New Temporal-Difference Methods
Based on Gradient Descent

Rich Sutton
Hamid Maei
Doina Precup (McGill)
Shalabh Bhatnagar (lIS Bangalore)
Csaba Szepesvari

Eric Wiewiora
David Silver



Qutline

The promise and problems of TD learning
Value-function approximation
Gradient-descent methods - LMS example
Objective functions for TD

GD derivation of new algorithms

Proofs of convergence

Empirical results

Conclusions



What is
temporal-difference learning?

® The most important and distinctive idea in
reinforcement learning

® A way of learning to predict,
from changes in your predictions,
without waiting for the final outcome

® A way of taking advantage of state
in multi-step prediction problems

® | earning a guess from a guess



Examples of TD learning
opportunities

® | earning to evaluate backgammon
positions from changes in evaluation
within a game

® | earning where your tennis opponent
will hit the ball from his approach

® | earning what features of a market
indicate that it will have a major decline

® | earning to recognize your friend’s face



Function approximation

® [D learning is sometimes done in a table-
lookup context - where every state is
distinct and treated totally separately

® But really, to be powerful, we must
generalize between states

® [he same state never occurs twice

For example, in Computer Go,
we use |0® parameters to learn about 10'7Y positions

M— ——————————————




Advantages of TD methods
for prediction

|. Data efficient.
Learn much faster on Markov problems

2. Cheap to implement.
Require less memory, peak computation;

3. Able to learn from incomplete sequences.
In particular, able to learn off-policy



Off-policy learning

® | earning about a policy different than the
one being used to generate actions

® Most often used to learn optimal
behavior from a given data set, or from
more exploratory behavior

® Key to ambitious theories of
knowledge and perception as continual
prediction about the outcomes of
options
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Value-function approximation
from sample trajectories

states
— \ outcome ® True values:

\ V(s) = E|outcome|s]
5
e Estimated values:

—M Vo(s) = V(s), 0 R”
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* Linear approximation:
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modifiable parameter vector

feature vector
for state s



Value-function approximation
from sample trajectories

feature parameter

vector  vector ¢ True values:
0 | 0.1
: V(s) = E|outcome|s]
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* Linear approximation:
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From terminal outcomes to

state trajectory

rewards

o6

target values (returns)
= sum of future
rewards until end
of episode, or until
discounting horizon

Vi(s)

A

® True values:

per-step rewards

O

Z*ytrt | sg =5

| t=0

discount rate,
0<~y<1




TD methods operate on
individual transitions

trajectories transitions
@& - distrpbution of first state s
0| 7s - ex}ected EEward given s
P o prob @f next sgate s’ given s
I 2 0
Y 9 ? Training set is now a bag of transitions
P alndl dd Iv Select from them i.i.d.
are 'n_ﬁf (independently, identically distributed)

Sample transition: (s,7,s") or (¢,r,¢')
TD(0) algorithm: 6 — 6 + ad¢
d=r+70"¢"—0"¢



Off-policy training

trajectories

transitions

P and d are no longer
linked

TD(0) may diverge!




Baird’s counter-example

® P and d are not linked
® dis all states with equal probability
® P is according to this Markov chain:

Vk(S) = Vk(S) = Vk(S) = Vk(S) = Vk(S) =
0(7)+20(1) (8(7)+26(2)] |6(7)+20(3) |0(7)+20(4) |O(7)+26(5)

a = 0.01
v = 0.99
100%
0o = (1,1,1,1,1,10,1) "
r=20

terminal
state




1D can diverge:
Baird’s counter-example
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TD(0) can diverge:
A simple example

§ = r+90 ¢ -0 ¢

= 0+20—-10
= 0
TD update: A0 = «adop
= af Diverges!

TD fixpoint: 0 = 0



Previous attempts to solve
the off-policy problem

® |mportance sampling

® With recognizers
® | east-squares methods, LSTD, LSPI, iLSTD
® Averagers

® Residual gradient methods



Desiderata:
We want a I D algorithm that

® Bootstraps (genuine TD)

® Works with linear function approximation
(stable, reliably convergent)

® |s simple, like linear TD — O(n)
® | earns fast, like linear TD
® Can learn off-policy (arbitrary P and d)

® | earns from online causal trajectories
(no repeat sampling from the same state)
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Gradient-descent learning
methods - the recipe

|. Pick an objective function J(6),a
parameterized function to be minimized

2. Use calculus to analytically compute the
gradient VyJ(0)

3. Find a “sample gradient” that you can sample
on every time step and whose expected value
equals the gradient

4. Take small steps in @ proportional to the
sample gradient:

0 — 60— aVeJ,(0)



Conventional TD is not the
gradient of anything

A0 = a0

TD(0) algorithm: S —r+0Td — 07

Assume there is a | such that: g‘; = §¢;

1

Then look at the second derivative:

0%.] B O(5¢;) B / L
693.@92. o 8(93- — (’7¢j o ¢J)¢z 82J # 82J
00.00; = 00,00
aQJ _ a(5¢) L / . | ] 1 73 9
p6,00. ~ oo, — 1% 9%

Real 2" derivatives must be symmetric
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Gradient descent for TD:
What should the objective function be!

® Close to the true values?

Mean-Square MSE(#) = Z ds (Vo(s) — V(S))2

Value Error
True value

2
= [|[Vo =V b function
® Or close to satisfying the Bellman equation?

