
γ!
We should never discount 

when approximating policies!

γis ok it there is a
start state/distribution

The average-reward setting
• Maximize the reward rate (reward per step):

where

• Learn to approximate and new “differential” values,
in which all rewards are compared to the reward rate:

226 CHAPTER 11. POLICY GRADIENT METHODS

In Section 11.1 we also discussed a more sophisticated actor–critic method that
uses the update

Ht+1(s, a)
.
=

⇢
Ht(s, a) + ��t[1 � ⇡t(a|s)] if a=At and s=St

Ht(s, a) otherwise.

To generalize this equation to eligibility traces we can use the same update (11.1)
with a slightly di↵erent trace. Rather than incrementing the trace by 1 each time a
state–action pair occurs, it is updated by 1 � ⇡t(St, At):

Et(s, a)
.
=

⇢
��Et�1(s, a) + 1 � ⇡t(St, At) if s=St and a = At;
��Et�1(s, a) otherwise,

(11.2)

for all s, a.

11.3 R-Learning and the Average-Reward Setting

When the policy is approximated, we generally have to abandon the discounted-
reward setting that we have relied on up to now. We replace it with the average-
reward setting, which we discuss in this section.

R-learning is an o↵-policy control method for the advanced version of the rein-
forcement learning problem in which one neither discounts nor divides experience
into distinct episodes with finite returns. In this average-reward setting, one seeks to
maximize the average reward per time step. The value functions for a policy, ⇡, are
defined relative to the average expected reward per step under the policy, r(⇡):

r(⇡)
.
= lim

n!1

1

n

nX

t=1

E⇡[Rt] =
X

s

d⇡(s)
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)r,

where d⇡(s) is the limiting state distribution under policy ⇡. This average reward is
well defined if we assume that the process is ergodic (nonzero probability of reaching
any state from any other under any policy), and thus that d⇡ exists and does not
depend on the starting state. From any state, in the long run the average reward
is the same, but there is a transient. From some states better-than-average rewards
are received for a while, and from others worse-than-average rewards are received. It
is this transient that defines the value of a state:

ṽ⇡(s) =
1X

k=1

E⇡[Rt+k � r(⇡) | St =s] ,

and the value of a state–action pair is similarly the transient di↵erence in reward
when starting in that state and taking that action:

q̃⇡(s, a) =
1X

k=1

E⇡[Rt+k � r(⇡) | St =s, At =a] .

An Emphatic Approach to Off-policy TD Learning

If any of the diagonal elements are negative, then the corresponding diagonal element of
I� ↵At will be greater than one, and the corresponding component of ✓t will be amplified,
which will lead to divergence if continued. (The second term (↵bt) does not a↵ect the
stability of the iteration.) On the other hand, if the diagonal elements of At are all positive,
then ↵ can be chosen smaller than one over the largest of them, such that I�↵At is diagonal
with all diagonal elements between 0 and 1. In this case the first term of the update tends
to shrink ✓t, and stability is assured. In general, ✓t will be reduced toward zero whenever
At is positive definite.1

In actuality, however, At and bt are random variables that vary from step to step, in
which case stability is determined by the steady-state expectation, limt!1 E[At]. In our set-
ting, after an initial transient, states will be visited according to the steady-state distribution
under ⇡. We represent this distribution by a vector d⇡, each component of which gives the
limiting probability of being in a particular state2 [d⇡]s

.
= d⇡(s)

.
= limt!1 P{St =s}, which

we assume exists and is positive at all states (any states not visited with nonzero probability
can be removed from the problem). The special property of the steady-state distribution is
that once the process is in it, it remains in it. Let P⇡ denote the N ⇥N matrix of transition
probabilities [P⇡]ij

.
=

P
a ⇡(a|i)p(j|i, a) where p(j|i, a)

.
= P{St+1

=j|St = i, At =a}. Then
the special property of d⇡ is that

P

>
⇡ d⇡ = d⇡. (5)

Consider any stochastic algorithm of the form (4), and let A

.
= limt!1 E[At] and

b

.
= limt!1 E[bt]. We define the stochastic algorithm to be stable if and only if the

corresponding deterministic algorithm,

✓̄t+1

.
= ✓̄t + ↵(b � A✓̄t), (6)

is convergent to a unique fixed point independent of the initial ✓̄
0

. This will occur i↵ the
A matrix has a full set of eigenvalues all of whose real parts are positive. If a stochastic
algorithm is stable and ↵ is reduced according to an appropriate schedule, then its parameter
vector may converge with probability one. However, in this paper we focus only on stability
as a prerequisite for convergence (of the original stochastic algorithm), leaving convergence
itself to future work. If the stochastic algorithm converges, it is to a fixed point ✓̄ of the
deterministic algorithm, at which A✓̄ = b, or ✓̄ = A

