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Tuesday class summary: 
Planning: any computational process that uses a model to 
create or improve a policy

Dyna framework:
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Questions during class

 “Why use simulated experience? Can’t you directly 
compute solution based on model?”
“Wouldn’t  it be better to plan backwards from goal”
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How to Achieve Efficient Planning?

What type of backup is better?
Sample vs.  full backups
Incremental vs. less incremental backups

How to order the backups?
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What is Efficient Planning?

it can compute the optimal policy (or value function) in 
less time.
given the same amount of computation time, it improves 
the policy (or value function) more.
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Planning algorithm A is more efficient than planning 
algorithm B if:
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What backup type is best?
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Full vs. Sample Backups
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Full vs. Sample Backups
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Small Backups

Small backups are single-successor backups based on the 
model
Small backups have the same computational complexity as 
sample backups
Small backups have no sampling error
Small backups require storage for ‘old’ values
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Main Idea behind Small Backups
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Abstract

E�cient planning plays a crucial role in
model-based reinforcement learning. Tradi-
tionally, the main planning operation is a
full backup based on the current estimates of
the successor states. Consequently, its com-
putation time is proportional to the num-
ber of successor states. In this paper, we
introduce a new planning backup that uses
only the current value of a single successor
state and has a computation time indepen-
dent of the number of successor states. This
new backup, which we call a small backup,
opens the door to a new class of model-based
reinforcement learning methods that exhibit
much finer control over their planning process
than traditional methods. We empirically
demonstrate that this increased flexibility al-
lows for more e�cient planning by showing
that an implementation of prioritized sweep-
ing based on small backups achieves a sub-
stantial performance improvement over clas-
sical implementations.

1. Introduction

In reinforcement learning (RL) (Kaelbling et al., 1996;
Sutton & Barto, 1998), an agent seeks an optimal con-
trol policy for a sequential decision problem in an ini-
tially unknown environment. This task is often for-
malized as a Markov Decision Process (MDP), where
the environment provides feedback on the agent’s be-
haviour in the form of a reward signal. The agent’s
goal is to maximize the expected return, which is the
discounted sum of rewards over future time steps. An
important performance measure in RL is the sample

e�ciency, which refers to the number of environment
interactions that is required to obtain a good policy.
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Many solution strategies improve the policy by itera-
tively improving a state-value or action-value function,
which provide estimates of the expected return under
a given policy for (environment) states or state-action
pairs, respectively. Di↵erent approaches for updating
these value functions exist. In terms of sample e�-
ciency, one of the most e↵ective approaches is to esti-
mate the environment model using observed samples
and to compute, at each time step, the (action-)value
function that is optimal with respect to the model es-
timate using planning techniques. A popular planning
technique used for this is value iteration (VI) (Bell-
man, 1957), which performs sweeps of backups through
the state or state-action space, until the (action-)value
function has converged.

A drawback of using VI is that it is computationally
expensive, making it impractical for domains that re-
quire a high action-selection frequency. Fortunately,
e�cient approximations can be obtained by limiting
the number of backups that is performed per time step.
A very e↵ective approximation strategy is prioritized

sweeping (Moore & Atkeson, 1993; Peng & Williams,
1993), which prioritizes backups that are expected to
cause large value changes. This paper introduces a
new backup that enables a dramatic improvement in
the e�ciency of prioritized sweeping.

The main idea behind this new backup is as follows.
Consider that we are interested in some estimate A

that is constructed from a sum of other estimates Xi.
The estimate A can be computed using a full backup:

A 
X

i

Xi .

If the estimates Xi are updated, A can be recomputed
by redoing the above backup. Alternatively, if we know
that only Xj received a significant value change, we
might want to update A for only Xj . Let us indicate
the old value of Xj , used to construct the current value
of A, as xj . A can then be updated by subtracting this
old value and adding the new value:

A A� xj +Xj .
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Take-Home Message: smaller backups→ more planning flexibility→ higher performance
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• Full backup:
yi ← xi
yj ← xj
xk ← fk(yi, yj)

• xk = fk(yi, yj) guaranteed to hold in between backups.

