Chapter 5: Monte Carlo Methods

1 Monte Carlo methods are learning methods
Experience — values, policy

1 Monte Carlo methods can be used in two ways:
» model-free: No model necessary and still attains optimality
» Simulated: Needs only a simulation, not a full model

1 Monte Carlo methods learn from complete sample returns
= Only defined for episodic tasks (in this book)

1 Like an associative version of a bandit method
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Monte Carlo Policy Evaluation

3 Goal: learn v, (s)
1 Given: some number of episodes under st which contain s

1 Idea: Average returns observed after visits to s

A Every-Visit MC: average returns for every time s is visited
in an episode

O First-visit MC': average returns only for first time s 1s
visited in an episode

1 Both converge asymptotically
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First-visit Monte Carlo policy evaluation

Initialize:
m <— policy to be evaluated
V < an arbitrary state-value function
Returns(s) < an empty list, for all s € §

Repeat forever:
Generate an episode using
For each state s appearing in the episode:
G < return following the first occurrence of s
Append G to Returns(s)
V(s) < average(Returns(s))
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Blackjack example

1 Object: Have your card sum be greater than the dealer’s
without exceeding 21.

1 States (200 of them):
= current sum (12-21) i
= dealer’s showing card (ace-10) n_]j‘\
= do I have a useable ace? =

1 Reward: +1 for winning, O for a draw, -1 for losing

1 Actions: stick (stop receiving cards), hit (receive another
card)

A Policy: Stick if my sum is 20 or 21, else hit
[ No discounting (y = 1)
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Learned blackjack state-value functions

Usable
ace

No
usable
ace

After 10,000 episodes
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After 500,000 episodes



Backup diagram for Monte Carlo

1 Entire rest of episode included O

1 Only one choice considered at O
each state (unlike DP) C

= thus, there will be an ®
explore/exploit dilemma

/

1 Does not bootstrap from

) o

successor states’s values
(unlike DP) .
1 Time required to estimate one ®

state does not depend on the
total number of states

terminal state
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The Power of Monte Carlo

e.g., Elastic Membrane (Dirichlet Problem)

How do we compute the shape of the membrane or bubble?
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Two Approaches

Relaxation

NP4
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Kakutani’s algorithm, 1945
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Monte Carlo Estimation of Action Values (Q)

1 Monte Carlo is most useful when a model is not available
= We want to learn g+«

1 gx(s,a) - average return starting from state s and action a
following m

1 Converges asymptotically if every state-action pair is
visited

1 Exploring starts: Every state-action pair has a non-zero
probability of being the starting pair

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Monte Carlo Control

evaluation

m
m @
7 ~ greedy(Q)

improvement

[ MC policy iteration: Policy evaluation using MC methods
followed by policy improvement

1 Policy improvement step: greedify with respect to value
(or action-value) function

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Convergence of MC Control

1 Greedified policy meets the conditions for policy improvement:
QWk(Svﬂ-k—H(S)) qwk(svargmax%w (Saa))

a

Max gr, (s,a)

Gy, (35, Tk(5))

U, (8)-

v IV

1 And thus must be = m, by the policy improvement theorem

1 This assumes exploring starts and infinite number of episodes
for MC policy evaluation

1 To solve the latter:
= update only to a given level of performance

= alternate between evaluation and improvement per episode
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Monte Carlo Exploring Starts

Initialize, for all s € 8, a € A(s): Fixed point is optimal
Q(s,a) < arbitrary olicy 7t
7(s) < arbitrary POHEY
Returns(s,a) < empty list
Now proven (almost)
Repeat forever:
Choose Sy € § and Ay € A(Sp) s.t. all pairs have probability > 0
Generate an episode starting from Sy, Ag, following 7
For each pair s, a appearing in the episode:
(G < return following the first occurrence of s, a
Append G to Returns(s,a)
Q(s,a) + average(Returns(s,a))
For each s in the episode:
7(s) < argmax, Q(s,a)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Blackjack example continued

1 Exploring starts
1 Initial policy as described before

121
STICK '?8
Usable _\—'_-_1'?
ace 116
115
HIT 114
113
112
.......... 11

121
20

STICK 119 €

118 3
No 17 @

usable 116 ©
ace 18
HIT 5

112

......... 1
A2345678910

Dealer showing
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On-policy Monte Carlo Control

1 On-policy: learn about policy currently executing
1 How do we get rid of exploring starts?
= The policy must be eternally soft:
—m(als) > 0 for all s and a
" ¢.g. e-soft policy:

— probability of an action = ;75 or  1-e+

non-max  max (greedy)

1 Similar to GPI: move policy rowards greedy policy
(e.g., e-greedy)
1 Converges to best e-soft policy

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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On-policy MC Control

