transpose ith components

/ A

~ 0(s,0) = 0T g(s) = Y 0;-¢(s) =171

inner product 1=1

2.1 0
0.01 1
—1.1 0
n 1.2 1

0 cR" e.qg., 0= 01 | P(s) = 0 | ¢:8—~R"

parameter 0.01 feature 0
vector 4.93 vector 0

- 0.5 1

' gr(s,a) & §(s,a,0) = 0T P(s,a) = Y ;- di(s,a)

1=1

Chapter 9:
Generalization and Function Approximation

Objectives of this chapter:

1 Look at how experience with a limited part of the state set be
used to produce good behavior over a much larger part.

1 Overview of function approximation (FA) methods and how
they can be adapted to RL

Value Prediction with Function Approx.

As usual: Policy Evaluation (the prediction problem):
for a given policy m, estimate the state-value function v_

In earlier chapters, value functions were stored in lookup tables.

Now, the value function estimate at time ¢, V;, depends
on a vector of parameters 0:

0(s,0) ~ v:(s)

only the parameters are updated

e.g., 0 could be the modifiable connection weights and
thesholds of a deep neural network

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Adapt Supervised Learning Algorithms

Training Info = desired (target) outputs

}

Inputs Pt

Supervised Learning
System

- Outputs

Training example = {input, target output}

Error = (target output — actual output)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Backups as Training Examples

For example, the TD(0) backup:

V(S;) < V(St) + a [Rt+1 + YV (Seq1) — V(Se)

As a training example:

features of St —> Riiv1 + 7 V(St+1)

f \

input target output

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Any FA Method?

11In principle, yes:
= artificial neural networks
= decision trees
* multivariate regression methods
= eftc.
1 But RL has some special requirements:
= ysually want to learn while interacting (online)
= ability to handle nonstationarity
= other?

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Gradient Descent Methods

/transpose
0= (01,02,...,0,)"

Assume 0(s, 0) is a differentiable function of 8, for all s € 8

Assume, for now, training examples of this form:

features of S; —> va(S:)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Gradient Descent

Let (@) be a function to be minimized, e.g., an error

Its gradient with respect to 0 is

. Of(0) . (0f(8) Of(6) Of(O)\'
Vi) = 5 _(801 ° 00, aen>

Iteratively move “down”
the gradient: ?

0+ 0—avVFo)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Performance Measures

1 Many are applicable but...

1 a common and simple one is the mean-squared error (MSE)
over a distribution d :

MSVE(6) =) d(s) [vw(s) - @(879)} 2

SES
1 Why d ?
1 Why minimize MSVE?

1 Let us assume that d is always the distribution of states at
which backups are done.

1 The on-policy distribution: the distribution created while
following the policy being evaluated. Stronger results are
available for this distribution.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Gradient Descent Derivation

9t+1 = Ot — OéVMSVE(Ht)

=0,—aV) d(s) 0(s,0;))°

— 0, — ée;s)v [ve(s) — 0(s, 0)]°

— 6, — zojeéd) [ox(s) — 0(s,0,)] V [vx(s) — (s, 8,)]
— 6, + a ; d(s) [vx(s) — 0(s, 8;)] Vi (s, 0;)

(sampling)
— Ht + « [UW(St) - ’lA)(St, Ht)] VQA)(St, Ht)

Since each sample gradient is an unbiased estimate of
the true gradient, this converges to a local minimum
of the MSVE if a decreases appropriately with z.

10

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

But We Don’t have these Targets

Suppose we just have targets V, instead :
0i11=0: + [Vi — 0(S5,0¢) | V(S,0:)

If each V, 1s an unbiased estimate of v_(S,),
le., E {Vt} =v_(S,), then gradient descent converges

to a local minimum (provided o decreases appropriately).

e.g., the Monte Carlo target V, = G, (unbiased):

0,01 =60, +a [Gt _ @(St,et)] Vo(S;,0:)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 11

What about TD(A) Targets?

