
V (s) ⇡ v⇡(s) ⇡ v̂(s,✓)
.
= ✓>�(s)

.
=

nX

i=1

✓i · �i(s)

✓ 2 Rn, e.g., ✓ =

2

66666666664

2.1
0.01
�1.1
1.2
�0.1
0.01
4.93
0.5

3

77777777775
parameter

vector

, �(s) =

2

66666666664

0
1
0
1
0
0
0
1

3

77777777775
feature
vector

inner product

transpose ith components

Q(s, a) ⇡ q⇡(s, a) ⇡ q̂(s, a,✓)
.
= ✓>�(s, a)

.
=

nX

i=1

✓i · �i(s, a)

, � : S ! Rn

= 1.71

Chapter 9:  
Generalization and Function Approximation

❐ Look at how experience with a limited part of the state set be
used to produce good behavior over a much larger part.

❐ Overview of function approximation (FA) methods and how
they can be adapted to RL

Objectives of this chapter:

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 3

Value Prediction with Function Approx.

As usual: Policy Evaluation (the prediction problem):
 for a given policy π, estimate the state-value function vπ

In earlier chapters, value functions were stored in lookup tables.

Now, the value function estimate at time t, Vt, depends
on a vector of parameters !:

 
only the parameters are updated

e.g., ! could be the modifiable connection weights and
thesholds of a deep neural network

202CHAPTER 9. ON-POLICY PREDICTIONWITH LINEAR APPROXIMATION

approximate value function is represented not as a table but as a parameterized
functional form with parameter vector ✓ 2 Rn. We will write v̂(s,✓) ⇡ v⇡(s) for the
approximated value of state s given parameter vector ✓. For example, v̂ might be the
function computed by an artificial neural network, with ✓ the vector of connection
weights. By adjusting the weights, any of a wide range of di↵erent functions v̂ can
be implemented by the network. Or v̂ might be the function computed by a decision
tree, where ✓ is all the parameters defining the split points and leaf values of the
tree. Typically, the number of parameters n (the number of components of ✓) is much
less than the number of states, and changing one parameter changes the estimated
value of many states. Consequently, when a single state is backed up, the change
generalizes from that state to a↵ect the values of many other states.

All of the prediction methods covered in this book have been described as backups,
that is, as updates to an estimated value function that shift its value at particular
states toward a “backed-up value” for that state. Let us refer to an individual backup
by the notation s 7! g, where s is the state backed up and g is the backed-up value,
or target, that s’s estimated value is shifted toward. For example, the Monte Carlo
backup for value prediction is St 7! Gt, the TD(0) backup is St 7! Rt+1+�v̂(St+1,✓t),
and the general TD(�) backup is St 7! G�

t . In the DP policy evaluation backup
s 7! E⇡[Rt+1 + �v̂(St+1,✓t) | St =s], an arbitrary state s is backed up, whereas in
the the other cases the state encountered in (possibly simulated) experience, St, is
backed up.

It is natural to interpret each backup as specifying an example of the desired
input–output behavior of the estimated value function. In a sense, the backup s 7! g
means that the estimated value for state s should be more like g. Up to now, the
actual update implementing the backup has been trivial: the table entry for s’s
estimated value has simply been shifted a fraction of the way toward g. Now we
permit arbitrarily complex and sophisticated function approximation methods to
implement the backup. The normal inputs to these methods are examples of the
desired input–output behavior of the function they are trying to approximate. We
use these methods for value prediction simply by passing to them the s 7! g of each
backup as a training example. We then interpret the approximate function they
produce as an estimated value function.

Viewing each backup as a conventional training example in this way enables us to
use any of a wide range of existing function approximation methods for value pre-
diction. In principle, we can use any method for supervised learning from examples,
including artificial neural networks, decision trees, and various kinds of multivariate
regression. However, not all function approximation methods are equally well suited
for use in reinforcement learning. The most sophisticated neural network and statis-
tical methods all assume a static training set over which multiple passes are made.
In reinforcement learning, however, it is important that learning be able to occur on-
line, while interacting with the environment or with a model of the environment. To
do this requires methods that are able to learn e�ciently from incrementally acquired
data. In addition, reinforcement learning generally requires function approximation
methods able to handle nonstationary target functions (target functions that change

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 4

Adapt Supervised Learning Algorithms

Supervised Learning
SystemInputs Outputs

Training Info = desired (target) outputs

Error = (target output – actual output)

Training example = {input, target output}

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 5

Backups as Training Examples

As a training example:

input target output

For example, the TD(0) backup:

130 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

Monte Carlo method suitable for nonstationary environments is

V (S
t

) V (S
t

) + ↵

h
G

t

� V (S
t

)
i
, (6.1)

where G

t

is the actual return following time t, and ↵ is a constant step-
size parameter (c.f., Equation 2.4). Let us call this method constant-↵ MC.
Whereas Monte Carlo methods must wait until the end of the episode to
determine the increment to V (S

t

) (only then is G

t

known), TD methods need
wait only until the next time step. At time t+1 they immediately form a target
and make a useful update using the observed reward R

t+1 and the estimate
V (S

t+1). The simplest TD method, known as TD(0), is

V (S
t

) V (S
t

) + ↵

h
R

t+1 + �V (S
t+1)� V (S

t

)
i
. (6.2)

In e↵ect, the target for the Monte Carlo update is G

t

, whereas the target for
the TD update is R

t+1 + �V

t

(S
t+1).

Because the TD method bases its update in part on an existing estimate,
we say that it is a bootstrapping method, like DP. We know from Chapter 3
that

v

⇡

(s) = E
⇡

[G
t

| S

t

=s] (6.3)

= E
⇡

" 1X

k=0

�

k

R

t+k+1

����� S

t

=s

#

= E
⇡

"
R

t+1 + �

1X

k=0

�

k

R

t+k+2

����� S

t

=s

#

= E
⇡

[R
t+1 + �v

⇡

(S
t+1) | S

t

=s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target,
whereas DP methods use an estimate of (6.4) as a target. The Monte Carlo
target is an estimate because the expected value in (6.3) is not known; a
sample return is used in place of the real expected return. The DP target
is an estimate not because of the expected values, which are assumed to be
completely provided by a model of the environment, but because v

⇡

(S
t+1) is

not known and the current estimate, V (S
t+1), is used instead. The TD target

is an estimate for both reasons: it samples the expected values in (6.4) and it
uses the current estimate V instead of the true v

⇡

. Thus, TD methods combine
the sampling of Monte Carlo with the bootstrapping of DP. As we shall see,
with care and imagination this can take us a long way toward obtaining the
advantages of both Monte Carlo and DP methods.

features of St Rt+1 +�V(St+1)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 6

Any FA Method?

❐ In principle, yes:
! artificial neural networks
! decision trees
! multivariate regression methods
! etc.

❐ But RL has some special requirements:
! usually want to learn while interacting (online)
! ability to handle nonstationarity
! other?

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 7

Gradient Descent Methods

transpose

Assume, for now, training examples of this form:

 description of st , V π (st){ }features of St vπ(St)

204CHAPTER 9. ON-POLICY PREDICTIONWITH LINEAR APPROXIMATION

It is not completely clear that we should care about minimizing the MSVE. Our
goal in value prediction is potentially di↵erent because our ultimate purpose is to
use the predictions to aid in finding a better policy. The best predictions for that
purpose are not necessarily the best for minimizing MSVE. However, it is not yet
clear what a more useful alternative goal for value prediction might be. For now, we
continue to focus on MSVE.

An ideal goal in terms of MSVE would be to find a global optimum, a parameter
vector ✓⇤ for which MSVE(✓⇤) MSVE(✓) for all possible ✓. Reaching this goal is
sometimes possible for simple function approximators such as linear ones, but is rarely
possible for complex function approximators such as artificial neural networks and
decision trees. Short of this, complex function approximators may seek to converge
instead to a local optimum, a parameter vector ✓⇤ for which MSVE(✓⇤) MSVE(✓)
for all ✓ in some neighborhood of ✓⇤. Although this guarantee is only slightly reas-
suring, it is typically the best that can be said for nonlinear function approximators,
and often it is enough. Still, for many cases of interest in reinforcement learning,
convergence to an optimum, or even to within a bounded distance from an optimum
cannot be assured. Some methods may in fact diverge, with their MSVE approaching
infinity in the limit.

