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An Emphatic Approach to Off-policy TD Learning

In actuality, however, At and bt are random variables that vary from step to step, in
which case stability is determined by the steady-state expectation limt!1 E[At]. In our set-
ting, after an initial transient, states will be visited according to the steady-state distribution
under ⇡. We represent this distribution by a vector d⇡, each component of which gives the
limiting probability of being in a particular state2 [d⇡]s

.

= d⇡(s)
.

= limt!1 P{St =s}, which
we assume exists and is positive at all states (any states not visited with nonzero probability
can be removed from the problem). The special property of the steady-state distribution is
that once the process is in it, it remains in it. Let P⇡ denote the N ⇥N matrix of transition
probabilities [P⇡]ij

.

=
P

a ⇡(a|i)p(j|i, a) where p(j|i, a)
.

= P{St+1

=j|St = i, At =a}. Then
the special property of d⇡ is that

P

>
⇡ d⇡ = d⇡. (5)

For any algorithm that can be written in the form (4), we define its expected update as:

u(w)
.

= w + ↵(b � Aw), (6)

where A
.

= limt!1 E[At] and b

.

= limt!1 E[bt]. We say that the algorithm and its expected
update are stable i↵ the A matrix is positive definite, and that they are unstable if A is
not positive semi-definite. Baird’s (1995) counterexample, for example, is not technically
about TD(�), but about the expected update; in e↵ect, he showed that TD(�)’s A is not
positive semi-definite.

If an algorithm is stable, then its parameter vector will not diverge and, if ↵ is reduced
according to an appropriate schedule, it may converge with probability one. If convergence
does occur, it is to a parameter vector w1 at which the expected update is zero. Thus
Aw1 = b, or w1 = A

�1

b. (Positive definiteness of the matrix A assures the existence
of its inverse.) The full technical conditions for convergence are complex and beyond the
scope of this paper. Here we consider only the positive definiteness of A, which we consider
a key prerequisite for stability and convergence.

Now let us return to analyzing on-policy TD(0). Here the A matrix is

A = lim
t!1

E[At] = lim
t!1

E⇡

h
x(St) (x(St) � �x(St+1

))>
i

=
X

s

d⇡(s)x(s)

 
x(s) � �

X

s0

[P⇡]ss0x(s0)

!>

= X

>
D⇡(I � �P⇡)X,

where X is the N ⇥ n matrix with the x(s) as its rows, and D⇡ is the N ⇥ N diagonal
matrix with d⇡ on its diagonal. This A matrix is typical of those we consider in this paper
in that it consists of X> and X wrapped around a distinctive N ⇥ N matrix that varies
with the algorithm and the setting, and which we call the key matrix. An A matrix of this
form will be positive definite whenever the corresponding key matrix is positive definite.3

In this case the key matrix is D⇡(I � �P⇡).

2. Here and throughout the paper we use brackets with subscripts to denote the individual elements of
vectors and matrices.

3. Strictly speaking, positive definiteness of the key matrix assures only that A is positive semi-definite,
because it is possible that Xy = 0 for some y 6= 0, in which case y>Ay will be zero as well. To rule
this out, we assume, as is commonly done, that the columns of X are linearly independent (i.e., that the
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2. On-policy Convergence of TD(0)

To begin, let us review the conditions for convergence of conventional TD(�) under on-policy
training with data from a continuing finite Markov decision process. Consider the simplest
function approximation case, that of linear TD(�) with � = 0 and constant discount-rate
parameter � 2 [0, 1). Conventional linear TD(0) is defined by the following update to the
parameter vector wt 2 Rn, made at each of a sequence of time steps t = 0, 1, 2, . . ., on
transition from state St 2 S to state St+1

2 S, taking action At 2 A and receiving reward
Rt+1

2 R:

wt+1

.

= wt + ↵

⇣
Rt+1

+ �w

>
t x(St+1

) � w

>
t x(St)

⌘
x(St), (1)

where ↵ > 0 is a step-size parameter, and x(s) 2 Rn is the feature vector corresponding to
state s. The notation “

.

=” indicates an equality by definition rather than one that follows
from previous definitions. In on-policy training, the actions are chosen according to a target
policy ⇡ : A⇥S ! [0, 1], where ⇡(a|s) .

= P{At =a|St =s}. The state and action sets S and A

are assumed to be finite, but the number of states is assumed much larger than the number
of learned parameters, |S| .

= N � n, so that function approximation is necessary. We use
linear function approximation, in which the inner product of the parameter vector and the
feature vector for a state is meant to be an approximation to the value of that state:

w

>
t x(s) ⇡ v⇡(s)

.

= E⇡[Gt|St =s] , (2)

where E⇡[·] denotes an expectation conditional on all actions being selected according to ⇡,
and Gt, the return at time t, is defined by

Gt
.

= Rt+1

+ �Rt+2

+ �

2

Rt+3

+ · · · . (3)

The TD(0) update (1) can be rewritten to make the stability issues more transparent:

wt+1

= wt + ↵

⇣
Rt+1

x(St)| {z }
bt2Rn

�x(St) (x(St) � �x(St+1

))>| {z }
At2Rn⇥n

wt

⌘

= wt + ↵(bt � Atwt) (4)

= (I � ↵At)wt + ↵bt.

The matrix At multiplies the parameter wt and is thereby critical to the stability of the
iteration. To develop intuition, consider the special case in which At is a diagonal matrix.
If any of the diagonal elements are negative, then the corresponding diagonal element of
I�↵At will be greater than one, and the corresponding component of wt will be amplified,
which will lead to divergence if continued. The second term (↵bt) does not a↵ect the
stability of the iteration. On the other hand, if the diagonal elements of At are all positive,
then ↵ can be chosen smaller than the largest of them, such that I � ↵At is diagonal with
all diagonal elements between 0 and 1. In this case the first term of the update tends to
shrink wt, and stability is assured. In general, wt will be reduced toward zero whenever At

is positive definite.1

1. A real matrix A is defined to be positive definite in this paper i↵ y>Ay > 0 for any vector y 6= 0.
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bt2Rn
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))>| {z }
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The matrix At multiplies the parameter wt and is thereby critical to the stability of the
iteration. To develop intuition, consider the special case in which At is a diagonal matrix.
If any of the diagonal elements are negative, then the corresponding diagonal element of
I�↵At will be greater than one, and the corresponding component of wt will be amplified,
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>
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+ �
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are assumed to be finite, but the number of states is assumed much larger than the number
of learned parameters, |S| .

= N � n, so that function approximation is necessary. We use
linear function approximation, in which the inner product of the parameter vector and the
feature vector for a state is meant to be an approximation to the value of that state:
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where E⇡[·] denotes an expectation conditional on all actions being selected according to ⇡,
and Gt, the return at time t, is defined by
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The TD(0) update (1) can be rewritten to make the stability issues more transparent:
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The matrix At multiplies the parameter wt and is thereby critical to the stability of the
iteration. To develop intuition, consider the special case in which At is a diagonal matrix.
If any of the diagonal elements are negative, then the corresponding diagonal element of
I�↵At will be greater than one, and the corresponding component of wt will be amplified,
which will lead to divergence if continued. The second term (↵bt) does not a↵ect the
stability of the iteration. On the other hand, if the diagonal elements of At are all positive,
then ↵ can be chosen smaller than the largest of them, such that I � ↵At is diagonal with
all diagonal elements between 0 and 1. In this case the first term of the update tends to
shrink wt, and stability is assured. In general, wt will be reduced toward zero whenever At

is positive definite.1

1. A real matrix A is defined to be positive definite in this paper i↵ y>Ay > 0 for any vector y 6= 0.
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In actuality, however, At and bt are random variables that vary from step to step, in
which case stability is determined by the steady-state expectation limt!1 E[At]. In our set-
ting, after an initial transient, states will be visited according to the steady-state distribution
under ⇡. We represent this distribution by a vector d⇡, each component of which gives the
limiting probability of being in a particular state2 [d⇡]s

.

= d⇡(s)
.

= limt!1 P{St =s}, which
we assume exists and is positive at all states (any states not visited with nonzero probability
can be removed from the problem). The special property of the steady-state distribution is
that once the process is in it, it remains in it. Let P⇡ denote the N ⇥N matrix of transition
probabilities [P⇡]ij

.

=
P

a ⇡(a|i)p(j|i, a) where p(j|i, a)
.
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=j|St = i, At =a}. Then
the special property of d⇡ is that
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For any algorithm that can be written in the form (4), we define its expected update as:

u(w)
.

= w + ↵(b � Aw), (6)

where A
.

= limt!1 E[At] and b

.

= limt!1 E[bt]. We say that the algorithm and its expected
update are stable i↵ the A matrix is positive definite, and that they are unstable if A is
not positive semi-definite. Baird’s (1995) counterexample, for example, is not technically
about TD(�), but about the expected update; in e↵ect, he showed that TD(�)’s A is not
positive semi-definite.

If an algorithm is stable, then its parameter vector will not diverge and, if ↵ is reduced
according to an appropriate schedule, it may converge with probability one. If convergence
does occur, it is to a parameter vector w1 at which the expected update is zero. Thus
Aw1 = b, or w1 = A

�1

b. (Positive definiteness of the matrix A assures the existence
of its inverse.) The full technical conditions for convergence are complex and beyond the
scope of this paper. Here we consider only the positive definiteness of A, which we consider
a key prerequisite for stability and convergence.

Now let us return to analyzing on-policy TD(0). Here the A matrix is
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t!1
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D⇡(I � �P⇡)X,

where X is the N ⇥ n matrix with the x(s) as its rows, and D⇡ is the N ⇥ N diagonal
matrix with d⇡ on its diagonal. This A matrix is typical of those we consider in this paper
in that it consists of X> and X wrapped around a distinctive N ⇥ N matrix that varies
with the algorithm and the setting, and which we call the key matrix. An A matrix of this
form will be positive definite whenever the corresponding key matrix is positive definite.3

In this case the key matrix is D⇡(I � �P⇡).

2. Here and throughout the paper we use brackets with subscripts to denote the individual elements of
vectors and matrices.

3. Strictly speaking, positive definiteness of the key matrix assures only that A is positive semi-definite,
because it is possible that Xy = 0 for some y 6= 0, in which case y>Ay will be zero as well. To rule
this out, we assume, as is commonly done, that the columns of X are linearly independent (i.e., that the
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2. On-policy Convergence of TD(0)

To begin, let us review the conditions for convergence of conventional TD(�) under on-policy
training with data from a continuing finite Markov decision process. Consider the simplest
function approximation case, that of linear TD(�) with � = 0 and constant discount-rate
parameter � 2 [0, 1). Conventional linear TD(0) is defined by the following update to the
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where ↵ > 0 is a step-size parameter, and x(s) 2 Rn is the feature vector corresponding to
state s. The notation “
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=” indicates an equality by definition rather than one that follows
from previous definitions. In on-policy training, the actions are chosen according to a target
policy ⇡ : A⇥S ! [0, 1], where ⇡(a|s) .

= P{At =a|St =s}. The state and action sets S and A

are assumed to be finite, but the number of states is assumed much larger than the number
of learned parameters, |S| .

