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Chapter 4: Dynamic Programming

❐ Overview of a collection of classical solution methods 
for MDPs known as dynamic programming (DP)

❐ Show how DP can be used to compute value functions, 
and hence, optimal policies

❐ Discuss efficiency and utility of DP

Objectives of this chapter: 
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Policy Iteration

 policy evaluation policy improvement
“greedification”

4.3. POLICY ITERATION 91

selected in the new greedy policy. Any apportioning scheme is allowed as long
as all submaximal actions are given zero probability.

The last row of Figure 4.2 shows an example of policy improvement for
stochastic policies. Here the original policy, ⇡, is the equiprobable random
policy, and the new policy, ⇡0, is greedy with respect to v⇡. The value function
v⇡ is shown in the bottom-left diagram and the set of possible ⇡0 is shown in
the bottom-right diagram. The states with multiple arrows in the ⇡0 diagram
are those in which several actions achieve the maximum in (4.9); any appor-
tionment of probability among these actions is permitted. The value function
of any such policy, v⇡0(s), can be seen by inspection to be either �1, �2, or �3
at all states, s 2 S, whereas v⇡(s) is at most �14. Thus, v⇡0(s) � v⇡(s), for all
s 2 S, illustrating policy improvement. Although in this case the new policy
⇡0 happens to be optimal, in general only an improvement is guaranteed.

4.3 Policy Iteration

Once a policy, ⇡, has been improved using v⇡ to yield a better policy, ⇡0, we can
then compute v⇡0 and improve it again to yield an even better ⇡00. We can thus
obtain a sequence of monotonically improving policies and value functions:

⇡0
E�! v⇡0

I�! ⇡1
E�! v⇡1

I�! ⇡2
E�! · · · I�! ⇡⇤

E�! v⇤,

where
E�! denotes a policy evaluation and

I�! denotes a policy improvement .
Each policy is guaranteed to be a strict improvement over the previous one
(unless it is already optimal). Because a finite MDP has only a finite number
of policies, this process must converge to an optimal policy and optimal value
function in a finite number of iterations.

This way of finding an optimal policy is called policy iteration. A complete
algorithm is given in Figure 4.3. Note that each policy evaluation, itself an
iterative computation, is started with the value function for the previous policy.
This typically results in a great increase in the speed of convergence of policy
evaluation (presumably because the value function changes little from one
policy to the next).

Policy iteration often converges in surprisingly few iterations. This is illus-
trated by the example in Figure 4.2. The bottom-left diagram shows the value
function for the equiprobable random policy, and the bottom-right diagram
shows a greedy policy for this value function. The policy improvement theo-
rem assures us that these policies are better than the original random policy.
In this case, however, these policies are not just better, but optimal, proceed-
ing to the terminal states in the minimum number of steps. In this example,
policy iteration would find the optimal policy after just one iteration.
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Policy Evaluation

Recall:  State-value function for policy π

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
S

t

state at t

A

t

action at t

R

t

reward at t, dependent, like S

t

, on A

t�1

and S

t�1

G

t

return (cumulative discounted reward) following t

G

(n)

t

n-step return (Section 7.1)
G

�

t

�-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡

⇡(a|s) probability of taking action a in state s under stochastic policy ⇡

p(s0|s, a) probability of transition from state s to state s

0 under action a

r(s, a, s

0) expected immediate reward on transition from s to s

0 under action a

v

⇡

(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q

⇡

(s, a) value of taking action a in state s under policy ⇡

q⇤(s, a) value of taking action a in state s under the optimal policy
V

t

estimate (a random variable) of v

⇡

or v⇤
Q

t

estimate (a random variable) of q

⇡

or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,w

t

vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s

w>x inner product of vectors, w>x =
P

i

w

i

x

i

; e.g., v̂(s,w) = w>x(s)

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=

X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i
, (2)

v⇤(s) = max

a
q⇡⇤(s, a)

= max

a
E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max

a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0
)

⇤
. (4)

i

Recall:  Bellman equation for vπ

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=

X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i
, (2)

v⇤(s) = max

a
q⇡⇤(s, a)

= max

a
E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max

a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0
)

⇤
. (4)

i

—a system of  |  |  simultaneous equations

.
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Iterative Methods

a “sweep”

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:

v0 ! v1 ! · · · ! vk ! vk+1 ! · · · ! v⇡

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �vk(s

0
)

i
8s 2 S

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=

X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i
, (2)

v⇤(s) = max

a
q⇡⇤(s, a)

