Chapter 4: Dynamic Programming

Objectives of this chapter:

1 Overview of a collection of classical solution methods
for MDPs known as dynamic programming (DP)

1 Show how DP can be used to compute value functions,
and hence, optimal policies

1 Discuss efficiency and utility of DP

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Policy Iteration

E I E I E I E
Mo — Upy —> T —> Uy —> g —> =+ —> Ty — Uy

IR RN

policy evaluation policy improvement
“greedification”

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

10

Policy Evaluation

Policy Evaluation: for a given policy 7, compute the
state-value function vy

Recall: State-value function for policy =

0. @)

Z WthJrk:H
k=0

’UW(S) = EW[Gt ’ St :S] = EW

St:S:|

Recall: Bellman equation for v,
v(s) = Y w(als) Y p(s', s, a) [r +yoe(s)]
—a system of I8l simultaneous equations

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Iterative Methods

Vo —V1 —2 2V —2 Vkt1 —7 " —2 Ugp

a “sweep”)

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:

vEa1(s) = Zw(a|s) Zp(s', r|s,a) [7“ — ’yvk(sl)} Vs €8

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

A Small Gridworld

1 2 |3
4 |5 |6 |7
8 9 10 |11
actions 2 ha ha

1 An undiscounted episodic task
1 Nonterminal states: 1,2, ..., 14;

R = -1

on all transitions

v=1

1 One terminal state (shown twice as shaded squares)
1 Actions that would take agent off the grid leave state unchanged

1 Reward is —1 until the terminal state is reached

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Iterative Policy Eval
for the Small Gridworld

Vi for the
Random Policy

k=0
7t = equiprobable random action choices
k=1
1 2 3
4 |5 s |7 R= -1 k=2
on all transitions
8 9 10 [11
REHDS 1213 |14 v=1
k=3
[An undiscounted episodic task
1 Nonterminal states: 1,2, ..., 14;
1 One terminal state (shown twice as shaded squares) k=10
3 Actions that would take agent off the grid leave state unchanged
[Reward is —1 until the terminal state is reached
k=oo

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

0.0

0.0

00

0.0

0000l 00|00
00| 00j00[00
00-1.0§-1.0/-1.0
101-1.00-1.0]-1.0
J.00-100-1.0]-1.0
1.0]-10]-1.0] 00
00]-1.71-20]-2.0
1.7}-2.04-20]-2.0
200-200-20]-1.7
20[(.20{-1.7] 00
00|-24]-29|-30
24]-291-30|-29
29|-30]-29]-2.4
300-291-24| 00
00]-6.11-8.4]-9.0
6.11-7.71-84]-84
8.4|-84].7.7]-6.1
HD0[-84]-6.1|00
00f-141-20 (.22
14.|-18.1-20 |-20
20.1-201-18.]-14.
22.|-201-14.] 0.0

Iterative Policy Evaluation — One array version

Input 7, the policy to be evaluated
Initialize an array V(s) = 0, for all s € 8
Repeat
A+0
For each s € 3:
v <+ V(s)
Vis) X, m(als) X, p(s'srls, @) [+ 1V (s)]
A < max(A, |lv —V(s)|)
until A < @ (a small positive number)
Output V =~ v,

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Value Iteration

Recall the full policy-evaluation backup:
Vp11(8) = Z m(als) Zp(s’, r|s,a) [r + ka(s’)] Vs €8
Here is the full value-iteration backup:

Vi11(8) = mngp(s’, rls,a) [r + vvk(s’)} Vs € §

s',r

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

15

Value Iteration — One array version

[nitialize array V' arbitrarily (e.g., V(s) =0 for all s € 87)

Repeat
A<+ 0
For each s € &:
v <+ V(s)
V(s) <~ max, »_, .p(s',r|s,a) V()]
A+ max(A, |lv —V(s)|)
until A < 6 (a small positive number)

Output a deterministic policy, m, such that
m(s) = arg max, ZS,’T p(s',rls, a) [7“ + ny(s’)}

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 16

Gambler’s Problem

1 Gambler can repeatedly bet $ on a coin flip
1 Heads he wins his stake, tails he loses it
1 Initial capital € {$1, $2, ... $99}

1 Gambler wins if his capital becomes $100
loses if it becomes $0

1 Coin is unfair

= Heads (gambler wins) with probability p = 4

1 States, Actions, Rewards? Discounting?

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

17

Gambler’s Problem Solution

0.8
Value %7
estimates
0.4 4
0.2 4
0— 1] 1 1 1
1 25 50 75 99
Capital
504
. 40
Final ., _
policy
(stake) 20°
10 4
l h 1 L] 1
1 25 50 75 99
Capital

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Policy Improvement

Suppose we have computed v_for a deterministic policy .

For a given state s,
would it be better to do an action a = st(s)?

It 1s better to switch to action a for state s if and only 1f

q,.(s,a)>v_(s)

And, we can compute ¢_(s,a) from v_ by:
G=(s,a) = Er|Rip1 +y0:(Si1) | Si=s, Ai=al
— Zp(s’,r]s,a) [T +fy’vﬁ(3’)]

s'r

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Policy Improvement Cont.