• Single-successor backups possible. Example:

yj ← xj
xk ← fk(yi, yj)

•Consider fk =
∑n

i=0wixi. Single-successor backup has

O(1) cost:
∆ ← xj − yj
yj ← xj
xk ← xk + wj∆

What is a small backup?

xk
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xi xj
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Small backup : single-successor backup with a cost that

is a fraction of the cost of a full backup.

The Trade-Off of Backup OrderingBackground
Planning in MDPs often can be reduced to fixed point

computation. That is, find x in x = f (x), where x =
(x1, x2, ..., xn) corresponds to a vector of (state) values

and f implements the Bellman equations.

All values directly or indirectly depend on each other, via

some complex network of interactions:
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Claim
We introduce a new planning backup, called a small backup,

that, when combined with prioritized sweeping, achieves

a better planning efficiency than the traditional imple-

mentation of Moore and Atkeson based on full backups,

as well as other implementations.

Problem
Efficient planning in stochastic MDPs is important in many

fields, for example in model-based reinforcement learn-

ing (RL). The typical approach to solve a planning task

is to iteratively improve estimates of the optimal value

function, from which the optimal policy can be easily de-

rived. These estimates are improved through backups,

which update a value based on successor values. This

raises the question: what backup type and backup order-

ing results in the best planning efficiency?

Efficient Planning in MDPs by Small Backups
Harm van Seijen Richard S. Sutton

Reinforcement Learning and Artificial Intelligence (RLAI) group

University of Alberta

Canada

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

alpha / decay

n
o

rm
a

liz
e

d
 R

M
S

 e
rr

o
r

 

 

sample backup: TD(0), constant α

sample backup: TD(0), decaying α

small backupTake-Home Message: smaller backups→ more planning flexibility→ higher performance

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

α / d

no
rm

al
iz

ed
 R

M
S 

er
ro

r

 

 

TD(0), constant step−size  
TD(0), decaying step−size
small backup

r left
rright

random transitions

rleft = +1
rright = -1

rleft = +1
rright = +1

2 evalutation tasks:

Advantage Small Backups over Sample Backups: No Step-Size is Required

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

step−size / step−size decay

RMS 
error

 

 

sample backup: TD(0), constant step−size

sample backup: TD(0), decaying step−size

small backup

(normalized)

• Full backup:
yi ← xi
yj ← xj
xk ← fk(yi, yj)

• xk = fk(yi, yj) guaranteed to hold in between backups.

• Single-successor backups possible. Example:

yj ← xj
xk ← fk(yi, yj)

•Consider fk =
∑n

i=0wixi. Single-successor backup has

O(1) cost:
∆ ← xj − yj
yj ← xj
xk ← xk + wj∆

What is a small backup?

xk

fk

xi xj

yi yj

Small backup : single-successor backup with a cost that

is a fraction of the cost of a full backup.

The Trade-Off of Backup OrderingBackground
Planning in MDPs often can be reduced to fixed point

computation. That is, find x in x = f (x), where x =
(x1, x2, ..., xn) corresponds to a vector of (state) values

and f implements the Bellman equations.

All values directly or indirectly depend on each other, via

some complex network of interactions:

xk

0 1 2 3 4 5 6 7
x 10−6

−70

−68

−66

−64

−62

−60

−58

−56

−54

−52

−50

comp. time per observation [s]

return 

 

 

PS
, P

en
g 

&W
illi

am
s

PS
, M

oo
re

 &
 A

tke
so

n

PS, Wiering & Schmidhuber

PS, small backups value iteration

(avg. over 
  first 200 eps.)

S
G

Prioritized Sweeping (PS) with small backups outperforms its competitors:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x 10−6

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

comp. time per observation [s]

RMS
error

 

 

PS, Moore & Atkeson

PS, Peng & Williams

PS, Wiering & Schmidhuber

initial error

value iteration

PS, small backups

(avg. over
 first 105 obs)

Claim
We introduce a new planning backup, called a small backup,

that, when combined with prioritized sweeping, achieves

a better planning efficiency than the traditional imple-

mentation of Moore and Atkeson based on full backups,

as well as other implementations.

