$$V(s) \approx v_{\pi}(s) \approx \hat{v}(s, \theta) \doteq \theta^{\top} \phi(s) \doteq \sum_{i=1}^{n} \theta_{i} \cdot \phi_{i}(s) = 1.71$$

$$\boldsymbol{\theta} \in \mathbb{R}^{n}, \ e.g., \ \boldsymbol{\theta} = \begin{bmatrix} 2.1 & & & 0 \\ 0.01 & & & 1 \\ -1.1 & & & 0 \\ 1.2 & & \boldsymbol{\phi}(s) = & 1 \\ -0.1 & & & \boldsymbol{\phi}(s) = & 1 \\ 0.01 & & & \mathbf{feature} & 0 \\ 0.01 & & & & \mathbf{vector} & 0 \\ 0.5 & & & & 1 \end{bmatrix}, \ \boldsymbol{\phi} : \mathbb{S} \to \mathbb{R}^{n}$$

$$Q(s, c) \approx q_{\pi}(s, a) \approx \hat{q}(s, a, \theta) \doteq \theta^{\top} \phi(s, a) \doteq \sum_{i=1}^{n} \theta_i \cdot \phi_i(s, a)$$

Chapter 9: Generalization and Function Approximation

Objectives of this chapter:

- □ Look at how experience with a limited part of the state set be used to produce good behavior over a much larger part.
- Overview of function approximation (FA) methods and how they can be adapted to RL

Value Prediction with Function Approx.

As usual: Policy Evaluation (the prediction problem): for a given policy π , estimate the state-value function v_{π}

In earlier chapters, value functions were stored in lookup tables.

Now, the value function estimate at time t, V_t , depends on a vector of parameters θ :

 $\hat{v}(s,\boldsymbol{\theta}) \approx v_{\pi}(s)$

only the parameters are updated

e.g., θ could be the modifiable connection weights and thesholds of a deep neural network

Adapt Supervised Learning Algorithms

Training example = {input, target output} Error = (target output - actual output)

Backups as Training Examples

For example, the TD(0) backup:

$$V(S_t) \leftarrow V(S_t) + \alpha \Big[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \Big]$$

As a training example:

features of
$$S_t \longrightarrow R_{t+1} + \gamma V(S_{t+1})$$

input target output

Any FA Method?

- □ In principle, yes:
 - artificial neural networks
 - decision trees
 - multivariate regression methods
 - etc.
- **D** But RL has some special requirements:
 - usually want to learn while interacting (online)
 - ability to handle nonstationarity
 - other?

Gradient Descent Methods

$$\boldsymbol{\theta} \doteq (\theta_1, \theta_2, \dots, \theta_n)^\top$$
 transpose

Assume $\hat{v}(s, \theta)$ is a differentiable function of θ , for all $s \in S$

Assume, for now, training examples of this form:

features of
$$S_t \longrightarrow v_{\pi}(S_t)$$

Gradient Descent

Let $f(\theta)$ be a function to be minimized, e.g., an error Its gradient with respect to θ is

$$\nabla f(\boldsymbol{\theta}) \doteq \frac{\partial f(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \doteq \left(\frac{\partial f(\boldsymbol{\theta})}{\partial \theta_1}, \frac{\partial f(\boldsymbol{\theta})}{\partial \theta_2}, \dots, \frac{\partial f(\boldsymbol{\theta})}{\partial \theta_n}\right)^\top$$

Iteratively move "down" the gradient:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \nabla f(\boldsymbol{\theta})$$

Performance Measures

- □ Many are applicable but...
- **a** common and simple one is the mean-squared error (MSE) over a distribution d:

$$MSVE(\boldsymbol{\theta}) = \sum_{s \in \mathcal{S}} d(s) \left[v_{\pi}(s) - \hat{v}(s, \boldsymbol{\theta}) \right]^2$$

 $\square Why d?$

- **Why minimize MSVE**?
- Let us assume that *d* is always the distribution of states at which backups are done.
- □ The on-policy distribution: the distribution created while following the policy being evaluated. Stronger results are available for this distribution.

Gradient Descent Derivation

$$\begin{aligned} \boldsymbol{\theta}_{t+1} &= \boldsymbol{\theta}_t - \alpha \nabla \text{MSVE}(\boldsymbol{\theta}_t) \\ &= \boldsymbol{\theta}_t - \alpha \sum_{s \in \mathbb{S}} d(s) \left[v_{\pi}(s) - \hat{v}(s, \boldsymbol{\theta}_t) \right]^2 \\ &= \boldsymbol{\theta}_t - \alpha \sum_{s \in \mathbb{S}} d(s) \nabla \left[v_{\pi}(s) - \hat{v}(s, \boldsymbol{\theta}_t) \right]^2 \\ &= \boldsymbol{\theta}_t - 2\alpha \sum_{s \in \mathbb{S}} d(s) \left[v_{\pi}(s) - \hat{v}(s, \boldsymbol{\theta}_t) \right] \nabla \left[v_{\pi}(s) - \hat{v}(s, \boldsymbol{\theta}_t) \right] \\ &= \boldsymbol{\theta}_t + \alpha \sum_{s \in \mathbb{S}} d(s) \left[v_{\pi}(s) - \hat{v}(s, \boldsymbol{\theta}_t) \right] \nabla \hat{v}(s, \boldsymbol{\theta}_t) \end{aligned}$$