What about the A-return, G ?
01 =6, +a [Gg\ —5(S,,0,) | V(S,,60,)

Unfortunately, G is biased for A <1

= standard gradient descent results don't apply

But we do it anyway!

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

12

ﬁl"St, some meta comments on

Understanding Algorithms

|. Do | understand the symbols and their meaning?
® Could | write a program to do it!
® Does it make intuitive sense!?

2. Can | derive the algorithm from some objective!?

3. Can | prove that the algorithm converges to some
objective!

and some meta comments on

Efficient Scaling

Bengio & LeCun, 2007

3 Kinds of Efficiency
in Machine Learning & Al

|. Data efficiency (rate of learning)

2. Computational efficiency (memory,
computation, communication)

3. User efficiency (autonomy, ease of setup,
lack of parameters, priors, labels, expertise)

Computational Resources

. Memory
2. Computation

3. Communication (wires)

Natural Scaling

® FEvery learning system has two parts
Y g Sy P

|. the thing that is learned (e.g., the neural
network and its weights)

2. the algorithm that learns it (e.g., the
algorithm that learns the weights)

® Natural scaling is when the computational
complexities of the two parts scale similarly

Gradient-based TD()), backwards view

0t = Rit1 + y0(Se+1,0¢) — 0(St,0¢)

€ = ’}/)\et_l + V@<St,9t)

0111 = 0; + aorey

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

18

On-Line Gradient-Descent TD())

Initialize 8 as appropriate for the problem, e.g., 8 = 0
Repeat (for each episode):
e=20
S < initial state of episode
Repeat (for each step of episode):
A < action given by 7 for S
Take action A, observe reward, R, and next state, S’
60— R+~9(5",0) —v(S5,0)
e <+ vAe + V9(S5,0)
0« 0+ ade
S« 5

until S’ is terminal

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

19

Linear Methods

Represent states as feature vectors:
foreach s € §:

0(s,0) = Zé’xz

Vi(s,0)= 7

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

20

Linear Methods

Represent states as feature vectors:
foreach s € §:

0(s,0) = Zé’xz

Vi(s,0) = ¢(s)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

20

Nice Properties of Linear FA Methods

1 The gradient is very simple: Vi(s,0) = ¢(s)
1 For MSE, the error surface is simple: quadratic surface with
a single minimum.
1 Linear gradient descent TD(A) converges:
= Step size decreases appropriately

= On-line sampling (states sampled from the on-policy
distribution)

= Converges to weight vector 6., with property:

1 —
YA NISVE(6)
I —~ \

(Tsitsiklis & Van Roy, 1997) best weight vector

MSVE(6.)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

21

Learning and Coarse Coding

desired approx-

-

#Examples <= function = imation
10 RV VA _/_“/\{ \/\
40 _//\/L f\, /\
160 /‘/\I\ — /\, /\
w I 0
2560 ﬂ ,,\,[V‘\\, ﬁ -
w J L J L S
Narrow Medium Broad
features features features

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

feature
width

22

Tile Coding

1 Binary feature for each tile

[Number of features present at
any one time 1s constant

x [Binary features means weighted
sum easy to compute

1 Easy to compute indices of the
features present

tiling #1 —————»

tiling #2 —

Shape of tiles = Generalization

2D state
space —a

#Tilings = Resolution of final approximation

23

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Tile Coding Cont.

A4

Irregular tilings -

)2

A
\/24< %

N

a) Irregular

Hashing

one
tile

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

b) Log stripes

CMAC

c) Diagonal stripes

“Cerebellar model arithmetic computer”

Albus 1971

24

Coarse Coding

expanded

original = representation,

representation many features

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

/ O‘ Y
Cia G Cis
o Oi+1
SR S A B
cl Ci+1

approximation

25

Shaping Generalization in Coarse Coding

a) Narrow generalization b) Broad generalization c) Asymmetric ger_meralization

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

26

Can you beat the “‘curse of dimensionality”?