= N � n, so that function approximation is necessary. We use
linear function approximation, in which the inner product of the parameter vector and the
feature vector for a state is meant to be an approximation to the value of that state:
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The matrix At multiplies the parameter wt and is thereby critical to the stability of the
iteration. To develop intuition, consider the special case in which At is a diagonal matrix.
If any of the diagonal elements are negative, then the corresponding diagonal element of
I�↵At will be greater than one, and the corresponding component of wt will be amplified,
which will lead to divergence if continued. The second term (↵bt) does not a↵ect the
stability of the iteration. On the other hand, if the diagonal elements of At are all positive,
then ↵ can be chosen smaller than the largest of them, such that I � ↵At is diagonal with
all diagonal elements between 0 and 1. In this case the first term of the update tends to
shrink wt, and stability is assured. In general, wt will be reduced toward zero whenever At

is positive definite.1

1. A real matrix A is defined to be positive definite in this paper i↵ y>Ay > 0 for any vector y 6= 0.
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policy ⇡ : A⇥S ! [0, 1], where ⇡(a|s) .
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of learned parameters, |S| .
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The matrix At multiplies the parameter wt and is thereby critical to the stability of the
iteration. To develop intuition, consider the special case in which At is a diagonal matrix.
If any of the diagonal elements are negative, then the corresponding diagonal element of
I�↵At will be greater than one, and the corresponding component of wt will be amplified,
which will lead to divergence if continued. The second term (↵bt) does not a↵ect the
stability of the iteration. On the other hand, if the diagonal elements of At are all positive,
then ↵ can be chosen smaller than the largest of them, such that I � ↵At is diagonal with
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where ↵ > 0 is a step-size parameter, and x(s) 2 Rn is the feature vector corresponding to
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=” indicates an equality by definition rather than one that follows
from previous definitions. In on-policy training, the actions are chosen according to a target
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= P{At =a|St =s}. The state and action sets S and A

are assumed to be finite, but the number of states is assumed much larger than the number
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The matrix At multiplies the parameter wt and is thereby critical to the stability of the
iteration. To develop intuition, consider the special case in which At is a diagonal matrix.
If any of the diagonal elements are negative, then the corresponding diagonal element of
I�↵At will be greater than one, and the corresponding component of wt will be amplified,
which will lead to divergence if continued. The second term (↵bt) does not a↵ect the
stability of the iteration. On the other hand, if the diagonal elements of At are all positive,
then ↵ can be chosen smaller than the largest of them, such that I � ↵At is diagonal with
all diagonal elements between 0 and 1. In this case the first term of the update tends to
shrink wt, and stability is assured. In general, wt will be reduced toward zero whenever At
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1. A real matrix A is defined to be positive definite in this paper i↵ y>Ay > 0 for any vector y 6= 0.
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In actuality, however, At and bt are random variables that vary from step to step, in
which case stability is determined by the steady-state expectation limt!1 E[At]. In our set-
ting, after an initial transient, states will be visited according to the steady-state distribution
under ⇡. We represent this distribution by a vector d⇡, each component of which gives the
limiting probability of being in a particular state2 [d⇡]s

.

= d⇡(s)
.

= limt!1 P{St =s}, which
we assume exists and is positive at all states (any states not visited with nonzero probability
can be removed from the problem). The special property of the steady-state distribution is
that once the process is in it, it remains in it. Let P⇡ denote the N ⇥N matrix of transition
probabilities [P⇡]ij

.

=
P

a ⇡(a|i)p(j|i, a) where p(j|i, a)
.

= P{St+1

=j|St = i, At =a}. Then
the special property of d⇡ is that

P

>
⇡ d⇡ = d⇡. (5)

For any algorithm that can be written in the form (4), we define its expected update as:

u(w)
.

= w + ↵(b � Aw), (6)

where A
.

= limt!1 E[At] and b

.

= limt!1 E[bt]. We say that the algorithm and its expected
update are stable i↵ the A matrix is positive definite, and that they are unstable if A is
not positive semi-definite. Baird’s (1995) counterexample, for example, is not technically
about TD(�), but about the expected update; in e↵ect, he showed that TD(�)’s A is not
positive semi-definite.

If an algorithm is stable, then its parameter vector will not diverge and, if ↵ is reduced
according to an appropriate schedule, it may converge with probability one. If convergence
does occur, it is to a parameter vector w1 at which the expected update is zero. Thus
Aw1 = b, or w1 = A

�1

b. (Positive definiteness of the matrix A assures the existence
of its inverse.) The full technical conditions for convergence are complex and beyond the
scope of this paper. Here we consider only the positive definiteness of A, which we consider
a key prerequisite for stability and convergence.

Now let us return to analyzing on-policy TD(0). Here the A matrix is

A = lim
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D⇡(I � �P⇡)X,

where X is the N ⇥ n matrix with the x(s) as its rows, and D⇡ is the N ⇥ N diagonal
matrix with d⇡ on its diagonal. This A matrix is typical of those we consider in this paper
in that it consists of X> and X wrapped around a distinctive N ⇥ N matrix that varies
with the algorithm and the setting, and which we call the key matrix. An A matrix of this
form will be positive definite whenever the corresponding key matrix is positive definite.3

In this case the key matrix is D⇡(I � �P⇡).

2. Here and throughout the paper we use brackets with subscripts to denote the individual elements of
vectors and matrices.

3. Strictly speaking, positive definiteness of the key matrix assures only that A is positive semi-definite,
because it is possible that Xy = 0 for some y 6= 0, in which case y>Ay will be zero as well. To rule
this out, we assume, as is commonly done, that the columns of X are linearly independent (i.e., that the
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2. On-policy Convergence of TD(0)

To begin, let us review the conditions for convergence of conventional TD(�) under on-policy
training with data from a continuing finite Markov decision process. Consider the simplest
function approximation case, that of linear TD(�) with � = 0 and constant discount-rate
parameter � 2 [0, 1). Conventional linear TD(0) is defined by the following update to the
parameter vector wt 2 Rn, made at each of a sequence of time steps t = 0, 1, 2, . . ., on
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Rt+1

2 R:

wt+1

.

= wt + ↵

⇣
Rt+1

+ �w

>
t x(St+1

) � w

>
t x(St)

⌘
x(St), (1)

where ↵ > 0 is a step-size parameter, and x(s) 2 Rn is the feature vector corresponding to
state s. The notation “

.

=” indicates an equality by definition rather than one that follows
from previous definitions. In on-policy training, the actions are chosen according to a target
policy ⇡ : A⇥S ! [0, 1], where ⇡(a|s) .

= P{At =a|St =s}. The state and action sets S and A

are assumed to be finite, but the number of states is assumed much larger than the number
of learned parameters, |S| .

= N � n, so that function approximation is necessary. We use
linear function approximation, in which the inner product of the parameter vector and the
feature vector for a state is meant to be an approximation to the value of that state:

w

>
t x(s) ⇡ v⇡(s)

.

= E⇡[Gt|St =s] , (2)

where E⇡[·] denotes an expectation conditional on all actions being selected according to ⇡,
and Gt, the return at time t, is defined by

Gt
.

= Rt+1

+ �Rt+2

+ �

2

Rt+3

+ · · · . (3)

The TD(0) update (1) can be rewritten to make the stability issues more transparent:

wt+1

= wt + ↵

⇣
Rt+1

x(St)| {z }
bt2Rn

�x(St) (x(St) � �x(St+1

))>| {z }
At2Rn⇥n

wt

⌘

= wt + ↵(bt � Atwt) (4)

= (I � ↵At)wt + ↵bt.

The matrix At multiplies the parameter wt and is thereby critical to the stability of the
iteration. To develop intuition, consider the special case in which At is a diagonal matrix.
If any of the diagonal elements are negative, then the corresponding diagonal element of
I�↵At will be greater than one, and the corresponding component of wt will be amplified,
which will lead to divergence if continued. The second term (↵bt) does not a↵ect the
stability of the iteration. On the other hand, if the diagonal elements of At are all positive,
then ↵ can be chosen smaller than the largest of them, such that I � ↵At is diagonal with
all diagonal elements between 0 and 1. In this case the first term of the update tends to
shrink wt, and stability is assured. In general, wt will be reduced toward zero whenever At

is positive definite.1

1. A real matrix A is defined to be positive definite in this paper i↵ y>Ay > 0 for any vector y 6= 0.
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In actuality, however, At and bt are random variables that vary from step to step, in
which case stability is determined by the steady-state expectation limt!1 E[At]. In our set-
ting, after an initial transient, states will be visited according to the steady-state distribution
under ⇡. We represent this distribution by a vector d⇡, each component of which gives the
limiting probability of being in a particular state2 [d⇡]s

.

= d⇡(s)
.

= limt!1 P{St =s}, which
we assume exists and is positive at all states (any states not visited with nonzero probability
can be removed from the problem). The special property of the steady-state distribution is
that once the process is in it, it remains in it. Let P⇡ denote the N ⇥N matrix of transition
probabilities [P⇡]ij

.

=
P

a ⇡(a|i)p(j|i, a) where p(j|i, a)
.

= P{St+1

=j|St = i, At =a}. Then
the special property of d⇡ is that

P

>
⇡ d⇡ = d⇡. (5)

For any algorithm that can be written in the form (4), we define its expected update as:

u(w)
.

= w + ↵(b � Aw), (6)

where A
.

= limt!1 E[At] and b

.

= limt!1 E[bt]. We say that the algorithm and its expected
update are stable i↵ the A matrix is positive definite, and that they are unstable if A is
not positive semi-definite. Baird’s (1995) counterexample, for example, is not technically
about TD(�), but about the expected update; in e↵ect, he showed that TD(�)’s A is not
positive semi-definite.

If an algorithm is stable, then its parameter vector will not diverge and, if ↵ is reduced
according to an appropriate schedule, it may converge with probability one. If convergence
does occur, it is to a parameter vector w1 at which the expected update is zero. Thus
Aw1 = b, or w1 = A

�1

b. (Positive definiteness of the matrix A assures the existence
of its inverse.) The full technical conditions for convergence are complex and beyond the
scope of this paper. Here we consider only the positive definiteness of A, which we consider
a key prerequisite for stability and convergence.

Now let us return to analyzing on-policy TD(0). Here the A matrix is

A = lim
t!1

E[At] = lim
t!1

E⇡

h
x(St) (x(St) � �x(St+1

))>
i

=
X

s

d⇡(s)x(s)

 
x(s) � �

X

s0

[P⇡]ss0x(s0)

!>

= X

>
D⇡(I � �P⇡)X,

where X is the N ⇥ n matrix with the x(s) as its rows, and D⇡ is the N ⇥ N diagonal
matrix with d⇡ on its diagonal. This A matrix is typical of those we consider in this paper
in that it consists of X> and X wrapped around a distinctive N ⇥ N matrix that varies
with the algorithm and the setting, and which we call the key matrix. An A matrix of this
form will be positive definite whenever the corresponding key matrix is positive definite.3

In this case the key matrix is D⇡(I � �P⇡).

2. Here and throughout the paper we use brackets with subscripts to denote the individual elements of
vectors and matrices.

3. Strictly speaking, positive definiteness of the key matrix assures only that A is positive semi-definite,
because it is possible that Xy = 0 for some y 6= 0, in which case y>Ay will be zero as well. To rule
this out, we assume, as is commonly done, that the columns of X are linearly independent (i.e., that the
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2. On-policy Convergence of TD(0)

To begin, let us review the conditions for convergence of conventional TD(�) under on-policy
training with data from a continuing finite Markov decision process. Consider the simplest
function approximation case, that of linear TD(�) with � = 0 and constant discount-rate
parameter � 2 [0, 1). Conventional linear TD(0) is defined by the following update to the
parameter vector wt 2 Rn, made at each of a sequence of time steps t = 0, 1, 2, . . ., on
transition from state St 2 S to state St+1

2 S, taking action At 2 A and receiving reward
Rt+1

2 R:

wt+1

.

= wt + ↵

⇣
Rt+1

+ �w

>
t x(St+1

) � w

>
t x(St)

⌘
x(St), (1)

where ↵ > 0 is a step-size parameter, and x(s) 2 Rn is the feature vector corresponding to
state s. The notation “

.

=” indicates an equality by definition rather than one that follows
from previous definitions. In on-policy training, the actions are chosen according to a target
policy ⇡ : A⇥S ! [0, 1], where ⇡(a|s) .

= P{At =a|St =s}. The state and action sets S and A

are assumed to be finite, but the number of states is assumed much larger than the number
of learned parameters, |S| .

= N � n, so that function approximation is necessary. We use
linear function approximation, in which the inner product of the parameter vector and the
feature vector for a state is meant to be an approximation to the value of that state:

w

>
t x(s) ⇡ v⇡(s)

.

= E⇡[Gt|St =s] , (2)

where E⇡[·] denotes an expectation conditional on all actions being selected according to ⇡,
and Gt, the return at time t, is defined by

Gt
.

= Rt+1

+ �Rt+2

+ �

2

Rt+3

+ · · · . (3)

The TD(0) update (1) can be rewritten to make the stability issues more transparent:

wt+1

= wt + ↵

⇣
Rt+1

x(St)| {z }
bt2Rn

�x(St) (x(St) � �x(St+1

))>| {z }
At2Rn⇥n

wt

⌘

= wt + ↵(bt � Atwt) (4)

= (I � ↵At)wt + ↵bt.

