bellman error associated with

A

B

1 0

50%50%

100%

A1 A2

B

1 0

100%

100%

100%

Figure 2. The A-split (left) and split-A (right) examples.

A1 and A2, whereas the MSPBE objective takes into ac-
count that their approximated values will ultimately be pro-
jected onto the same point.

Finally, we close this discussion of objective functions by
giving the function used to derive the original GTD algo-
rithm. This objective function does not seem to have a
ready geometric interpretation. Here we call it the norm
of the expected TD update:

NEU(⇤) = E[⇥⌅]⇤ E[⇥⌅] . (6)

4. Derivation of the new algorithms
In this section we derive two new algorithms as stochastic
gradient descent in the projected Bellman error objective
(5). We first establish some relationships between the rele-
vant expectations and vector-matrix quantities:

E
�
⌅⌅⇤

⇥
=

⇧

s

ds⌅s⌅
⇤
s = ⇥⇤D⇥,

E[⇥⌅] =
⇧

s

ds⌅s

⇤
Rs + �

⇧

s�

Pss�V�(s⇥)� V�(s)

⌅

= ⇥⇤D(TV� � V�),

and note that

�⇤D� = (⇥(⇥⇤D⇥)�1⇥⇤D)⇤D(⇥(⇥⇤D⇥)�1⇥⇤D)
= D⇤⇥(⇥⇤D⇥)�1⇥⇤D⇥(⇥⇤D⇥)�1⇥⇤D

= D⇤⇥(⇥⇤D⇥)�1⇥⇤D.

Using these relationships, the projected objective can be
written in terms of expectations as

MSPBE(⇤)
= ⇥ V� ��TV� ⇥2

D

= ⇥ �(V� � TV�) ⇥2
D

= (�(V� � TV�))⇤D(�(V� � TV�))
= (V� � TV�)⇤�⇤D�(V� � TV�)
= (V� � TV�)⇤D⇤⇥(⇥⇤D⇥)�1⇥⇤D(V� � TV�)
= (⇥⇤D(TV� � V�))⇤(⇥⇤D⇥)�1⇥⇤D(TV� � V�)

= E[⇥⌅]⇤ E
�
⌅⌅⇤

⇥�1 E[⇥⌅] .



Derivation of the GTD-2 algorithm
as gradient descent in the MSPBE
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From this form, it is clear that MSPBE differs from
NEU only by the inclusion of the inverse of the feature-
covariance matrix. As in that work, here we use a second
modifiable parameter w ⌅ ⇧n to form a quasi-stationary
estimate of all but one of the expectations in the gradient
of the objective function, thereby avoiding the need for two
independent samples. Here we use a conventional linear
predictor which causes w to approximate

w ⇥ E
⇤
��⌅

⌅�1 E[⌅�] . (7)

Using this, we can write the gradient of the MSPBE objec-
tive function as

1
2
 MSPBE(⌃) = E

⇤
(�� ⇤�⇥)�⌅

⌅
E

⇤
��⌅

⌅�1 E[⌅�]

⇥ E
⇤
(�� ⇤�⇥)�⌅

⌅
w,

which can be directly sampled. The resultant O(n) algo-
rithm, which we call GTD-2, is

⌃k+1 = ⌃k + �k(�k � ⇤�⇥k)(�⌅k wk), (8)

where wk is updated by

wk+1 = wk + ⇥k(⌅k � �⌅k wk)�k. (9)

The derivation of our second new algorithm, which we call
TD(0) with gradient correction, starts from the same ex-
pression for the gradient and then takes a slightly different
route:

1
2
 MSPBE(⌃)

= E
⇤
(�� ⇤�⇥)�⌅

⌅
E

⇤
��⌅

⌅�1 E[⌅�]

=
�
E

⇤
��⌅

⌅
� ⇤E

⇤
�⇥�⌅

⌅⇥
E

⇤
��⌅

⌅�1 E[⌅�]

= E[⌅�]� ⇤E
⇤
�⇥�⌅

⌅
E

⇤
��⌅

⌅�1 E[⌅�]

