Reinforcement Learning in Psychology and Neuroscience

Ob, not bad. The light comes on, I press the bar, they write me a check How about you?"

with thanks to Elliot Ludvig Princeton University Psychology has identified two primitive kinds of learning

- Classical Conditioning
- Operant Conditioning (a.k.a. Instrumental learning)
- Computational theory:
 - Classical = <u>Prediction</u>
 - What is going to happen?
 - Operant = <u>Control</u>

- What to do to maximize reward?

Classical Conditioning

Pavlov

- Russian physiologist
- Interested in how learning happened in the brain
- Conditional and Unconditional Stimuli

Rescorla-Wagner Model (1972)

Computational model of conditioning

Widely cited and used

Learning as violation of expectations
TD learning as extension of RW

Operant Learning

- Operant Conditioning is all about choice in 3 main ways:
 - Decide which response to make?
 - Decide how much to respond?
 - Decide when to respond?

Thorndike's Puzzle Box

Operant Chambers

Complex Cognition

Marr's 3 Levels of Analysis

- Computational
 - What function is being fulfilled?
- Algorithmic
 - How is it accomplished?
- Implementational
 - What physical substrate is involved?

The Basic TD Model

 Learn to predict discounted sum of upcoming reward through TD with linear function approximation:

$$V_t = \mathbf{w}_t^T \mathbf{x}_t = \sum_{i=1}^{T} w_t(i) x_t(i)$$

The TD error is calculated as:

FRSITY O.

$$\delta_t = r_{t+1} + \gamma V_{t+1} - V_t$$

TD(\lambda) algorithm/model/neuron

Brain reward systems

Hammer, Menzel

Dopamine

- Small-molecule Neurotransmitter
 - Diffuse projections from mid-brain throughout the brain

Key Idea: Phasic change in baseline dopamine responding = reward prediction error

VERSITY OF

Reward Unexpected

The theory that *Dopamine = TD error* is one of the *most important interactions ever* between artificial intelligence and neuroscience