In this section we have outlined a framework for combining a wide range of re-
inforcement learning methods for value prediction with a wide range of function
approximation methods, using the backups of the former to generate training exam-
ples for the latter. We have also outlined a range of MSVE performance measures
to which these methods may aspire. The range of possible methods is far too large
to cover all, and anyway too little is known about most of them to make a reliable
evaluation or recommendation. Of necessity, we consider only a few possibilities.
In the rest of this chapter we focus on function approximation methods based on
gradient principles, and on linear gradient-descent methods in particular. We focus
on these methods in part because we consider them to be particularly promising and
because they reveal key theoretical issues, but also because they are simple and our
space is limited. If we had another chapter devoted to function approximation, we
would also cover at least memory-based and decision-tree methods.

9.2 Gradient-Descent Methods

We now develop in detail one class of learning methods for function approximation
in value prediction, those based on gradient descent. Gradient-descent methods
are among the most widely used of all function approximation methods and are
particularly well suited to online reinforcement learning.

In gradient-descent methods, the parameter vector is a column vector with a fixed
number of real valued components, ✓

.
= (✓1, ✓2, . . . , ✓n)>,1 and the approximate value

function v̂(s,✓) is a smooth di↵erentiable function of ✓ for all s 2 S. We will be

1The > denotes transpose, needed here to turn the horizontal row vector into a vertical column
vector; in this text all vectors are by default column vectors unless transposed.

Assume v̂(s,✓) is a di↵erentiable function of ✓, for all s 2 S

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 8

Gradient Descent

Iteratively move “down”
the gradient:

Let f(!) be a function to be minimized, e.g., an error
Its gradient with respect to ! is

rf(✓)
.
=

@f(✓)

@✓
.
=

✓
@f(✓)

@✓1
,
@f(✓)

@✓2
, . . . ,

@f(✓)

@✓n

◆>

✓1

✓2

✓ = [✓1, ✓2]
>

✓ ✓ � ↵rf(✓)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 9

Performance Measures

❐ Many are applicable but…
❐ a common and simple one is the mean-squared error (MSE)

over a distribution d :

❐ Why d ?
❐ Why minimize MSVE?
❐ Let us assume that d is always the distribution of states at

which backups are done.
❐ The on-policy distribution: the distribution created while

following the policy being evaluated. Stronger results are
available for this distribution.

9.1. VALUE-FUNCTION APPROXIMATION 203

over time). For example, in GPI control methods we often seek to learn q⇡ while
⇡ changes. Even if the policy remains the same, the target values of training ex-
amples are nonstationary if they are generated by bootstrapping methods (DP and
TD). Methods that cannot easily handle such nonstationarity are less suitable for
reinforcement learning.

What performance measures are appropriate for evaluating function approximation
methods? Most supervised learning methods seek to minimize the mean squared error
(MSE) over some distribution over the inputs. In our value prediction problem, the
inputs are states and the target function is the true value function v⇡. Given a
parameter vector, we seek to minimize the expected squared di↵erence between the
value estimates of the vector and the true values, which we call the mean square
value error (MSVE):

MSVE(✓) =
X

s2S

d(s)
h
v⇡(s) � v̂(s,✓)

i2
, (9.1)

where d : S ! [0, 1], such that
P

s d(s) = 1, is a distribution over the states specifying
the relative importance of errors in di↵erent states. This distribution is important
because it is usually not possible to reduce the error to zero at all states. After all,
there are generally far more states than there are components to ✓. The flexibility of
the function approximator is thus a scarce resource. Better approximation at some
states can be gained, generally, only at the expense of worse approximation at other
states. The distribution specifies how these trade-o↵s should be made.

The distribution d is also usually the distribution from which the states in the
training examples are drawn, and thus the distribution of states at which backups
are done. If we wish to minimize error over a certain distribution of states, then
it makes sense to train the function approximator with examples from that same
distribution. For example, if you want a uniform level of error over the entire state
set, then it makes sense to train with backups distributed uniformly over the entire
state set, such as in the exhaustive sweeps of some DP methods. Henceforth, let us
assume that the distribution of states at which backups are done and the distribution
that weights errors, d, are the same.

A distribution of particular interest is the one describing the frequency with which
states are encountered while the agent is interacting with the environment and se-
lecting actions according to ⇡, the policy whose value function we are approximating.
We call this the on-policy distribution, in part because it is the distribution of back-
ups in on-policy control methods. Minimizing error over the on-policy distribution
focuses function approximation resources on the states that actually occur while fol-
lowing the policy, ignoring those that never occur. The on-policy distribution is also
the one for which it is easiest to get training examples using Monte Carlo or TD
methods. These methods generate backups from sample experience using the policy
⇡. Because a backup is generated for each state encountered in the experience, the
training examples available are naturally distributed according to the on-policy dis-
tribution. Stronger convergence results are available for the on-policy distribution
than for other distributions, as we discuss later.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 10

Gradient Descent Derivation

Since each sample gradient is an unbiased estimate of
the true gradient, this converges to a local minimum
of the MSVE if α decreases appropriately with t.

✓t+1 = ✓t � ↵rMSVE(✓t)

= ✓t � ↵r
X

s2S

d(s) [v⇡(s)� v̂(s,✓t)]
2

= ✓t � ↵
X

s2S

d(s)r [v⇡(s)� v̂(s,✓t)]
2

= ✓t � 2↵
X

s2S

d(s) [v⇡(s)� v̂(s,✓t)]r [v⇡(s)� v̂(s,✓t)]

= ✓t + ↵
X

s2S

d(s) [v⇡(s)� v̂(s,✓t)]rv̂(s,✓t)

(sampling)

= ✓t + ↵
⇥
v⇡(St)� v̂(St,✓t)

⇤
rv̂(St,✓t)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 11

But We Don’t have these Targets

Suppose we just have targets Vt instead :

If each Vt is an unbiased estimate of vπ (St),
i.e., E Vt{ } = vπ (St), then gradient descent converges
to a local minimum (provided α decreases appropriately).

e.g., the Monte Carlo target Vt = Gt (unbiased):

206CHAPTER 9. ON-POLICY PREDICTIONWITH LINEAR APPROXIMATION

we cannot perform the exact update (9.2) because v⇡(St) is unknown, but we can
approximate it by substituting Vt in place of v⇡(St). This yields the following general
gradient-descent method for state-value prediction:

✓t+1
.
= ✓t + ↵

h
Vt � v̂(St,✓t)

i
rv̂(St,✓t). (9.3)

If Vt is an unbiased estimate, that is, if E[Vt] = v⇡(St), for each t, then ✓t is guaranteed
to converge to a local optimum under the usual stochastic approximation conditions
(2.7) for decreasing the step-size parameter ↵.

For example, suppose the states in the examples are the states generated by inter-
action (or simulated interaction) with the environment using policy ⇡. Let Gt denote
the return following each state, St. Because the true value of a state is the expected
value of the return following it, the Monte Carlo target Vt = Gt is by definition an
unbiased estimate of v⇡(St). With this choice, the general gradient-descent method
(9.3) converges to a locally optimal approximation to v⇡(St). Thus, the gradient-
descent version of Monte Carlo state-value prediction is guaranteed to find a locally
optimal solution.

Similarly, we can use n-step TD returns and their averages for Vt. For example,
the gradient-descent form of TD(�) uses the �-return, Vt = G�

t , as its approximation
to v⇡(St), yielding the forward-view update:

✓t+1
.
= ✓t + ↵

h
G�

t � v̂(St,✓t)
i
rv̂(St,✓t). (9.4)

Unfortunately, for � < 1, G�
t is not an unbiased estimate of v⇡(St), and thus this

method does not converge to a local optimum. The situation is the same when
DP targets are used such as Vt = E⇡[Rt+1 + �v̂(St+1,✓t) | St]. Nevertheless, such
bootstrapping methods can be quite e↵ective, and other performance guarantees are
available for important special cases, as we discuss later in this chapter. For now
we emphasize the relationship of these methods to the general gradient-descent form
(9.3). Although increments as in (9.4) are not themselves gradients, it is useful to
view this method as a gradient-descent method (9.3) with a bootstrapping approxi-
mation in place of the desired output, v⇡(St).