(sampling)

$$= \boldsymbol{\theta}_t + \alpha \big[v_{\pi}(S_t) - \hat{v}(S_t, \boldsymbol{\theta}_t) \big] \nabla \hat{v}(S_t, \boldsymbol{\theta}_t)$$

Since each sample gradient is an **unbiased estimate** of the true gradient, this converges to a local minimum of the MSVE if α decreases appropriately with *t*.

Suppose we just have targets V_t instead :

$$\boldsymbol{\theta}_{t+1} \doteq \boldsymbol{\theta}_t + \alpha \Big[V_t - \hat{v}(S_t, \boldsymbol{\theta}_t) \Big] \nabla \hat{v}(S_t, \boldsymbol{\theta}_t)$$

If each V_t is an unbiased estimate of $v_{\pi}(S_t)$, i.e., $E\{V_t\} = v_{\pi}(S_t)$, then gradient descent converges to a local minimum (provided α decreases appropriately).

e.g., the Monte Carlo target $V_t = G_t$ (unbiased):

$$\boldsymbol{\theta}_{t+1} \doteq \boldsymbol{\theta}_t + \alpha \Big[G_t - \hat{v}(S_t, \boldsymbol{\theta}_t) \Big] \nabla \hat{v}(S_t, \boldsymbol{\theta}_t)$$

What about the λ -return, G_t^{λ} ?

$$\boldsymbol{\theta}_{t+1} \doteq \boldsymbol{\theta}_t + \alpha \Big[G_t^{\lambda} - \hat{v}(S_t, \boldsymbol{\theta}_t) \Big] \nabla \hat{v}(S_t, \boldsymbol{\theta}_t)$$

Unfortunately, G_t^{λ} is biased for $\lambda < 1$

 \Rightarrow standard gradient descent results don't apply

But we do it anyway!

first, some meta comments on Understanding Algorithms

I. Do I understand the symbols and their meaning?

- Could I write a program to do it?
- Does it make intuitive sense?
- 2. Can I derive the algorithm from some objective?
- 3. Can I prove that the algorithm converges to some objective?

4. Can I prove something about the rate of convergence?

and some meta comments on Efficient Scaling

3 Kinds of Efficiency in Machine Learning & Al

- I. Data efficiency (rate of learning)
- 2. Computational efficiency (memory, computation, communication)
- 3. User efficiency (autonomy, ease of setup, lack of parameters, priors, labels, expertise)

Computational Resources

- I. Memory
- 2. Computation
- 3. Communication (wires)

Natural Scaling

- Every learning system has two parts
 - I. the thing that is learned (e.g., the neural network and its weights)
 - 2. the algorithm that learns it (e.g., the algorithm that learns the weights)
- Natural scaling is when the computational complexities of the two parts scale similarly

Gradient-based TD(λ), backwards view

$$\delta_t \doteq R_{t+1} + \gamma \hat{v}(S_{t+1}, \boldsymbol{\theta}_t) - \hat{v}(S_t, \boldsymbol{\theta}_t)$$

$$\mathbf{e}_t \doteq \gamma \lambda \mathbf{e}_{t-1} + \nabla \hat{v}(S_t, \boldsymbol{\theta}_t)$$

$$\boldsymbol{\theta}_{t+1} \doteq \boldsymbol{\theta}_t + \alpha \, \delta_t \, \mathbf{e}_t$$

On-Line Gradient-Descent $TD(\lambda)$

Initialize $\boldsymbol{\theta}$ as appropriate for the problem, e.g., $\boldsymbol{\theta} = \mathbf{0}$ Repeat (for each episode): $\mathbf{e} = 0$ $S \leftarrow \text{initial state of episode}$ Repeat (for each step of episode): $A \leftarrow action$ given by π for S Take action A, observe reward, R, and next state, S' $\delta \leftarrow R + \gamma \hat{v}(S', \theta) - \hat{v}(S, \theta)$ $\mathbf{e} \leftarrow \gamma \lambda \mathbf{e} + \nabla \hat{v}(S, \boldsymbol{\theta})$ $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \delta \mathbf{e}$ $S \leftarrow S'$ until S' is terminal

Linear Methods

Represent states as feature vectors: for each $s \in S$:

$$\hat{v}(s, \boldsymbol{\theta}) \doteq \boldsymbol{\theta}^{\top} \boldsymbol{\phi}(s) = \sum_{i=1}^{n} \theta_i x_i(s)$$