Problem
Efficient planning in stochastic MDPs is important in many

fields, for example in model-based reinforcement learn-

ing (RL). The typical approach to solve a planning task

is to iteratively improve estimates of the optimal value

function, from which the optimal policy can be easily de-

rived. These estimates are improved through backups,

which update a value based on successor values. This

raises the question: what backup type and backup order-

ing results in the best planning efficiency?

Efficient Planning in MDPs by Small Backups
Harm van Seijen Richard S. Sutton

Reinforcement Learning and Artificial Intelligence (RLAI) group

University of Alberta

Canada

Take-Home Message: smaller backups→ more planning flexibility→ higher performance

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

α / d

no
rm

al
iz

ed
 R

M
S 

er
ro

r

 

 

TD(0), constant step−size  
TD(0), decaying step−size
small backup

r left
rright

random transitions

rleft = +1
rright = -1

rleft = +1
rright = +1

2 evalutation tasks:

Advantage Small Backups over Sample Backups: No Step-Size is Required

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

step−size / step−size decay

RMS 
error

 

 

sample backup: TD(0), constant step−size

sample backup: TD(0), decaying step−size

small backup

(normalized)

• Full backup:
yi ← xi
yj ← xj
xk ← fk(yi, yj)

• xk = fk(yi, yj) guaranteed to hold in between backups.

• Single-successor backups possible. Example:

yj ← xj
xk ← fk(yi, yj)

•Consider fk =
∑n

i=0wixi. Single-successor backup has

O(1) cost:
∆ ← xj − yj
yj ← xj
xk ← xk + wj∆

What is a small backup?

xk

fk

xi xj

yi yj

Small backup : single-successor backup with a cost that

is a fraction of the cost of a full backup.

The Trade-Off of Backup OrderingBackground
Planning in MDPs often can be reduced to fixed point

computation. That is, find x in x = f (x), where x =
(x1, x2, ..., xn) corresponds to a vector of (state) values

and f implements the Bellman equations.

All values directly or indirectly depend on each other, via

some complex network of interactions:

xk

0 1 2 3 4 5 6 7
x 10−6

−70

−68

−66

−64

−62

−60

−58

−56

−54

−52

−50

comp. time per observation [s]

return 

 

 

PS
, P

en
g 

&W
illi

am
s

PS
, M

oo
re

 &
 A

tke
so

n

PS, Wiering & Schmidhuber

PS, small backups value iteration

(avg. over 
  first 200 eps.)

S
G

Prioritized Sweeping (PS) with small backups outperforms its competitors:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x 10−6

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

comp. time per observation [s]

RMS
error

 

 

PS, Moore & Atkeson

PS, Peng & Williams

PS, Wiering & Schmidhuber

initial error

value iteration

PS, small backups

(avg. over
 first 105 obs)

Claim
We introduce a new planning backup, called a small backup,

that, when combined with prioritized sweeping, achieves

a better planning efficiency than the traditional imple-

mentation of Moore and Atkeson based on full backups,

as well as other implementations.

Problem
Efficient planning in stochastic MDPs is important in many

fields, for example in model-based reinforcement learn-

ing (RL). The typical approach to solve a planning task

is to iteratively improve estimates of the optimal value

function, from which the optimal policy can be easily de-

rived. These estimates are improved through backups,

which update a value based on successor values. This

raises the question: what backup type and backup order-

ing results in the best planning efficiency?

Efficient Planning in MDPs by Small Backups
Harm van Seijen Richard S. Sutton

Reinforcement Learning and Artificial Intelligence (RLAI) group

University of Alberta

Canada

Take-Home Message: smaller backups→ more planning flexibility→ higher performance

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

α / d

no
rm

al
ize

d 
RM

S 
er

ro
r

 

 

TD(0), constant step−size  
TD(0), decaying step−size
small backup

r left
rright

random transitions

rleft = +1
rright = -1

rleft = +1
rright = +1

2 evalutation tasks:

Advantage Small Backups over Sample Backups: No Step-Size is Required

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

step−size / step−size decay

RMS 
error

 

 

sample backup: TD(0), constant step−size

sample backup: TD(0), decaying step−size

small backup

(normalized)

• Full backup:
yi ← xi
yj ← xj
xk ← fk(yi, yj)

• xk = fk(yi, yj) guaranteed to hold in between backups.