As (9.4) provides the forward view of gradient-descent TD(�), so the backward
view is provided by

✓t+1
.
= ✓t + ↵�tet, (9.5)

where �t is the usual TD error, now using v̂,

�t
.
= Rt+1 + �v̂(St+1,✓t) � v̂(St,✓t), (9.6)

and et
.
= (et,1, et,2, . . . , et,n)> is a column vector of eligibility traces, one for each

component of ✓t, updated by

et
.
= ��et�1 + rv̂(St,✓t), (9.7)

206CHAPTER 9. ON-POLICY PREDICTIONWITH LINEAR APPROXIMATION

we cannot perform the exact update (9.2) because v⇡(St) is unknown, but we can
approximate it by substituting Vt in place of v⇡(St). This yields the following general
gradient-descent method for state-value prediction:

✓t+1
.
= ✓t + ↵

h
Vt � v̂(St,✓t)

i
rv̂(St,✓t). (9.3)

If Vt is an unbiased estimate, that is, if E[Vt] = v⇡(St), for each t, then ✓t is guaranteed
to converge to a local optimum under the usual stochastic approximation conditions
(2.7) for decreasing the step-size parameter ↵.

For example, suppose the states in the examples are the states generated by inter-
action (or simulated interaction) with the environment using policy ⇡. Let Gt denote
the return following each state, St. Because the true value of a state is the expected
value of the return following it, the Monte Carlo target Vt = Gt is by definition an
unbiased estimate of v⇡(St). With this choice, the general gradient-descent method
(9.3) converges to a locally optimal approximation to v⇡(St). Thus, the gradient-
descent version of Monte Carlo state-value prediction is guaranteed to find a locally
optimal solution.

Similarly, we can use n-step TD returns and their averages for Vt. For example,
the gradient-descent form of TD(�) uses the �-return, Vt = G�

t , as its approximation
to v⇡(St), yielding the forward-view update:

✓t+1
.
= ✓t + ↵

h
G�

t � v̂(St,✓t)
i
rv̂(St,✓t). (9.4)

Unfortunately, for � < 1, G�
t is not an unbiased estimate of v⇡(St), and thus this

method does not converge to a local optimum. The situation is the same when
DP targets are used such as Vt = E⇡[Rt+1 + �v̂(St+1,✓t) | St]. Nevertheless, such
bootstrapping methods can be quite e↵ective, and other performance guarantees are
available for important special cases, as we discuss later in this chapter. For now
we emphasize the relationship of these methods to the general gradient-descent form
(9.3). Although increments as in (9.4) are not themselves gradients, it is useful to
view this method as a gradient-descent method (9.3) with a bootstrapping approxi-
mation in place of the desired output, v⇡(St).

As (9.4) provides the forward view of gradient-descent TD(�), so the backward
view is provided by

✓t+1
.
= ✓t + ↵�tet, (9.5)

where �t is the usual TD error, now using v̂,

�t
.
= Rt+1 + �v̂(St+1,✓t) � v̂(St,✓t), (9.6)

and et
.
= (et,1, et,2, . . . , et,n)> is a column vector of eligibility traces, one for each

component of ✓t, updated by

et
.
= ��et�1 + rv̂(St,✓t), (9.7)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 12

What about TD(λ) Targets?

What about the λ-return, Gt
λ ?

 Unfortunately, Gt
λ is biased for λ <1

⇒ standard gradient descent results don't apply

But we do it anyway!

206CHAPTER 9. ON-POLICY PREDICTIONWITH LINEAR APPROXIMATION

we cannot perform the exact update (9.2) because v⇡(St) is unknown, but we can
approximate it by substituting Vt in place of v⇡(St). This yields the following general
gradient-descent method for state-value prediction:

✓t+1
.
= ✓t + ↵

h
Vt � v̂(St,✓t)

i
rv̂(St,✓t). (9.3)

If Vt is an unbiased estimate, that is, if E[Vt] = v⇡(St), for each t, then ✓t is guaranteed
to converge to a local optimum under the usual stochastic approximation conditions
(2.7) for decreasing the step-size parameter ↵.

For example, suppose the states in the examples are the states generated by inter-
action (or simulated interaction) with the environment using policy ⇡. Let Gt denote
the return following each state, St. Because the true value of a state is the expected
value of the return following it, the Monte Carlo target Vt = Gt is by definition an
unbiased estimate of v⇡(St). With this choice, the general gradient-descent method
(9.3) converges to a locally optimal approximation to v⇡(St). Thus, the gradient-
descent version of Monte Carlo state-value prediction is guaranteed to find a locally
optimal solution.

Similarly, we can use n-step TD returns and their averages for Vt. For example,
the gradient-descent form of TD(�) uses the �-return, Vt = G�

t , as its approximation
to v⇡(St), yielding the forward-view update:

✓t+1
.
= ✓t + ↵

h
G�

t � v̂(St,✓t)
i
rv̂(St,✓t). (9.4)

Unfortunately, for � < 1, G�
t is not an unbiased estimate of v⇡(St), and thus this

method does not converge to a local optimum. The situation is the same when
DP targets are used such as Vt = E⇡[Rt+1 + �v̂(St+1,✓t) | St]. Nevertheless, such
bootstrapping methods can be quite e↵ective, and other performance guarantees are
available for important special cases, as we discuss later in this chapter. For now
we emphasize the relationship of these methods to the general gradient-descent form
(9.3). Although increments as in (9.4) are not themselves gradients, it is useful to
view this method as a gradient-descent method (9.3) with a bootstrapping approxi-
mation in place of the desired output, v⇡(St).

As (9.4) provides the forward view of gradient-descent TD(�), so the backward
view is provided by

✓t+1
.
= ✓t + ↵�tet, (9.5)

where �t is the usual TD error, now using v̂,

�t
.
= Rt+1 + �v̂(St+1,✓t) � v̂(St,✓t), (9.6)

and et
.
= (et,1, et,2, . . . , et,n)> is a column vector of eligibility traces, one for each

component of ✓t, updated by

et
.
= ��et�1 + rv̂(St,✓t), (9.7)

first, some meta comments on
Understanding Algorithms

1. Do I understand the symbols and their meaning?

• Could I write a program to do it?

• Does it make intuitive sense?

2. Can I derive the algorithm from some objective?

3. Can I prove that the algorithm converges to some
objective?

4. Can I prove something about the rate of
convergence?

and some meta comments on
Efficient Scaling

3 Kinds of Efficiency
in Machine Learning & AI

1. Data efficiency (rate of learning)

2. Computational efficiency (memory,
computation, communication)

3. User efficiency (autonomy, ease of setup,
lack of parameters, priors, labels, expertise)

Bengio & LeCun, 2007

Computational Resources

1. Memory

2. Computation

3. Communication (wires)

Natural Scaling

• Every learning system has two parts

1. the thing that is learned (e.g., the neural
network and its weights)

2. the algorithm that learns it (e.g., the
algorithm that learns the weights)

• Natural scaling is when the computational
complexities of the two parts scale similarly

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Gradient-based TD(λ), backwards view

18

206CHAPTER 9. ON-POLICY PREDICTIONWITH LINEAR APPROXIMATION

we cannot perform the exact update (9.2) because v⇡(St) is unknown, but we can
approximate it by substituting Vt in place of v⇡(St). This yields the following general
gradient-descent method for state-value prediction:

✓t+1
.
= ✓t + ↵

h
Vt � v̂(St,✓t)

i
rv̂(St,✓t). (9.3)

If Vt is an unbiased estimate, that is, if E[Vt] = v⇡(St), for each t, then ✓t is guaranteed
to converge to a local optimum under the usual stochastic approximation conditions
(2.7) for decreasing the step-size parameter ↵.

For example, suppose the states in the examples are the states generated by inter-
action (or simulated interaction) with the environment using policy ⇡. Let Gt denote
the return following each state, St. Because the true value of a state is the expected
value of the return following it, the Monte Carlo target Vt = Gt is by definition an
unbiased estimate of v⇡(St). With this choice, the general gradient-descent method
(9.3) converges to a locally optimal approximation to v⇡(St). Thus, the gradient-
descent version of Monte Carlo state-value prediction is guaranteed to find a locally
optimal solution.

