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Psychology has identified two primitive 
kinds of learning

• Classical Conditioning 

• Operant Conditioning (a.k.a. Instrumental learning)

• Computational theory:

❖ Classical = Prediction

- What is going to happen?

❖ Operant = Control

- What to do to maximize reward?



Classical Conditioning



Pavlov
• Russian physiologist

• Interested in how learning happened in 
the brain

• Conditional and Unconditional Stimuli

www.psychlotron.org.uk  Contributed by Aidan Sammons  

Some Behaviourist Vocabulary 
 
Behaviourism has its own set of specialised terms to describe the learning process.  It is worthwhile getting to be familiar 
with these terms and, if possible, to use them in your own writing.  Some key behaviourist terms are: 
 
Term What’s this? 
Stimulus Any change in the environment that an organism registers. 
Response Any behaviour that the organism emits as a consequence of a stimulus. 
Reflex A consistent connection between a stimulus and a response. 
 
Pavlov’s Experiments with Dogs 
 
Pavlov started from the idea that there are some things that a dog does not need to learn.  For example, dogs don’t learn 
to salivate whenever they see food.  This reflex is ‘hard wired’ into the dog.  In behaviourist terms, it is an unconditioned 
reflex (i.e. a stimulus-response connection that required no learning).  In behaviourist terms, we write: 
 
Unconditioned Stimulus (UCS) ! Unconditioned Response (UCR) 
 
Pavlov showed the existence of the unconditioned reflex by presenting a dog with a bowl of food and the measuring its 
salivary secretions.   

 
 
 
 
 
 
 
 
 
 
 

Pavlov knew that somehow, the dogs in his lab had learned to associate food with his lab assistant.  This must have 
been learned, because at one point the dogs did not do it, and there came a point where they started, so their behaviour 
had changed.  A change in behaviour of this type must be the result of learning.  In behaviourist terms, the lab assistant 
was originally a neutral stimulus.  It is called neutral because it produces no response.  What had happened was that 
the neutral stimulus (the lab assistant) had become associated with an unconditioned stimulus (food): 
 
Unconditioned Stimulus (UCS) + Neutral Stimulus (NS) ! Unconditioned Response (UCR) 
 
In his experiment, Pavlov used a bell as his neutral stimulus.  Whenever he gave food to his dogs, he also rang a bell.  
After a number of repeats of this procedure, he tried the bell on its own.  As you might expect, the bell on its own now 
caused an increase in salivation.  So the dog had learned an association between the bell and the food and a new reflex 
had been created.  Because this reflex was learned (or conditioned), it is called a conditioned reflex.  The neutral 
stimulus has become a conditioned stimulus: 
 
Conditioned Stimulus (CS, formerly NS) ! Conditioned Response (CR) 
 
Note: salivation is a UCR when it occurs because of the presentation of food, because this is an unconditioned reflex.  It 
is a CR when it occurs because of the presentation of the bell because this is a conditioned reflex. 



Rescorla-Wagner 
Model (1972)

• Computational model of conditioning

❖ Widely cited and used

• Learning as violation of expectations

❖ TD learning as extension of RW



Operant Learning

• Operant Conditioning is all about choice in 
3 main ways:

❖ Decide which response to make?

❖ Decide how much to respond?

❖ Decide when to respond?



Thorndike’s Puzzle Box



Operant Chambers



Complex Cognition



Marr’s 3 Levels of 
Analysis

• Computational

❖ What function is being fulfilled?

• Algorithmic

❖ How is it accomplished?

• Implementational

❖ What physical substrate is involved?



• Learn to predict discounted sum of upcoming 
reward through TD with linear function 
approximation:

The Basic TD Model

Information Encoded in
Dopaminergic Activity

Dopamine neurons of the ventral tegmental
area (VTA) and substantia nigra have long
been identified with the processing of re-
warding stimuli. These neurons send their
axons to brain structures involved in moti-
vation and goal-directed behavior, for ex-
ample, the striatum, nucleus accumbens,
and frontal cortex. Multiple lines of evi-
dence support the idea that these neurons
construct and distribute information about
rewarding events.