⇥ E[⌅�]� ⇤E
⇤
�⇥�⌅

⌅
w,

which is then sampled, resulting in the O(n)-computation
algorithm:

⌃k+1 = ⌃k + �k⌅k�k � �⇤�⇥k(�⌅k wk), (10)

where wk is generated by (9) as in GTD-2. Note that the
update to ⌃k is the sum of two terms, and that the first term
is exactly the same as the update of conventional linear
TD(0) (2). The second term is essentially an adjustment
or correction of the TD(0) update so that it follows the gra-
dient of the MSPBE objective function. If the second pa-
rameter vector is initialized to w0 = 0 and ⇥k is small,
then this algorithm will start out making nearly the same
updates as conventional linear TD(0). Note also that after
the convergence of ⌃k, wk will converge to zero again.

5. Proof of convergence of GTD-2
The purpose of this section is to establish that the GTD-2
algorithm converges with probability one to the TD fixed
point (4) in the i.i.d. setting under standard assumptions. In
particular, we have the following result:

Theorem 1 (Convergence of GTD-2). Consider the GTD-
2 iterations (8) and (9) with step-size sequences �k and ⇥k

satisfying ⇥k = ⇧�k, ⇧ > 0, �k, ⇥k ⌅ (0, 1],
⌥⇤

k=0 �k =
⇤,

⌥⇤
k=0 �2

k < ⇤. Further assume that (�k, rk, �⇥k)
is an i.i.d. sequence with uniformly bounded second mo-
ments. Let A = E

⇤
�k(�k � ⇤�⇥k)⌅

⌅
, b = E[rk�k], and

C = E
⇤
�k�⌅k

⌅
. Assume that A is non-singular. Then the

parameter vector ⌃k converges with probability one to the
TD(0) fixed point (4).

Proof. The proof is very similar to that given by Sutton,
Szepesvári and Maei (2009) for GTD, and we refer the
reader to that reference for further details. It is shown there
that the TD fixed point can be written as the condition

�A⌃ + b = 0. (11)

Thus it suffices for the theorem to show convergence to
a solution to (11). The proof is based on the ordinary-
differential-equation (ODE) approach (Borkar & Meyn
2000).

First, we rewrite the algorithm’s two iterations as a sin-
gle iteration in a combined parameter vector with 2n com-
ponents, ⌥⌅k = (d⌅k , ⌃⌅k), where dk = wk/

�
⇧, and a

new reward-related vector with 2n components, g⌅k+1 =
(rk�⌅k , 0⌅), as follows:

⌥k+1 = ⌥k + �k
�

⇧ (Gk+1⌥k + gk+1) ,

where

Gk+1 =
⇧

��⇧�k�⌅k �k(⇤�⇥k � �k)⌅
(�k � ⇤�⇥k)�⌅k 0

⌃
.

Let G = E[Gk] and g = E[gk]. Note that G and g are well-
defined as by the assumption the process {�k, rk, �⇥k}k is
i.i.d. In particular,

G =
⇧
��⇧ C �A

A⌅ 0

⌃
, g =

⇧
b
0

⌃
.

Further, note that (11) follows from

G⌥ + g = 0, (12)

where ⌥⌅= (d⌅, ⌃⌅).

Now we apply Theorem 2.2 of Borkar & Meyn (2000). For
this purpose we write ⌥k+1 = ⌥k + �k

�
⇧(G⌥k + g +

(Gk+1�G)⌥k + (gk+1� g)) = ⌥k + �⇥k(h(⌥k) + Mk+1),
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where wk is generated by (9) as in GTD-2. Note that the
update to ⌃k is the sum of two terms, and that the first term
is exactly the same as the update of conventional linear
TD(0) (2). The second term is essentially an adjustment
or correction of the TD(0) update so that it follows the gra-
dient of the MSPBE objective function. If the second pa-
rameter vector is initialized to w0 = 0 and ⇥k is small,
then this algorithm will start out making nearly the same
updates as conventional linear TD(0). Note also that after
the convergence of ⌃k, wk will converge to zero again.