The matrix At multiplies the parameter wt and is thereby critical to the stability of the
iteration. To develop intuition, consider the special case in which At is a diagonal matrix.
If any of the diagonal elements are negative, then the corresponding diagonal element of
I�↵At will be greater than one, and the corresponding component of wt will be amplified,
which will lead to divergence if continued. The second term (↵bt) does not a↵ect the
stability of the iteration. On the other hand, if the diagonal elements of At are all positive,
then ↵ can be chosen smaller than the largest of them, such that I � ↵At is diagonal with
all diagonal elements between 0 and 1. In this case the first term of the update tends to
shrink wt, and stability is assured. In general, wt will be reduced toward zero whenever At

is positive definite.1

1. A real matrix A is defined to be positive definite in this paper i↵ y>Ay > 0 for any vector y 6= 0.
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In actuality, however, At and bt are random variables that vary from step to step, in
which case stability is determined by the steady-state expectation limt!1 E[At]. In our set-
ting, after an initial transient, states will be visited according to the steady-state distribution
under ⇡. We represent this distribution by a vector d⇡, each component of which gives the
limiting probability of being in a particular state2 [d⇡]s

.

= d⇡(s)
.

= limt!1 P{St =s}, which
we assume exists and is positive at all states (any states not visited with nonzero probability
can be removed from the problem). The special property of the steady-state distribution is
that once the process is in it, it remains in it. Let P⇡ denote the N ⇥N matrix of transition
probabilities [P⇡]ij

.

=
P

a ⇡(a|i)p(j|i, a) where p(j|i, a)
.

= P{St+1

=j|St = i, At =a}. Then
the special property of d⇡ is that

P

>
⇡ d⇡ = d⇡. (5)

For any algorithm that can be written in the form (4), we define its expected update as:

u(w)
.

= w + ↵(b � Aw), (6)

where A
.

= limt!1 E[At] and b

.

= limt!1 E[bt]. We say that the algorithm and its expected
update are stable i↵ the A matrix is positive definite, and that they are unstable if A is
not positive semi-definite. Baird’s (1995) counterexample, for example, is not technically
about TD(�), but about the expected update; in e↵ect, he showed that TD(�)’s A is not
positive semi-definite.

If an algorithm is stable, then its parameter vector will not diverge and, if ↵ is reduced
according to an appropriate schedule, it may converge with probability one. If convergence
does occur, it is to a parameter vector w1 at which the expected update is zero. Thus
Aw1 = b, or w1 = A

�1

b. (Positive definiteness of the matrix A assures the existence
of its inverse.) The full technical conditions for convergence are complex and beyond the
scope of this paper. Here we consider only the positive definiteness of A, which we consider
a key prerequisite for stability and convergence.

Now let us return to analyzing on-policy TD(0). Here the A matrix is

A = lim
t!1

E[At] = lim
t!1

E⇡

h
x(St) (x(St) � �x(St+1

))>
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= X

>
D⇡(I � �P⇡)X,

where X is the N ⇥ n matrix with the x(s) as its rows, and D⇡ is the N ⇥ N diagonal
matrix with d⇡ on its diagonal. This A matrix is typical of those we consider in this paper
in that it consists of X> and X wrapped around a distinctive N ⇥ N matrix that varies
with the algorithm and the setting, and which we call the key matrix. An A matrix of this
form will be positive definite whenever the corresponding key matrix is positive definite.3

In this case the key matrix is D⇡(I � �P⇡).

2. Here and throughout the paper we use brackets with subscripts to denote the individual elements of
vectors and matrices.

3. Strictly speaking, positive definiteness of the key matrix assures only that A is positive semi-definite,
because it is possible that Xy = 0 for some y 6= 0, in which case y>Ay will be zero as well. To rule
this out, we assume, as is commonly done, that the columns of X are linearly independent (i.e., that the
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For a key matrix of this type, positive definiteness is assured if all of its columns sum
to a nonnegative number. This was shown by Sutton (1988, p. 27) based on two previously
established theorems. One theorem says that any matrix A is positive definite if and only
if S = A + A

> is positive definite. The second theorem says that any symmetric matrix
S is positive definite if all of its diagonal entries are positive and greater than or equal to
the sum of the corresponding o↵-diagonal entries, with inequality in at least one case. For
our key matrix, D⇡(I � �P⇡), the diagonal entries are positive and the o↵-diagonal entries
are negative, so all we have to show is that each row sum plus the corresponding column
sum is positive or zero, with at least one positive. The row sums are all positive because
P⇡ is a stochastic matrix and � < 1. Thus it only remains to show that the column sums
are nonnegative. For the jth column, the sum is

X

i

[D⇡(I � �P⇡)]ij =
X

i

X

k

[D⇡]ik[I � �P⇡]kj

=
X

i

[D⇡]ii[I � �P⇡]ij

=
X

i

d⇡(i)[I � �P⇡]ij

= [d>
⇡ (I � �P⇡)]j

= [d>
⇡ � �d

>
⇡ P⇡)]j

= [d>
⇡ � �d

>
⇡ ]j (by (5))

= (1 � �)d⇡(j)

> 0.

Thus, the key matrix and its A matrix are positive definite, and on-policy TD(0) is stable.
Additional conditions and a schedule for reducing ↵ over time (as in Tsitsiklis and Van Roy
1997) are needed to prove convergence with probability one, w1 = A

�1

b, but the analysis
above includes the most important steps that vary from algorithm to algorithm.

3. Instability of O↵-policy TD(0)

Before developing the o↵-policy setting in detail, it is useful to understand informally why
TD(0) is susceptible to instability. TD learning involves learning an estimate from an es-
timate, which can be problematic if there is generalization between the two estimates. For
example, suppose there is a transition between two states with the same feature represen-
tation except that the second is twice as big:

2w

0 2w

where here w and 2w are the estimated values of the two states—that is, their feature
representations are a single feature that is 1 for the first state and 2 for the second. Now

features are not redundant), and thus that Xy = 0 only if y = 0. If this were not true, then convergence
(if it occurs) may not be to a unique w1, but rather to a subspace of parameter vectors all of which
produce the same approximate value function.
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2 off-policy learning problems

1. Correcting for the distribution of future returns

solution: importance sampling (Sutton & Barto 1998, 
improved by Precup, Sutton & Singh, 2000), now 
used in GTD(λ) and GQ(λ)

2. Correcting for the state-update distribution

solution: none known, other than more importance 
sampling (Precup, Sutton & Dasgupta, 2001) which 
as proposed was of very high variance. The ideas of 
that work are strikingly similar to those of emphasis…
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2. On-policy Convergence of TD(0)

To begin, let us review the conditions for convergence of conventional TD(�) under on-policy
training with data from a continuing finite Markov decision process. Consider the simplest
function approximation case, that of linear TD(�) with � = 0 and constant discount-rate
parameter � 2 [0, 1). Conventional linear TD(0) is defined by the following update to the
parameter vector wt 2 Rn, made at each of a sequence of time steps t = 0, 1, 2, . . ., on
transition from state St 2 S to state St+1

2 S, taking action At 2 A and receiving reward
Rt+1

2 R:

wt+1

.

= wt + ↵

⇣
Rt+1

+ �w

>
t x(St+1

) � w

>
t x(St)

⌘
x(St), (1)

where ↵ > 0 is a step-size parameter, and x(s) 2 Rn is the feature vector corresponding to
state s. The notation “

.

=” indicates an equality by definition rather than one that follows
from previous definitions. In on-policy training, the actions are chosen according to a target
policy ⇡ : A⇥S ! [0, 1], where ⇡(a|s) .

= P{At =a|St =s}. The state and action sets S and A

are assumed to be finite, but the number of states is assumed much larger than the number
of learned parameters, |S| .

= N � n, so that function approximation is necessary. We use
linear function approximation, in which the inner product of the parameter vector and the
feature vector for a state is meant to be an approximation to the value of that state:

w

>
t x(s) ⇡ v⇡(s)

.

= E⇡[Gt|St =s] , (2)

where E⇡[·] denotes an expectation conditional on all actions being selected according to ⇡,
and Gt, the return at time t, is defined by

Gt
.

= Rt+1

+ �Rt+2

+ �

2

Rt+3

+ · · · . (3)

The TD(0) update (1) can be rewritten to make the stability issues more transparent:

wt+1

= wt + ↵

⇣
Rt+1

x(St)| {z }
bt2Rn

�x(St) (x(St) � �x(St+1

))>| {z }
At2Rn⇥n

wt

⌘

= wt + ↵(bt � Atwt) (4)

= (I � ↵At)wt + ↵bt.

The matrix At multiplies the parameter wt and is thereby critical to the stability of the
iteration. To develop intuition, consider the special case in which At is a diagonal matrix.
If any of the diagonal elements are negative, then the corresponding diagonal element of
I�↵At will be greater than one, and the corresponding component of wt will be amplified,
which will lead to divergence if continued. The second term (↵bt) does not a↵ect the
stability of the iteration. On the other hand, if the diagonal elements of At are all positive,
then ↵ can be chosen smaller than the largest of them, such that I � ↵At is diagonal with
all diagonal elements between 0 and 1. In this case the first term of the update tends to
shrink wt, and stability is assured. In general, wt will be reduced toward zero whenever At

is positive definite.1

1. A real matrix A is defined to be positive definite in this paper i↵ y>Ay > 0 for any vector y 6= 0.
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To begin, let us review the conditions for convergence of conventional TD(�) under on-policy
training with data from a continuing finite Markov decision process. Consider the simplest
function approximation case, that of linear TD(�) with � = 0 and constant discount-rate
parameter � 2 [0, 1). Conventional linear TD(0) is defined by the following update to the
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where ↵ > 0 is a step-size parameter, and x(s) 2 Rn is the feature vector corresponding to
state s. The notation “

.

=” indicates an equality by definition rather than one that follows
from previous definitions. In on-policy training, the actions are chosen according to a target
policy ⇡ : A⇥S ! [0, 1], where ⇡(a|s) .

= P{At =a|St =s}. The state and action sets S and A

are assumed to be finite, but the number of states is assumed much larger than the number
of learned parameters, |S| .

= N � n, so that function approximation is necessary. We use
linear function approximation, in which the inner product of the parameter vector and the
feature vector for a state is meant to be an approximation to the value of that state:
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The matrix At multiplies the parameter wt and is thereby critical to the stability of the
iteration. To develop intuition, consider the special case in which At is a diagonal matrix.
If any of the diagonal elements are negative, then the corresponding diagonal element of
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which will lead to divergence if continued. The second term (↵bt) does not a↵ect the
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suppose that w is 10 and the reward on the transition is 0. The transition is then from a
state valued at 10 to a state valued at 20. If � is near 1 and ↵ is 0.1, then w will be increased
to approximately 11. But then the next time the transition occurs there will be an even
bigger increase in value, from 11 to 22, and a bigger increase in w, to approximately 12.1.
If this transition is experienced repeatedly on its own, then the system is unstable and the
parameter increases without bound—it diverges. We call this the w!2w problem.

In on-policy learning, repeatedly experiencing just this single problematic transition
cannot happen, because, after the highly-valued 2w state has been entered, it must then
be exited. The transition from it will either be to a lesser or equally-valued state, in which
case w will be significantly decreased, or to an even higher-valued state which must in turn
be followed by an even larger decrease in its estimated value or a still higher-valued state.
Eventually, the promise of high value must be made good in the form of a high reward or
else estimates will be decreased, and this ultimately constrains w and forces stability and
convergence. In the o↵-policy case, however, if there is a deviation from the target policy
then the promise is excused and need never be fulfilled. Later in this section we present a
complete example of how the w!2w problem can cause instability and divergence.

With these intuitions, we now detail our o↵-policy setting. As in the on-policy case, the
data is a single, infinite-length trajectory of actions, rewards, and feature vectors generated
by a continuing finite Markov decision process. The di↵erence is that the actions are
selected not according to the target policy ⇡, but according to a di↵erent behavior policy
µ : A ⇥ S ! [0, 1], yet still we seek to estimate state values under ⇡ (as in (2)). Of course,
it would be impossible to estimate the values under ⇡ if the actions that ⇡ would take
were never taken by µ and their consequences were never observed. Thus we assume that
µ(a|s) > 0 for every state and action for which ⇡(a|s) > 0. This is called the assumption
of coverage. It is trivially satisfied by any ✏-greedy or soft behavior policy. As before we
assume that there is a stationary distribution dµ(s)

.

= limt!1 P{St =s} > 0, 8s 2 S, with
corresponding N -vector dµ.

Even if there is coverage, the behavior policy will choose actions with proportions dif-
ferent from the target policy. For example, some actions taken by µ might never be chosen
by ⇡. To address this, we use importance sampling to correct for the relative probability of
taking the action actually taken, At, in the state actually encountered, St, under the target
and behavior policies:

⇢t
.

