
Policy Approximation
• Policy = a function from state to action!

• How does the agent select actions?!

• In such a way that it can be affected by 
learning?!

• In such a way as to assure exploration?!

•  Approximation: there are too many states 
and/or actions to represent all policies!

• To handle large/continuous action spaces



What is learned and 
stored?

1. Action-value methods: learn the value of each 
action; pick the max (usually)!

2. Policy-gradient methods: learn the parameters u 
of a stochastic policy, update by                      !

• including actor-critic methods, which learn 
both value and policy parameters!

3. Dynamic Policy Programming!

4. Drift-diffusion models (Psychology)

∇uPerformance



Actor-critic architecture

World



Action-value methods

• The value of an action in a state given a policy 
is the expected future reward starting from 
the state taking that first action, then 
following the policy thereafter!

!

!

• Policy: pick the max most of the time  
 
but sometimes pick at random (!-greedy)
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�!
We should never discount 

when approximating policies!

�is ok it there is a 
start state/distribution



Average reward setting

• All rewards are compared to the average 
reward!

!

• where!

!

• and we learn an approximation
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Why approximate policies 
rather than values?

• In many problems, the policy is simpler to  
approximate than the value function!

• In many problems, the optimal policy is 
stochastic!

• e.g., bluffing, POMDPs!

• To enable smoother change in policies!

• To avoid a search on every step (the max)!

• To better relate to biology



Policy-gradient methods

• The policy itself is learned and stored!

• the policy is parameterized by u ∈ �n!

• we learn and store u!

!

• u is updated by approximate gradient ascent

ut+1 = ut + ↵ \rur̄(⇡u)

Pr [At = a] = ⇡ut(a|St)



eg, linear-exponential policies 
(discrete actions)

• The “preference” for action a in state s is 
linear in u!

!

• The probability of action a in state s is 
exponential in its preference
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eg, linear-gaussian policies 
(continuous actions)

action

action
prob.!

density

" and # linear 
in the state



eg, linear-gaussian policies 
(continuous actions)

• The mean and std. dev. for the action taken in 
state s are linear and linear-exponential in u", u#!

!

!

• The probability density function for the action 
taken in state s is gaussian
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The generality of the  
policy-gradient strategy

• Can be applied whenever we can compute the 
effect of parameter changes  
on the action probabilities, ∇uπ(a|s)!

• E.g., has been applied to spiking neuron models!

• There are many possibilities other than linear-
exponential and linear-gaussian!

• e.g., mixture of random, argmax, and fixed-
width gaussian; learn the mixing weights!

• drift/diffusion models?



Can policy gradient methods 
solve the twitching problem? 

(the problem of decisiveness in adaptive behavior)

• The problem:!

• we need stochastic policies to get exploration!

• but all of our policies have been i.i.d. 
(independent, identically distributed)!

• if the time step is small, the robot just twitches!!

• really, no aspect of behavior should depend on 
the length of the time step



Can we design a parameterized 
policy whose stochasticity is 

independent of the time step?

• let a “noise” variable take a random walk,  
drifting but tending back to zero!

!

!

• add it to the action, and adapt its parameters by the 
PG algorithm (or have several such noise variables)



The generality of the  
policy-gradient strategy (2)
• Can be applied whenever we can compute the effect of 

parameter changes  
on the action probabilities, ∇uπ(a|s)!

• Can we apply PG when outcomes are viewed as action?!

• e.g., the action of “turning on the light”  
or the action of “going to the bank”!

• is this an alternate strategy for temporal abstraction?!

• We would need to learn—not compute—the gradient 
of these states w.r.t. the policy parameter



Have we eliminated action?
• If any state can be an action, then what is still special 

about actions?!

• The parameters/weights are what we can really, 
directly control!

• We have always, in effect, “sensed” our actions  
(even in the !-greedy case)!

• Perhaps actions are just sensory signals that we can 
usually control easily!

• Perhaps there is no longer any need for a special 
concept of action in the RL framework