Similarly, we can use n-step TD returns and their averages for Vt. For example,
the gradient-descent form of TD(�) uses the �-return, Vt = G�

t , as its approximation
to v⇡(St), yielding the forward-view update:

✓t+1
.
= ✓t + ↵

h
G�

t � v̂(St,✓t)
i
rv̂(St,✓t). (9.4)

Unfortunately, for � < 1, G�
t is not an unbiased estimate of v⇡(St), and thus this

method does not converge to a local optimum. The situation is the same when
DP targets are used such as Vt = E⇡[Rt+1 + �v̂(St+1,✓t) | St]. Nevertheless, such
bootstrapping methods can be quite e↵ective, and other performance guarantees are
available for important special cases, as we discuss later in this chapter. For now
we emphasize the relationship of these methods to the general gradient-descent form
(9.3). Although increments as in (9.4) are not themselves gradients, it is useful to
view this method as a gradient-descent method (9.3) with a bootstrapping approxi-
mation in place of the desired output, v⇡(St).

As (9.4) provides the forward view of gradient-descent TD(�), so the backward
view is provided by

✓t+1
.
= ✓t + ↵�tet, (9.5)

where �t is the usual TD error, now using v̂,

�t
.
= Rt+1 + �v̂(St+1,✓t) � v̂(St,✓t), (9.6)

and et
.
= (et,1, et,2, . . . , et,n)> is a column vector of eligibility traces, one for each

component of ✓t, updated by

et
.
= ��et�1 + rv̂(St,✓t), (9.7)

206CHAPTER 9. ON-POLICY PREDICTIONWITH LINEAR APPROXIMATION

we cannot perform the exact update (9.2) because v⇡(St) is unknown, but we can
approximate it by substituting Vt in place of v⇡(St). This yields the following general
gradient-descent method for state-value prediction:

✓t+1
.
= ✓t + ↵

h
Vt � v̂(St,✓t)

i
rv̂(St,✓t). (9.3)

If Vt is an unbiased estimate, that is, if E[Vt] = v⇡(St), for each t, then ✓t is guaranteed
to converge to a local optimum under the usual stochastic approximation conditions
(2.7) for decreasing the step-size parameter ↵.

For example, suppose the states in the examples are the states generated by inter-
action (or simulated interaction) with the environment using policy ⇡. Let Gt denote
the return following each state, St. Because the true value of a state is the expected
value of the return following it, the Monte Carlo target Vt = Gt is by definition an
unbiased estimate of v⇡(St). With this choice, the general gradient-descent method
(9.3) converges to a locally optimal approximation to v⇡(St). Thus, the gradient-
descent version of Monte Carlo state-value prediction is guaranteed to find a locally
optimal solution.

Similarly, we can use n-step TD returns and their averages for Vt. For example,
the gradient-descent form of TD(�) uses the �-return, Vt = G�

t , as its approximation
to v⇡(St), yielding the forward-view update:

✓t+1
.
= ✓t + ↵

h
G�

t � v̂(St,✓t)
i
rv̂(St,✓t). (9.4)

Unfortunately, for � < 1, G�
t is not an unbiased estimate of v⇡(St), and thus this

method does not converge to a local optimum. The situation is the same when
DP targets are used such as Vt = E⇡[Rt+1 + �v̂(St+1,✓t) | St]. Nevertheless, such
bootstrapping methods can be quite e↵ective, and other performance guarantees are
available for important special cases, as we discuss later in this chapter. For now
we emphasize the relationship of these methods to the general gradient-descent form
(9.3). Although increments as in (9.4) are not themselves gradients, it is useful to
view this method as a gradient-descent method (9.3) with a bootstrapping approxi-
mation in place of the desired output, v⇡(St).

As (9.4) provides the forward view of gradient-descent TD(�), so the backward
view is provided by

✓t+1
.
= ✓t + ↵�tet, (9.5)

where �t is the usual TD error, now using v̂,

�t
.
= Rt+1 + �v̂(St+1,✓t) � v̂(St,✓t), (9.6)

and et
.
= (et,1, et,2, . . . , et,n)> is a column vector of eligibility traces, one for each

component of ✓t, updated by

et
.
= ��et�1 + rv̂(St,✓t), (9.7)

206CHAPTER 9. ON-POLICY PREDICTIONWITH LINEAR APPROXIMATION

we cannot perform the exact update (9.2) because v⇡(St) is unknown, but we can
approximate it by substituting Vt in place of v⇡(St). This yields the following general
gradient-descent method for state-value prediction:

✓t+1
.
= ✓t + ↵

h
Vt � v̂(St,✓t)

i
rv̂(St,✓t). (9.3)

If Vt is an unbiased estimate, that is, if E[Vt] = v⇡(St), for each t, then ✓t is guaranteed
to converge to a local optimum under the usual stochastic approximation conditions
(2.7) for decreasing the step-size parameter ↵.

For example, suppose the states in the examples are the states generated by inter-
action (or simulated interaction) with the environment using policy ⇡. Let Gt denote
the return following each state, St. Because the true value of a state is the expected
value of the return following it, the Monte Carlo target Vt = Gt is by definition an
unbiased estimate of v⇡(St). With this choice, the general gradient-descent method
(9.3) converges to a locally optimal approximation to v⇡(St). Thus, the gradient-
descent version of Monte Carlo state-value prediction is guaranteed to find a locally
optimal solution.

Similarly, we can use n-step TD returns and their averages for Vt. For example,
the gradient-descent form of TD(�) uses the �-return, Vt = G�

t , as its approximation
to v⇡(St), yielding the forward-view update:

✓t+1
.
= ✓t + ↵

h
G�

t � v̂(St,✓t)
i
rv̂(St,✓t). (9.4)

Unfortunately, for � < 1, G�
t is not an unbiased estimate of v⇡(St), and thus this

method does not converge to a local optimum. The situation is the same when
DP targets are used such as Vt = E⇡[Rt+1 + �v̂(St+1,✓t) | St]. Nevertheless, such
bootstrapping methods can be quite e↵ective, and other performance guarantees are
available for important special cases, as we discuss later in this chapter. For now
we emphasize the relationship of these methods to the general gradient-descent form
(9.3). Although increments as in (9.4) are not themselves gradients, it is useful to
view this method as a gradient-descent method (9.3) with a bootstrapping approxi-
mation in place of the desired output, v⇡(St).

As (9.4) provides the forward view of gradient-descent TD(�), so the backward
view is provided by

✓t+1
.
= ✓t + ↵�tet, (9.5)

where �t is the usual TD error, now using v̂,

�t
.
= Rt+1 + �v̂(St+1,✓t) � v̂(St,✓t), (9.6)

and et
.
= (et,1, et,2, . . . , et,n)> is a column vector of eligibility traces, one for each

component of ✓t, updated by

et
.
= ��et�1 + rv̂(St,✓t), (9.7)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 19

On-Line Gradient-Descent TD(λ)
9.3. LINEAR METHODS 207

Initialize ✓ as appropriate for the problem, e.g., ✓ = 0
Repeat (for each episode):

e = 0
S initial state of episode
Repeat (for each step of episode):

A action given by ⇡ for S
Take action A, observe reward, R, and next state, S0

� R + �v̂(S0,✓)� v̂(S,✓)
e ��e +rv̂(S,✓)
✓ ✓ + ↵�e
S S0

until S0 is terminal

Figure 9.1: On-line gradient-descent TD(�) for estimating v⇡.

with e0 = 0. A complete algorithm for on-line gradient-descent TD(�) is given in
Figure 9.1.

Two methods for gradient-based function approximation have been used widely
in reinforcement learning. One is multilayer artificial neural networks using the
error backpropagation algorithm. This maps immediately onto the equations and
algorithms just given, where the backpropagation process is the way of computing the
gradients. The second popular form is the linear form, which we discuss extensively
in the next section.

9.3 Linear Methods

One of the most important special cases of gradient-descent function approximation
is that in which the approximate function, v̂, is a linear function of the parameter
vector, ✓. Corresponding to every state s, there is a vector of features �(s)

.
=

(x1(s), x2(s), . . . , xn(s))>, with the same number of components as ✓. The features
may be constructed from the states in many di↵erent ways; we cover a few possibilities
below. However the features are constructed, the approximate state-value function
is given by

v̂(s,✓)
.
= ✓>�(s) =

nX

i=1

✓ixi(s). (9.8)

In this case the approximate value function is said to be linear in the parameters, or
simply linear.

It is natural to use gradient-descent updates with linear function approximation.
The gradient of the approximate value function with respect to ✓ in this case is

rv̂(s,✓) = �(s).