= max

a
E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max

a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0
)

⇤
. (4)

i

v0 ! v1 ! · · · ! vk ! vk+1 ! · · · ! v⇡

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �vk(s

0
)

i
8s 2 S

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=

X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i
, (2)

v⇤(s) = max

a
q⇡⇤(s, a)

= max

a
E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max

a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0
)

⇤
. (4)

i
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A Small Gridworld

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14; 
❐ One terminal state (shown twice as shaded squares)
❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached

R

γ = 1
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Iterative Policy Eval  
for the Small Gridworld

€ 

π =  equiprobable random action choices

∞

R

γ = 1

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14; 
❐ One terminal state (shown twice as shaded squares)
❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached
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Iterative Policy Evaluation – One array version
86 CHAPTER 4. DYNAMIC PROGRAMMING

Input ⇡, the policy to be evaluated
Initialize an array V (s) = 0, for all s 2 S+

Repeat
� 0
For each s 2 S:

v  V (s)
V (s) 

P
a ⇡(a|s)

P
s0,r p(s0, r|s, a)

⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number)
Output V ⇡ v⇡

Figure 4.1: Iterative policy evaluation.

Another implementation point concerns the termination of the algorithm.
Formally, iterative policy evaluation converges only in the limit, but in practice
it must be halted short of this. A typical stopping condition for iterative policy
evaluation is to test the quantity maxs2S |vk+1(s)�vk(s)| after each sweep and
stop when it is su�ciently small. Figure 4.1 gives a complete algorithm for
iterative policy evaluation with this stopping criterion.

Example 4.1 Consider the 4⇥4 gridworld shown below.

actions

r  =  !1

on all transitions

1 2 3

4 5 6 7

8 9 10 11

12 13 14

R

The nonterminal states are S = {1, 2, . . . , 14}. There are four actions pos-
sible in each state, A = {up, down, right, left}, which deterministically
cause the corresponding state transitions, except that actions that would take
the agent o↵ the grid in fact leave the state unchanged. Thus, for instance,
p(6|5, right) = 1, p(10|5, right) = 0, and p(7|7, right) = 1. This is an undis-
counted, episodic task. The reward is �1 on all transitions until the terminal
state is reached. The terminal state is shaded in the figure (although it is
shown in two places, it is formally one state). The expected reward function is
thus r(s, a, s0) = �1 for all states s, s0 and actions a. Suppose the agent follows
the equiprobable random policy (all actions equally likely). The left side of
Figure 4.2 shows the sequence of value functions {vk} computed by iterative
policy evaluation. The final estimate is in fact v⇡, which in this case gives for
each state the negation of the expected number of steps from that state until
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Value Iteration

Recall the full policy-evaluation backup:

Here is the full value-iteration backup:

v0 ! v1 ! · · · ! vk ! vk+1 ! · · · ! v⇡

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �vk(s

0
)

i
8s 2 S

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=

X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i
, (2)

v⇤(s) = max

a
q⇡⇤(s, a)

= max

a
E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max

a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0
)

⇤
. (4)

i

v0 ! v1 ! · · · ! vk ! vk+1 ! · · · ! v⇡

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �vk(s

0
)

i
8s 2 S

vk+1(s) = max

a

X

s0,r

p(s0, r|s, a)
h
r + �vk(s

0
)

i
8s 2 S

v⇡(s) = E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1

����� St = s

#

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=

X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i
, (2)

v⇤(s) = max

a
q⇡⇤(s, a)

= max

a
E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max

a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0
)

⇤
. (4)

i
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Value Iteration – One array version
96 CHAPTER 4. DYNAMIC PROGRAMMING

Initialize array V arbitrarily (e.g., V (s) = 0 for all s 2 S+)

Repeat
� 0
For each s 2 S:

v  V (s)
V (s) maxa

P
s0,r p(s0, r|s, a)

⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number)

Output a deterministic policy, ⇡, such that
⇡(s) = arg maxa

P
s0,r p(s0, r|s, a)

⇥
r + �V (s0)

⇤

Figure 4.5: Value iteration.

by only a small amount in a sweep. Figure 4.5 gives a complete value iteration
algorithm with this kind of termination condition.