Initialize, for all s € §, a € A(s):
Q(s,a) < arbitrary
Returns(s,a) < empty list
m(a|s) < an arbitrary e-soft policy

Repeat forever:
(a) Generate an episode using
(b) For each pair s, a appearing in the episode:
(G < return following the first occurrence of s, a
Append G to Returns(s,a)
Q(s,a) < average(Returns(s,a))
(c) For each s in the episode:
A* + argmax, Q(s,a)
For all a € A(s):
1—e+¢/|A(s)| ifa= A"
m(als) *{ £ /|A(s) A if 0 £ A"

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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What we’ve learned about Monte Carlo so far

1 MC has several advantages over DP:

= (Can learn directly from interaction with environment

= No need for full models

= No need to learn about ALL states (no bootstrapping)

= Less harmed by violating Markov property (later in book)
1 MC methods provide an alternate policy evaluation process
1 One issue to watch for: maintaining sufficient exploration

= exploring starts, soft policies

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Off-policy methods

1 Learn the value of the target policy 7 from experience due
to behavior policy u

1 For example,  is the greedy policy (and ultimately the
optimal policy) while u 1s exploratory (e.g., e-soft)

[ In general, we only require coverage, i.e., that u generates
behavior that covers, or includes, 7

u(als) > 0 for every s,a at which w(a|s) > 0

1 Idea: importance sampling

— Weight each return by the ratio of the probabilities
of the trajectory under the two policies

17



Importance Sampling Ratio

1 Probability of the rest of the trajectory, after S;, under o
Pr{As, Si41, Asp1,- .., ST | St, Apr—1 ~ T}
= (At\St) (St+1|St, Ae)m(Agg1]Ses1) - - p(ST]ST-1, AT-1)

— HﬂAk]Sk (Sk+1|Sk, Ak),

1 In importance sampling, each return 1s weighted by the
relative probability of the trajectory under the two policies

v o) m(AklSe)p(Sk+1lSk, Ak) Tl—[_l 7(Ag|Sk)

p; = — —
LTI m(ARIS)P(Sk Sk, Ar) oy #(ARISK)

1 This is called the importance sampling ratio

1 All importance sampling ratios have expected value 1

Ak|Sk CL|Sk
EAkNH[ (A 5%) ] Z,u a]S ZTF a|lSk) = 1.
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Importance Sampling

1 New notation: time steps increase across episode boundaries:

7 ... S ....G@g...... a...s....4@. ..
.t=123456789101112131415161718192021222324252627
‘T(S) — {4, 20} T(4) =9 T(QO) = 25
set of start times next termination times

A Ordinary importance sampling forms estimate

T
- Zteﬂ'(s) Pt (t)Gt

Vis) 7)

1 Whereas weighted importance sampling forms estimate

T
N Zte‘)’(s) Pt 2 Gy

T(t
ZtEiT(s) Pt )

V(s)
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Example of infinite variance
under ordinary importance sampling

m(left]s) =1 = .
(left]s) y=1 m(right|s) m(left]s)
1 p(right|s) left|s)
u(left]s) = ve(s) = 1 p(left]s)
Trajectory Go | pt
s, left, 0, s, left, 0, s, left, 0, s, right, 0, 0]0 OIS:
s, left, 0, s, left, 0, s, left, 0, s, left, +1, 1 |16 T(t G
A Ztefr(s) Pt t
‘. V(s)
| |T(s)]
) T S | S USRS EERURSSUUUSRRREERRRRRROY | SSRRESRRSSRRRRR
Monte-Carlo \
estimate of \ WIS:
vr(s) with \ \ )
ordinary a Doter(s) Pt Gt
importance 1t Vis) = (1)
sampling ZteiT(s) Pt
(ten runs)
0 —l 1 1 ' ' ' 1 1 J
1 10 100 1000 10000 100000 1000000 10000000 100.000.000

Episodes (log scale)
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Example: Off-policy Estimation
of the value of a single Blackjack State

1 State is player-sum 13, dealer-showing 2, useable ace
1 Target policy is stick only on 20 or 21

1 Behavior policy is equiprobable
1 True value = —0.27726

4 -

Mean
square
error

(average over
100 runs)

2L

Weighted importance sampling

o, . e — :
0 10 100 1000 10,000

Episodes (log scale)
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Incremental off-policy every-visit M C policy evaluation (returns @ ~ ¢,