• Single-successor backups possible. Example:

yj ← xj
xk ← fk(yi, yj)

•Consider fk =
∑n

i=0wixi. Single-successor backup has

O(1) cost:
∆ ← xj − yj
yj ← xj
xk ← xk + wj∆

What is a small backup?

xk

fk

xi xj

yi yj

Small backup : single-successor backup with a cost that

is a fraction of the cost of a full backup.

The Trade-Off of Backup OrderingBackground
Planning in MDPs often can be reduced to fixed point

computation. That is, find x in x = f (x), where x =
(x1, x2, ..., xn) corresponds to a vector of (state) values

and f implements the Bellman equations.

All values directly or indirectly depend on each other, via

some complex network of interactions:

xk

0 1 2 3 4 5 6 7
x 10−6

−70

−68

−66

−64

−62

−60

−58

−56

−54

−52

−50

comp. time per observation [s]

return 

 

 

PS
, P

en
g 

&W
illi

am
s

PS
, M

oo
re

 &
 A

tke
so

n

PS, Wiering & Schmidhuber

PS, small backups value iteration

(avg. over 
  first 200 eps.)

S
G

Prioritized Sweeping (PS) with small backups outperforms its competitors:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x 10−6

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

comp. time per observation [s]

RMS
error

 

 

PS, Moore & Atkeson

PS, Peng & Williams

PS, Wiering & Schmidhuber

initial error

value iteration

PS, small backups

(avg. over
 first 105 obs)

Claim
We introduce a new planning backup, called a small backup,

that, when combined with prioritized sweeping, achieves

a better planning efficiency than the traditional imple-

mentation of Moore and Atkeson based on full backups,

as well as other implementations.

Problem
Efficient planning in stochastic MDPs is important in many

fields, for example in model-based reinforcement learn-

ing (RL). The typical approach to solve a planning task

is to iteratively improve estimates of the optimal value

function, from which the optimal policy can be easily de-

rived. These estimates are improved through backups,

which update a value based on successor values. This

raises the question: what backup type and backup order-

ing results in the best planning efficiency?

Efficient Planning in MDPs by Small Backups
Harm van Seijen Richard S. Sutton

Reinforcement Learning and Artificial Intelligence (RLAI) group

University of Alberta

Canada

Take-Home Message: smaller backups→ more planning flexibility→ higher performance

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

α / d

no
rm

al
iz

ed
 R

M
S 

er
ro

r

 

 

TD(0), constant step−size  
TD(0), decaying step−size
small backup

r left
rright

random transitions

rleft = +1
rright = -1

rleft = +1
rright = +1

2 evalutation tasks:

Advantage Small Backups over Sample Backups: No Step-Size is Required

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

step−size / step−size decay

RMS 
error

 

 

sample backup: TD(0), constant step−size

sample backup: TD(0), decaying step−size

small backup

(normalized)

• Full backup:
yi ← xi
yj ← xj
xk ← fk(yi, yj)

• xk = fk(yi, yj) guaranteed to hold in between backups.

• Single-successor backups possible. Example:

yj ← xj
xk ← fk(yi, yj)

•Consider fk =
∑n

i=0wixi. Single-successor backup has

O(1) cost:
∆ ← xj − yj
yj ← xj
xk ← xk + wj∆

What is a small backup?

xk

fk

xi xj

yi yj

Small backup : single-successor backup with a cost that

is a fraction of the cost of a full backup.

The Trade-Off of Backup OrderingBackground
Planning in MDPs often can be reduced to fixed point

computation. That is, find x in x = f (x), where x =
(x1, x2, ..., xn) corresponds to a vector of (state) values

and f implements the Bellman equations.

All values directly or indirectly depend on each other, via

some complex network of interactions:

xk

0 1 2 3 4 5 6 7
x 10−6

−70

−68

−66

−64

−62

−60

−58

−56

−54

−52

−50

comp. time per observation [s]

return 

 

 

PS
, P

en
g 

&W
illi

am
s

PS
, M

oo
re

 &
 A

tke
so

n

PS, Wiering & Schmidhuber

PS, small backups value iteration

(avg. over 
  first 200 eps.)