1 Can you keep the number of features from going up
exponentially with the dimension?

1 Function complexity, not dimensionality, is the problem.
1 Kanerva coding:

= Select a bunch of binary prototypes

= Use hamming distance as distance measure

* Dimensionality is no longer a problem, only complexity
1 “Lazy learning” schemes:

= Remember all the data

= To get new value, find nearest neighbours and
interpolate

" ¢.g., locally-weighted regression

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

27

Control with FA

1 Learning state-action values

Training examples of the form:
{description of (S,,4,), O, }
1The general gradient-descent rule:
Wit = Wit 0 |Qr = d(S1, Av wi) | Vi (S, Ary W)
1 Gradient-descent Sarsa(A\) (backward view):

Wil = Wi + oz ey
where: 0 = Ryp1 +vG(Sia1, Arrr, Wi) — (Sy, Ay, Wy)

€t — 7)\915—1 + thCj(St, At,Wt)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

28

Linear Gradient-based Sarsa()\)

Let @ and e be vectors with one component for each possible feature
Let F,, for every possible action a, be a set of feature indices, initially empty
Initialize @ as appropriate for the problem, e.g., 8 = 0
Repeat (for each episode):
e=20
S, A < initial state and action of episode (e.g., e-greedy)
F 4 < set of features present in S, A
Repeat (for each step of episode):
For all i € F4:
e; < e; +1 (accumulating traces)
or e; < 1 (replacing traces)
Take action A, observe reward, R, and next state, S’
60— R— ZiE?A ‘91
If S’ is terminal, then @ < 0 + ade; go to next episode
For all a € A(S):
F, < set of features present in S’ a
Qa — Zie:}‘a ‘97,
A’ + new action in S’ (e.g., e-greedy)
0+ 0+7Qa
0+ 0+ade
e < y)\e
S+ 5
A+ A

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

29

Approx Value Functions on Mountain-Car Task

MOUNTAIN CAR Goal .

~ J -
I / .
/ ~-

Step 428 1 /' Episode 127

~

2

4 \}u_
I"af"").{"{k J

-~ R o o i N
P SRR
°8/t,¥,;’5‘31-1*5£=;. -
\.551 N
Episode 104 .
o ,.--"':
‘ T
‘?x_i::\:‘ : L, / ’
46 \\ DO !

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Radial Basis Functions (RBFs)

e.g., Gaussians

"\

[s-c
X (s)= expk—

207)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

31

Mountain Car with Radial Basis
Functions

120 -

100 <

804

60

404

20

R. S. Sutton and A. G. Barto: R

Mountain-Car Results

Steps per episode
averaged over
first 20 trials
and 30 runs

REPLACE TRACES ACCUMULATE TRACES

— - 800
l li‘ .“‘ 'r
| AW /e
| | f la_ 95/
1 \ W L 700 -
", ,‘I,"’, ’F
) res8
_’ vv" » “ -.7
a1/ . = 500 -
- —— - - - - + - 1 - + 400 + — e T - T —— —
0.2 0.4 0.6 0.8 ! 1.2 0 02 04 06 08

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Should We Bootstrap?

MOoUNTAIN CAR

700
650

600 -

Steps per ;.
episode

S$00 4

4504

T

'
'
'
'
'

accumulatin

RANDOM WALK

400

PuppoLE WORLD

“O e

accumulating |

replacing

0.5

-0.4

Cost per 200
episode gy

o

replacing
traces

. <
-

-k

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

=~ 2
tfraces
L4 T L4 1 L4 T
0 02 04 06 08 1
CART AND POLE
— 300
, 250
N - 200
5. accumulating ' L s0
- ‘.6-, _ X
2. & traces o
N ‘o~ " '-‘s'g" b 100
L 1] L T L2 1 ‘0
0 0.2 0.4 0.6 0.5 1

RMS error

Failures per
100,000 steps

34

Summary

1 Generalization

1 Adapting supervised-learning function approximation
methods

1 Gradient-descent methods

1 Linear gradient-descent methods
= Radial basis functions
= Tile coding
= Kanerva coding

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

35