5. Proof of convergence of GTD-2
The purpose of this section is to establish that the GTD-2
algorithm converges with probability one to the TD fixed
point (4) in the i.i.d. setting under standard assumptions. In
particular, we have the following result:

Theorem 1 (Convergence of GTD-2). Consider the GTD-
2 iterations (8) and (9) with step-size sequences �k and ⇥k

satisfying ⇥k = ⇧�k, ⇧ > 0, �k, ⇥k ⌅ (0, 1],
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⌅
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⇤
�k�⌅k
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parameter vector ⌃k converges with probability one to the
TD(0) fixed point (4).

Proof. The proof is very similar to that given by Sutton,
Szepesvári and Maei (2009) for GTD, and we refer the
reader to that reference for further details. It is shown there
that the TD fixed point can be written as the condition

�A⌃ + b = 0. (11)

Thus it suffices for the theorem to show convergence to
a solution to (11). The proof is based on the ordinary-
differential-equation (ODE) approach (Borkar & Meyn
2000).

First, we rewrite the algorithm’s two iterations as a sin-
gle iteration in a combined parameter vector with 2n com-
ponents, ⌥⌅k = (d⌅k , ⌃⌅k), where dk = wk/

�
⇧, and a

new reward-related vector with 2n components, g⌅k+1 =
(rk�⌅k , 0⌅), as follows:

⌥k+1 = ⌥k + �k
�

⇧ (Gk+1⌥k + gk+1) ,

where

Gk+1 =
⇧

��⇧�k�⌅k �k(⇤�⇥k � �k)⌅
(�k � ⇤�⇥k)�⌅k 0

⌃
.

Let G = E[Gk] and g = E[gk]. Note that G and g are well-
defined as by the assumption the process {�k, rk, �⇥k}k is
i.i.d. In particular,

G =
⇧
��⇧ C �A

A⌅ 0

⌃
, g =

⇧
b
0

⌃
.

Further, note that (11) follows from

G⌥ + g = 0, (12)

where ⌥⌅= (d⌅, ⌃⌅).

Now we apply Theorem 2.2 of Borkar & Meyn (2000). For
this purpose we write ⌥k+1 = ⌥k + �k

�
⇧(G⌥k + g +

(Gk+1�G)⌥k + (gk+1� g)) = ⌥k + �⇥k(h(⌥k) + Mk+1),

Assuming  

Sampling the expectation yields the O(n) update:

⇤ ⇥ ⇤ + �(⌅� ⇥⌅�)(⌅⇥w)
with

w ⇥ w + �(⇥ � ⇤�w)⇤
where

⇥ = r + �⇤⇥⌅� � ⇤⇥⌅
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Derivation of the original GTD algorithm
  as gradient descent in                 

w � E[�⇥]Assuming  

Sampling the expectation yields the same θ update 
as GTD-2, but with a different    update:w

w ⇥ w + �(⇥⇤� w)

NEU(⇥) = E[�⇤]�E[�⇤]

1
2
⇤�NEU(⇤) = E[(⌅� �⌅�)⌅⇥]E[⇥⌅]

⇥ E[(⌅� �⌅�)⌅⇥]w



Derivation of the TD-C algorithm
as gradient descent in the MSPBEFast Gradient-Descent Methods for Temporal-Difference Learning with Linear Function Approximation

From this form, it is clear that MSPBE differs from
NEU only by the inclusion of the inverse of the feature-
covariance matrix. As in that work, here we use a second
modifiable parameter w ⌅ ⇧n to form a quasi-stationary
estimate of all but one of the expectations in the gradient
of the objective function, thereby avoiding the need for two
independent samples. Here we use a conventional linear
predictor which causes w to approximate

w ⇥ E
⇤
��⌅

⌅�1 E[⌅�] . (7)