S
G

Prioritized Sweeping (PS) with small backups outperforms its competitors:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x 10−6

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

comp. time per observation [s]

RMS
error

 

 

PS, Moore & Atkeson

PS, Peng & Williams

PS, Wiering & Schmidhuber

initial error

value iteration

PS, small backups

(avg. over
 first 105 obs)

Claim
We introduce a new planning backup, called a small backup,

that, when combined with prioritized sweeping, achieves

a better planning efficiency than the traditional imple-

mentation of Moore and Atkeson based on full backups,

as well as other implementations.

Problem
Efficient planning in stochastic MDPs is important in many

fields, for example in model-based reinforcement learn-

ing (RL). The typical approach to solve a planning task

is to iteratively improve estimates of the optimal value

function, from which the optimal policy can be easily de-

rived. These estimates are improved through backups,

which update a value based on successor values. This

raises the question: what backup type and backup order-

ing results in the best planning efficiency?

Efficient Planning in MDPs by Small Backups
Harm van Seijen Richard S. Sutton

Reinforcement Learning and Artificial Intelligence (RLAI) group

University of Alberta

Canada

Take-Home Message: smaller backups→ more planning flexibility→ higher performance

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

α / d

no
rm

al
iz

ed
 R

M
S 

er
ro

r

 

 

TD(0), constant step−size  
TD(0), decaying step−size
small backup

r left
rright

random transitions

rleft = +1
rright = -1

rleft = +1
rright = +1

2 evalutation tasks:

Advantage Small Backups over Sample Backups: No Step-Size is Required

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

step−size / step−size decay

RMS 
error

 

 

sample backup: TD(0), constant step−size

sample backup: TD(0), decaying step−size

small backup

(normalized)

• Full backup:
yi ← xi
yj ← xj
xk ← fk(yi, yj)

• xk = fk(yi, yj) guaranteed to hold in between backups.

• Single-successor backups possible. Example:

yj ← xj
xk ← fk(yi, yj)

•Consider fk =
∑n

i=0wixi. Single-successor backup has

O(1) cost:
∆ ← xj − yj
yj ← xj
xk ← xk + wj∆

What is a small backup?

xk

fk

xi xj

yi yj

Small backup : single-successor backup with a cost that

is a fraction of the cost of a full backup.

The Trade-Off of Backup OrderingBackground
Planning in MDPs often can be reduced to fixed point

computation. That is, find x in x = f (x), where x =
(x1, x2, ..., xn) corresponds to a vector of (state) values

and f implements the Bellman equations.

All values directly or indirectly depend on each other, via

some complex network of interactions:

xk

0 1 2 3 4 5 6 7
x 10−6

−70

−68

−66

−64

−62

−60

−58

−56

−54

−52

−50

comp. time per observation [s]

return 

 

 

PS
, P

en
g 

&W
illi

am
s

PS
, M

oo
re

 &
 A

tke
so

n

PS, Wiering & Schmidhuber

PS, small backups value iteration

(avg. over 
  first 200 eps.)

S
G

Prioritized Sweeping (PS) with small backups outperforms its competitors:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x 10−6

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

comp. time per observation [s]

RMS
error

 

 

PS, Moore & Atkeson

PS, Peng & Williams

PS, Wiering & Schmidhuber

initial error

value iteration

PS, small backups

(avg. over
 first 105 obs)

Claim
We introduce a new planning backup, called a small backup,

that, when combined with prioritized sweeping, achieves

a better planning efficiency than the traditional imple-

mentation of Moore and Atkeson based on full backups,

as well as other implementations.

Problem
Efficient planning in stochastic MDPs is important in many

fields, for example in model-based reinforcement learn-

ing (RL). The typical approach to solve a planning task

is to iteratively improve estimates of the optimal value

function, from which the optimal policy can be easily de-

rived. These estimates are improved through backups,

which update a value based on successor values. This

raises the question: what backup type and backup order-

ing results in the best planning efficiency?