Thus, the general gradient-descent update (9.3) reduces to a particularly simple form
in the linear case. In addition, in the linear case there is only one optimum ✓⇤ (or,

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

9.3. LINEAR METHODS 207

Initialize ✓ as appropriate for the problem, e.g., ✓ = 0
Repeat (for each episode):

e = 0
S initial state of episode
Repeat (for each step of episode):

A action given by ⇡ for S
Take action A, observe reward, R, and next state, S0

� R + �v̂(S0,✓)� v̂(S,✓)
e ��e +rv̂(S,✓)
✓ ✓ + ↵�e
S S0

until S0 is terminal

Figure 9.1: On-line gradient-descent TD(�) for estimating v⇡.

with e0 = 0. A complete algorithm for on-line gradient-descent TD(�) is given in
Figure 9.1.

Two methods for gradient-based function approximation have been used widely
in reinforcement learning. One is multilayer artificial neural networks using the
error backpropagation algorithm. This maps immediately onto the equations and
algorithms just given, where the backpropagation process is the way of computing the
gradients. The second popular form is the linear form, which we discuss extensively
in the next section.

9.3 Linear Methods

One of the most important special cases of gradient-descent function approximation
is that in which the approximate function, v̂, is a linear function of the parameter
vector, ✓. Corresponding to every state s, there is a vector of features �(s)

.
=

(x1(s), x2(s), . . . , xn(s))>, with the same number of components as ✓. The features
may be constructed from the states in many di↵erent ways; we cover a few possibilities
below. However the features are constructed, the approximate state-value function
is given by

v̂(s,✓)
.
= ✓>�(s) =

nX

i=1

✓ixi(s). (9.8)

In this case the approximate value function is said to be linear in the parameters, or
simply linear.

It is natural to use gradient-descent updates with linear function approximation.
The gradient of the approximate value function with respect to ✓ in this case is

rv̂(s,✓) = �(s).

Thus, the general gradient-descent update (9.3) reduces to a particularly simple form
in the linear case. In addition, in the linear case there is only one optimum ✓⇤ (or,

20

Linear Methods

Represent states as feature vectors:
for each s ∈ :

MSE(w) =

X

s2S

d(s)

h
v⇡(s)� v̂(s,w)

i
2

,

wt+1

= wt �
1

2

rwMSE(wt)

= wt �
1

2

rw

X

s2S

d(s)

⇥
v⇡(s)� v̂(s,wt)

⇤
2

= wt �
1

2

rw

X

s2S

d(s)

⇥
v⇡(s)� v̂(s,wt)

⇤
2

= wt �
X

s2S

d(s)

⇥
v⇡(s)� v̂(s,wt)

⇤
rw[v⇡(s)� v̂(s,wt)

⇤

= wt +

X

s2S

d(s)

⇥
v⇡(s)� v̂(s,wt)

⇤
rwv̂(s,wt)

(sampling)

= wt + ↵

⇥
v⇡(St)� v̂(St,wt)

⇤
rwt v̂(St,wt),

target = sin(in1� 3) cos(in2) +N(0, 0.1)

f(i) = w

1

x

1

(i) + w

2

x

2

(i) + · · ·+ wnxn(i).

wj wj + ↵(target� f(i))xj , j = 1, . . . , n.

Zt(s, a) =

8
<

:

1 + ��Zt�1

(s, a) if St = s, At = a, and At was greedy;

0 if St = s, At = a, and At was not greedy;

��Zt�1

(s, a) for all other s, a;

8s, a

G

�
t = (1� �)

T�t�1X

n=1

�

n�1

G

(n)
t + �

T�t�1

Gt (1)

G

�
t = (1� 1)

T�t�1X

n=1

1

n�1

G

(n)
t + 1

T�t�1

Gt = Gt (2)

G

�
t = (1� 0)

T�t�1X

n=1

0

n�1

G

(n)
t + 0

T�t�1

Gt = G

(1)

t (3)

R S A(s)

Ea[a]

! = s

0

, a

0

, s

1

, a

1

, . . .

1

?

9.3. LINEAR METHODS 207

Initialize ✓ as appropriate for the problem, e.g., ✓ = 0
Repeat (for each episode):

e = 0
S initial state of episode
Repeat (for each step of episode):

A action given by ⇡ for S
Take action A, observe reward, R, and next state, S0

� R + �v̂(S0,✓)� v̂(S,✓)
e ��e +rv̂(S,✓)
✓ ✓ + ↵�e
S S0

until S0 is terminal

Figure 9.1: On-line gradient-descent TD(�) for estimating v⇡.

with e0 = 0. A complete algorithm for on-line gradient-descent TD(�) is given in
Figure 9.1.

Two methods for gradient-based function approximation have been used widely
in reinforcement learning. One is multilayer artificial neural networks using the
error backpropagation algorithm. This maps immediately onto the equations and
algorithms just given, where the backpropagation process is the way of computing the
gradients. The second popular form is the linear form, which we discuss extensively
in the next section.

9.3 Linear Methods

One of the most important special cases of gradient-descent function approximation
is that in which the approximate function, v̂, is a linear function of the parameter
vector, ✓. Corresponding to every state s, there is a vector of features �(s)

.
=

(x1(s), x2(s), . . . , xn(s))>, with the same number of components as ✓. The features
may be constructed from the states in many di↵erent ways; we cover a few possibilities
below. However the features are constructed, the approximate state-value function
is given by

v̂(s,✓)
.
= ✓>�(s) =

nX

i=1

✓ixi(s). (9.8)

In this case the approximate value function is said to be linear in the parameters, or
simply linear.

It is natural to use gradient-descent updates with linear function approximation.
The gradient of the approximate value function with respect to ✓ in this case is

rv̂(s,✓) = �(s).

Thus, the general gradient-descent update (9.3) reduces to a particularly simple form
in the linear case. In addition, in the linear case there is only one optimum ✓⇤ (or,

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

9.3. LINEAR METHODS 207

Initialize ✓ as appropriate for the problem, e.g., ✓ = 0
Repeat (for each episode):

e = 0
S initial state of episode
Repeat (for each step of episode):

A action given by ⇡ for S
Take action A, observe reward, R, and next state, S0

� R + �v̂(S0,✓)� v̂(S,✓)
e ��e +rv̂(S,✓)
✓ ✓ + ↵�e
S S0

until S0 is terminal

Figure 9.1: On-line gradient-descent TD(�) for estimating v⇡.

with e0 = 0. A complete algorithm for on-line gradient-descent TD(�) is given in
Figure 9.1.

Two methods for gradient-based function approximation have been used widely
in reinforcement learning. One is multilayer artificial neural networks using the
error backpropagation algorithm. This maps immediately onto the equations and
algorithms just given, where the backpropagation process is the way of computing the
gradients. The second popular form is the linear form, which we discuss extensively
in the next section.

9.3 Linear Methods

One of the most important special cases of gradient-descent function approximation
is that in which the approximate function, v̂, is a linear function of the parameter
vector, ✓. Corresponding to every state s, there is a vector of features �(s)

.
=

(x1(s), x2(s), . . . , xn(s))>, with the same number of components as ✓. The features
may be constructed from the states in many di↵erent ways; we cover a few possibilities
below. However the features are constructed, the approximate state-value function
is given by

v̂(s,✓)
.
= ✓>�(s) =

nX

i=1

✓ixi(s). (9.8)

In this case the approximate value function is said to be linear in the parameters, or
simply linear.

It is natural to use gradient-descent updates with linear function approximation.
The gradient of the approximate value function with respect to ✓ in this case is

rv̂(s,✓) = �(s).

Thus, the general gradient-descent update (9.3) reduces to a particularly simple form
in the linear case. In addition, in the linear case there is only one optimum ✓⇤ (or,

20

Linear Methods

Represent states as feature vectors:
for each s ∈ :

MSE(w) =

X

s2S

d(s)

h
v⇡(s)� v̂(s,w)

i
2

,

wt+1

= wt �
1

2

rwMSE(wt)

= wt �
1

2

rw

X

s2S

d(s)

⇥
v⇡(s)� v̂(s,wt)

⇤
2

= wt �
1

2

rw

X

s2S

d(s)

⇥
v⇡(s)� v̂(s,wt)

⇤
2

= wt �
X

s2S

d(s)

⇥
v⇡(s)� v̂(s,wt)

⇤
rw[v⇡(s)� v̂(s,wt)

⇤

= wt +

X

s2S

d(s)

⇥
v⇡(s)� v̂(s,wt)

⇤
rwv̂(s,wt)

(sampling)

= wt + ↵

⇥
v⇡(St)� v̂(St,wt)

⇤
rwt v̂(St,wt),

target = sin(in1� 3) cos(in2) +N(0, 0.1)

f(i) = w

1

x

1

(i) + w

2

x

2

(i) + · · ·+ wnxn(i).

wj wj + ↵(target� f(i))xj , j = 1, . . . , n.