Do this for all states to get a new policy &' = 7T that is

greedy with respectto v_:

n'(s) = argmaxgq,(s,a)

= argmng[RtH + 70 (Se41) | Se=s, Av=a]

— argmax Zp(s’, r|s,a) [7” + 7%(5/>] :

s'r

What if the policy is unchanged by this?
Then the policy must be optimal!

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Policy Iteration

E I E I E I E
Mo — Upy —> T —> Uy —> g —> =+ —> Ty — Uy

IR RN

policy evaluation policy improvement
“greedification”

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

10

Iterative Policy Eval

[J
for the Small Gridworld Vilore Greeay Polcy
Random Policy wrt Vi
00100100100 o A
0000100100 A S M S T A T
(= ()
k 00]00]00|00 A S M S o T A
0010000100 T
7t = equiprobable random action choices
00 1010|110 —— 1
k=1 -1.0}-1.0{-1.0[-1.0 L SO A
-1.0]-1.0{-1.0]-1.0 1T
1.0]-1.0{-1.0| 00 1T
1 2 3 0.0[-1.7]-2.0]-2.0 - .+.
R 1 k=2 1.71-2.0{-20]-20 10J+‘
4 |5 |6 |7 = - N i
on all transitions :20-2.00-200:0.7] el
8 9 10 1 20[-20{-1.7| 00 + - =
actions
12 13 |14 v=1 0.0|-2.4]-29]-30 - |9
k=3 2.4]-2.9]-3.0]-2.9 T |q |,
) 29|-30|-29]-2.4 T -,
. D -3.0[-2.9]-2.4] 0.
[An undiscounted episodic task =
[Nonterminal states: 1,2, .. ., 14; o0l-6.11-841-90 = Tq
. : - . i
[One terminal state (shown twice as shaded squares) k=10 6.1J-7.7-84|-34 =iz
.) 8.4|-8.4/.7.7].6.1 VW e
[Actions that would take agent off the grid leave state unchanged 90lsdsiloo nl - -
[Reward is —1 until the terminal state is reached
00|14 1-20|-22 —
k= -14.]-18]-20 - 20. T 5 |,
* -20.]-20.J-18 |-14. o [l I
R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 22.1-204-14./ 0.0 Ll =] -

random
policy

optimal
policy

Policy Iteration — One array version (+ policy)

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation
Repeat
A+0
For each s € §:
v V(s)
V(s) < 2, p(s s, m(s)) [+ 4V (s")]
A < max(A, v —V{(s)])

until A < 6 (a small positive number)

3. Policy Improvement
policy-stable <— true
For each s € &:
a < 7(s)
m(s) ¢ argmax,) . . p(s',7|s, a) [+ V(5]
If a # 7(s), then policy-stable < false
If policy-stable, then stop and return V' and ; else go to 2

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

11

Generalized Policy Iteration

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,
independent of their granularity.

evaluation
m
7 % A geometric metaphor for

convergence of GPI:

7~ greedy(V)

improvement

,U*7 ﬂ-*

Ty < > Vi

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

i)

Jack’s Car Rental

1 $10 for each car rented (must be available when request rec’d)
1 Two locations, maximum of 20 cars at each
1 Cars returned and requested randomly
= Poisson distribution, n returns/requests with prob 7’1!84
= [st location: average requests = 3, average returns = 3
= 2nd location: average requests = 4, average returns = 2
1 Can move up to 5 cars between locations overnight

= at a cost of $2/car

1 States, Actions, Rewards?

1 Transition probabilities? Discounting? ~ = 0.9

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

12

Jack’s Car Rental

20

612

#Cars at first location

S

0)
#Cars at second location 20

=)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Jack’s CR Exercise

1 Suppose the first car moved is free

" From Ist to 2nd location

= Because an employee travels that way anyway (by bus)
1 Suppose only 10 cars can be parked for free at each location

= More than 10 cost $4 for using an extra parking lot

1 Such arbitrary nonlinearities are common in real problems

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

14

Asynchronous DP

1 All the DP methods described so far require exhaustive
sweeps of the entire state set.

1 Asynchronous DP does not use sweeps. Instead it works like
this:
= Repeat until convergence criterion is met:

— Pick a state at random and apply the appropriate
backup

1 Still need lots of computation, but does not get locked into
hopelessly long sweeps

1 Can you select states to backup intelligently? YES: an agent’s
experience can act as a guide.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

M1

Efficiency of DP

1 To find an optimal policy is polynomial in the number of
states...

1 BUT, the number of states is often astronomical, e.g., often
growing exponentially with the number of state variables
(what Bellman called “the curse of dimensionality”).

1 In practice, classical DP can be applied to problems with a
few millions of states.

1 Asynchronous DP can be applied to larger problems, and is
appropriate for parallel computation.

1 It is surprisingly easy to come up with MDPs for which DP
methods are not practical.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 712

Summary

1 Policy evaluation: backups without a max

1 Policy improvement: form a greedy policy, if only locally
1 Policy iteration: alternate the above two processes

1 Value iteration: backups with a max

1 Full backups (to be contrasted later with sample backups)
1 Generalized Policy Iteration (GPI)

1 Asynchronous DP: a way to avoid exhaustive sweeps

1 Bootstrapping: updating estimates based on other
estimates

1 Biggest limitation of DP is that it requires a probability
model (as opposed to a generative or simulation model)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction oY