Efficient Planning in MDPs by Small Backups
Harm van Seijen Richard S. Sutton

Reinforcement Learning and Artificial Intelligence (RLAI) group

University of Alberta

Canada



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Small vs. Sample Backups

12

0

0.333

0.667

1

state A   state B

A
B

C

transition probability

0

2

4

6

8

10

state A   state B

state values



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Backup Ordering

13



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Backup Ordering

14

Asynchronous Value Iteration

For every selection strategy H that selects each state 
infinitely often the values V converge to the optimal value 
function 
The rate of convergence depends strongly on the selection 
strategy H

Do Forever:
1) Select a state s 2 S according to some selection strategy H
2) Apply a full backup to s:

V (s) maxa
h
r̂(s, a) +

P
s0 p(s

0|s, a)V (s0)
i

Q(S,A) maxa
⇥
r̂(S, a) + �

P
s0 p(s

0|S, a)maxaQ(s0, a)
⇤

Q(S,A) Q(S,A) + ↵

⇥
R+ �maxaQ(S0

, a)�Q(S,A)
⇤

Asynchronous Value-Iteration�50
3

�
= 19, 600

23 = 8

19, 600 · 8 = 1.6 · 105

V (sa) = w1V (s1) + w2V (s2)

1010

250 ⇡ 1015

some text
G = r1 + �r2 + �

2
r3 + �

3
r4

V (sa) 6= E{Gt|st = sa}

X = X 1 ⇥ X 2 ⇥ X 3

BE(s) =
���V (s)�max

a

h
r̂(s, a) +

X

s0

p(s0|s, a)V (s0)
i���

X 1 _ X 2 _ X 3

factored MDP:

• X : factored state space consisting of N components:

X = X 1 ⇥ X 2 ⇥ ...⇥ XN

= {(x1, x2, ...., xN )|xi 2 X i
, 1  i  N} .

• A: set of actions

• ⌧ : X ⇥A⇥X ! [0 1]: transition function

1

V⇤

Do Forever:
1) Select a state s 2 S according to some selection strategy H
2) Apply a full backup to s:
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The Trade-Off

For any effective ordering strategy the cost that is saved by 
having to perform less backups should out-weigh the cost 
of maintaining the ordering:

15

cost 
to maintain

ordering
cost savings
due to fewer

backups
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Prioritized Sweeping

Which states or state-action pairs should be generated 
during planning?
Work backwards from states whose values have just 
changed:

Maintain a queue of state-action pairs whose values 
would change a lot if backed up, prioritized by the size 
of the change
When a new backup occurs, insert predecessors 
according to their priorities
Always perform backups from first in queue

Moore & Atkeson 1993; Peng & Williams 1993
improved by McMahan & Gordon 2005; Van Seijen 2013 
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Moore and Atekson’s Prioritized Sweeping 

17

Published in 1993.
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Prioritized Sweeping vs. Dyna-Q

Both use n=5 backups per
environmental interaction
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Bellman Error Ordering

Bellman error is a measure for the difference between the 
current value and the value after a full backup:

19

Do Forever:
1) Select a state S 2 S according to some selection-strategy
2) Apply a Full Backup to S:

Q(S,A) maxa
⇥
r̂(S, a) + �

P
s0 p(s

0|S, a)maxaQ(s0, a)
⇤

Q(S,A) Q(S,A) + ↵

⇥
R+ �maxaQ(S0

, a)�Q(S,A)
⇤

Asynchronous Value-Iteration�50
3
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= 19, 600

23 = 8

19, 600 · 8 = 1.6 · 105

V (sa) = w1V (s1) + w2V (s2)

1010

250 ⇡ 1015

some text
G = r1 + �r2 + �

2
r3 + �

3
r4

V (sa) 6= E{Gt|st = sa}

X = X 1 ⇥ X 2 ⇥ X 3

BE(s) =
���V (s)�max

a

h
r̂(s, a) +

X
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i���

X 1 _ X 2 _ X 3

factored MDP:

• X : factored state space consisting of N components:

X = X 1 ⇥ X 2 ⇥ ...⇥ XN

= {(x1, x2, ...., xN )|xi 2 X i
, 1  i  N} .