First, drugs like amphetamine and co-
caine exert their addictive actions in part by
prolonging the influence of dopamine on
target neurons (14). Second, neural path-
ways associated with dopamine neurons are
among the best targets for electrical self-
stimulation. In these experiments, rats press
bars to excite neurons at the site of an im-
planted electrode (15). The rats often
choose these apparently rewarding stimuli
over food and sex. Third, animals treated
with dopamine receptor blockers learn less
rapidly to press a bar for a reward pellet (16).
All the above results generally implicate
midbrain dopaminergic activity in reward-
dependent learning. More precise informa-
tion about the role played by midbrain do-
paminergic activity derives from experiments
in which activity of single dopamine neurons
is recorded in alert monkeys while they per-
form behavioral acts and receive rewards.

In these latter experiments (17), dopa-
mine neurons respond with short, phasic
activations when monkeys are presented
with various appetitive stimuli. For exam-
ple, dopamine neurons are activated when
animals touch a small morsel of apple or
receive a small quantity of fruit juice to the
mouth as liquid reward (Fig. 1). These pha-
sic activations do not, however, discrimi-
nate between these different types of re-
warding stimuli. Aversive stimuli like air
puffs to the hand or drops of saline to the
mouth do not cause these same transient
activations. Dopamine neurons are also ac-
tivated by novel stimuli that elicit orienting
reactions; however, for most stimuli, this
activation lasts for only a few presentations.
The responses of these neurons are relative-
ly homogeneous—different neurons re-
spond in the same manner and different
appetitive stimuli elicit similar neuronal re-
sponses. All responses occur in the majority
of dopamine neurons (55 to 80%).

Surprisingly, after repeated pairings of
visual and auditory cues followed by reward,
dopamine neurons change the time of their
phasic activation from just after the time of
reward delivery to the time of cue onset. In
one task, a naı̈ve monkey is required to
touch a lever after the appearance of a small
light. Before training and in the initial
phases of training, most dopamine neurons
show a short burst of impulses after reward
delivery (Fig. 1, top). After several days of
training, the animal learns to reach for the

lever as soon as the light is illuminated, and
this behavioral change correlates with two
remarkable changes in the dopamine neu-
ron output: (i) the primary reward no longer
elicits a phasic response; and (ii) the onset
of the (predictive) light now causes a phasic
activation in dopamine cell output (Fig. 1,
middle). The changes in dopaminergic ac-
tivity strongly resemble the transfer of an
animal’s appetitive behavioral reaction
from the US to the CS.

In trials where the reward is not deliv-
ered at the appropriate time after the onset
of the light, dopamine neurons are de-
pressed markedly below their basal firing
rate exactly at the time that the reward
should have occurred (Fig. 1, bottom). This
well-timed decrease in spike output shows
that the expected time of reward delivery
based on the occurrence of the light is also
encoded in the fluctuations in dopaminer-
gic activity (18). In contrast, very few do-
pamine neurons respond to stimuli that pre-
dict aversive outcomes.

The language used in the foregoing de-
scription already incorporates the idea that
dopaminergic activity encodes expectations
about external stimuli or reward. This inter-
pretation of these data provides a link to an
established body of computational theory (6,
7). From this perspective, one sees that dopa-
mine neurons do not simply report the occur-
rence of appetitive events. Rather, their out-
puts appear to code for a deviation or error
between the actual reward received and pre-
dictions of the time and magnitude of reward.
These neurons are activated only if the time
of the reward is uncertain, that is, unpredicted
by any preceding cues. Dopamine neurons are
therefore excellent feature detectors of the
“goodness” of environmental events relative
to learned predictions about those events.
They emit a positive signal (increased spike
production) if an appetitive event is better
than predicted, no signal (no change in spike
production) if an appetitive event occurs as
predicted, and a negative signal (decreased
spike production) if an appetitive event is
worse than predicted (Fig. 1).

Computational Theory and Model

The TD algorithm (6, 7) is particularly well
suited to understanding the functional role
played by the dopamine signal in terms of
the information it constructs and broadcasts
(8, 10, 12). This work has used fluctuations
in dopamine activity in dual roles (i) as a
supervisory signal for synaptic weight
changes (8, 10, 12) and (ii) as a signal to
influence directly and indirectly the choice
of behavioral actions in humans and bees
(9–11). Temporal difference methods have
been used in a wide spectrum of engineering
applications that seek to solve prediction
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Do dopamine neurons report an error 

in the prediction of reward?