Zt(s, a) =

8
<

:

1 + ��Zt�1

(s, a) if St = s, At = a, and At was greedy;

0 if St = s, At = a, and At was not greedy;

��Zt�1

(s, a) for all other s, a;

8s, a

G

�
t = (1� �)

T�t�1X

n=1

�

n�1

G

(n)
t + �

T�t�1

Gt (1)

G

�
t = (1� 1)

T�t�1X

n=1

1

n�1

G

(n)
t + 1

T�t�1

Gt = Gt (2)

G

�
t = (1� 0)

T�t�1X

n=1

0

n�1

G

(n)
t + 0

T�t�1

Gt = G

(1)

t (3)

R S A(s)

Ea[a]

! = s

0

, a

0

, s

1

, a

1

, . . .

1

9.3. LINEAR METHODS 207

Initialize ✓ as appropriate for the problem, e.g., ✓ = 0
Repeat (for each episode):

e = 0
S initial state of episode
Repeat (for each step of episode):

A action given by ⇡ for S
Take action A, observe reward, R, and next state, S0

� R + �v̂(S0,✓)� v̂(S,✓)
e ��e +rv̂(S,✓)
✓ ✓ + ↵�e
S S0

until S0 is terminal

Figure 9.1: On-line gradient-descent TD(�) for estimating v⇡.

with e0 = 0. A complete algorithm for on-line gradient-descent TD(�) is given in
Figure 9.1.

Two methods for gradient-based function approximation have been used widely
in reinforcement learning. One is multilayer artificial neural networks using the
error backpropagation algorithm. This maps immediately onto the equations and
algorithms just given, where the backpropagation process is the way of computing the
gradients. The second popular form is the linear form, which we discuss extensively
in the next section.

9.3 Linear Methods

One of the most important special cases of gradient-descent function approximation
is that in which the approximate function, v̂, is a linear function of the parameter
vector, ✓. Corresponding to every state s, there is a vector of features �(s)

.
=

(x1(s), x2(s), . . . , xn(s))>, with the same number of components as ✓. The features
may be constructed from the states in many di↵erent ways; we cover a few possibilities
below. However the features are constructed, the approximate state-value function
is given by

v̂(s,✓)
.
= ✓>�(s) =

nX

i=1

✓ixi(s). (9.8)

In this case the approximate value function is said to be linear in the parameters, or
simply linear.

It is natural to use gradient-descent updates with linear function approximation.
The gradient of the approximate value function with respect to ✓ in this case is

rv̂(s,✓) = �(s).

Thus, the general gradient-descent update (9.3) reduces to a particularly simple form
in the linear case. In addition, in the linear case there is only one optimum ✓⇤ (or,

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 21

Nice Properties of Linear FA Methods

❐ The gradient is very simple:
❐ For MSE, the error surface is simple: quadratic surface with

a single minimum.
❐ Linear gradient descent TD(λ) converges:

! Step size decreases appropriately
! On-line sampling (states sampled from the on-policy

distribution)
! Converges to weight vector with property:

best weight vector(Tsitsiklis & Van Roy, 1997)

9.3. LINEAR METHODS 207

Initialize ✓ as appropriate for the problem, e.g., ✓ = 0
Repeat (for each episode):

e = 0
S initial state of episode
Repeat (for each step of episode):

A action given by ⇡ for S
Take action A, observe reward, R, and next state, S0

� R + �v̂(S0,✓)� v̂(S,✓)
e ��e +rv̂(S,✓)
✓ ✓ + ↵�e
S S0

until S0 is terminal

Figure 9.1: On-line gradient-descent TD(�) for estimating v⇡.

with e0 = 0. A complete algorithm for on-line gradient-descent TD(�) is given in
Figure 9.1.

Two methods for gradient-based function approximation have been used widely
in reinforcement learning. One is multilayer artificial neural networks using the
error backpropagation algorithm. This maps immediately onto the equations and
algorithms just given, where the backpropagation process is the way of computing the
gradients. The second popular form is the linear form, which we discuss extensively
in the next section.

9.3 Linear Methods

One of the most important special cases of gradient-descent function approximation
is that in which the approximate function, v̂, is a linear function of the parameter
vector, ✓. Corresponding to every state s, there is a vector of features �(s)

.
=

(x1(s), x2(s), . . . , xn(s))>, with the same number of components as ✓. The features
may be constructed from the states in many di↵erent ways; we cover a few possibilities
below. However the features are constructed, the approximate state-value function
is given by

v̂(s,✓)
.
= ✓>�(s) =

nX

i=1

✓ixi(s). (9.8)

In this case the approximate value function is said to be linear in the parameters, or
simply linear.

It is natural to use gradient-descent updates with linear function approximation.
The gradient of the approximate value function with respect to ✓ in this case is

rv̂(s,✓) = �(s).

Thus, the general gradient-descent update (9.3) reduces to a particularly simple form
in the linear case. In addition, in the linear case there is only one optimum ✓⇤ (or,

208CHAPTER 9. ON-POLICY PREDICTIONWITH LINEAR APPROXIMATION

in degenerate cases, one set of equally good optima). Thus, any method guaranteed
to converge to or near a local optimum is automatically guaranteed to converge to
or near the global optimum. Because it is simple in these ways, the linear, gradient-
descent case is one of the most favorable for mathematical analysis. Almost all
useful convergence results for learning systems of all kinds are for linear (or simpler)
function approximation methods.

In particular, the gradient-descent TD(�) algorithm discussed in the previous sec-
tion (Figure 9.1) has been proved to converge in the linear case if the step-size
parameter is reduced over time according to the usual conditions (2.7). Convergence
is not to the minimum-error parameter vector, ✓⇤, but to a nearby parameter vector,
✓1, whose error is bounded according to

MSVE(✓1) 1 � ��

1 � �
MSVE(✓⇤). (9.9)

That is, the asymptotic error is no more than 1���
1�� times the smallest possible error.

As � approaches 1, the bound approaches the minimum error. An analogous bound
applies to other on-policy bootstrapping methods. For example, linear gradient-
descent DP backups (9.3), with the on-policy distribution, will converge to the same
result as TD(0). Technically, this bound applies only to discounted continuing tasks,
but a related result presumably holds for episodic tasks. There are also a few technical
conditions on the rewards, features, and decrease in the step-size parameter, which
we are omitting here. The full details can be found in the original paper (Tsitsiklis
and Van Roy, 1997).

Critical to the above result is that states are backed up according to the on-policy
distribution. For other backup distributions, bootstrapping methods using function
approximation may actually diverge to infinity. Examples of this and a discussion of
possible solution methods are given in Chapter 10.

Beyond these theoretical results, linear learning methods are also of interest be-
cause in practice they can be very e�cient in terms of both data and computation.
Whether or not this is so depends critically on how the states are represented in
terms of the features. Choosing features appropriate to the task is an important way
of adding prior domain knowledge to reinforcement learning systems. Intuitively,
the features should correspond to the natural features of the task, those along which
generalization is most appropriate. If we are valuing geometric objects, for example,
we might want to have features for each possible shape, color, size, or function. If
we are valuing states of a mobile robot, then we might want to have features for
locations, degrees of remaining battery power, recent sonar readings, and so on.

In general, we also need features for combinations of these natural qualities. This is
because the linear form prohibits the representation of interactions between features,
such as the presence of feature i being good only in the absence of feature j. For
example, in the pole-balancing task (Example 3.4), a high angular velocity may be
either good or bad depending on the angular position. If the angle is high, then high
angular velocity means an imminent danger of falling, a bad state, whereas if the
angle is low, then high angular velocity means the pole is righting itself, a good state.