• A: set of actions

• ⌧ : X ⇥A⇥X ! [0 1]: transition function

• ⇢ : X ⇥A! R rewards function, giving expected immediate reward

1
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additional backups to maintain
relation V and U .... O(SA)

Q(s̄, ā) Q(s̄, ā) + � Ps0
s̄ā�V

V (s) U(s)

for all (s̄, ā) 2 pred(s)⇤:

Q(s̄, ā) Rs̄ā + �
X

s0

Ps0
s̄āV (s0)

U(s̄) max
a

Q(s̄, a)

where ⇤pred(s) = {(s̄, ā) | Ps
s̄ā > 0}

�V  U(s)� V (s)

initialize V (s) arbitrarily for all s
compute BE(s) for all s
loop {until convergence}
select state s0 with worst Bellman error
perform full backup of s0

BE(s0) 0
for all predecessor states s̄ of s0 do
recompute BE(s̄)

end for

end loop

5

To get positive trade-off:
comp. time Bellman error << comp time Full backup
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Prioritized Sweeping with Small Backups
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initialize V (s) arbitrarily for all s
compute BE(s) for all s
loop {until convergence}
select state s0 with largest Bellman error
perform full backup of s0

BE(s0) 0
for all predecessor states s̄ of s0 do
recompute BE(s̄)

end for

end loop

Algorithm 1 Prioritized Sweeping with Bellman Error Ordering

initialize V (s) arbitrarily for all s
initialize U(s) = V (s) for all s
initialize Q(s, a) = V (s) for all s, a
initialize Nsa, N s0

sa to 0 for all s, a, s0

loop {over episodes}
initialize s
repeat {for each step in the episode}

select action a, based on Q(s, ·)
take action a, observe r and s0

Nsa  Nsa + 1; N s0
sa  N s0

sa + 1
Q(s, a) ⇥

Q(s, a)(Nsa � 1) + r + �V (s0)
⇤
/Nsa

V (s) maxbQ(s, b)
p |V (s)� U(s)|
if s is on queue, set its priority to p; otherwise, add it with priority p
for a number of update cycles do
remove top state s̄0 from queue
�U  U(s̄0)� V (s̄0)
V (s̄0) V Us̄0)
for all (s̄, ā) pairs with N s̄0

s̄ā > 0 do

Q(s̄, ā) Q(s̄, ā) + �N s̄0
s̄ā/Ns̄ā ·�U

U(s̄) maxbQ(s̄, b)
p |V (s̄)� U(s̄)|
if s is on queue, set its priority to p; otherwise, add it with priority p

end for

end for

s s0

until s is terminal
end loop

5
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Take-Home Message: smaller backups→ more planning flexibility→ higher performance
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Claim
We introduce a new planning backup, called a small backup,

that, when combined with prioritized sweeping, achieves

a better planning efficiency than the traditional imple-

mentation of Moore and Atkeson based on full backups,

as well as other implementations.

Problem
Efficient planning in stochastic MDPs is important in many

fields, for example in model-based reinforcement learn-

ing (RL). The typical approach to solve a planning task

is to iteratively improve estimates of the optimal value

function, from which the optimal policy can be easily de-

rived. These estimates are improved through backups,

which update a value based on successor values. This

raises the question: what backup type and backup order-

ing results in the best planning efficiency?
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Trajectory Sampling

Trajectory sampling: perform backups along simulated 
trajectories
This samples from the on-policy distribution
Advantages when function approximation is used (Chapter 8)
Focusing of computation: can cause vast uninteresting parts 
of the state space to be (usefully) ignored:

Initial 
states

Reachable under
 optimal control

Irrelevant states
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Trajectory Sampling Experiment

one-step full tabular backups
uniform: cycled through all state-
action pairs
on-policy: backed up along 
simulated trajectories
200 randomly generated 
undiscounted episodic tasks
2 actions for each state, each with 
b equally likely next states
0.1 prob of transition to terminal 
state 
expected reward on each 
transition selected from mean 0 
variance 1 Gaussian
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Heuristic Search

Used for action selection, not for changing a value function 
(=heuristic evaluation function)
Backed-up values are computed, but typically discarded
Extension of the idea of a greedy policy — only deeper 
Also suggests ways to select states to backup: smart 
focusing:
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Summary

Efficient planning is about trying to spend the available 
computation time in the most effective way.
Backup types:

full/sample/small
Backup Ordering

gain/loss trade-off
prioritized sweeping
prioritized sweeping with small backups: Bellman error 
ordering
trajectory sampling: backup along trajectories
heuristic search
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