Using this, we can write the gradient of the MSPBE objec-
tive function as

1
2
 MSPBE(⌃) = E

⇤
(�� ⇤�⇥)�⌅

⌅
E

⇤
��⌅

⌅�1 E[⌅�]

⇥ E
⇤
(�� ⇤�⇥)�⌅

⌅
w,

which can be directly sampled. The resultant O(n) algo-
rithm, which we call GTD-2, is

⌃k+1 = ⌃k + �k(�k � ⇤�⇥k)(�⌅k wk), (8)

where wk is updated by

wk+1 = wk + ⇥k(⌅k � �⌅k wk)�k. (9)

The derivation of our second new algorithm, which we call
TD(0) with gradient correction, starts from the same ex-
pression for the gradient and then takes a slightly different
route:

1
2
 MSPBE(⌃)

= E
⇤
(�� ⇤�⇥)�⌅

⌅
E

⇤
��⌅

⌅�1 E[⌅�]

=
�
E

⇤
��⌅
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⇤
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⌅⇥
E

⇤
��⌅

⌅�1 E[⌅�]

= E[⌅�]� ⇤E
⇤
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⌅
E

⇤
��⌅

⌅�1 E[⌅�]

⇥ E[⌅�]� ⇤E
⇤
�⇥�⌅

⌅
w,

which is then sampled, resulting in the O(n)-computation
algorithm:

⌃k+1 = ⌃k + �k⌅k�k � �⇤�⇥k(�⌅k wk), (10)

where wk is generated by (9) as in GTD-2. Note that the
update to ⌃k is the sum of two terms, and that the first term
is exactly the same as the update of conventional linear
TD(0) (2). The second term is essentially an adjustment
or correction of the TD(0) update so that it follows the gra-
dient of the MSPBE objective function. If the second pa-
rameter vector is initialized to w0 = 0 and ⇥k is small,
then this algorithm will start out making nearly the same
updates as conventional linear TD(0). Note also that after
the convergence of ⌃k, wk will converge to zero again.

5. Proof of convergence of GTD-2
The purpose of this section is to establish that the GTD-2
algorithm converges with probability one to the TD fixed
point (4) in the i.i.d. setting under standard assumptions. In
particular, we have the following result:

Theorem 1 (Convergence of GTD-2). Consider the GTD-
2 iterations (8) and (9) with step-size sequences �k and ⇥k

satisfying ⇥k = ⇧�k, ⇧ > 0, �k, ⇥k ⌅ (0, 1],
⌥⇤

k=0 �k =
⇤,

⌥⇤
k=0 �2

k < ⇤. Further assume that (�k, rk, �⇥k)
is an i.i.d. sequence with uniformly bounded second mo-
ments. Let A = E

⇤
�k(�k � ⇤�⇥k)⌅

⌅
, b = E[rk�k], and

C = E
⇤
�k�⌅k

⌅
. Assume that A is non-singular. Then the

parameter vector ⌃k converges with probability one to the
TD(0) fixed point (4).

Proof. The proof is very similar to that given by Sutton,
Szepesvári and Maei (2009) for GTD, and we refer the
reader to that reference for further details. It is shown there
that the TD fixed point can be written as the condition

�A⌃ + b = 0. (11)

Thus it suffices for the theorem to show convergence to
a solution to (11). The proof is based on the ordinary-
differential-equation (ODE) approach (Borkar & Meyn
2000).

First, we rewrite the algorithm’s two iterations as a sin-
gle iteration in a combined parameter vector with 2n com-
ponents, ⌥⌅k = (d⌅k , ⌃⌅k), where dk = wk/
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⇧, and a

new reward-related vector with 2n components, g⌅k+1 =
(rk�⌅k , 0⌅), as follows:
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.

Let G = E[Gk] and g = E[gk]. Note that G and g are well-
defined as by the assumption the process {�k, rk, �⇥k}k is
i.i.d. In particular,

G =
⇧
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A⌅ 0

⌃
, g =

⇧
b
0
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.

Further, note that (11) follows from

G⌥ + g = 0, (12)

where ⌥⌅= (d⌅, ⌃⌅).

