
Policy Approximation
• Policy = a function from state to action!

• How does the agent select actions?!

• In such a way that it can be affected by
learning?!

• In such a way as to assure exploration?!

• Approximation: there are too many states
and/or actions to represent all policies!

• To handle large/continuous action spaces

What is learned and
stored?

1. Action-value methods: learn the value of each
action; pick the max (usually)!

2. Policy-gradient methods: learn the parameters u
of a stochastic policy, update by !

• including actor-critic methods, which learn
both value and policy parameters!

3. Dynamic Policy Programming!

4. Drift-diffusion models (Psychology)

∇uPerformance

Actor-critic architecture

World

Action-value methods

• The value of an action in a state given a policy
is the expected future reward starting from
the state taking that first action, then
following the policy thereafter!

!

!

• Policy: pick the max most of the time  
 
but sometimes pick at random (!-greedy)

Q⇡(s, a) = E
" 1X

t=1

�t�1Rt

�����S0 = s,A0 = a

#

At = argmax

a
ˆQt(St, a)

v⇡(s) =

X

a

⇡(a|s)
X

s0,r

x(s

0
, r|s, a)

h
r + �v⇡(s

0
)

i

v⇤(s) = max

a

X

s0,r

x(s

0
, r|s, a)

h
r + �v⇤(s

0
)

i

q⇤(s, a) =
X

s0,r

x(s

0
, r|s, a)

h
r + �max

a0
q⇤(s

0
, a

0
)

i

q⇡(s, a) =

X

s0,r

x(s

0
, r|s, a)

h
r + �

X

a0

⇡(a

0|s0)q⇡(s0, a0)
i

Gt = Rt+1 + �Rt+2 + �

2
Rt+3 + · · ·

A) E[Gt|St = s]

B) E⇡[Gt|St = s,At = a]

C) max

⇡
v⇡(s)

D) E⇡[Gt|St = s]

E) max

⇡
q⇡(s, a)

vk+1(s) =

X

a

⇡(a|s)
X

s0,r

x(s

0
, r|s, a)

h
r + �vk(s

0
)

i
8s 2 S

vk+1(s) = max

a

X

s0,r

x(s

0
, r|s, a)

h
r + �vk(s

0
)

i
8s 2 S

iii

�!
We should never discount 

when approximating policies!

�is ok it there is a
start state/distribution

Average reward setting

• All rewards are compared to the average
reward!

!

• where!

!

• and we learn an approximation

Q⇡(s, a) = E
" 1X

t=1

Rt � r̄(⇡)

�����S0 = s,A0 = a

#

r̄(⇡) = lim
t!1

1

t
E [R1 +R2 + · · ·+Rt | A0:t�1 ⇠ ⇡]

r̄t ⇡ r̄(⇡t)

v⇡(s) =

X

a

⇡(a|s)
X

s0,r

x(s

0
, r|s, a)

h
r + �v⇡(s

0
)

i

v⇤(s) = max

a

X

s0,r

x(s

0
, r|s, a)

h
r + �v⇤(s

0
)

i

q⇤(s, a) =
X

s0,r

x(s

0
, r|s, a)

h
r + �max

a0
q⇤(s

0
, a

0
)

i

q⇡(s, a) =

X

s0,r

x(s

0
, r|s, a)

h
r + �

X

a0

⇡(a

0|s0)q⇡(s0, a0)
i

Gt = Rt+1 + �Rt+2 + �

2
Rt+3 + · · ·

A) E[Gt|St = s]

B) E⇡[Gt|St = s,At = a]

C) max

⇡
v⇡(s)

D) E⇡[Gt|St = s]

E) max

⇡
q⇡(s, a)

vk+1(s) =

X

a

⇡(a|s)
X

s0,r

x(s

0
, r|s, a)

h
r + �vk(s

0
)

i
8s 2 S

vk+1(s) = max

a

X

s0,r

x(s

0
, r|s, a)

h
r + �vk(s

0
)

i
8s 2 S

iii

Why approximate policies
rather than values?

• In many problems, the policy is simpler to
approximate than the value function!

• In many problems, the optimal policy is
stochastic!

• e.g., bluffing, POMDPs!

• To enable smoother change in policies!

• To avoid a search on every step (the max)!

• To better relate to biology

Policy-gradient methods

• The policy itself is learned and stored!

• the policy is parameterized by u ∈ �n!

• we learn and store u!

!

• u is updated by approximate gradient ascent

ut+1 = ut + ↵ \rur̄(⇡u)

Pr [At = a] = ⇡ut(a|St)

eg, linear-exponential policies
(discrete actions)

• The “preference” for action a in state s is
linear in u!

!

• The probability of action a in state s is
exponential in its preference

feature vector ∈ �n

⇡
u

(a|s) = eu
>
xsa

P
b e

u

>
xsb

u

>
xsa ⌘

X

i

u(i)xsa(i)

eg, linear-gaussian policies
(continuous actions)

action

action
prob.!

density

" and # linear
in the state

eg, linear-gaussian policies
(continuous actions)

• The mean and std. dev. for the action taken in
state s are linear and linear-exponential in u", u#!

!

!

• The probability density function for the action
taken in state s is gaussian

µ(s) = u>
µ �s �(s) = eu

>
� �s

⇡u(a|s) =
1

�(s)
p
2⇡

e
� (a�µ(s))2

2�(s)2

The generality of the
policy-gradient strategy

• Can be applied whenever we can compute the
effect of parameter changes  
on the action probabilities, ∇uπ(a|s)!

• E.g., has been applied to spiking neuron models!

• There are many possibilities other than linear-
exponential and linear-gaussian!

• e.g., mixture of random, argmax, and fixed-
width gaussian; learn the mixing weights!

• drift/diffusion models?

Can policy gradient methods
solve the twitching problem?

(the problem of decisiveness in adaptive behavior)

• The problem:!

• we need stochastic policies to get exploration!

• but all of our policies have been i.i.d.
(independent, identically distributed)!

• if the time step is small, the robot just twitches!!

• really, no aspect of behavior should depend on
the length of the time step

Can we design a parameterized
policy whose stochasticity is

independent of the time step?

• let a “noise” variable take a random walk,  
drifting but tending back to zero!

!

!

• add it to the action, and adapt its parameters by the
PG algorithm (or have several such noise variables)

The generality of the
policy-gradient strategy (2)
• Can be applied whenever we can compute the effect of

parameter changes  
on the action probabilities, ∇uπ(a|s)!

• Can we apply PG when outcomes are viewed as action?!

• e.g., the action of “turning on the light”  
or the action of “going to the bank”!

• is this an alternate strategy for temporal abstraction?!

• We would need to learn—not compute—the gradient
of these states w.r.t. the policy parameter

Have we eliminated action?
• If any state can be an action, then what is still special

about actions?!

• The parameters/weights are what we can really,
directly control!

• We have always, in effect, “sensed” our actions  
(even in the !-greedy case)!

• Perhaps actions are just sensory signals that we can
usually control easily!

• Perhaps there is no longer any need for a special
concept of action in the RL framework