Value iteration e↵ectively combines, in each of its sweeps, one sweep of
policy evaluation and one sweep of policy improvement. Faster convergence is
often achieved by interposing multiple policy evaluation sweeps between each
policy improvement sweep. In general, the entire class of truncated policy
iteration algorithms can be thought of as sequences of sweeps, some of which
use policy evaluation backups and some of which use value iteration backups.
Since the max operation in (4.10) is the only di↵erence between these backups,
this just means that the max operation is added to some sweeps of policy
evaluation. All of these algorithms converge to an optimal policy for discounted
finite MDPs.

Example 4.3: Gambler’s Problem A gambler has the opportunity to
make bets on the outcomes of a sequence of coin flips. If the coin comes up
heads, he wins as many dollars as he has staked on that flip; if it is tails, he
loses his stake. The game ends when the gambler wins by reaching his goal
of $100, or loses by running out of money. On each flip, the gambler must
decide what portion of his capital to stake, in integer numbers of dollars. This
problem can be formulated as an undiscounted, episodic, finite MDP. The
state is the gambler’s capital, s 2 {1, 2, . . . , 99} and the actions are stakes,
a 2 {0, 1, . . . , min(s, 100 � s)}. The reward is zero on all transitions except
those on which the gambler reaches his goal, when it is +1. The state-value
function then gives the probability of winning from each state. A policy is a
mapping from levels of capital to stakes. The optimal policy maximizes the
probability of reaching the goal. Let ph denote the probability of the coin
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Gambler’s Problem

❐ Gambler can repeatedly bet $ on a coin flip
❐ Heads he wins his stake, tails he loses it
❐ Initial capital ∈ {$1, $2, … $99}
❐ Gambler wins if his capital becomes $100  

loses if it becomes $0
❐ Coin is unfair

! Heads (gambler wins) with probability p = .4

❐ States, Actions, Rewards? Discounting?
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Gambler’s Problem Solution
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Policy Improvement

Suppose we have computed       for a deterministic policy π.vπ

For a given state s, 
would it be better to do an action                 ? a ≠ π (s)

It is better to switch to action a for state s if and only if
                            qπ (s,a) > vπ (s)

And, we can compute qπ (s,a) from vπ  by:

88 CHAPTER 4. DYNAMIC PROGRAMMING

termination.

Exercise 4.1 If ⇡ is the equiprobable random policy, what is q⇡(11, down)?
What is q⇡(7, down)?

Exercise 4.2 Suppose a new state 15 is added to the gridworld just below
state 13, and its actions, left, up, right, and down, take the agent to states
12, 13, 14, and 15, respectively. Assume that the transitions from the original
states are unchanged. What, then, is v⇡(15) for the equiprobable random
policy? Now suppose the dynamics of state 13 are also changed, such that
action down from state 13 takes the agent to the new state 15. What is v⇡(15)
for the equiprobable random policy in this case?

Exercise 4.3 What are the equations analogous to (4.3), (4.4), and (4.5) for
the action-value function q⇡ and its successive approximation by a sequence of
functions q0, q1, q2, . . . ?

Exercise 4.4 In some undiscounted episodic tasks there may be policies
for which eventual termination is not guaranteed. For example, in the grid
problem above it is possible to go back and forth between two states forever.
In a task that is otherwise perfectly sensible, v⇡(s) may be negative infinity
for some policies and states, in which case the algorithm for iterative policy
evaluation given in Figure 4.1 will not terminate. As a purely practical matter,
how might we amend this algorithm to assure termination even in this case?
Assume that eventual termination is guaranteed under the optimal policy.

4.2 Policy Improvement

Our reason for computing the value function for a policy is to help find better
policies. Suppose we have determined the value function v⇡ for an arbitrary
deterministic policy ⇡. For some state s we would like to know whether or not
we should change the policy to deterministically choose an action a 6= ⇡(s).
We know how good it is to follow the current policy from s—that is v⇡(s)—but
would it be better or worse to change to the new policy? One way to answer
this question is to consider selecting a in s and thereafter following the existing
policy, ⇡. The value of this way of behaving is

q⇡(s, a) = E⇡[Rt+1 + �v⇡(St+1) | St =s, At =a] (4.6)

=
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i
.

The key criterion is whether this is greater than or less than v⇡(s). If it is
greater—that is, if it is better to select a once in s and thereafter follow ⇡
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Policy Improvement Cont.

