Efficient Planning

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Tuesday class summary:

 Planning: any computational process that uses a model to create or improve a policy

Questions during class

- Why use simulated experience? Can't you directly compute solution based on model?"
- "Wouldn't it be better to plan backwards from goal"

How to Achieve Efficient Planning?

- What type of backup is better?
 - Sample vs. full backups
 - Incremental vs. less incremental backups
- How to order the backups?

What is Efficient Planning?

Planning algorithm A is more efficient than planning algorithm B if:

- it can compute the optimal policy (or value function) in less time.
- given the same amount of computation time, it improves the policy (or value function) more.

What backup type is best?

Full vs. Sample Backups

Full vs. Sample Backups

assume all next states' values are correct

Small Backups

- Small backups are single-successor backups based on the model
- Small backups have the same computational complexity as sample backups
- Small backups have no sampling error
- Small backups require storage for 'old' values

Main Idea behind Small Backups

Consider estimate A that is constructed from a weighted sum estimates X_i .

full backup:
$$A \leftarrow \sum_{i} w_i X_i$$

What can we do if we know that only a single successor, X_j , changed value since the last backup?

Let x_j be the old value of X_j , used to construct the current value of A. The value A can then be updated for a single successor by adding the difference between the new and the old value:

small backup:
$$A \leftarrow A + w_j(X_j - x_j)$$

roduction

Small vs. Sample Backups

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Backup Ordering

Backup Ordering

Do Forever:

1) Select a state $s \in S$ according to some selection strategy H 2) Apply a full backup to s:

$$V(s) \leftarrow \max_{a} \left[\hat{r}(s,a) + \sum_{s'} p(s'|s,a) V(s') \right]$$

Asynchronous Value Iteration

- For every selection strategy H that selects each state infinitely often the values V converge to the optimal value function V_{*}
- The rate of convergence depends strongly on the selection strategy H

The Trade-Off

For any effective ordering strategy the cost that is saved by having to perform less backups should out-weigh the cost of maintaining the ordering:

Prioritized Sweeping

- Which states or state-action pairs should be generated during planning?
- Work backwards from states whose values have just changed:
 - Maintain a queue of state-action pairs whose values would change a lot if backed up, prioritized by the size of the change
 - When a new backup occurs, insert predecessors according to their priorities
 - Always perform backups from first in queue
- Moore & Atkeson 1993; Peng & Williams 1993
- improved by McMahan & Gordon 2005; Van Seijen 2013

Moore and Atekson's Prioritized Sweeping

Published in 1993.

Prioritized Sweeping vs. Dyna-Q

Bellman Error Ordering

Bellman error is a measure for the difference between the current value and the value after a full backup:

$$BE(s) = \left| V(s) - \max_{a} \left[\hat{r}(s,a) + \sum_{s'} p(s'|s,a) V(s') \right] \right|$$

Bellman Error Ordering

```
initialize V(s) arbitrarily for all s
compute BE(s) for all s
loop {until convergence}
select state s' with worst Bellman error
perform full backup of s'
BE(s') \leftarrow 0
for all predecessor states \bar{s} of s' do
recompute BE(\bar{s})
end for
end loop
```

To get positive trade-off: comp. time Bellman error << comp time Full backup

Prioritized Sweeping with Small Backups

initialize V(s) arbitrarily for all s initialize U(s) = V(s) for all s initialize Q(s, a) = V(s) for all s, ainitialize $N_{sa}, N_{sa}^{s'}$ to 0 for all s, a, s'**loop** {over episodes} initialize s**repeat** {for each step in the episode} select action a, based on $Q(s, \cdot)$ take action a, observe r and s' $N_{sa} \leftarrow N_{sa} + 1; \quad N_{sa}^{s'} \leftarrow N_{sa}^{s'} + 1$ $Q(s,a) \leftarrow \left[Q(s,a)(N_{sa}-1) + r + \gamma V(s')\right]/N_{sa}$ $V(s) \leftarrow \max_b Q(s, b)$ $p \leftarrow |V(s) - U(s)|$ if s is on queue set its priority to n otherwise add it with priority n for a number of update cycles do remove top state \bar{s}' from queue $\Delta U \leftarrow U(\bar{s}') - V(\bar{s}')$ $V(\bar{s}') \leftarrow VU\bar{s}')$ for all (\bar{s}, \bar{a}) pairs with $N_{\bar{s}\bar{a}}^{\bar{s}'} > 0$ do $Q(\bar{s},\bar{a}) \leftarrow Q(\bar{s},\bar{a}) + \gamma N^{\bar{s}'}_{\bar{s}\bar{a}} / N_{\bar{s}\bar{a}} \cdot \Delta U$ $U(\bar{s}) \leftarrow \max_b Q(\bar{s}, b)$ $p \leftarrow |V(\bar{s}) - U(\bar{s})|$ if s is on queue, set its priority to p; otherwise, add it with priority pend for end for $s \leftarrow s$ **until** *s* is terminal end loop

Trajectory Sampling

- Trajectory sampling: perform backups along simulated trajectories
- This samples from the on-policy distribution
- Advantages when function approximation is used (Chapter 8)
- Focusing of computation: can cause vast uninteresting parts of the state space to be (usefully) ignored:

Trajectory Sampling Experiment

- one-step full tabular backups
- uniform: cycled through all state-action pairs
- on-policy: backed up along simulated trajectories
- 200 randomly generated \bigcirc undiscounted episodic tasks
- 2 actions for each state, each with *b* equally likely next states
- 0.1 prob of transition to terminal \bigcirc state
- expected reward on each transition selected from mean 0 variance 1 Gaussian

2**-**+

Heuristic Search

- Used for action selection, not for changing a value function (=heuristic evaluation function)
- Backed-up values are computed, but typically discarded
- Extension of the idea of a greedy policy only deeper
- Also suggests ways to select states to backup: smart focusing:

Summary

- Efficient planning is about trying to spend the available computation time in the most effective way.
- Backup types:
 - full/sample/small
- Backup Ordering
 - gain/loss trade-off
 - prioritized sweeping

- prioritized sweeping with small backups: Bellman error ordering
- trajectory sampling: backup along trajectories
- heuristic search