=
⇡(At|St)

µ(At|St)
. (7)

This quantity is called the importance sampling ratio at time t. Note that its expected
value is one:

Eµ[⇢t|St =s] =
X

a

µ(a|s)⇡(a|s)
µ(a|s) =

X

a

⇡(a|s) = 1. (8)

The ratio will be exactly one only on time steps on which the action probabilities for the two
policies are exactly the same; these time steps can be treated the same as in the on-policy
case. On other time steps the ratio will be greater or less than one depending on whether
the action taken was more or less likely under the target policy than under the behavior
policy, and some kind of correction is needed.
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2. On-policy Convergence of TD(0)

To begin, let us review the conditions for convergence of conventional TD(�) under on-policy
training with data from a continuing finite Markov decision process. Consider the simplest
function approximation case, that of linear TD(�) with � = 0 and constant discount-rate
parameter � 2 [0, 1). Conventional linear TD(0) is defined by the following update to the
parameter vector wt 2 Rn, made at each of a sequence of time steps t = 0, 1, 2, . . ., on
transition from state St 2 S to state St+1

2 S, taking action At 2 A and receiving reward
Rt+1

2 R:

wt+1

.

= wt + ↵

⇣
Rt+1

+ �w

>
t x(St+1

) � w

>
t x(St)

⌘
x(St), (1)

where ↵ > 0 is a step-size parameter, and x(s) 2 Rn is the feature vector corresponding to
state s. The notation “

.

=” indicates an equality by definition rather than one that follows
from previous definitions. In on-policy training, the actions are chosen according to a target
policy ⇡ : A⇥S ! [0, 1], where ⇡(a|s) .

= P{At =a|St =s}. The state and action sets S and A

are assumed to be finite, but the number of states is assumed much larger than the number
of learned parameters, |S| .

= N � n, so that function approximation is necessary. We use
linear function approximation, in which the inner product of the parameter vector and the
feature vector for a state is meant to be an approximation to the value of that state:

w

>
t x(s) ⇡ v⇡(s)

.

= E⇡[Gt|St =s] , (2)

where E⇡[·] denotes an expectation conditional on all actions being selected according to ⇡,
and Gt, the return at time t, is defined by

Gt
.

= Rt+1

+ �Rt+2

+ �

2

Rt+3

+ · · · . (3)

The TD(0) update (1) can be rewritten to make the stability issues more transparent:

wt+1

= wt + ↵

⇣
Rt+1

x(St)| {z }
bt2Rn

�x(St) (x(St) � �x(St+1

))>| {z }
At2Rn⇥n

wt

⌘

= wt + ↵(bt � Atwt) (4)

= (I � ↵At)wt + ↵bt.

The matrix At multiplies the parameter wt and is thereby critical to the stability of the
iteration. To develop intuition, consider the special case in which At is a diagonal matrix.
If any of the diagonal elements are negative, then the corresponding diagonal element of
I�↵At will be greater than one, and the corresponding component of wt will be amplified,
which will lead to divergence if continued. The second term (↵bt) does not a↵ect the
stability of the iteration. On the other hand, if the diagonal elements of At are all positive,
then ↵ can be chosen smaller than the largest of them, such that I � ↵At is diagonal with
all diagonal elements between 0 and 1. In this case the first term of the update tends to
shrink wt, and stability is assured. In general, wt will be reduced toward zero whenever At

is positive definite.1

1. A real matrix A is defined to be positive definite in this paper i↵ y>Ay > 0 for any vector y 6= 0.
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suppose that w is 10 and the reward on the transition is 0. The transition is then from a
state valued at 10 to a state valued at 20. If � is near 1 and ↵ is 0.1, then w will be increased
to approximately 11. But then the next time the transition occurs there will be an even
bigger increase in value, from 11 to 22, and a bigger increase in w, to approximately 12.1.
If this transition is experienced repeatedly on its own, then the system is unstable and the
parameter increases without bound—it diverges. We call this the w!2w problem.

In on-policy learning, repeatedly experiencing just this single problematic transition
cannot happen, because, after the highly-valued 2w state has been entered, it must then
be exited. The transition from it will either be to a lesser or equally-valued state, in which
case w will be significantly decreased, or to an even higher-valued state which must in turn
be followed by an even larger decrease in its estimated value or a still higher-valued state.
Eventually, the promise of high value must be made good in the form of a high reward or
else estimates will be decreased, and this ultimately constrains w and forces stability and
convergence. In the o↵-policy case, however, if there is a deviation from the target policy
then the promise is excused and need never be fulfilled. Later in this section we present a
complete example of how the w!2w problem can cause instability and divergence.

With these intuitions, we now detail our o↵-policy setting. As in the on-policy case, the
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In general, for any random variable Zt+1

dependent on St, At and St+1

, we can recover
its expectation under the target policy by multiplying by the importance sampling ratio:

Eµ[⇢tZt+1

|St =s] =
X

a

µ(a|s)⇡(a|s)
µ(a|s)Zt+1

=
X

a

⇡(a|s)Zt+1

= E⇡[Zt+1

|St =s]

We can use this fact to begin to adapt TD(0) for o↵-policy learning (Precup, Sutton &
Singh 2000). We simply multiply the whole TD(0) update (1) by ⇢t:

wt+1

.

= wt + ⇢t ↵

⇣
Rt+1

+ �w

>
t xt+1

� w

>
t xt

⌘
xt (9)

= wt + ↵

⇣
⇢tRt+1

xt| {z }
bt

� ⇢txt (xt � �xt+1

)>| {z }
At

wt

⌘
,

where here we have used the shorthand xt
.

= x(St). Note that if the action taken at time t

is never taken under the target policy in that state, then ⇢t = 0 and there is no update on
that step, as desired. We call this algorithm o↵-policy TD(0).

O↵-policy TD(0)’s A matrix is

A = lim
t!1

E[At] = lim
t!1

Eµ

h
⇢txt (xt � �xt+1

)>
i

=
X

s

dµ(s)Eµ

h
⇢txt (xt � �xt+1

)>
���St = s

i

=
X

s

dµ(s)E⇡

h
xt (xt � �xt+1

)>
���St = s

i
(by (9))

=
X

s

dµ(s)x(s)

 
x(s) � �

X

s0

[P⇡]ss0x(s0)

!>

= X

>
Dµ(I � �P⇡)X, (10)

where Dµ is the N ⇥N diagonal matrix with the stationary distribution dµ on its diagonal.
Thus, the key matrix that must be positive definite is Dµ(I � �P⇡) and, unlike in the on-
policy case, the distribution and the transition probabilities do not match. We do not have
an analog of (5), P>

⇡ dµ 6= dµ, and in fact the column sums may be negative and the matrix
not positive definite, in which case divergence of the parameter is likely.

A simple w!2w example of divergence that fits the setting in this section is shown in
Figure 1. From each state there are two actions, left and right, which take the process to the
left or right states. All the rewards are zero. As before, there is a single parameter w and
the single feature is 1 and 2 in the two states such that the approximate values are w and
2w as shown. The behavior policy is to go left and right with equal probability from both
states, such that equal time is spent on average in both states, dµ = (0.5, 0.5)>. The target
policy is to go right in both states. We seek to learn the value from each state given that
the right action is continually taken. The transition probability matrix for this example is:

P⇡ =


0 1
0 1

�
.
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2. On-policy Convergence of TD(0)

To begin, let us review the conditions for convergence of conventional TD(�) under on-policy
training with data from a continuing finite Markov decision process. Consider the simplest
function approximation case, that of linear TD(�) with � = 0 and constant discount-rate
parameter � 2 [0, 1). Conventional linear TD(0) is defined by the following update to the
parameter vector wt 2 Rn, made at each of a sequence of time steps t = 0, 1, 2, . . ., on
transition from state St 2 S to state St+1

2 S, taking action At 2 A and receiving reward
Rt+1

2 R:

wt+1

.

= wt + ↵

⇣
Rt+1

+ �w

>
t x(St+1

) � w

>
t x(St)

⌘
x(St), (1)

where ↵ > 0 is a step-size parameter, and x(s) 2 Rn is the feature vector corresponding to
state s. The notation “

.

=” indicates an equality by definition rather than one that follows
from previous definitions. In on-policy training, the actions are chosen according to a target
policy ⇡ : A⇥S ! [0, 1], where ⇡(a|s) .

= P{At =a|St =s}. The state and action sets S and A

are assumed to be finite, but the number of states is assumed much larger than the number
of learned parameters, |S| .

= N � n, so that function approximation is necessary. We use
linear function approximation, in which the inner product of the parameter vector and the
feature vector for a state is meant to be an approximation to the value of that state:

w

>
t x(s) ⇡ v⇡(s)

.

= E⇡[Gt|St =s] , (2)

where E⇡[·] denotes an expectation conditional on all actions being selected according to ⇡,
and Gt, the return at time t, is defined by

Gt
.

= Rt+1

+ �Rt+2

+ �

2

Rt+3

+ · · · . (3)

The TD(0) update (1) can be rewritten to make the stability issues more transparent:

wt+1

= wt + ↵

⇣
Rt+1

x(St)| {z }
bt2Rn

�x(St) (x(St) � �x(St+1

))>| {z }
At2Rn⇥n

wt

⌘

= wt + ↵(bt � Atwt) (4)

= (I � ↵At)wt + ↵bt.

The matrix At multiplies the parameter wt and is thereby critical to the stability of the
iteration. To develop intuition, consider the special case in which At is a diagonal matrix.
If any of the diagonal elements are negative, then the corresponding diagonal element of
I�↵At will be greater than one, and the corresponding component of wt will be amplified,
which will lead to divergence if continued. The second term (↵bt) does not a↵ect the
stability of the iteration. On the other hand, if the diagonal elements of At are all positive,
then ↵ can be chosen smaller than the largest of them, such that I � ↵At is diagonal with
all diagonal elements between 0 and 1. In this case the first term of the update tends to
shrink wt, and stability is assured. In general, wt will be reduced toward zero whenever At

is positive definite.1

1. A real matrix A is defined to be positive definite in this paper i↵ y>Ay > 0 for any vector y 6= 0.
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iteration. To develop intuition, consider the special case in which At is a diagonal matrix.
If any of the diagonal elements are negative, then the corresponding diagonal element of
I�↵At will be greater than one, and the corresponding component of wt will be amplified,
which will lead to divergence if continued. The second term (↵bt) does not a↵ect the
stability of the iteration. On the other hand, if the diagonal elements of At are all positive,
then ↵ can be chosen smaller than the largest of them, such that I � ↵At is diagonal with
all diagonal elements between 0 and 1. In this case the first term of the update tends to
shrink wt, and stability is assured. In general, wt will be reduced toward zero whenever At

is positive definite.1

1. A real matrix A is defined to be positive definite in this paper i↵ y>Ay > 0 for any vector y 6= 0.
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suppose that w is 10 and the reward on the transition is 0. The transition is then from a
state valued at 10 to a state valued at 20. If � is near 1 and ↵ is 0.1, then w will be increased
to approximately 11. But then the next time the transition occurs there will be an even
bigger increase in value, from 11 to 22, and a bigger increase in w, to approximately 12.1.
If this transition is experienced repeatedly on its own, then the system is unstable and the
parameter increases without bound—it diverges. We call this the w!2w problem.

In on-policy learning, repeatedly experiencing just this single problematic transition
cannot happen, because, after the highly-valued 2w state has been entered, it must then
be exited. The transition from it will either be to a lesser or equally-valued state, in which
case w will be significantly decreased, or to an even higher-valued state which must in turn
be followed by an even larger decrease in its estimated value or a still higher-valued state.
Eventually, the promise of high value must be made good in the form of a high reward or
else estimates will be decreased, and this ultimately constrains w and forces stability and
convergence. In the o↵-policy case, however, if there is a deviation from the target policy
then the promise is excused and need never be fulfilled. Later in this section we present a
complete example of how the w!2w problem can cause instability and divergence.

With these intuitions, we now detail our o↵-policy setting. As in the on-policy case, the
data is a single, infinite-length trajectory of actions, rewards, and feature vectors generated
by a continuing finite Markov decision process. The di↵erence is that the actions are
selected not according to the target policy ⇡, but according to a di↵erent behavior policy
µ : A ⇥ S ! [0, 1], yet still we seek to estimate state values under ⇡ (as in (2)). Of course,
it would be impossible to estimate the values under ⇡ if the actions that ⇡ would take
were never taken by µ and their consequences were never observed. Thus we assume that
µ(a|s) > 0 for every state and action for which ⇡(a|s) > 0. This is called the assumption
of coverage. It is trivially satisfied by any ✏-greedy or soft behavior policy. As before we
assume that there is a stationary distribution dµ(s)

.