208CHAPTER 9. ON-POLICY PREDICTIONWITH LINEAR APPROXIMATION

in degenerate cases, one set of equally good optima). Thus, any method guaranteed
to converge to or near a local optimum is automatically guaranteed to converge to
or near the global optimum. Because it is simple in these ways, the linear, gradient-
descent case is one of the most favorable for mathematical analysis. Almost all
useful convergence results for learning systems of all kinds are for linear (or simpler)
function approximation methods.

In particular, the gradient-descent TD(�) algorithm discussed in the previous sec-
tion (Figure 9.1) has been proved to converge in the linear case if the step-size
parameter is reduced over time according to the usual conditions (2.7). Convergence
is not to the minimum-error parameter vector, ✓⇤, but to a nearby parameter vector,
✓1, whose error is bounded according to

MSVE(✓1) 1 � ��

1 � �
MSVE(✓⇤). (9.9)

That is, the asymptotic error is no more than 1���
1�� times the smallest possible error.

As � approaches 1, the bound approaches the minimum error. An analogous bound
applies to other on-policy bootstrapping methods. For example, linear gradient-
descent DP backups (9.3), with the on-policy distribution, will converge to the same
result as TD(0). Technically, this bound applies only to discounted continuing tasks,
but a related result presumably holds for episodic tasks. There are also a few technical
conditions on the rewards, features, and decrease in the step-size parameter, which
we are omitting here. The full details can be found in the original paper (Tsitsiklis
and Van Roy, 1997).

Critical to the above result is that states are backed up according to the on-policy
distribution. For other backup distributions, bootstrapping methods using function
approximation may actually diverge to infinity. Examples of this and a discussion of
possible solution methods are given in Chapter 10.

Beyond these theoretical results, linear learning methods are also of interest be-
cause in practice they can be very e�cient in terms of both data and computation.
Whether or not this is so depends critically on how the states are represented in
terms of the features. Choosing features appropriate to the task is an important way
of adding prior domain knowledge to reinforcement learning systems. Intuitively,
the features should correspond to the natural features of the task, those along which
generalization is most appropriate. If we are valuing geometric objects, for example,
we might want to have features for each possible shape, color, size, or function. If
we are valuing states of a mobile robot, then we might want to have features for
locations, degrees of remaining battery power, recent sonar readings, and so on.

In general, we also need features for combinations of these natural qualities. This is
because the linear form prohibits the representation of interactions between features,
such as the presence of feature i being good only in the absence of feature j. For
example, in the pole-balancing task (Example 3.4), a high angular velocity may be
either good or bad depending on the angular position. If the angle is high, then high
angular velocity means an imminent danger of falling, a bad state, whereas if the
angle is low, then high angular velocity means the pole is righting itself, a good state.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 22

Learning and Coarse Coding

10

40

160

640

2560

10240

Narrow
features

desired
function

Medium
features

Broad
features

#Examples
approx-
imation

feature
width

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 23

Tile Coding

tiling #1

tiling #2

Shape of tiles !" Generalization

#Tilings !" Resolution of final approximation

2D state
space

❐ Binary feature for each tile
❐ Number of features present at

any one time is constant
❐ Binary features means weighted

sum easy to compute
❐ Easy to compute indices of the

features present

x

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 24

Tile Coding Cont.

one

tile

a) Irregular b) Log stripes c) Diagonal stripes

Irregular tilings

Hashing CMAC
 “Cerebellar model arithmetic computer”
Albus 1971

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 25

Coarse Coding

!
i

c
i

!
i

c
i+1

c
i-1

c
i

!
i+1

c
i+1

!"t
expanded

representation,
many features

original
representation

approximation

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 26

Shaping Generalization in Coarse Coding

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 27

Can you beat the “curse of dimensionality”?

❐ Can you keep the number of features from going up
exponentially with the dimension?

❐ Function complexity, not dimensionality, is the problem.
❐ Kanerva coding:

! Select a bunch of binary prototypes
! Use hamming distance as distance measure
! Dimensionality is no longer a problem, only complexity

❐ “Lazy learning” schemes:
! Remember all the data
! To get new value, find nearest neighbours and

interpolate
! e.g., locally-weighted regression

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 28

❐ Learning state-action values

❐ The general gradient-descent rule:

❐Gradient-descent Sarsa(λ) (backward view):

Control with FA

description of (St ,At), Qt{ }
Training examples of the form:

9.4. CONTROL WITH FUNCTION APPROXIMATION 231

The general gradient-descent update for action-value prediction is

w
t+1 = w

t

+ ↵

h
Q

t

� q̂(S
t

, A

t

,w
t

)
i
rwt q̂(St

, A

t

,w
t

).

For example, the backward view of the action-value method analogous to
TD(�) is

w
t+1 = w

t

+ ↵�

t

z
t

,

where

�

t

= R

t+1 + �q̂(S
t+1, At+1,wt

) � q̂(S
t

, A

t

,w
t

),

and

z
t

= ��z
t�1 + rwt q̂(St

, A

t

,w
t

),

with z0 = 0. We call this method gradient-descent Sarsa(�), particularly
when it is elaborated to form a full control method. For a constant policy,
this method converges in the same way that TD(�) does, with the same kind
of error bound (9.9).

To form control methods, we need to couple such action-value prediction
methods with techniques for policy improvement and action selection. Suitable
techniques applicable to continuous actions, or to actions from large discrete
sets, are a topic of ongoing research with as yet no clear resolution. On the
other hand, if the action set is discrete and not too large, then we can use the
techniques already developed in previous chapters. That is, for each possible
action, a, available in the current state, S

t

, we can compute q̂(S
t

, a,w
t

) and
then find the greedy action a

⇤
t

= arg max
a

q̂(S
t

, a,w
t

). Policy improvement
is done by changing the estimation policy to the greedy policy (in o↵-policy
methods) or to a soft approximation of the greedy policy such as the "-greedy
policy (in on-policy methods). Actions are selected according to this same
policy in on-policy methods, or by an arbitrary policy in o↵-policy methods.

Figures 9.8 and 9.9 show examples of on-policy (Sarsa(�)) and o↵-policy
(Watkins’s Q(�)) control methods using function approximation. Both meth-
ods use linear, gradient-descent function approximation with binary features,
such as in tile coding and Kanerva coding. Both methods use an "-greedy
policy for action selection, and the Sarsa method uses it for GPI as well. Both
compute the sets of present features, F

a

, corresponding to the current state
and all possible actions, a. If the value function for each action is a sepa-
rate linear function of the same features (a common case), then the indices of

9.4. CONTROL WITH FUNCTION APPROXIMATION 231

The general gradient-descent update for action-value prediction is

w
t+1 = w

t

+ ↵

h
Q

t

� q̂(S
t

, A

t

,w
t

)
i
rwt q̂(St

, A

t

,w
t

).

For example, the backward view of the action-value method analogous to
TD(�) is

w
t+1 = w

t

+ ↵�

t

z
t

,

where

�

t

= R

t+1 + �q̂(S
t+1, At+1,wt

) � q̂(S
t

, A

t

,w
t

),

and

z
t

= ��z
t�1 + rwt q̂(St

, A

t

,w
t

),

with z0 = 0. We call this method gradient-descent Sarsa(�), particularly
when it is elaborated to form a full control method. For a constant policy,
this method converges in the same way that TD(�) does, with the same kind
of error bound (9.9).

To form control methods, we need to couple such action-value prediction
methods with techniques for policy improvement and action selection. Suitable
techniques applicable to continuous actions, or to actions from large discrete
sets, are a topic of ongoing research with as yet no clear resolution. On the
other hand, if the action set is discrete and not too large, then we can use the
techniques already developed in previous chapters. That is, for each possible
action, a, available in the current state, S

t

, we can compute q̂(S
t

, a,w
t

) and
then find the greedy action a

⇤
t

= arg max
a

q̂(S
t

, a,w
t

). Policy improvement
is done by changing the estimation policy to the greedy policy (in o↵-policy
methods) or to a soft approximation of the greedy policy such as the "-greedy
policy (in on-policy methods). Actions are selected according to this same
policy in on-policy methods, or by an arbitrary policy in o↵-policy methods.