1

$$abla \hat{v}(s, \theta) = ?$$

Linear Methods

Represent states as feature vectors: for each $s \in S$:

$$\hat{v}(s, \boldsymbol{\theta}) \doteq \boldsymbol{\theta}^{\top} \boldsymbol{\phi}(s) = \sum_{i=1}^{n} \theta_i x_i(s)$$

$$\nabla \hat{v}(s, \boldsymbol{\theta}) = \boldsymbol{\phi}(s)$$

Nice Properties of Linear FA Methods

- **The gradient is very simple:** $\nabla \hat{v}(s, \theta) = \phi(s)$
- For MSE, the error surface is simple: quadratic surface with a single minimum.
- **I** Linear gradient descent TD(λ) converges:
 - Step size decreases appropriately
 - On-line sampling (states sampled from the on-policy distribution)
 - Converges to weight vector θ_{∞} with property:

$$MSVE(\boldsymbol{\theta}_{\infty}) \leq \frac{1 - \gamma \lambda}{1 - \gamma} MSVE(\boldsymbol{\theta}^{*})$$

Tsitsiklis & Van Roy, 1997) best weight vector

Learning and Coarse Coding

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Tile Coding

- **Binary feature for each tile**
- Number of features present at any one time is constant
- Binary features means weighted sum easy to compute
- Easy to compute indices of the features present

Shape of tiles \Rightarrow Generalization

#Tilings ⇒ Resolution of final approximation

Tile Coding Cont.

Coarse Coding

Shaping Generalization in Coarse Coding

a) Narrow generalization

b) Broad generalization

c) Asymmetric generalization

Can you beat the "curse of dimensionality"?

- Can you keep the number of features from going up exponentially with the dimension?
- □ Function complexity, not dimensionality, is the problem.
- □ Kanerva coding:
 - Select a bunch of binary prototypes
 - Use hamming distance as distance measure
 - Dimensionality is no longer a problem, only complexity
- □ "Lazy learning" schemes:
 - Remember all the data
 - To get new value, find nearest neighbours and interpolate
 - e.g., locally-weighted regression

Control with FA

 Learning state-action values Training examples of the form: {description of (S_t, A_t), Q_t}

 The general gradient-descent rule: w_{t+1} = w_t + α[Q_t - q̂(S_t, A_t, w_t)]∇_{wt} q̂(S_t, A_t, w_t)

 Gradient-descent Sarsa(λ) (backward view):

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \, \delta_t \, \mathbf{e}_t$$

where:
$$\delta_t = R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \mathbf{w}_t) - \hat{q}(S_t, A_t, \mathbf{w}_t)$$

$$\mathbf{e}_t = \gamma \lambda \mathbf{e}_{t-1} + \nabla_{\mathbf{w}_t} \hat{q}(S_t, A_t, \mathbf{w}_t)$$

Linear Gradient-based Sarsa(λ)

Let $\boldsymbol{\theta}$ and \mathbf{e} be vectors with one component for each possible feature Let \mathcal{F}_a , for every possible action a, be a set of feature indices, initially empty Initialize $\boldsymbol{\theta}$ as appropriate for the problem, e.g., $\boldsymbol{\theta} = \mathbf{0}$ Repeat (for each episode):

 $\mathbf{e} = \mathbf{0}$ $S, A \leftarrow \text{initial state and action of episode}$ $(e.g., \varepsilon$ -greedy) $\mathcal{F}_A \leftarrow$ set of features present in S, ARepeat (for each step of episode): For all $i \in \mathcal{F}_A$: $e_i \leftarrow e_i + 1$ (accumulating traces) (replacing traces) or $e_i \leftarrow 1$ Take action A, observe reward, R, and next state, S' $\delta \leftarrow R - \sum_{i \in \mathcal{F}_A} \theta_i$ If S' is terminal, then $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \delta \mathbf{e}$; go to next episode For all $a \in \mathcal{A}(S')$: $\mathcal{F}_a \leftarrow$ set of features present in S', a $Q_a \leftarrow \sum_{i \in \mathfrak{T}_a} \theta_i$ $A' \leftarrow$ new action in S' (e.g., ε -greedy) $\delta \leftarrow \delta + \gamma Q_{A'}$ $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \delta \mathbf{e}$ $\mathbf{e} \leftarrow \gamma \lambda \mathbf{e}$ $S \leftarrow S'$ $A \leftarrow A'$

Approx Value Functions on Mountain-Car Task

Radial Basis Functions (RBFs)

e.g., Gaussians

Mountain Car with Radial Basis Functions

Mountain-Car Results

Should We Bootstrap?

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Summary

Generalization

- Adapting supervised-learning function approximation methods
- Gradient-descent methods
- Linear gradient-descent methods
 - Radial basis functions
 - Tile coding
 - Kanerva coding