�1

b. (Stability assures existence of
the inverse.) In this paper we focus on establishing stability by proving that A is positive
definite. From definiteness it immediately follows that A has a full set of eigenvectors
(because y

>
Ay > 0, 8y 6= 0) and that the corresponding eigenvalues all have real parts.3

1. A real matrix A is defined to be positive definite in this paper i↵ y>Ay > 0 for any real vector y 6= 0.
2. Here and throughout the paper we use brackets with subscripts to denote the individual elements of

vectors and matrices.
3. To see the latter, let Re(x) denote the real part of a complex number x, and let y⇤ denotes the conjugate

transpose of a complex vector y. Then, for any eigenvalue–eigenvector pair �,y: 0 < Re(y⇤Ay) =
Re(y⇤

�y) = Re(�)y⇤y =) 0 < Re(�).

5

226 CHAPTER 11. POLICY GRADIENT METHODS

In Section 11.1 we also discussed a more sophisticated actor–critic method that
uses the update

Ht+1(s, a)
.
=

⇢
Ht(s, a) + ��t[1 � ⇡t(a|s)] if a=At and s=St

Ht(s, a) otherwise.

To generalize this equation to eligibility traces we can use the same update (11.1)
with a slightly di↵erent trace. Rather than incrementing the trace by 1 each time a
state–action pair occurs, it is updated by 1 � ⇡t(St, At):

Et(s, a)
.
=

⇢
��Et�1(s, a) + 1 � ⇡t(St, At) if s=St and a = At;
��Et�1(s, a) otherwise,

(11.2)

for all s, a.

11.3 R-Learning and the Average-Reward Setting

When the policy is approximated, we generally have to abandon the discounted-
reward setting that we have relied on up to now. We replace it with the average-
reward setting, which we discuss in this section.

R-learning is an o↵-policy control method for the advanced version of the rein-
forcement learning problem in which one neither discounts nor divides experience
into distinct episodes with finite returns. In this average-reward setting, one seeks to
maximize the average reward per time step. The value functions for a policy, ⇡, are
defined relative to the average expected reward per step under the policy, r(⇡):

r(⇡)
.
= lim

n!1

1

n

nX

t=1

E⇡[Rt] =
X

s

d⇡(s)
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)r,

where d⇡(s) is the limiting state distribution under policy ⇡. This average reward is
well defined if we assume that the process is ergodic (nonzero probability of reaching
any state from any other under any policy), and thus that d⇡ exists and does not
depend on the starting state. From any state, in the long run the average reward
is the same, but there is a transient. From some states better-than-average rewards
are received for a while, and from others worse-than-average rewards are received. It
is this transient that defines the value of a state:

ṽ⇡(s) =
1X

k=1

E⇡[Rt+k � r(⇡) | St =s] ,

and the value of a state–action pair is similarly the transient di↵erence in reward
when starting in that state and taking that action:

q̃⇡(s, a) =
1X

k=1

E⇡[Rt+k � r(⇡) | St =s, At =a] .

226 CHAPTER 11. POLICY GRADIENT METHODS

In Section 11.1 we also discussed a more sophisticated actor–critic method that
uses the update

Ht+1(s, a)
.
=

⇢
Ht(s, a) + ��t[1 � ⇡t(a|s)] if a=At and s=St

Ht(s, a) otherwise.

To generalize this equation to eligibility traces we can use the same update (11.1)
with a slightly di↵erent trace. Rather than incrementing the trace by 1 each time a
state–action pair occurs, it is updated by 1 � ⇡t(St, At):

Et(s, a)
.
=

⇢
��Et�1(s, a) + 1 � ⇡t(St, At) if s=St and a = At;
��Et�1(s, a) otherwise,

(11.2)

for all s, a.

11.3 R-Learning and the Average-Reward Setting

When the policy is approximated, we generally have to abandon the discounted-
reward setting that we have relied on up to now. We replace it with the average-
reward setting, which we discuss in this section.

