Unified View

1

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Chapter 8: Planning and Learning

Objectives of this chapter:

- To think more generally about uses of environment models
- Integration of (unifying) planning, learning, and execution
- "Model-based reinforcement learning"

Paths to a policy

Models

- Model: anything the agent can use to predict how the environment will respond to its actions
- Distribution model: description of all possibilities and their probabilities
 - e.g., $\hat{p}(s', r \mid s, a)$ for all s, a, s', r
- Sample model, a.k.a. a simulation model
 - produces sample experiences for given *s*, *a*
 - allows reset, exploring starts
 - often much easier to come by
- Both types of models can be used to produce hypothetical experience

Planning

Planning: any computational process that uses a model to create or improve a policy

model _____ planning _____ policy

- Planning in AI:
 - state-space planning
 - plan-space planning (e.g., partial-order planner)
- We take the following (unusual) view:
 - all state-space planning methods involve computing value functions, either explicitly or implicitly
 - they all apply backups to simulated experience

Planning Cont.

- Classical DP methods are state-space planning methods
- Heuristic search methods are state-space planning methods
- A planning method based on Q-learning:

Do forever:

- 1. Select a state, $S \in S$, and an action, $A \in \mathcal{A}(s)$, at random
- 2. Send S, A to a sample model, and obtain
 - a sample next reward, R, and a sample next state, S'
- 3. Apply one-step tabular Q-learning to S, A, R, S':

 $Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_{a} Q(S',a) - Q(S,A)]$

Random-Sample One-Step Tabular Q-Planning

Paths to a policy

Learning, Planning, and Acting

- Two uses of real experience:
 - model learning: to improve the model
 - direct RL: to directly improve the value function and policy
- Improving value function and/or policy via a model is sometimes called indirect RL. Here, we call it planning.

Direct (model-free) vs. Indirect (model-based) RL

- Direct methods
 - simpler
 - not affected by bad models

- Indirect methods:
 - make fuller use of experience: get
 better policy with
 fewer environment
 interactions

But they are very closely related and can be usefully combined:

planning, acting, model learning, and direct RL can occur

simultaneously and in parallel

The Dyna Architecture

The Dyna-Q Algorithm

Initialize Q(s, a) and Model(s, a) for all $s \in S$ and $a \in \mathcal{A}(s)$ Do forever: (a) $S \leftarrow \text{current (nonterminal) state}$ (b) $A \leftarrow \varepsilon$ -greedy(S, Q)(c) Execute action A; observe resultant reward, R, and state, S'(d) $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)] \longleftarrow \text{direct RL}$ (e) $Model(S, A) \leftarrow R, S'$ (assuming deterministic environment) $\leftarrow +$ model learning (f) Repeat n times: $S \leftarrow$ random previously observed state $A \leftarrow$ random action previously taken in Splanning $R, S' \leftarrow Model(S, A)$ $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$

Dyna-Q on a Simple Maze

Dyna-Q Snapshots: Midway in 2nd Episode

WITHOUT PLANNING (*n*=0)

WITH PLANNING (n=50)

When the Model is Wrong: Blocking Maze

The changed environment is harder

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

When the Model is Wrong: Shortcut Maze

The changed environment is easier

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

What is Dyna-Q+?

- Uses an "exploration bonus":
 - Keeps track of time since each state-action pair was tried for real
 - An extra reward is added for transitions caused by state-action pairs related to how long ago they were tried: the longer unvisited, the more reward for visiting

$$R + \kappa \sqrt{\tau}$$
 time since last visiting the state-action pair

• The agent actually "plans" how to visit long unvisited states

Prioritized Sweeping

- Which states or state-action pairs should be generated during planning?
- Work backwards from states whose values have just changed:
 - Maintain a queue of state-action pairs whose values would change a lot if backed up, prioritized by the size of the change
 - When a new backup occurs, insert predecessors according to their priorities
 - Always perform backups from first in queue
- Moore & Atkeson 1993; Peng & Williams 1993
- improved by McMahan & Gordon 2005; Van Seijen 2013

Prioritized Sweeping

Initialize Q(s, a), Model(s, a), for all s, a, and PQueue to empty Do forever:

(a)
$$S \leftarrow \text{current (nonterminal) state}$$

(b)
$$A \leftarrow policy(S, Q)$$

(c) Execute action A; observe resultant reward, R, and state, S'

(d)
$$Model(S, A) \leftarrow R, S'$$

(e)
$$P \leftarrow |R + \gamma \max_a Q(S', a) - Q(S, A)|.$$

(f) if $P > \theta$, then insert S, A into PQueue with priority P

(g) Repeat n times, while PQueue is not empty:

$$\begin{split} S, A &\leftarrow first(PQueue) \\ R, S' &\leftarrow Model(S, A) \\ Q(S, A) &\leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)] \\ \text{Repeat, for all } \bar{S}, \bar{A} \text{ predicted to lead to } S: \\ \bar{R} &\leftarrow \text{predicted reward for } \bar{S}, \bar{A}, S \\ P &\leftarrow |\bar{R} + \gamma \max_a Q(S, a) - Q(\bar{S}, \bar{A})|. \\ \text{if } P &> \theta \text{ then insert } \bar{S}, \bar{A} \text{ into } PQueue \text{ with priority } P \end{split}$$

Prioritized Sweeping vs. Dyna-Q

Rod Maneuvering (Moore and Atkeson 1993)

Improved Prioritized Sweeping with Small Backups

- Planning is a form of state-space search
 - a massive computation which we want to control to maximize its efficiency
- Prioritized sweeping is a form of search control
 - focusing the computation where it will do the most good
- But can we focus better?
- Can we focus more tightly?
- Small backups are perhaps the smallest unit of search work
 - and thus permit the most flexible allocation of effort

Full and Sample (One-Step) Backups

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Heuristic Search

- Used for action selection, not for changing a value function (=heuristic evaluation function)
- Backed-up values are computed, but typically discarded
- Extension of the idea of a greedy policy only deeper
- Also suggests ways to select states to backup: smart focusing:

Summary

- Emphasized close relationship between planning and learning
- Important distinction between distribution models and sample models
- Looked at some ways to integrate planning and learning
 - synergy among planning, acting, model learning
- Distribution of backups: focus of the computation
 - prioritized sweeping
 - small backups
 - sample backups
 - trajectory sampling: backup along trajectories
 - heuristic search
 - Size of backups: full/sample/small; deep/shallow