Fig. 1. Changes in dopamine neurons’
output code for an error in the prediction of
appetitive events. (Top) Before learning, a
drop of appetitive fruit juice occurs in the
absence of prediction—hence a positive
error in the prediction of reward. The do-
pamine neuron is activated by this unpre-
dicted occurrence of juice. (Middle) After
learning, the conditioned stimulus predicts
reward, and the reward occurs according
to the prediction—hence no error in the
prediction of reward. The dopamine neu-
ron is activated by the reward-predicting
stimulus but fails to be activated by the
predicted reward (right). (Bottom) After
learning, the conditioned stimulus predicts
a reward, but the reward fails to occur be-
cause of a mistake in the behavioral re-
sponse of the monkey. The activity of the
dopamine neuron is depressed exactly at
the time when the reward would have oc-
curred. The depression occurs more than
1 s after the conditioned stimulus without
any intervening stimuli, revealing an inter-
nal representation of the time of the pre-
dicted reward. Neuronal activity is aligned
on the electronic pulse that drives the solenoid valve delivering the reward liquid (top) or the onset of the
conditioned visual stimulus (middle and bottom). Each panel shows the peri-event time histogram and
raster of impulses from the same neuron. Horizontal distances of dots correspond to real-time intervals.
Each line of dots shows one trial. Original sequence of trials is plotted from top to bottom. CS,
conditioned, reward-predicting stimulus; R, primary reward.
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Figure 1: Empirical data from monkey dopamine neurons (left column), simulation results from
the TD model with complete serial compound stimulus representation (middle column), and results
from our TD model with microstimuli (right column). From top to bottom, data and simulations
are presented for unpredicted rewards, predicted rewards, and the omission of predicted rewards.
See text for full simulation details. Data are from Schultz et al. (1997). Permission to reprint
pending. In empirical data figures, CS = Conditioned, reward-predicting Stimulus and R = Reward,
dots represent firing of individual neurons, and the bars are a histogram of that firing.

row). Finally, after learning, if an expected reward is omitted, then there is a decrease in the firing
rates of the dopamine neurons and a corresponding negative TD error in the models around the time
when reward would ordinarily have been received (bottom row; Schultz et al., 1997).

All TD models of dopamine work by assuming that the agent learns a value V for every time step t
in a trial. The true value V ⇥ is equal to the expected cumulative sum of discounted future reward:

V ⇥t = E

� ⇤⇤

k=1

�k�1rt+k

⇥
(1)

where rt is the reward at time step t, and � is a discount factor that weights immediate rewards more
heavily than distant rewards. The value is thus a prediction of expected future reward. With perfect
knowledge of the environment, including state transition probabilities and the reward function, the
value could be calculated directly through dynamic programming techniques (see Sutton & Barto,
1998). In the absence of such information, however, the value must be estimated. One method for
estimating the value is the temporal-difference (TD) algorithm whereby an error term ⇥t is calculated
based on the difference between the current value and the discounted value on the next time step,
taking into account the reward received along the way:

⇥t = rt+1 + �Vt+1 � Vt. (2)

A portion of this error is used to update the weights that determine the current estimated value. This
TD error is the feature of the reinforcement-learning models that is thought to be encoded by the
phasic firing of dopamine neurons. In most formulations of the TD model, the stimulus is repre-
sented as a complete serial compound or tapped-delay line. This form of temporal representation
assumes that each stimulus initiates a cascade in which all subsequent time steps in a trial are rep-
resented as perfectly distinct from neighbouring time steps. That is, the agent is assumed to know
exactly how many time steps ago the stimulus started—an idea adapted from earlier attempts to
model rabbit eyeblink conditioning using TD models (Sutton & Barto, 1990).