Now we apply Theorem 2.2 of Borkar & Meyn (2000). For
this purpose we write ⌥k+1 = ⌥k + �k

�
⇧(G⌥k + g +

(Gk+1�G)⌥k + (gk+1� g)) = ⌥k + �⇥k(h(⌥k) + Mk+1),
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From this form, it is clear that MSPBE differs from
NEU only by the inclusion of the inverse of the feature-
covariance matrix. As in that work, here we use a second
modifiable parameter w ⌅ ⇧n to form a quasi-stationary
estimate of all but one of the expectations in the gradient
of the objective function, thereby avoiding the need for two
independent samples. Here we use a conventional linear
predictor which causes w to approximate

w ⇥ E
⇤
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Using this, we can write the gradient of the MSPBE objec-
tive function as
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which can be directly sampled. The resultant O(n) algo-
rithm, which we call GTD-2, is

⌃k+1 = ⌃k + �k(�k � ⇤�⇥k)(�⌅k wk), (8)

where wk is updated by

wk+1 = wk + ⇥k(⌅k � �⌅k wk)�k. (9)

The derivation of our second new algorithm, which we call
TD(0) with gradient correction, starts from the same ex-
pression for the gradient and then takes a slightly different
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which is then sampled, resulting in the O(n)-computation
algorithm:
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where wk is generated by (9) as in GTD-2. Note that the
update to ⌃k is the sum of two terms, and that the first term
is exactly the same as the update of conventional linear
TD(0) (2). The second term is essentially an adjustment
or correction of the TD(0) update so that it follows the gra-
dient of the MSPBE objective function. If the second pa-
rameter vector is initialized to w0 = 0 and ⇥k is small,
then this algorithm will start out making nearly the same
updates as conventional linear TD(0). Note also that after
the convergence of ⌃k, wk will converge to zero again.

5. Proof of convergence of GTD-2
The purpose of this section is to establish that the GTD-2
algorithm converges with probability one to the TD fixed
point (4) in the i.i.d. setting under standard assumptions. In
particular, we have the following result:

Theorem 1 (Convergence of GTD-2). Consider the GTD-
2 iterations (8) and (9) with step-size sequences �k and ⇥k
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parameter vector ⌃k converges with probability one to the
TD(0) fixed point (4).

Proof. The proof is very similar to that given by Sutton,
Szepesvári and Maei (2009) for GTD, and we refer the
reader to that reference for further details. It is shown there
that the TD fixed point can be written as the condition

�A⌃ + b = 0. (11)

Thus it suffices for the theorem to show convergence to
a solution to (11). The proof is based on the ordinary-
differential-equation (ODE) approach (Borkar & Meyn
2000).

First, we rewrite the algorithm’s two iterations as a sin-
gle iteration in a combined parameter vector with 2n com-
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Sampling the expectation yields 

⌅ ⇥ ⌅ + �⇤⇧� �⇥⇧�(⇧⇥w)

conventional TD(0) gradient correction term

With    updated as in GTD-2w
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Convergence theorems

• For arbitrary P and d

• All algorithms converge w.p.1 to the TD fix-
point:

• GTD, GTD-2 converges at one time scale

• TD-C converges in a two-time-scale sense
�,⇥ �⇥ 0

�

⇥
�⇥ 0

� = ⇥ �⇥ 0

E[�⇥] �⇥ 0
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• Value-function approximation

• Gradient-descent methods - LMS example

• Objective functions for TD

• GD derivation of new algorithms

• Proofs of convergence

• Empirical results
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Random walk problem (on-policy)

A B C D E
100000

start

3 different feature representations. 
• 5 tabular features
• 5 inverted-tabular features
• 3 features (genuine FA)



Boyan chain problem (on-policy)
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Figure 1: The two experimental domains: (a) Boyan’s chain example and (b) mountain car.
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Figure 2: Performance of various algorithms in Boyan’s chain problem with 6 different lambda
values. Each line represents the averaged error over last 100 episodes after 100, 200, and 1000
episodes respectively. Results are also averaged over 30 trials.