= limt!1 P{St =s} > 0, 8s 2 S, with
corresponding N -vector dµ.

Even if there is coverage, the behavior policy will choose actions with proportions dif-
ferent from the target policy. For example, some actions taken by µ might never be chosen
by ⇡. To address this, we use importance sampling to correct for the relative probability of
taking the action actually taken, At, in the state actually encountered, St, under the target
and behavior policies:

⇢t
.

=
⇡(At|St)

µ(At|St)
. (7)

This quantity is called the importance sampling ratio at time t. Note that its expected
value is one:

Eµ[⇢t|St =s] =
X

a

µ(a|s)⇡(a|s)
µ(a|s) =

X

a

⇡(a|s) = 1. (8)

The ratio will be exactly one only on time steps on which the action probabilities for the two
policies are exactly the same; these time steps can be treated the same as in the on-policy
case. On other time steps the ratio will be greater or less than one depending on whether
the action taken was more or less likely under the target policy than under the behavior
policy, and some kind of correction is needed.
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2. On-policy Convergence of TD(0)

To begin, let us review the conditions for convergence of conventional TD(�) under on-policy
training with data from a continuing finite Markov decision process. Consider the simplest
function approximation case, that of linear TD(�) with � = 0 and constant discount-rate
parameter � 2 [0, 1). Conventional linear TD(0) is defined by the following update to the
parameter vector wt 2 Rn, made at each of a sequence of time steps t = 0, 1, 2, . . ., on
transition from state St 2 S to state St+1

2 S, taking action At 2 A and receiving reward
Rt+1

2 R:

wt+1

.

= wt + ↵

⇣
Rt+1

+ �w

>
t x(St+1

) � w

>
t x(St)

⌘
x(St), (1)

where ↵ > 0 is a step-size parameter, and x(s) 2 Rn is the feature vector corresponding to
state s. The notation “

.

=” indicates an equality by definition rather than one that follows
from previous definitions. In on-policy training, the actions are chosen according to a target
policy ⇡ : A⇥S ! [0, 1], where ⇡(a|s) .

= P{At =a|St =s}. The state and action sets S and A

are assumed to be finite, but the number of states is assumed much larger than the number
of learned parameters, |S| .

= N � n, so that function approximation is necessary. We use
linear function approximation, in which the inner product of the parameter vector and the
feature vector for a state is meant to be an approximation to the value of that state:

w

>
t x(s) ⇡ v⇡(s)

.

= E⇡[Gt|St =s] , (2)

where E⇡[·] denotes an expectation conditional on all actions being selected according to ⇡,
and Gt, the return at time t, is defined by

Gt
.

= Rt+1

+ �Rt+2

+ �

2

Rt+3

+ · · · . (3)

The TD(0) update (1) can be rewritten to make the stability issues more transparent:

wt+1

= wt + ↵

⇣
Rt+1

x(St)| {z }
bt2Rn

�x(St) (x(St) � �x(St+1

))>| {z }
At2Rn⇥n

wt

⌘

= wt + ↵(bt � Atwt) (4)

= (I � ↵At)wt + ↵bt.

The matrix At multiplies the parameter wt and is thereby critical to the stability of the
iteration. To develop intuition, consider the special case in which At is a diagonal matrix.
If any of the diagonal elements are negative, then the corresponding diagonal element of
I�↵At will be greater than one, and the corresponding component of wt will be amplified,
which will lead to divergence if continued. The second term (↵bt) does not a↵ect the
stability of the iteration. On the other hand, if the diagonal elements of At are all positive,
then ↵ can be chosen smaller than the largest of them, such that I � ↵At is diagonal with
all diagonal elements between 0 and 1. In this case the first term of the update tends to
shrink wt, and stability is assured. In general, wt will be reduced toward zero whenever At

is positive definite.1

1. A real matrix A is defined to be positive definite in this paper i↵ y>Ay > 0 for any vector y 6= 0.
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In general, for any random variable Zt+1

dependent on St, At and St+1

, we can recover
its expectation under the target policy by multiplying by the importance sampling ratio:

Eµ[⇢tZt+1

|St =s] =
X

a

µ(a|s)⇡(a|s)
µ(a|s)Zt+1

=
X

a

⇡(a|s)Zt+1

= E⇡[Zt+1

|St =s]

We can use this fact to begin to adapt TD(0) for o↵-policy learning (Precup, Sutton &
Singh 2000). We simply multiply the whole TD(0) update (1) by ⇢t:

wt+1

.

= wt + ⇢t ↵

⇣
Rt+1

+ �w

>
t xt+1

� w

>
t xt

⌘
xt (9)

= wt + ↵

⇣
⇢tRt+1

xt| {z }
bt

� ⇢txt (xt � �xt+1

)>| {z }
At

wt

⌘
,

where here we have used the shorthand xt
.

= x(St). Note that if the action taken at time t

is never taken under the target policy in that state, then ⇢t = 0 and there is no update on
that step, as desired. We call this algorithm o↵-policy TD(0).

O↵-policy TD(0)’s A matrix is

A = lim
t!1

E[At] = lim
t!1

Eµ

h
⇢txt (xt � �xt+1

)>
i

=
X

s

dµ(s)Eµ

h
⇢txt (xt � �xt+1

)>
���St = s

i

=
X

s

dµ(s)E⇡

h
xt (xt � �xt+1

)>
���St = s

i
(by (9))

=
X

s

dµ(s)x(s)

 
x(s) � �

X

s0

[P⇡]ss0x(s0)

!>

= X

>
Dµ(I � �P⇡)X, (10)

where Dµ is the N ⇥N diagonal matrix with the stationary distribution dµ on its diagonal.
Thus, the key matrix that must be positive definite is Dµ(I � �P⇡) and, unlike in the on-
policy case, the distribution and the transition probabilities do not match. We do not have
an analog of (5), P>

⇡ dµ 6= dµ, and in fact the column sums may be negative and the matrix
not positive definite, in which case divergence of the parameter is likely.

A simple w!2w example of divergence that fits the setting in this section is shown in
Figure 1. From each state there are two actions, left and right, which take the process to the
left or right states. All the rewards are zero. As before, there is a single parameter w and
the single feature is 1 and 2 in the two states such that the approximate values are w and
2w as shown. The behavior policy is to go left and right with equal probability from both
states, such that equal time is spent on average in both states, dµ = (0.5, 0.5)>. The target
policy is to go right in both states. We seek to learn the value from each state given that
the right action is continually taken. The transition probability matrix for this example is:

P⇡ =


0 1
0 1

�
.
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In actuality, however, At and bt are random variables that vary from step to step, in
which case stability is determined by the steady-state expectation limt!1 E[At]. In our set-
ting, after an initial transient, states will be visited according to the steady-state distribution
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x(St) (x(St) � �x(St+1

))>
i

=
X

s

d⇡(s)x(s)

 
x(s) � �

X

s0

[P⇡]ss0x(s0)

!>

= X

>
D⇡(I � �P⇡)X,

where X is the N ⇥ n matrix with the x(s) as its rows, and D⇡ is the N ⇥ N diagonal
matrix with d⇡ on its diagonal. This A matrix is typical of those we consider in this paper
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with the algorithm and the setting, and which we call the key matrix. An A matrix of this
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In this case the key matrix is D⇡(I � �P⇡).

2. Here and throughout the paper we use brackets with subscripts to denote the individual elements of
vectors and matrices.

3. Strictly speaking, positive definiteness of the key matrix assures only that A is positive semi-definite,
because it is possible that Xy = 0 for some y 6= 0, in which case y>Ay will be zero as well. To rule
this out, we assume, as is commonly done, that the columns of X are linearly independent (i.e., that the
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Figure 1: w!2w example without a terminal state.

The key matrix is

Dµ(I � �P⇡) =


0.5 0
0 0.5

�
⇥


1 �0.9
0 0.1

�
=


0.5 �0.45
0 0.05

�
. (11)

We can see an immediate indication that the key matrix may not be positive definite in
that the second column sums to a negative number. More definitively, one can show that
it is not positive definite by multiplying it on both sides by y = X = (1, 2)>:

X

>
Dµ(I � �P⇡)X =

⇥
1 2

⇤
⇥


0.5 �0.45
0 0.05

�
⇥

1
2

�
=

⇥
1 2

⇤
⇥


�0.4
0.1

�
= �0.2.

That this is negative means that the key matrix is not positive definite. We have also
calculated here the A matrix; it is this scalar, A = �0.2. Clearly, this expected update and
algorithm are not stable.

It is also easy to see the instability of this example more directly, without matrices. We
know that only transitions under the right action cause updates, as ⇢t will be zero for the
others. Assume for concreteness that initially wt = 10 and ↵ = 0.1. On a right transition
from the first state the update will be

wt+1

= wt + ⇢t↵

⇣
Rt+1

+ �w

>
t xt+1

� w

>
t xt

⌘
xt

= 10 + 2 · 0.1 (0 + 0.9 · 10 · 2 � 10 · 1) 1

= 10 + 1.6,

whereas, on a right transition from the second state the update will be

wt+1

= wt + ⇢t↵

⇣
Rt+1

+ �w

>
t xt+1

� w

>
t xt

⌘
xt

= 10 + 2 · 0.1 (0 + 0.9 · 10 · 2 � 10 · 2) 2

= 10 � 0.8.

These two transitions occur equally often, so the net change will be positive. That is, w will
increase, moving farther from its correct value, zero. Everything is linear in w, so the next
time around, with a larger starting w, the increase in w will be larger still, and divergence
occurs. A smaller value of ↵ would not prevent divergence, only reduce its rate.

4. O↵-policy Stability of Emphatic TD(0)

The deep reason for the di�culty of o↵-policy learning is that the behavior policy may
take the process to a distribution of states di↵erent from that which would be encountered
under the target policy, yet the states might appear to be the same or similar because of
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Counterexample:

X =


1
2

�

A is not positive definite! Stability is not assured.



2 off-policy learning problems

1. Correcting for the distribution of future returns

solution: importance sampling (Sutton & Barto 1998, 
improved by Precup, Sutton & Singh, 2000), now 
used in GTD(λ) and GQ(λ)

2. Correcting for the state-update distribution

solution: none known, other than more importance 
sampling (Precup, Sutton & Dasgupta, 2001) which 
as proposed was of very high variance. The ideas of 
that work are strikingly similar to those of emphasis…



Geometric Insight

J�

J̃r

Ben Van Roy 2009

v⇡

v̂



Other Distribution

J�

J̃r

Ben Van Roy 2009

v⇡

v̂



Problem 2 of off-policy learning: 
Correcting for the state-update distribution

• The distribution of updated states does not ‘match’ the target policy 

• Only a problem with function approximation, but that’s a show stopper 

• Precup, Sutton & Dasgupta (2001) treated the episodic case, used 
importance sampling to warp the state distribution from the behavior 
policy’s distribution to the target policy’s distribution, then did a future-
reweighted update at each state 

• equivalent to emphasis = product of all i.s. ratios since the 
beginning of time 

• ok algorithm, but severe variance problems in both theory and practice 

• Performance assessed on whole episodes following the target policy 

• This ‘alternate life’ view of off-policy learning was then abandoned



The excursion view 
 of off-policy learning

• In which we are following a (possibly changing) behavior 
policy forever, and are in its stationary distribution 

• We want to predict the consequences of deviating from it 
for a limited time with various target policies (e.g., options) 

• Error is assessed on these ‘excursions’ starting from states 
in the behavior distribution 

• Much more practical setting than ‘alternate life’ 

• This setting was the basis for all the work with gradient-TD 
and MSPBE



Emphasis warping
• The idea is that emphasis warps the distribution of 

updated states from the behavior policy’s stationary 
distribution to something like the ‘followon 
distribution’ of the target policy started in the 
behavior policy’s stationary distribution

• From which future-reweighted updates will be stable 
in expectation—this follows from old results (Dayan 
1992, Sutton 1988) on convergence of TD(λ) in 
episodic MDPs

• A new algorithm: Emphatic TD(λ)



Emphatic TD(0)
Introduces a new short-term memory random variable—the followon trace:

Sutton, Mahmood & White

function approximation. Earlier work by Precup, Sutton and Dasgupta (2001) attempted
to completely correct for the di↵erent state distribution using importance sampling ratios to
reweight the states encountered. It is theoretically possible to convert the state weighting
from dµ to d⇡ using the product of all importance sampling ratios from time 0, but in
practice this approach has extremely high variance. It works in theory because then the
key matrix is D⇡(I � �P⇡) again, which we know to be positive definite.