Input: an arbitrary target policy 7

Initialize, for all s € §, a € A(s):
Q(s,a) < arbitrary
C(s,a) <0

Repeat forever:
i <— any policy with coverage of m
Generate an episode using p:
S(), Ao, Ry,..., ST—l; AT—la Rr, St
G+ 0
W <1
Fort=T—-1,T —2,... downto 0O:
G+ G+ Ry
C(St, At) <— C(St, At) + W
Q(St, Ar) < Q(St, Ar) + % |G — Q(St, At)]
W WISy

p(Ae|St)
If W = 0 then ExitForLoop




Off-policy every-visit MC control (returns 7 ~ 7,)

Initialize, for all s € §, a € A(s):
Q(s,a) < arbitrary
C(s,a) <0
7(s) < argmax, Q(S;,a) (with ties broken consistently)

Repeat forever:
1 <— any soft policy
Generate an episode using pu:

SO) A07 R17 R ST—17 AT—17 RT) ST

Target policy is greedy
and deterministic

G <0 Behavior policy is soft,
W< typically e-greedy
Fort=T—-1,T —2,... downto O:

G+ G+ Riqq I ———e—

C(St, At) — C(St, At) + W

Q(St, Ar) = Q(Sr, Ar) + % |G — QS Ar)]

7(Sy) < argmax, Q(Sy,a) (with ties broken consistently)
If Ay # w(S;) then ExitForLoop

1
W —Waasy




Discounting-aware Importance Sampling (motivation)

1 So far we have weighted returns without taking into
account that they are a discounted sum

1 This can’t be the best one can do!
1 For example, suppose y =0

* Then Gy will be weighted by
v 7(Ao|So) m(A1]51)  m(Ar_1][ST-1)

70T ulAolSo) n(AISY) T p(Ar—11Sr-1)
= But it really need only be weighted by

ol = (Aol So)
° " u(AlSo)

= Which would have much smaller variance
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Discounting-aware Importance Sampling

1 Define the flat partial return:
G?éRt+1—|—Rt+2+"'—|—Rh, O§t<h§T,

1 Then
G & Riv1 +vRiyo + 72Rt+3 + -+ ’YT_t_lRT
= (1 —7)Rit1
+ (L =)y (Re41 + Rig2)
+ (1 =)y (Res1 + Risa + Regs)

+ (1= " (Regr + Ry + -+ Rry)

+ ’)/T_t_l (Rt+1 + Rt+2 + -+ RT)
T—-1

=(L—7) Y "G + TG
h=t+1
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Discounting-aware Importance Sampling

1 Define the flat partial return:
G?éRt+1—|—Rt+2+"'—|—Rh, O§t<h§T,

1 Then T-1
Gir=(1—7) Y A""'G + A7 'GF
h=t+1

[ Ordinary discounting-aware IS:

Tt)—1 s i1 T@) AT(t
D _teT(s) (( )Zh(’?ﬂ Nht=lphGh o g ATt pt”Gt())

Vis) = 7))

1 Weighted discounting-aware IS:

T)-1 ~ 1 T() AT
A 2 teT(s) (( )Zh(tt)ﬂ Fht=lphGh o ATty (t)Gt (t))
Vis) =

-1 41T
ZtET(s) (( )Zh R yh—t— 1;0? + ,yT(t) t 1Pt (t))
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Per-reward Importance Sampling

1 Another way of reducing variance, even if y = 1
1 Uses the fact that the return is a sum of rewards
pt Gt = p{ Rex1 +9p; R + - + 9" {pf Ryt -+ 'p{ Ry

1 where

m(A¢|St) m(Ae1[Se1) 7 (At;};rs%‘“#k)-~~- ~~~~~~~~ m(Ar—11S7-1) Rii
1+

T
R — e e
Pr ek (Al Se) p(Ars1]Si41) M(AHHS#SF%) ””””””” p(Ar=1]Sr_; 1 )

E[p{ Gt =E[pi™ Rey1 + 701 " Rega + 70 P Reys + -+ ' 'p/ Ry

A&

-~

G+

1 Per-reward ordinary IS: N
V(S) 7y ZtE‘J’(s) G
[T ()]
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Summary

1 MC has several advantages over DP:

* Can learn directly from interaction with environment

= No need for full models

= Less harmed by violating Markov property (later in book)
1 MC methods provide an alternate policy evaluation process
1 One issue to watch for: maintaining sufficient exploration

= exploring starts, soft policies
1 Introduced distinction between on-policy and off-policy methods
1 Introduced importance sampling for off-policy learning
1 Introduced distinction between ordinary and weighted 1S
1 Introduced two return-specific ideas for reducing IS variance

» discounting-aware and per-reward 1S

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Paths to a policy

. Direct
Environmental

Experience planning

interaction

Direct RL

methods Value
function

Greedification



Paths to a policy
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Paths to a policy
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Paths to a policy

Direct

Environmental _ .
planning

interaction

Direct RL o
methods ] Value
vanction

Pyna
Model-based RL



