Efficient Planning

How the customer
explained it

How the manager
understood It

How the engineer
designed it

How the marketing
group described it

How the project
was documented

What operations
installed

How the customer
was billed

What the customer
really wanted
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Tuesday class summary:

@ Planning: any computational process that uses a model to
create or improve a policy

planning

model = policy
@ Dyna framework:
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Questions during class

@ “Why use simulated experience? Can’t you directly
compute solution based on model?”

@ “Wouldn’t it be better to plan backwards from goal”
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How to Achieve Efficient Planning?

@ What type of backup is better?
e Sample vs. full backups
e Incremental vs. less incremental backups

@ How to order the backups?
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What is Efficient Planning?

Planning algorithm A is more efficient than planning
algorithm B if:

@ 1t can compute the optimal policy (or value function) in
less time.

@ given the same amount of computation time, it improves
the policy (or value function) more.
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R. S. Sutton

What backup type is best?
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Full vs. Sample Backups
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Full vs. Sample Backups

full
backups

RMS error b =2 (branching factor)

in value
estimate

1b
Number of max Q(s’,a’) computations
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b successor states, equally likely; initial error = 1;
assume all next states’ values are correct
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Small Backups

@ Small backups are single-successor backups based on the
model

@ Small backups have the same computational complexity as
sample backups

@ Small backups have no sampling error
@ Small backups require storage for ‘old’ values
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Main Idea behind Small Backups

Consider estimate A that is constructed from a weighted sum
estimates X .

full backup: A « Z w; X

What can we do if we know that only a single successor, X -,
changed value since the last backup?

Let & ; be the old value of X, used to construct the current
value of A. The value A can then be updated for a single successor
by adding the difference between the new and the old value:

small backup: A <~ A+ w;(X,; — ;)
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Small vs. Sample Backups
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Small vs. Sample Backups
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Backup Ordering

"I'm not sure officer, damn
foreigners all look the same to me"
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Backup Ordering

Do Forever:

1) Select a state s € S according to some selection strategy H
2) Apply a full backup to s:

V(s) < max, |7(s,a) + >, p(s'|s,a)V(s)

Asynchronous Value Iteration

@ For every selection strategy H that selects each state

infinitely often the values V converge to the optimal value
function V,

@ The rate of convergence depends strongly on the selection
strategy H
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The Trade-Off

@ For any effective ordering strategy the cost that is saved by
having to perform less backups should out-weigh the cost
of maintaining the ordering:

cost
to maintain

. cost savings
ordering

due to fewer
backups
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Prioritized Sweeping

@ Which states or state-action pairs should be generated
during planning?

@ Work backwards from states whose values have just
changed:

e Maintain a queue of state-action pairs whose values
would change a lot if backed up, prioritized by the size
of the change

e When a new backup occurs, insert predecessors
according to their priorities

e Always perform backups from first in queue
@ Moore & Atkeson 1993; Peng & Williams 1993
@ 1mproved by McMahan & Gordon 2005; Van Seijen 2013
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Moore and Atekson’s Prioritized Sweeping

Published in 1993.
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Prioritized Sweeping vs. Dyna-Q

Both use n=5 backups per
environmental interaction

Backups
until
optimal
solution
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Bellman Error Ordering

@ Bellman error is a measure for the difference between the
current value and the value after a full backup:

BE(s) =|V(s) — max {fﬁ(s, a) + Zp(s’|s, a)V(s’)} ‘
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Bellman Error Ordering

initialize V (s) arbitrarily for all s
compute BE(s) for all s
loop {until convergence}
select state s’ with worst Bellman error
perform full backup of s’
BE(s') < 0
for all predecessor states 5 of s’ do
recompute BFE(S)
end for
end loop

To get positive trade-off:
comp. time Bellman error << comp time Full backup
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Prioritized Sweeping with Small Backups

initialize V' (s) arbitrarily for all s
initialize U(s) = V (s) for all s
initialize Q(s,a) = V(s) for all s,a
initialize Nyq, N2 to 0 for all s,a, s’
loop {over episodes}
initialize s
repeat {for each step in the episode}
select action a, based on Q(s,-)
take action a, observe r and s’
Nyo ¢ Nyo+1; NE < N2+ 1
Q(s,a) « [Q(s,a)(Nsg — 1) + 7+ 4V (s")] /Nyq
V(s) < maxp Q(s,b)
p e [V(s) = U(s)]
if ¢ ic an anene cob ite nriarity fo o otherwice add it with nriarity o
for a number of update cycles do
remove top state § from queue
AU «+ U(5) -V (3)
V(§) « VU%)
for all (5,a) pairs with NZ > 0 do
Q(Ea (_l) — Q(§, C_L) + 'VNE%/NEKL AU
U(5) < maxy, Q(5,b)
p < [V(5) - U()|
if s is on queue, set its priority to p; otherwise, add it with priority p
end for
end for
S < S
until s is terminal
end loop
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Empirical Comparison
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Trajectory Sampling

@ ‘Trajectory sampling: perform backups along simulated
trajectories

@ This samples from the on-policy distribution
@ Advantages when function approximation is used (Chapter 8)

@ Focusing of computation: can cause vast uninteresting parts
of the state space to be (usefully) ignored:

Initial
states

Reachable under Irrelevant states
optimal control
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Trajectory Sampling Experiment

one-step full tabular backups
1000 STATES

uniform: cycled through all state- e

action pairs start state
under

on-policy: backed up along oy

simulated trajectories

200 randomly generated
undiscounted episodic tasks

2 actions for each state, each with

b equally likely next states

0.1 prob of transition to terminal 10,000 STATES

state Value of
start state

under

expected reward on each areedy
transition selected from mean 0 Py
variance 1 Gaussian
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Heuristic Search

@ Used for action selection, not for changing a value function
(=heuristic evaluation function)

@ Backed-up values are computed, but typically discarded
@ Extension of the idea of a greedy policy — only deeper

@ Also suggests ways to select states to backup: smart
focusing:

ded s dad
4 5
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Summary

@ Efficient planning is about trying to spend the available
computation time in the most effective way.

@ Backup types:
e full/sample/small
@ Backup Ordering
o gain/loss trade-off —
e prioritized sweeping
e prioritized sweeping with small backups: Bellman error
ordering
e trajectory sampling: backup along trajectories
e heuristic search
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