Most subsequent works abandoned the idea of completely correcting for the state dis-
tribution. For example, the work on gradient-TD methods (e.g., Sutton et al. 2009, Maei
2011) seeks to minimize the mean-squared projected Bellman error weighted by dµ. We call
this an excursion setting because we can think of the contemplated switch to the target
policy as an excursion from the steady-state distribution of the behavior policy, dµ. The
excursions would start from dµ and then follow ⇡ until termination, followed by a resump-
tion of µ and thus a gradual return to dµ. Of course these excursions never actually occur
during o↵-policy learning, they are just contemplated, and thus the state distribution in
fact never leaves dµ. It is the excursion view that we take in this paper, but still we use
techniques similar to those introduced by Precup et al. (2001) to determine an emphasis
weighting that corrects for the state distribution, only toward a di↵erent goal.

The excursion notion suggests a di↵erent weighting of TD(0) updates. We consider
that at every time step we are beginning a new contemplated excursion from the current
state. The excursion thus would begin in a state sampled from dµ. If an excursion started
it would pass through a sequence of subsequent states and actions prior to termination.
Some of the actions that are actually taken (under µ) are relatively likely to occur under
the target policy as compared to the behavior policy, while others are relatively unlikely;
the corresponding states can be appropriately reweighted based on importance sampling
ratios. Thus, there will still be a product of importance sampling ratios, but only since the
beginning of the excursion, and the variance will also be tamped down by the discounting;
the variance will be much less than in the earlier approach. This is the simplest case of
an o↵-policy emphasis algorithm: the update at time t is emphasized or de-emphasized
proportional to a new scalar variable Ft, defined byF�1

= 0 and

Ft
.

= �⇢t�1

Ft�1

+ 1, 8t > 0, (12)

which we call the followon trace. Specifically, we define emphatic TD(0) by the following
update:

wt+1

.

= wt + ↵Ft⇢t

⇣
Rt+1

+ �w

>
t xt+1

� w

>
t xt

⌘
xt (13)

= wt + ↵

⇣
Ft⇢tRt+1

xt| {z }
bt

� Ft⇢txt (xt � �xt+1

)>| {z }
At

wt

⌘

Emphatic TD(0)’s A matrix is

A = lim
t!1

E[At] = lim
t!1

Eµ

h
Ft⇢txt (xt � �xt+1

)>
i

=
X

s

dµ(s) lim
t!1

Eµ

h
Ft⇢txt (xt � �xt+1

)>
���St = s

i
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The w ! 2w example presented earlier in Figure 1 provides some insight into how
replacing Dµ by F changes the key matrix to make it positive definite. In general, f is the
expected number of time steps that would be spent in each state during an excursion starting
from the behavior distribution dµ. From (16), it is dµ plus where you would get to in one
step from dµ, plus where you would get in two steps, etc., with appropriate discounting. In
the example, excursions under the target policy take you to the second state (2w) and leave
you there. You are only in the first state (w) if you start there, and only for one step, so
f(1) = dµ(1) = 0.5. For the second state, you can either start there, with probability 0.5,
or you can get there on the second step (certain except for discounting), with probability
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2. On-policy Convergence of TD(0)
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you there. You are only in the first state (w) if you start there, and only for one step, so
f(1) = dµ(1) = 0.5. For the second state, you can either start there, with probability 0.5,
or you can get there on the second step (certain except for discounting), with probability

11

An Emphatic Approach to Off-policy TD Learning

=
X

s

dµ(s) lim
t!1

Eµ[Ft|St = s]
| {z }

f(s)

Eµ

h
⇢txt (xt � �xt+1

)>
���St = s

i

=
X

s

f(s)E⇡

h
xt (xt � �xt+1

)>
���St = s

i
(by (9))

=
X

s

f(s)x(s)

 
x(s) � �

X

s0

[P⇡]ss0x(s0)

!>

= X

>
F(I � �P⇡)X, (14)

where F is a diagonal matrix with diagonal elements f(s)
.

= dµ(s) limt!1 Eµ[Ft|St =s],
which we exists. As we show later, the vector f 2 RN with components [f ]s

.

= f(s) can be
written as

f = dµ + �P

>
⇡ dµ +

⇣
�P

>
⇡

⌘
2

dµ + · · · (15)

=
⇣
I � �P

>
⇡

⌘�1

dµ. (16)

The key matrix is F (I � �P⇡), and the sum of its jth column is

X

i

[F(I � �P⇡)]ij =
X

i

X

k

[F]ik[I � �P⇡]kj

=
X

i

[F]ii[I � �P⇡]ij

=
X

i

[f ]i[I � �P⇡]ij

= [f>(I � �P⇡)]j

= [d>
µ (I � �P⇡)�1(I � �P⇡)]j (using (17))

= [d>
µ ]j

= dµ(j)

> 0.

Thus, the key matrix is positive definite and the expected update is stable. Emphatic TD(0)
is the simplest TD algorithm with linear function approximation proven to be stable under
o↵-policy training.

The w ! 2w example presented earlier in Figure 1 provides some insight into how
replacing Dµ by F changes the key matrix to make it positive definite. In general, f is the
expected number of time steps that would be spent in each state during an excursion starting
from the behavior distribution dµ. From (16), it is dµ plus where you would get to in one
step from dµ, plus where you would get in two steps, etc., with appropriate discounting. In
the example, excursions under the target policy take you to the second state (2w) and leave
you there. You are only in the first state (w) if you start there, and only for one step, so
f(1) = dµ(1) = 0.5. For the second state, you can either start there, with probability 0.5,
or you can get there on the second step (certain except for discounting), with probability

11

we have:

An Emphatic Approach to Off-policy TD Learning

=
X

s

dµ(s) lim
t!1

Eµ[Ft|St = s]
| {z }

f(s)

Eµ

h
⇢txt (xt � �xt+1

)>
���St = s

i

=
X

s

f(s)E⇡

h
xt (xt � �xt+1

)>
���St = s

i
(by (9))

=
X

s

f(s)x(s)

 
x(s) � �

X

s0

[P⇡]ss0x(s0)

!>

= X

>
F(I � �P⇡)X, (14)

where F is a diagonal matrix with diagonal elements f(s)
.

= dµ(s) limt!1 Eµ[Ft|St =s],
which we exists. As we show later, the vector f 2 RN with components [f ]s

.

= f(s) can be
written as

f = dµ + �P

>
⇡ dµ +

⇣
�P

>
⇡

⌘
2

dµ + · · · (15)

=
⇣
I � �P

>
⇡

⌘�1

dµ. (16)

The key matrix is F (I � �P⇡), and the sum of its jth column is

X

i

[F(I � �P⇡)]ij =
X

i

X

k

[F]ik[I � �P⇡]kj

=
X

i

[F]ii[I � �P⇡]ij

=
X

i

[f ]i[I � �P⇡]ij

= [f>(I � �P⇡)]j

= [d>
µ (I � �P⇡)�1(I � �P⇡)]j (using (17))

= [d>
µ ]j

= dµ(j)

> 0.

Thus, the key matrix is positive definite and the expected update is stable. Emphatic TD(0)
is the simplest TD algorithm with linear function approximation proven to be stable under
o↵-policy training.

The w ! 2w example presented earlier in Figure 1 provides some insight into how
replacing Dµ by F changes the key matrix to make it positive definite. In general, f is the
expected number of time steps that would be spent in each state during an excursion starting
from the behavior distribution dµ. From (16), it is dµ plus where you would get to in one
step from dµ, plus where you would get in two steps, etc., with appropriate discounting. In
the example, excursions under the target policy take you to the second state (2w) and leave
you there. You are only in the first state (w) if you start there, and only for one step, so
f(1) = dµ(1) = 0.5. For the second state, you can either start there, with probability 0.5,
or you can get there on the second step (certain except for discounting), with probability

11

An Emphatic Approach to Off-policy TD Learning

=
X

s

dµ(s) lim
t!1

Eµ[Ft|St = s]
| {z }

f(s)

Eµ

h
⇢txt (xt � �xt+1

)>
���St = s

i

=
X

s

f(s)E⇡

h
xt (xt � �xt+1

)>
���St = s

i
(by (9))

=
X

s

f(s)x(s)

 
x(s) � �

X

s0

[P⇡]ss0x(s0)

!>

= X

>
F(I � �P⇡)X, (14)

where F is a diagonal matrix with diagonal elements f(s)
.

= dµ(s) limt!1 Eµ[Ft|St =s],
which we exists. As we show later, the vector f 2 RN with components [f ]s

.

= f(s) can be
written as

f = dµ + �P

>
⇡ dµ +

⇣
�P

>
⇡

⌘
2

dµ + · · · (15)

=
⇣
I � �P

>
⇡

⌘�1

dµ. (16)

The key matrix is F (I � �P⇡), and the sum of its jth column is

X

i

[F(I � �P⇡)]ij =
X

i

X

k

[F]ik[I � �P⇡]kj

=
X

i

[F]ii[I � �P⇡]ij

=
X

i

[f ]i[I � �P⇡]ij

= [f>(I � �P⇡)]j

= [d>
µ (I � �P⇡)�1(I � �P⇡)]j (using (17))

= [d>
µ ]j

= dµ(j)

> 0.

Thus, the key matrix is positive definite and the expected update is stable. Emphatic TD(0)
is the simplest TD algorithm with linear function approximation proven to be stable under
o↵-policy training.

The w ! 2w example presented earlier in Figure 1 provides some insight into how
replacing Dµ by F changes the key matrix to make it positive definite. In general, f is the
expected number of time steps that would be spent in each state during an excursion starting
from the behavior distribution dµ. From (16), it is dµ plus where you would get to in one
step from dµ, plus where you would get in two steps, etc., with appropriate discounting. In
the example, excursions under the target policy take you to the second state (2w) and leave
you there. You are only in the first state (w) if you start there, and only for one step, so
f(1) = dµ(1) = 0.5. For the second state, you can either start there, with probability 0.5,
or you can get there on the second step (certain except for discounting), with probability

11

Sum of jth  
column of  
key matrix



sums to >0

Sutton, Mahmood & White

function approximation. Earlier work by Precup, Sutton and Dasgupta (2001) attempted
to completely correct for the di↵erent state distribution using importance sampling ratios to
reweight the states encountered. It is theoretically possible to convert the state weighting
from dµ to d⇡ using the product of all importance sampling ratios from time 0, but in
practice this approach has extremely high variance. It works in theory because then the
key matrix is D⇡(I � �P⇡) again, which we know to be positive definite.

Most subsequent works abandoned the idea of completely correcting for the state dis-
tribution. For example, the work on gradient-TD methods (e.g., Sutton et al. 2009, Maei
2011) seeks to minimize the mean-squared projected Bellman error weighted by dµ. We call
this an excursion setting because we can think of the contemplated switch to the target
policy as an excursion from the steady-state distribution of the behavior policy, dµ. The
excursions would start from dµ and then follow ⇡ until termination, followed by a resump-
tion of µ and thus a gradual return to dµ. Of course these excursions never actually occur
during o↵-policy learning, they are just contemplated, and thus the state distribution in
fact never leaves dµ. It is the excursion view that we take in this paper, but still we use
techniques similar to those introduced by Precup et al. (2001) to determine an emphasis
weighting that corrects for the state distribution, only toward a di↵erent goal.

The excursion notion suggests a di↵erent weighting of TD(0) updates. We consider
that at every time step we are beginning a new contemplated excursion from the current
state. The excursion thus would begin in a state sampled from dµ. If an excursion started
it would pass through a sequence of subsequent states and actions prior to termination.
Some of the actions that are actually taken (under µ) are relatively likely to occur under
the target policy as compared to the behavior policy, while others are relatively unlikely;
the corresponding states can be appropriately reweighted based on importance sampling
ratios. Thus, there will still be a product of importance sampling ratios, but only since the
beginning of the excursion, and the variance will also be tamped down by the discounting;
the variance will be much less than in the earlier approach. This is the simplest case of
an o↵-policy emphasis algorithm: the update at time t is emphasized or de-emphasized
proportional to a new scalar variable Ft, defined byF�1

= 0 and

Ft
.