5.1 Boyan Chain Problem

The first domain we consider is the Boyan chain problem. Figure 1(a) shows the Markov chain
together with the feature vectors corresponding to each state. This is an episodic task where the
discount factor � is one. The chain starts in state 13 and finishes in state 0. For all states s > 2, there
exists an equal probability of ending up in (s � 1) and (s � 2). The reward is -3 for all transitions
except from state 2 to 1 and state 1 to 0, where the rewards are -2 and 0, respectively.

Figure 2 shows the comparative results. The horizontal axis corresponds to different ⇥ values,
while the vertical axis illustrates the RMS error in a log scale averaged over all states uniformly.
Note that in this domain, the optimum solution is in the space spanned by the feature vectors:
�� = (�24,�16,�8, 0)T . Each line shows the averaged error over last 100 episodes after 100,
200, and 1000 episodes over the same set of observed trajectories based on 30 trials. As expected,
LSTD(⇥) requires the least amount of data, obtaining a low average error after only 100 episodes.
With only 200 episodes, though, the iLSTD(⇥) methods are performing as well as LSTD(⇥), and
dramatically outperforming TD(⇥). Finally, notice that iLSTD-Greedy(⇥) despite its lack of asymp-
totic guarantee, is actually performing slightly better than iLSTD-Random(⇥) for all cases of ⇥.
Although ⇥ did not play a significant role for LSTD(⇥) which matches the observation of Boyan
[Boyan, 1999], ⇥ > 0 does show an improvement in performance for the iLSTD(⇥) methods.

Table 1 shows the total averaged per-step CPU time for each method. For all methods sparse ma-
trix optimizations were utilized and LSTD used the efficient incremental inverse implementation.
Although TD(⇥) is the fastest method, the overall difference between the timings in this domain is
very small, which is due to the small number of features and a small ratio n

k . In the next domain, we
illustrate the effect of a larger and more interesting feature space where this ratio is larger.

[ [0

0

0.75

0.25

[ [0

0

0

1

[ [0

0

0.5

0.5
[ [0

0

1

0

13 states, 4 features
Exact solution possible

Boyan 1999



.0

.03

.06

.09

.12

.03 .06 .12 .25 0.5

!

R
M

S
P

B
E

0 100 200

Random Walk - Tabular features

episodes

GTD

GTD-2

TD-C
TD

GTD

GTD-2

TD-C
TD

.00

.05

.10

.15

.20

.03 .06 .12 .25 0.5

!

R
M

S
P

B
E

0 250 500

Random Walk - Inverted features

episodes

GTD

GTD-2

TD-CTD

GTD

GTD-2TD-C

TD

.00

.02

.04

.06

.08

.008 .015 .03 .06 .12 .25 0.5

!

R
M

S
P

B
E

0 100 200 300

Random Walk - Dependent features

episodes

GTD

GTD-2

TD-C
TD

GTD

GTD-2

TD-C
TD

0

0.7

1.4

2.1

2.8

.015 .03 .06 .12 .25 0.5 1 2

!

R
M

S
P

B
E

0 50 100

Boyan Chain

episodes

GTD

GTD-2
TD-C

TD

GTD

GTD-2

TD-C
TD

Summary of empirical results 
on small problems

TD, TD-C  >  GTD-2  >  GTD
Sometimes  TD > TD-C



Computer Go experiment

• Learn the value function (probability of 
winning) for 5x5 Go

• Lots of features, linearly combined, then 
passed through a logistic non-linearity

• An established experimental testbed

• Tried the various algorithms

• Results are still preliminary



Computer Go results
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Off-policy result: 
Baird’s counter-example
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Conclusions

• The first O(n) methods to work off-
policy (and meet all the other desiderata)

• New methods (GTD-2 and TD-C) are 
much faster than original GTD

• Not clear yet whether or not TD-C is 
sufficiently close to TD speed on on-
policy problems

• But it is at least a major step closer.  And 
it works off-policy