2

The right panel of Figure 2 depicts how these microstimulus levels vary across time as the stimu-
lus trace decays. Each subsequent microstimulus becomes progressively wider in time and reaches
lower maximal levels. Intuitively, the microstimulus levels represent the degree of confidence that
the memory trace has decayed to a certain level, where those levels are determined by the centers of
the basis functions. As time elapses from stimulus onset and the memory trace decays, different sets
of microstimuli become more or less active, providing a coarse coding of the trace height. The num-
ber and width of these microstimuli influence the degree to which discrimination and generalization
across the state space (time) occurs. All stimuli, including rewards, are assumed to be represented
by separate stimulus traces and corresponding microstimuli.

For the basis functions, we chose simple Gaussians:

f(y, µ,⌥) =
1⇤
2⌃

exp(� (y � µ)2)
2⌥2

) (3)

where y is the input value (i.e., trace level) with µ the center and ⌥ the width of each basis function.
The selection of the Gaussian as the basis function was arbitrary and likely not strictly necessary
for this type of model to produce improved predictions. Other functions, including the spectral
traces in Grossberg & Schmajuk (1989) and the behavioral states in Machado (1997), may also have
fruitfully served as the stimulus representation in our analysis. We chose this stimulus representation
for simplicity and ease of calculation. Our point is not that this exact choice for the microstimulus
function is ideal, but rather that using a temporal stimulus representation with certain properties (i.e.,
widening microcomponents with time) produces an altered time course for the TD error.

Given the basis functions, the microstimulus levels xt(i) at time t are determined by the correspond-
ing trace heights:

xt(i) = f(yt, i/n,⌥) ⇥ yt (4)

where f is the basis function defined above and n is the total number of microstimuli. The trace
level yt was set to 1 at stimulus onset and decreased exponentially, controlled by a single decay
parameter, which was fixed at 0.985 for all stimuli.

2 Learning Algorithm

The model learns through TD(⌅) with linear function approximation (Sutton, 1988). At each time
step, the estimated value is determined by:

Vt = wT
t xt =

n�

i=1

wt(i)xt(i) (5)

where xt is a vector of the activation levels xt(i) for the different features (microstimuli), and wt

is a corresponding vector of adjustable weights wt(i). The estimated value is contrained to be non-
negative, with negative values rectified to 0. As in the standard TD models, this estimated value is
compared to the reward received and the previous estimated value to generate a TD error (⇤t: see
Eq. 2). This TD error is then used to update the weight vector based on the following update rule:

wt+1 = wt + �⇤tet (6)

where � is a step-size parameter and et is a vector of eligibility trace levels (see Sutton & Barto,
1998), which together help determine the speed of learning. The eligibility traces represent a de-
caying window of plasticity during which a microstimulus can be learned about (i.e., its weights
can be adjusted). These traces help resolve the problem of temporal credit assignment: How does
the system know to which of all antecedent events should the current reward be attributed? Each
feature (microstimulus) has its own corresponding eligibility trace which continuously decays, but
accumulates whenever the feature is present:

et+1 = ⇥⌅et + xt (7)

where ⇥ is the discount factor as above and ⌅ is a decay parameter that determines the plasticity
window. Our model is completely defined by Equations 2-7 and 5 parameters, which were fixed at
the following values for the simulations below: ⌅ = 0.95; � = 0.01; ⇥ = 0.98; n = 50; ⌥ = 0.08.
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• The TD error is calculated as:





TD(λ) algorithm/model/neuron

wiei

˙ w i ~ δ ⋅ei

xi

Reward

δ
States
or
Features Value of state

 or action

wi ⋅ xi
i
∑

TD
Error

TD
Error

Eligibility
Trace

λ



Brain reward systems

Hammer, Menzel

Honeybee Brain VUM Neuron

What signal does 
this neuron carry?



Dopamine
• Small-molecule Neurotransmitter
❖ Diffuse projections from mid-brain 

throughout the brain

from Pinel (2000), p.364 

Key Idea: Phasic change in baseline dopamine 
responding = reward prediction error



Wolfram Schultz, et al.

 Dopamine 
neurons signal the 

error/change in 
prediction of 

reward 

TD error
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The theory that Dopamine = TD error 
is one of the most important interactions ever 

between artificial intelligence and neuroscience