R-learning is an o↵-policy control method for the advanced version of the rein-
forcement learning problem in which one neither discounts nor divides experience
into distinct episodes with finite returns. In this average-reward setting, one seeks to
maximize the average reward per time step. The value functions for a policy, ⇡, are
defined relative to the average expected reward per step under the policy, r(⇡):

r(⇡)
.
= lim

n!1

1

n

nX

t=1

E⇡[Rt] =
X

s

d⇡(s)
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)r,

where d⇡(s) is the limiting state distribution under policy ⇡. This average reward is
well defined if we assume that the process is ergodic (nonzero probability of reaching
any state from any other under any policy), and thus that d⇡ exists and does not
depend on the starting state. From any state, in the long run the average reward
is the same, but there is a transient. From some states better-than-average rewards
are received for a while, and from others worse-than-average rewards are received. It
is this transient that defines the value of a state:

ṽ⇡(s) =
1X

k=1

E⇡[Rt+k � r(⇡) | St =s] ,

and the value of a state–action pair is similarly the transient di↵erence in reward
when starting in that state and taking that action:

q̃⇡(s, a) =
1X

k=1

E⇡[Rt+k � r(⇡) | St =s, At =a] .

r(⇡)

Average-reward Q-learning
(R-learning)

11.3. R-LEARNING AND THE AVERAGE-REWARD SETTING 227

Initialize R̄ and Q(s, a), for all s, a, arbitrarily
Repeat forever:

S current state
Choose action A in S using behavior policy (e.g., ✏-greedy)
Take action A, observe R, S0

� R� R̄ + maxa Q(S0, a)�Q(S, A)
Q(S, A) Q(S, A) + ↵�
If Q(S, A) = maxa Q(S, a), then:

R̄ R̄ + ��

Figure 11.2: R-learning: An o↵-policy TD control algorithm for undiscounted, continuing
tasks. The scalars ↵ and � are step-size parameters.

We call these relative values because they are relative to the average reward under
the current policy.

There are subtle distinctions that need to be drawn between di↵erent kinds of
optimality in the undiscounted continuing case. Nevertheless, for most practical
purposes it may be adequate simply to order policies according to their average
reward per time step, in other words, according to their r(⇡). For now let us consider
all policies that attain the maximal value of r(⇡) to be optimal.

Other than its use of relative values, R-learning is a standard TD control method
based on o↵-policy GPI, much like Q-learning. It maintains two policies, a behavior
policy and an estimation policy, plus an action-value function and an estimated
average reward. The behavior policy is used to generate experience; it might be the
"-greedy policy with respect to the action-value function. The estimation policy is
the one involved in GPI. It is typically the greedy policy with respect to the action-
value function. If ⇡ is the estimation policy, then the action-value function, Q, is an
approximation of q̃⇡ and the average reward, R̄, is an approximation of r(⇡). The
complete algorithm is given in Figure 11.2.

Example 11.1: An Access-Control Queuing Task This is a decision task
involving access control to a set of n servers. Customers of four di↵erent priorities
arrive at a single queue. If given access to a server, the customers pay a reward
of 1, 2, 4, or 8, depending on their priority, with higher priority customers paying
more. In each time step, the customer at the head of the queue is either accepted
(assigned to one of the servers) or rejected (removed from the queue). In either case,
on the next time step the next customer in the queue is considered. The queue never
empties, and the proportion of (randomly distributed) high priority customers in the
queue is h. Of course a customer can be served only if there is a free server. Each
busy server becomes free with probability p on each time step. Although we have just
described them for definiteness, let us assume the statistics of arrivals and departures
are unknown. The task is to decide on each step whether to accept or reject the next
customer, on the basis of his priority and the number of free servers, so as to maximize
long-term reward without discounting. Figure 11.3 shows the solution found by R-
learning for this task with n = 10, h = 0.5, and p = 0.06. The R-learning parameters
were ↵ = 0.01, � = 0.01, and ✏ = 0.1. The initial action values and R̄ were zero.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 4

Access-Control Queuing Task

n servers
Customers have four different
priorities, which pay reward of
1, 2, 4, or 8, if served
At each time step, customer at
head of queue is accepted
(assigned to a server) or
removed from the queue
Proportion of randomly
distributed high priority
customers in queue is h
Busy server becomes free with
probability p on each time step
Statistics of arrivals and
departures are unknown

n=10, h=.5, p=.06

Apply R-learning

On-policy average-reward
with traces and linear FA

✓t+1
.
= ✓t + ↵�tet

R̄t+1
.
= R̄t + ��t

�t
.
= Rt+1 � R̄t + ✓>

t �t+1 � ✓>
t �t