= �⇢t�1

Ft�1

+ 1, 8t > 0, (12)

which we call the followon trace. Specifically, we define emphatic TD(0) by the following
update:
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f(s)

Eµ

h
⇢txt (xt � �xt+1

)>
���St = s

i

=
X

s

f(s)E⇡

h
xt (xt � �xt+1

)>
���St = s

i
(by (9))

=
X

s

f(s)x(s)

 
x(s) � �
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F(I � �P⇡)X, (14)
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which we exists. As we show later, the vector f 2 RN with components [f ]s
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= f(s) can be
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f = dµ + �P
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⇡ dµ +

⇣
�P

>
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⌘
2

dµ + · · · (15)
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I � �P

>
⇡

⌘�1
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[F(I � �P⇡)]ij =
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k

[F]ik[I � �P⇡]kj

=
X

i

[F]ii[I � �P⇡]ij

=
X
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[f ]i[I � �P⇡]ij

= [f>(I � �P⇡)]j

= [d>
µ (I � �P⇡)�1(I � �P⇡)]j (using (17))

= [d>
µ ]j

= dµ(j)

> 0.

Thus, the key matrix is positive definite and the expected update is stable. Emphatic TD(0)
is the simplest TD algorithm with linear function approximation proven to be stable under
o↵-policy training.

The w ! 2w example presented earlier in Figure 1 provides some insight into how
replacing Dµ by F changes the key matrix to make it positive definite. In general, f is the
expected number of time steps that would be spent in each state during an excursion starting
from the behavior distribution dµ. From (16), it is dµ plus where you would get to in one
step from dµ, plus where you would get in two steps, etc., with appropriate discounting. In
the example, excursions under the target policy take you to the second state (2w) and leave
you there. You are only in the first state (w) if you start there, and only for one step, so
f(1) = dµ(1) = 0.5. For the second state, you can either start there, with probability 0.5,
or you can get there on the second step (certain except for discounting), with probability
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function approximation. Earlier work by Precup, Sutton and Dasgupta (2001) attempted
to completely correct for the di↵erent state distribution using importance sampling ratios to
reweight the states encountered. It is theoretically possible to convert the state weighting
from dµ to d⇡ using the product of all importance sampling ratios from time 0, but in
practice this approach has extremely high variance. It works in theory because then the
key matrix is D⇡(I � �P⇡) again, which we know to be positive definite.

Most subsequent works abandoned the idea of completely correcting for the state dis-
tribution. For example, the work on gradient-TD methods (e.g., Sutton et al. 2009, Maei
2011) seeks to minimize the mean-squared projected Bellman error weighted by dµ. We call
this an excursion setting because we can think of the contemplated switch to the target
policy as an excursion from the steady-state distribution of the behavior policy, dµ. The
excursions would start from dµ and then follow ⇡ until termination, followed by a resump-
tion of µ and thus a gradual return to dµ. Of course these excursions never actually occur
during o↵-policy learning, they are just contemplated, and thus the state distribution in
fact never leaves dµ. It is the excursion view that we take in this paper, but still we use
techniques similar to those introduced by Precup et al. (2001) to determine an emphasis
weighting that corrects for the state distribution, only toward a di↵erent goal.

The excursion notion suggests a di↵erent weighting of TD(0) updates. We consider
that at every time step we are beginning a new contemplated excursion from the current
state. The excursion thus would begin in a state sampled from dµ. If an excursion started
it would pass through a sequence of subsequent states and actions prior to termination.
Some of the actions that are actually taken (under µ) are relatively likely to occur under
the target policy as compared to the behavior policy, while others are relatively unlikely;
the corresponding states can be appropriately reweighted based on importance sampling
ratios. Thus, there will still be a product of importance sampling ratios, but only since the
beginning of the excursion, and the variance will also be tamped down by the discounting;
the variance will be much less than in the earlier approach. This is the simplest case of
an o↵-policy emphasis algorithm: the update at time t is emphasized or de-emphasized
proportional to a new scalar variable Ft, defined byF�1

= 0 and

Ft
.

= �⇢t�1

Ft�1

+ 1, 8t > 0, (12)

which we call the followon trace. Specifically, we define emphatic TD(0) by the following
update:

wt+1

.

= wt + ↵Ft⇢t

⇣
Rt+1

+ �w

>
t xt+1

� w

>
t xt

⌘
xt (13)

= wt + ↵

⇣
Ft⇢tRt+1

xt| {z }
bt

� Ft⇢txt (xt � �xt+1

)>| {z }
At

wt

⌘

Emphatic TD(0)’s A matrix is

A = lim
t!1

E[At] = lim
t!1

Eµ

h
Ft⇢txt (xt � �xt+1

)>
i

=
X

s

dµ(s) lim
t!1

Eµ

h
Ft⇢txt (xt � �xt+1

)>
���St = s

i
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2. On-policy Convergence of TD(0)

To begin, let us review the conditions for convergence of conventional TD(�) under on-policy
training with data from a continuing finite Markov decision process. Consider the simplest
function approximation case, that of linear TD(�) with � = 0 and constant discount-rate
parameter � 2 [0, 1). Conventional linear TD(0) is defined by the following update to the
parameter vector wt 2 Rn, made at each of a sequence of time steps t = 0, 1, 2, . . ., on
transition from state St 2 S to state St+1

2 S, taking action At 2 A and receiving reward
Rt+1

2 R:

wt+1

.

= wt + ↵

⇣
Rt+1

+ �w

>
t x(St+1

) � w

>
t x(St)

⌘
x(St), (1)

where ↵ > 0 is a step-size parameter, and x(s) 2 Rn is the feature vector corresponding to
state s. The notation “

.

=” indicates an equality by definition rather than one that follows
from previous definitions. In on-policy training, the actions are chosen according to a target
policy ⇡ : A⇥S ! [0, 1], where ⇡(a|s) .

= P{At =a|St =s}. The state and action sets S and A

are assumed to be finite, but the number of states is assumed much larger than the number
of learned parameters, |S| .

= N � n, so that function approximation is necessary. We use
linear function approximation, in which the inner product of the parameter vector and the
feature vector for a state is meant to be an approximation to the value of that state:

w

>
t x(s) ⇡ v⇡(s)

.

= E⇡[Gt|St =s] , (2)

where E⇡[·] denotes an expectation conditional on all actions being selected according to ⇡,
and Gt, the return at time t, is defined by

Gt
.

= Rt+1

+ �Rt+2

+ �

2

Rt+3

+ · · · . (3)

The TD(0) update (1) can be rewritten to make the stability issues more transparent:

wt+1

= wt + ↵

⇣
Rt+1

x(St)| {z }
bt2Rn

�x(St) (x(St) � �x(St+1

))>| {z }
At2Rn⇥n

wt

⌘

= wt + ↵(bt � Atwt) (4)

= (I � ↵At)wt + ↵bt.

The matrix At multiplies the parameter wt and is thereby critical to the stability of the
iteration. To develop intuition, consider the special case in which At is a diagonal matrix.
If any of the diagonal elements are negative, then the corresponding diagonal element of
I�↵At will be greater than one, and the corresponding component of wt will be amplified,
which will lead to divergence if continued. The second term (↵bt) does not a↵ect the
stability of the iteration. On the other hand, if the diagonal elements of At are all positive,
then ↵ can be chosen smaller than the largest of them, such that I � ↵At is diagonal with
all diagonal elements between 0 and 1. In this case the first term of the update tends to
shrink wt, and stability is assured. In general, wt will be reduced toward zero whenever At

is positive definite.1

1. A real matrix A is defined to be positive definite in this paper i↵ y>Ay > 0 for any vector y 6= 0.

4

key matrix
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0.9, or on the third step, with probability 0.92, etc, so f(2) = 0.5 + 0.9 + 0.92 + 0.93 + · · · =
0.5 + 0.9 · 10 = 9.5. Thus, the key matrix is now

F(I � �P⇡) =


0.5 0
0 9.5

�
⇥


1 �0.9
0 0.1

�
=


0.5 �0.45
0 0.95

�
. (17)

Note that because F is a diagonal matrix, its only e↵ect is to scale the rows. Here it
emphasizes the lower row by more than a factor of 10 compared to the upper row, thereby
causing the key matrix to have positive column sums and be positive definite. The F matrix
emphasizes the second state, which would occur much more often under the target policy
than it does under the behavior policy.

5. The General Case

We turn now to a more general case of o↵-policy learning with linear function approximation.
The objective is still to evaluate a policy ⇡ from a single trajectory under a di↵erent policy
µ, but now the value of a state is defined not with respect to a constant discount rate
� 2 [0, 1], but with respect to a discount rate that varies from state to state according
to a discount function � : S ! [0, 1] such that

Q1
k=1

�(St+k) = 0, w.p.1, 8t. That is, our
approximation is still defined by (2), but now (3) is replaced by

Gt
.

= Rt+1

+ �(St+1

)Rt+2

+ �(St+1

)�(St+2

)Rt+3

+ · · · , (18)

State-dependent discounting specifies a temporal envelope within which received rewards
are accumulated. If �(St) = 0, then the time of accumulation is fully terminated at t,
and if �(St) < 1, then it is partially terminated. We call both of these soft termination
because they are like the termination of an episode, but the actual trajectory is not a↵ected.
Soft termination ends the accumulation of rewards into a return, but the state transitions
continue oblivious to the termination.

Soft termination is particularly natural in the excursion setting, where it makes it easy
to define excursions of finite and definite duration. For example, consider the deterministic
MDP shown in Figure 2. There are five states, three of which do not discount at all,
�(s) = 1, and are shown as circles, and two of which cause complete soft termination,
�(s) = 0, and are shown as squares. The terminating states do not end anything other
than the return; actions are still selected in them and, dependent on the action selected,
they transition to next states indefinitely without end. In this MDP there are two actions,
left and right, which deterministically cause transitions to the left or right except at the
edges, where there may be a self transition. The reward on all transitions is +1. The
behavior policy is to select left 2/3rds of the time in all states, which causes more time to
be spent in states on the left than on the right. The stationary distribution can be shown
to be dµ ⇡ (0.52, 0.26, 0.13, 0.06, 0.03)>; more than half of the time steps are spent in the
leftmost terminating state.

Consider the target policy ⇡ that selects the right action from all states. The correct
value v⇡(s) of each state s is written above it in the figure. For both of the two rightmost
states, the right action results in a reward of 1 and an immediate termination, so their values
are both 1. For the middle state, following ⇡ (selecting right repeatedly) yields two rewards
of 1 prior to termination. There is no discounting (� =1) prior to termination, so the middle
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In general, for any random variable Zt+1

dependent on St, At and St+1

, we can recover
its expectation under the target policy by multiplying by the importance sampling ratio:

Eµ[⇢tZt+1

|St =s] =
X

a

µ(a|s)⇡(a|s)
µ(a|s)Zt+1

=
X

a

⇡(a|s)Zt+1

= E⇡[Zt+1

|St =s]

We can use this fact to begin to adapt TD(0) for o↵-policy learning (Precup, Sutton &
Singh 2000). We simply multiply the whole TD(0) update (1) by ⇢t:

wt+1

.

= wt + ⇢t ↵

⇣
Rt+1

+ �w

>
t xt+1

� w

>
t xt

⌘
xt (9)

= wt + ↵

⇣
⇢tRt+1

xt| {z }
bt

� ⇢txt (xt � �xt+1

)>| {z }
At

wt

⌘
,

where here we have used the shorthand xt
.

= x(St). Note that if the action taken at time t

is never taken under the target policy in that state, then ⇢t = 0 and there is no update on
that step, as desired. We call this algorithm o↵-policy TD(0).

O↵-policy TD(0)’s A matrix is

A = lim
t!1

E[At] = lim
t!1

Eµ

h
⇢txt (xt � �xt+1

)>
i

=
X

s

dµ(s)Eµ

h
⇢txt (xt � �xt+1

)>
���St = s

i

=
X

s

dµ(s)E⇡

h
xt (xt � �xt+1

)>
���St = s

i
(by (9))

=
X

s

dµ(s)x(s)

 
x(s) � �

X

s0

[P⇡]ss0x(s0)

!>

= X

>
Dµ(I � �P⇡)X, (10)

where Dµ is the N ⇥N diagonal matrix with the stationary distribution dµ on its diagonal.
Thus, the key matrix that must be positive definite is Dµ(I � �P⇡) and, unlike in the on-
policy case, the distribution and the transition probabilities do not match. We do not have
an analog of (5), P>

⇡ dµ 6= dµ, and in fact the column sums may be negative and the matrix
not positive definite, in which case divergence of the parameter is likely.