Mean-Square
Bellman Error

MSBE(#) = || Vo—TVy |1

where T'is the Bellman operator defined by

Vi = r+~PV
= TV



Value function geometry

Previous work on
gradient methods for TD 7

L e 7N I takes you outside
minimized this objective fn — % N TV .
(Baird 1995, 1999) R , 0 thespace
P 11 I1 projects you back
. J:! Into it
T 11TV,
VQ ‘\‘ \\\
\\ __ P\MSPBE - . .
®.D = ~____— Better objective fn?
The space spanned by the feature vectors, V@ — HTV@
weighted by the state visitation distribution CmA
D — ding(d) Is the TD fix-point

Mean Square Projected Bellman Error (MSPBE)




A-split example (Dayan 1992)

50%

100% |
v

1

50%

0

Clearly, the true values are

V(A) =

0.9

V(B) =1
But if you minimize the naive

objective fn,

7(6) =

(67,

then you get the solution
V(A)=1/3
V(B) =2/3

Even in the tabular case (no FA)



Split-A example

-— s o> e e
- -—

-— -—
-_— e -— amm -

—
O =«

The two ‘A’ states look the
same, they share a single
feature and must be given the
same approximate value

The example appears just like
the previous, and the
minimum MSBE solution is

V(A)=1/3
V(B)=2/3
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Three new algorithms

® GTD, the original gradient TD algorithm
(Sutton, Szepevari & Maei, 2008)

® GTD-2,a second-generation GTD

o TD-C, TD with gradient correction

e GTD(\), GQ(\)



First relate the geometry

to the iid statistics

MSPBE ()

= | Vo —1ITVp |5

= || I(Ve —TVa) |15

(Vo — TVp)) D(IL(Vy — TVp))
Vo —TVy) ' T DII(Vy — TV,)
Vo —TVy)'D'®(@"'D®)'® "' D(Vy — TVp)
O'D(TVy—Vy)) (' D) 1® " D(TVy — Vp)

N N N N

= E[s¢]'

2[o07]

L[00)] .

&' D(TVy — V) = E[6¢)]
¢' DP = E[p¢" ]



Derivation of the GTD-2 algorithm
as gradient descent in the MSPBE

1 _ _ _ e
_VMSPBE()) = E[(¢—¢)6"[E[oo] " Elsg]) _e¥
~ E[(¢—¢")0 ] w, N

1

Assuming w~E[o¢¢'| E[5¢]

Sampling the expectation yields the O(n) update:

0 —0+alp—¢)(¢ w)
with

we—w+pB(6—¢ w)e
where

S=r+~0"¢ —0"¢



Derivation of the original GTD algorithm

as gradient descent in NEU(§) = E[6¢] ' E[§¢]
SVoNEU(®) = E[(¢—1¢)87 |50
~ E[(¢—7¢)o w
Assuming w ~ E|0¢

Sampling the expectation yields the same 0 update

as GTD-2, but with a different w update:

w —w+ B(6¢ — w)



Derivation of the TD-C algorithm
as gradient descent in the MSPBE

1
5 VMSPBE(0)

= E[(¢—7¢ ) |E[pp'

-

4

2

[0
[0¢

-
-7

(06" | —1E[¢'¢])

4

4

—1

[0 ¢]

2 [p0T] T E[6g]

—1

(00" |E[po'] " E[dg]
< :¢/¢T: w,

Assuming w ~E[¢¢T]  E[5¢]

Sampling the expectation yields

0 — 0+ adp—ayd (¢ w)

conventional TD(0)

\

With w updated as in GTD-2

gradient correction term
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Convergence theorems

For arbitrary P and d

All algorithms converge w.p.| to the TD fix-
PO\.‘@F(S@ — 0

GTD,_GﬁTD-Z converges at one time scale
a=0p0—770

TD-C convergesn a two-time-scale sense
o, — 0 5 > 0
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Random walk problem (on-policy)

~— A O—0O—CE—

start

3 different feature representations.
* 5 tabular features
* 5 inverted-tabular features
* 3 features (genuine FA)



Boyan chain problem (on-policy)

Boyan 1999

-3 -3

-3 -3 3

0 0 0 0
0) 0 0, 0]
1 0.75 0. 0]
0 0.25 0.5 1

| 3 states, 4 features
Exact solution possible



RMSPBE

RMSPBE
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Summary of empirical results
on small problems
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TD,TD-C > GTD-2 > GTD
Sometimes TD >TD-C



Computer Go experiment

® | earn the value function (probability of
winning) for 5x5 Go

® | ots of features, linearly combined, then
passed through a logistic non-linearity

® An established experimental testbed
® T[ried the various algorithms

® Results are still preliminary



NEU

Computer Go results

0.01 | _
5 \\\\\ \\\\ "
0.001 L — . !
1e-05 0.0001 0.001 0.01 0.1

Alpha

TD-C, TD > GTD, GTD-2




Off-policy result:
Baird’s counter-example
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GTD
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Sweeps

GTD-2

TDC

0 20 40 60 80 100 120 140 160 180 200
Sweeps

Gradient algorithms converge. TD diverges.



Conclusions

The first O(n) methods to work off-
policy (and meet all the other desiderata)

New methods (GTD-2 and TD-C) are
much faster than original GTD

Not clear yet whether or not TD-C is
sufficiently close to TD speed on on-
policy problems

But it is at least a major step closer. And
it works off-policy