Figures 9.8 and 9.9 show examples of on-policy (Sarsa(�)) and o↵-policy
(Watkins’s Q(�)) control methods using function approximation. Both meth-
ods use linear, gradient-descent function approximation with binary features,
such as in tile coding and Kanerva coding. Both methods use an "-greedy
policy for action selection, and the Sarsa method uses it for GPI as well. Both
compute the sets of present features, F

a

, corresponding to the current state
and all possible actions, a. If the value function for each action is a sepa-
rate linear function of the same features (a common case), then the indices of

where:

230CHAPTER 9. ON-POLICY APPROXIMATION OF ACTION VALUES

distance metric than in is used in tile coding and RBFs. For definiteness,
consider a binary state space and the hamming distance, the number of bits
at which two states di↵er. States are considered similar if they agree on enough
dimensions, even if they are totally di↵erent on others.

The strength of Kanerva coding is that the complexity of the functions
that can be learned depends entirely on the number of features, which bears
no necessary relationship to the dimensionality of the task. The number of
features can be more or less than the number of dimensions. Only in the worst
case must it be exponential in the number of dimensions. Dimensionality itself
is thus no longer a problem. Complex functions are still a problem, as they
have to be. To handle more complex tasks, a Kanerva coding approach simply
needs more features. There is not a great deal of experience with such systems,
but what there is suggests that their abilities increase in proportion to their
computational resources. This is an area of current research, and significant
improvements in existing methods can still easily be found.

9.4 Control with Function Approximation

We now extend value prediction methods using function approximation to
control methods, following the pattern of GPI. First we extend the state-
value prediction methods to action-value prediction methods, then we combine
them with policy improvement and action selection techniques. As usual, the
problem of ensuring exploration is solved by pursuing either an on-policy or
an o↵-policy approach.

The extension to action-value prediction is straightforward. In this case
it is the approximate action-value function, q̂ ⇡ q⇡, that is represented as a
parameterized functional form with parameter vector w. Whereas before we
considered random training examples of the form St 7! Vt, now we consider ex-
amples of the form St, At 7! Qt. The target output, Qt, can be any approxima-
tion of q⇡(St, At), including the usual backed-up values such as the full Monte
Carlo return, Gt, or the one-step Sarsa-style return, Gt+1 + �q̂(St+1, At+1,wt).
The general gradient-descent update for action-value prediction is

wt+1 = wt + ↵
h
Qt � q̂(St, At,wt)

i
rwt q̂(St, At,wt).

For example, the backward view of the action-value method analogous to
TD(�) is

wt+1 = wt + ↵�tet,

where

�t = Rt+1 + �q̂(St+1, At+1,wt) � q̂(St, At,wt),

9.4. CONTROL WITH FUNCTION APPROXIMATION 231

and

et = ��et�1 + rwt q̂(St, At,wt),

with e0 = 0. We call this method gradient-descent Sarsa(�), particularly
when it is elaborated to form a full control method. For a constant policy,
this method converges in the same way that TD(�) does, with the same kind
of error bound (9.9).

To form control methods, we need to couple such action-value prediction
methods with techniques for policy improvement and action selection. Suitable
techniques applicable to continuous actions, or to actions from large discrete
sets, are a topic of ongoing research with as yet no clear resolution. On the
other hand, if the action set is discrete and not too large, then we can use the
techniques already developed in previous chapters. That is, for each possible
action, a, available in the current state, St, we can compute q̂(St, a,wt) and
then find the greedy action a⇤

t = arg maxa q̂(St, a,wt). Policy improvement
is done by changing the estimation policy to the greedy policy (in o↵-policy
methods) or to a soft approximation of the greedy policy such as the "-greedy
policy (in on-policy methods). Actions are selected according to this same
policy in on-policy methods, or by an arbitrary policy in o↵-policy methods.

Figures 9.8 and 9.9 show examples of on-policy (Sarsa(�)) and o↵-policy
(Watkins’s Q(�)) control methods using function approximation. Both meth-
ods use linear, gradient-descent function approximation with binary features,
such as in tile coding and Kanerva coding. Both methods use an "-greedy
policy for action selection, and the Sarsa method uses it for GPI as well. Both
compute the sets of present features, Fa, corresponding to the current state
and all possible actions, a. If the value function for each action is a sepa-
rate linear function of the same features (a common case), then the indices of
the Fa for each action are essentially the same, simplifying the computation
significantly.

All the methods we have discussed above have used accumulating eligibility
traces. Although replacing traces (Section 7.8) are known to have advantages
in tabular methods, replacing traces do not directly extend to the use of func-
tion approximation. Recall that the idea of replacing traces is to reset a state’s
trace to 1 each time it is visited instead of incrementing it by 1. But with func-
tion approximation there is no single trace corresponding to a state, just a trace
for each component of w, which corresponds to many states. One approach
that seems to work well for linear, gradient-descent function approximation
methods with binary features is to treat the features as if they were states for
the purposes of replacing traces. That is, each time a state is encountered that
has feature i, the trace for feature i is set to 1 rather than being incremented
by 1, as it would be with accumulating traces.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 29

Linear Gradient-based Sarsa(λ)

9.4. CONTROL WITH FUNCTION APPROXIMATION 217

and

et
.
= ��et�1 +rq̂(St, At,✓t),

with e0
.
= 0. We call this method gradient-descent Sarsa(�), particularly when

it is elaborated to form a full control method. For a constant policy, this method
converges in the same way that TD(�) does, with the same kind of error bound (9.9).

To form control methods, we need to couple such action-value prediction methods
with techniques for policy improvement and action selection. Suitable techniques
applicable to continuous actions, or to actions from large discrete sets, are a topic of
ongoing research with as yet no clear resolution. On the other hand, if the action set
is discrete and not too large, then we can use the techniques already developed in pre-
vious chapters. That is, for each possible action, a, available in the current state, St,
we can compute q̂(St, a,✓t) and then find the greedy action a⇤

t = argmaxa q̂(St, a,✓t).
Policy improvement is done by changing the estimation policy to the greedy policy
(in o↵-policy methods) or to a soft approximation of the greedy policy such as the
"-greedy policy (in on-policy methods). Actions are selected according to this same
policy in on-policy methods, or by an arbitrary policy in o↵-policy methods.

Figures 9.8 and 9.9 show examples of on-policy (Sarsa(�)) and o↵-policy (Watkins’s
Q(�)) control methods using function approximation. Both methods use linear,
gradient-descent function approximation with binary features, such as in tile coding

Let ✓ and e be vectors with one component for each possible feature
Let Fa, for every possible action a, be a set of feature indices, initially empty
Initialize ✓ as appropriate for the problem, e.g., ✓ = 0
Repeat (for each episode):

e = 0
S, A initial state and action of episode (e.g., "-greedy)
FA set of features present in S, A
Repeat (for each step of episode):

For all i 2 FA:
ei ei + 1 (accumulating traces)
or ei 1 (replacing traces)

Take action A, observe reward, R, and next state, S0

� R�
P

i2FA
✓i

If S0 is terminal, then ✓ ✓ + ↵�e; go to next episode
For all a 2 A(S0):

Fa set of features present in S0, a
Qa

P
i2Fa

✓i

A0 new action in S0 (e.g., "-greedy)
� � + �QA0

✓ ✓ + ↵�e
e ��e
S S0

A A0

Figure 9.8: Linear, gradient-descent Sarsa(�) with binary features and "-greedy policy.
Updates for both accumulating and replacing traces are specified.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 30

Approx Value Functions on Mountain-Car Task

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 31

Radial Basis Functions (RBFs)

c
i

!
i

c
i+1

c
i-1

xi (s) = exp −
s − ci

2

2σ i
2

#

$
%

&

'
(

e.g., Gaussians

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 32

Mountain Car with Radial Basis
Functions

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 33

Mountain-Car Results

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 34

Should We Bootstrap?

accumulating
traces

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

!

RANDOM WALK

50

100

150

200

250

300

Failures per
100,000 steps

0 0.2 0.4 0.6 0.8 1

!

CART AND POLE

400

450

500

550

600

650

700

 Steps per
episode

0 0.2 0.4 0.6 0.8 1

!

MOUNTAIN CAR

replacing
traces

150

160

170

180

190

200

210

220

230

240

Cost per
episode

0 0.2 0.4 0.6 0.8 1

!

PUDDLE WORLD

replacing
traces

accumulating
traces

replacing
traces

accumulating
traces

RMS error

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 35

Summary

❐ Generalization
❐ Adapting supervised-learning function approximation

methods
❐ Gradient-descent methods
❐ Linear gradient-descent methods

! Radial basis functions
! Tile coding
! Kanerva coding

