Policy Approximation

® Policy = a function from state to action
® How does the agent select actions?

® |n such a way that it can be affected by
learning!?

® In such a way as to assure exploration?

® Approximation: there are too many states
and/or actions to represent all policies

® TJo handle large/continuous action spaces



What is learned and
stored!?

|. Action-value methods: learn the value of each
action; pick the max (usually)

2. Policy-gradient methods: learn the parameters u
of a stochastic policy, update by V, Performance

* including actor-critic methods, which learn
both value and policy parameters

3. Dynamic Policy Programming

4. Drift-diffusion models (Psychology)



Actor-critic architecture
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Action-value methods

® The value of an action in a state given a policy
is the expected future reward starting from
the state taking that first action, then
following the policy thereafter

qr(s,a) =E nyt_lRt So=35,4)=a
t=1

® Policy: pick the max most of the time
Ay = argmax QAt(Sta a)
but sometimes pick at random (e-greedy)



WVe should never discount
when approximating policies!

Y is ok it there is a
start state/distribution



Average reward setting

® All rewards are compared to the average
reward

Gn(5,0) =E |Y R —7(7)|So = 5,40 =a

® where
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® and we learn an approximation

ft %77(7'('15)



Why approximate policies
rather than values?

® |n many problems, the policy is simpler to
approximate than the value function

® |n many problems, the optimal policy is
stochastic

® e.g., bluffing, POMDPs
® TJo enable smoother change in policies
® Jo avoid a search on every step (the max)

® TJo better relate to biology



Policy-gradient methods

® The policy itself is learned and stored
® the policy is parameterized by u € R”
® we learn and store u
Pr[A; = a] = my,(alSt)

® u is updated by approximate gradient ascent

Ui = Uy + aVur(my)



eg, linear-exponential policies
(discrete actions)

® The “preference” for action a in state s is
linear in u

u' x,, = Zu(i)xsa(i)
\ 7;
feature vector € R”

® The probability of action a in state s is
exponential in its preference

€

Zb euTXsb

Ta(als) =



eg, linear-gaussian policies
(continuous actions)
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eg, linear-gaussian policies
(continuous actions)

® The mean and std. dev. for the action taken in
state s are linear and linear-exponential in ux, us

T

u(s) =u, ¢ o(s) = elo ¥

® The probability density function for the action
taken in state s is gaussian

1 _ (a—u(S%)2
Talals) = e 2005
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The algorithms mentioned above are independent of the
structure of the policy distribution used in the policy. For
discrete actions, the Gibbs distribution is often used. In this
paper, for continuous actions, we define the policy such
that actions are taken according to a normal distribution,
as suggested by Williams [10], with a probability density

function defined as N (s,a) = \/—2—7;;2(?)%1)( (_“2‘:0/;__((_?))3)

where 11(s) and o(s) are respectively the mean and standard
deviation of the distribution 7(-|s).

In our policy parameterization, the scalars pu(s) =
u,'xu(s) and o(s) = exp(u, %, (s)) are defined as
linear combmatlons where the parameters of the policy are
u = (u,7,u,7)", and the features vector in state s is

5
Xy (8) = (xu(s) xa(s) ) -

The compatible features “—&ﬁ?fl depend on the structure
of the probability density of the policy. Given that our policy
density is a normal distribution, the compatible features for

the mean and the standard deviation are [10]:

vu”ﬂ'(CLIS) . 1 a— Nx. (s

7(als)  o(s)? (a — u(s)) xu(s) (9)
Vu,m(als) [ (a—u(s))? e

m(als) - ( o (s)2 1) +(s) (10)

T
where Yar(tl) = (Tazielt)’, TurlelaT)
The compatible feature in (9), used to update the param-

eters u,, of the policy, has a ;(—s)—2 factor: the smaller the

standard deviation is, the larger the norm of ';r“(;rfrsttl)‘g 1) s,
and vice-versa. We observed that such an effect can cause

instability, particularly because lim,_,q %gﬁ = 00.




The generality of the
policy-gradient strategy

® Can be applied whenever we can compute the
effect of parameter changes
on the action probabilities, Vymt(als)

® E g, has been applied to spiking neuron models

® There are many possibilities other than linear-
exponential and linear-gaussian

® e.g., mixture of random, argmax, and fixed-
width gaussian; learn the mixing weights

® drift/diffusion models?



Can policy gradient methods
solve the twitching problem!?

(the problem of decisiveness in adaptive behavior)

® The problem:

® we need stochastic policies to get exploration

® but all of our policies have been i.i.d.
(independent, identically distributed)

® if the time step is small, the robot just twitches! -

® really, no aspect of behavior should depend on
the length of the time step



Can we design a parameterized
policy whose stochasticity is
independent of the time step?

® |et a “noise” variable take a random walk,
drifting but tending back to zero

® add it to the action, and adapt its parameters by the
PG algorithm (or have several such noise variables)



The generality of the
policy-gradient strategy (2)

® Can be applied whenever we can compute the effect of
parameter changes
on the action probabilities, Vym(als)

® Can we apply PG when outcomes are viewed as action!?

® e.g,the action of “turning on the light”
or the action of “going to the bank”™

® s this an alternate strategy for temporal abstraction?

® We would need to learn—not compute—the gradient
of these states w.r.t. the policy parameter



Have we eliminated action?

If any state can be an action, then what is still special
about actions!?

The parameters/weights are what we can really,
directly control

We have always, in effect, ‘sensed” our actions
(even in the e-greedy case)

Perhaps actions are just sensory signals that we can
usually control easily

Perhaps there is no longer any need for a special
concept of action in the RL framework