A simple w!2w example of divergence that fits the setting in this section is shown in
Figure 1. From each state there are two actions, left and right, which take the process to the
left or right states. All the rewards are zero. As before, there is a single parameter w and
the single feature is 1 and 2 in the two states such that the approximate values are w and
2w as shown. The behavior policy is to go left and right with equal probability from both
states, such that equal time is spent on average in both states, dµ = (0.5, 0.5)>. The target
policy is to go right in both states. We seek to learn the value from each state given that
the right action is continually taken. The transition probability matrix for this example is:

P⇡ =


0 1
0 1

�
.
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� = 0.9

� = 0
µ(right|·) = 0.5

⇡(right|·) = 1
2w

w

Figure 1: w!2w example without a terminal state.

The key matrix is

Dµ(I � �P⇡) =


0.5 0
0 0.5

�
⇥

1 �0.9
0 0.1

�
=


0.5 �0.45
0 0.05

�
. (11)

We can see an immediate indication that the key matrix may not be positive definite in
that the second column sums to a negative number. More definitively, one can show that
it is not positive definite by multiplying it on both sides by y = X = (1, 2)>:

X

>
Dµ(I � �P⇡)X =

⇥
1 2

⇤
⇥

0.5 �0.45
0 0.05

�
⇥

1
2

�
=

⇥
1 2

⇤
⇥


�0.4
0.1

�
= �0.2.

That this is negative means that the key matrix is not positive definite. We have also
calculated here the A matrix; it is this scalar, A = �0.2. Clearly, this expected update and
algorithm are not stable.

It is also easy to see the instability of this example more directly, without matrices. We
know that only transitions under the right action cause updates, as ⇢t will be zero for the
others. Assume for concreteness that initially wt = 10 and ↵ = 0.1. On a right transition
from the first state the update will be

wt+1

= wt + ⇢t↵

⇣
Rt+1

+ �w

>
t xt+1

� w

>
t xt

⌘
xt

= 10 + 2 · 0.1 (0 + 0.9 · 10 · 2 � 10 · 1) 1

= 10 + 1.6,

whereas, on a right transition from the second state the update will be

wt+1

= wt + ⇢t↵

⇣
Rt+1

+ �w

>
t xt+1

� w

>
t xt

⌘
xt

= 10 + 2 · 0.1 (0 + 0.9 · 10 · 2 � 10 · 2) 2

= 10 � 0.8.

These two transitions occur equally often, so the net change will be positive. That is, w will
increase, moving farther from its correct value, zero. Everything is linear in w, so the next
time around, with a larger starting w, the increase in w will be larger still, and divergence
occurs. A smaller value of ↵ would not prevent divergence, only reduce its rate.

4. O↵-policy Stability of Emphatic TD(0)

The deep reason for the di�culty of o↵-policy learning is that the behavior policy may
take the process to a distribution of states di↵erent from that which would be encountered
under the target policy, yet the states might appear to be the same or similar because of
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Counterexample:

F

Sutton, Mahmood & White

0.9, or on the third step, with probability 0.92, etc, so f(2) = 0.5 + 0.9 + 0.92 + 0.93 + · · · =
0.5 + 0.9 · 10 = 9.5. Thus, the key matrix is now

F(I � �P⇡) =


0.5 0
0 9.5

�
⇥

1 �0.9
0 0.1

�
=


0.5 �0.45
0 0.95

�
. (17)

Note that because F is a diagonal matrix, its only e↵ect is to scale the rows. Here it
emphasizes the lower row by more than a factor of 10 compared to the upper row, thereby
causing the key matrix to have positive column sums and be positive definite. The F matrix
emphasizes the second state, which would occur much more often under the target policy
than it does under the behavior policy.

5. The General Case

We turn now to a more general case of o↵-policy learning with linear function approximation.
The objective is still to evaluate a policy ⇡ from a single trajectory under a di↵erent policy
µ, but now the value of a state is defined not with respect to a constant discount rate
� 2 [0, 1], but with respect to a discount rate that varies from state to state according
to a discount function � : S ! [0, 1] such that

Q1
k=1

�(St+k) = 0, w.p.1, 8t. That is, our
approximation is still defined by (2), but now (3) is replaced by

Gt
.

= Rt+1

+ �(St+1

)Rt+2

+ �(St+1

)�(St+2

)Rt+3

+ · · · , (18)

State-dependent discounting specifies a temporal envelope within which received rewards
are accumulated. If �(St) = 0, then the time of accumulation is fully terminated at t,
and if �(St) < 1, then it is partially terminated. We call both of these soft termination
because they are like the termination of an episode, but the actual trajectory is not a↵ected.
Soft termination ends the accumulation of rewards into a return, but the state transitions
continue oblivious to the termination.

Soft termination is particularly natural in the excursion setting, where it makes it easy
to define excursions of finite and definite duration. For example, consider the deterministic
MDP shown in Figure 2. There are five states, three of which do not discount at all,
�(s) = 1, and are shown as circles, and two of which cause complete soft termination,
�(s) = 0, and are shown as squares. The terminating states do not end anything other
than the return; actions are still selected in them and, dependent on the action selected,
they transition to next states indefinitely without end. In this MDP there are two actions,
left and right, which deterministically cause transitions to the left or right except at the
edges, where there may be a self transition. The reward on all transitions is +1. The
behavior policy is to select left 2/3rds of the time in all states, which causes more time to
be spent in states on the left than on the right. The stationary distribution can be shown
to be dµ ⇡ (0.52, 0.26, 0.13, 0.06, 0.03)>; more than half of the time steps are spent in the
leftmost terminating state.

Consider the target policy ⇡ that selects the right action from all states. The correct
value v⇡(s) of each state s is written above it in the figure. For both of the two rightmost
states, the right action results in a reward of 1 and an immediate termination, so their values
are both 1. For the middle state, following ⇡ (selecting right repeatedly) yields two rewards
of 1 prior to termination. There is no discounting (� =1) prior to termination, so the middle
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off-policy TD

emphatic TD
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µ(right|·) = 0.1

⇡(right|·) = 1
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off-policy TD(0)
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Figure 3: Emphatic TD approaches the correct value of zero, whereas conventional o↵-
policy TD diverges, on fifty trajectories on the w ! 2w problems shown above
each graph. Also shown as a thick line is the trajectory of the deterministic
expected-update algorithm. On the continuing problem (left) emphatic TD has
occasional high variance deviations from zero.

which tends to zero as t ! 1. Nevertheless, this problem is indeed a di�cult case, as the
variance of Ft is infinite:

Var[Ft] = E
⇥
F

2

t

⇤
� (E[Ft])

2

= 0.5t(2t0.9t)2 � (0.9t)2

= (0.92 · 2)t � (0.92)t

= 1.62t � 0.81t
,

which tends to 1 as t ! 1.
So what actually happens on this problem? The thin blue lines in Figure 3 (left) show

the trajectories of the single parameter w over time in 50 runs with this problem with �=0
and ↵=0.001, starting at w=1.0. We see that most trajectories of emphatic TD(0) rapidly
approach the correct value of w = 0, but a few make very large steps away from zero and
then return. Because the variance of Ft (and thus of Mt and et) is infinite, true convergence
never occurs; there is always a small chance of an extremely large fluxuation taking w far
away from zero. This is not convergence, but neither is it divergence or instability. O↵-
policy TD(0), on the other hand, does diverge to infinity both in its expected update and
in all individual runs, as shown.

For comparison, Figure 3 (right) shows trajectories for a w ! 2w problem in which Ft

and all the other variables and their variances are bounded. In this problem, the target
policy of selecting right on all steps leads to a soft terminal state (�(s) = 0) with fixed
value zero, which then transitions back to start again in the leftmost state, as shown in the
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1 1
w2 w3+

1
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Figure 4: Twenty learning curves and their analytic expectation on the 5-state problem
from Section 5, in which excursions terminate promptly and both algorithms
converge reliably. Here � = 0, w

0

= 0, ↵ = 0.001, and i(s) = 1, 8s. The MSVE
performance measure is defined in (20).

upper right of the figure. (This is an example of how one can reproduce the conventional
notions of terminal state and episode in a soft termination setting.) Here we have chosen the
behavior policy to take the action left with probability 0.9, so that its stationary distribution
distinctly favors the left state, whereas the target policy would spend equal time in each
of the two states. This change increases the variance of the updates, so we used a smaller
step size, ↵ = 0.0001; other settings were unchanged. Conventional o↵-policy TD(0) still
diverges in this case, but emphatic TD(0) converges reliably to zero.

Finally, Figure 4 shows trajectories for the 5-state example shown earlier (and again in
the upper part of the figure). In this case, everything is bounded under the target policy, and
both algorithms converge. The emphatic algorithm achieves a lower MSVE in this example
(but we do not mean to claim any general empirical advantage for emphatic TD(�) at this
time).

Also shown in these figures as a thick dark line is the trajectory of the deterministic
expected-update algorithm: wt+1

= u(wt). Tsitsiklis and Van Roy (1997) argued that, for
small step-size parameters and in the steady-state distribution, on-policy TD(�) follows
its expected-update algorithm in an “average” sense, and we see much the same here for
emphatic TD(�).

These examples show that although emphatic TD(�) is stable for any MDP and all
functions �, �, and i, for some problems and functions the parameter vector itself does not
converge, but instead continues to fluxuate with a chance of arbitrarily large deviations
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Figure 2: A 5-state chain MDP with soft-termination states at each end.

state’s value is 2, and similarly the values go up by 1 for each state to its left, as shown.
These are the correct values. The approximate values depend on the parameter vector wt

as suggested by the expressions shown inside each state in the figure. These expressions
use the notation wi to denote the ith component of the current parameter vector wt. In
this example, there are five states and only three parameters, so it is unlikely, and indeed
impossible, to represent v⇡ exactly. We will return to this example later in the paper.

In addition to enabling definitive termination, as in this example, state-dependent dis-
counting enables a much wider range of predictive questions to be expressed in the form of
a value function (Sutton et al. 2011, Modayil, White & Sutton 2014, Sutton, Rafols & Koop
2006), including option models (Sutton, Precup & Singh 1999, Sutton 1995). For example,
with state-dependent discounting one can formulate questions both about what will happen
during a way of behaving and what will be true at its end. A general representation for
predictions is a key step toward the goal of representing world knowledge in verifiable pre-
dictive terms (Sutton 2009, 2012). The general form is also useful just because it enables
us to treat uniformly many of the most important episodic and continuing special cases of
interest.

A second generalization, developed for the first time in this paper, is to explicitly specify
the relative interest in accurately valuing di↵erent states. Recall that in parametric function
approximation there are typically many more states than parameters (N � n), and thus
it is not possible to value all of them accurately. Valuing some states more accurately
inherently means valuing others less accurately, at least asymptotically. In the tabular
case where much of the theory of reinforcement learning originated, this tradeo↵ is not an
issue because the estimates of each state are independent of each other, but with function
approximation it is necessary to specify relative interest in order to make the problem well
defined. Nevertheless, in the function approximation case little attention has been paid in
the literature to specifing the relative importance of di↵erent states (an exception is Thomas
2014), though there are intimations of this in the initiation set of options (Sutton, Precup
& Singh 1999). In the past it was typically assumed that we were interested in valuing
states in direct proportion to how often they occur, but this is not always the case. For
example, in episodic problems we often care primarily about the value of the first state, or
of earlier states generally (as discussed by Thomas 2014). Here we allow the user to specify
the relative interest in each state with a nonnegative interest function i : S ! [0, 1). Our
objective is to minimize the Mean Square Value Error (MSVE) with states weighted both
by how often they occur and by our interest in them:

MSVE(w)
.

=
X

s2S
dµ(s)i(s)

⇣
v⇡(s) � w

>
x(s)

⌘
2

. (19)
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Summary of emphatic results
• Linear emphatic TD(0) is the simplest TD alg with linear FA 

that is stable under off-policy training

• Some empirical illustrations

• Stability theorem for full case of GVFs

• Convergence w.p.1 theorem (Janey Yu, under review)

• Asymptotic approximation bounds (Remi Munos)

• Also a new (better?) algorithm for the on-policy case