Do this for all states to get a new policy !π ≥ π  that is 
greedy with respect to vπ :

90 CHAPTER 4. DYNAMIC PROGRAMMING

other words, to consider the new greedy policy, ⇡0, given by

⇡0(s) = arg max
a

q⇡(s, a)

= arg max
a

E[Rt+1 + �v⇡(St+1) | St =s, At =a] (4.9)

= arg max
a

X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s0)

i
,

where arg maxa denotes the value of a at which the expression that follows is
maximized (with ties broken arbitrarily). The greedy policy takes the action
that looks best in the short term—after one step of lookahead—according to
v⇡. By construction, the greedy policy meets the conditions of the policy
improvement theorem (4.7), so we know that it is as good as, or better than,
the original policy. The process of making a new policy that improves on an
original policy, by making it greedy with respect to the value function of the
original policy, is called policy improvement.

Suppose the new greedy policy, ⇡0, is as good as, but not better than, the
old policy ⇡. Then v⇡ = v⇡0 , and from (4.9) it follows that for all s 2 S:

v⇡0(s) = max
a

E[Rt+1 + �v⇡0(St+1) | St =s, At =a]

= max
a

X

s0,r

p(s0, r|s, a)
h
r + �v⇡0(s0)

i
.

But this is the same as the Bellman optimality equation (4.1), and therefore,
v⇡0 must be v⇤, and both ⇡ and ⇡0 must be optimal policies. Policy improve-
ment thus must give us a strictly better policy except when the original policy
is already optimal.

So far in this section we have considered the special case of deterministic
policies. In the general case, a stochastic policy ⇡ specifies probabilities, ⇡(a|s),
for taking each action, a, in each state, s. We will not go through the details,
but in fact all the ideas of this section extend easily to stochastic policies. In
particular, the policy improvement theorem carries through as stated for the
stochastic case, under the natural definition:

q⇡(s, ⇡0(s)) =
X

a

⇡0(a|s)q⇡(s, a).

In addition, if there are ties in policy improvement steps such as (4.9)—that
is, if there are several actions at which the maximum is achieved—then in the
stochastic case we need not select a single action from among them. Instead,
each maximizing action can be given a portion of the probability of being

What if the policy is unchanged by this?
Then the policy must be optimal!



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 10

Policy Iteration

 policy evaluation policy improvement
“greedification”

4.3. POLICY ITERATION 91

selected in the new greedy policy. Any apportioning scheme is allowed as long
as all submaximal actions are given zero probability.

The last row of Figure 4.2 shows an example of policy improvement for
stochastic policies. Here the original policy, ⇡, is the equiprobable random
policy, and the new policy, ⇡0, is greedy with respect to v⇡. The value function
v⇡ is shown in the bottom-left diagram and the set of possible ⇡0 is shown in
the bottom-right diagram. The states with multiple arrows in the ⇡0 diagram
are those in which several actions achieve the maximum in (4.9); any appor-
tionment of probability among these actions is permitted. The value function
of any such policy, v⇡0(s), can be seen by inspection to be either �1, �2, or �3
at all states, s 2 S, whereas v⇡(s) is at most �14. Thus, v⇡0(s) � v⇡(s), for all
s 2 S, illustrating policy improvement. Although in this case the new policy
⇡0 happens to be optimal, in general only an improvement is guaranteed.

4.3 Policy Iteration

Once a policy, ⇡, has been improved using v⇡ to yield a better policy, ⇡0, we can
then compute v⇡0 and improve it again to yield an even better ⇡00. We can thus
obtain a sequence of monotonically improving policies and value functions:

⇡0
E�! v⇡0

I�! ⇡1
E�! v⇡1

I�! ⇡2
E�! · · · I�! ⇡⇤

E�! v⇤,

where
E�! denotes a policy evaluation and

I�! denotes a policy improvement .
Each policy is guaranteed to be a strict improvement over the previous one
(unless it is already optimal). Because a finite MDP has only a finite number
of policies, this process must converge to an optimal policy and optimal value
function in a finite number of iterations.

This way of finding an optimal policy is called policy iteration. A complete
algorithm is given in Figure 4.3. Note that each policy evaluation, itself an
iterative computation, is started with the value function for the previous policy.
This typically results in a great increase in the speed of convergence of policy
evaluation (presumably because the value function changes little from one
policy to the next).

Policy iteration often converges in surprisingly few iterations. This is illus-
trated by the example in Figure 4.2. The bottom-left diagram shows the value
function for the equiprobable random policy, and the bottom-right diagram
shows a greedy policy for this value function. The policy improvement theo-
rem assures us that these policies are better than the original random policy.
In this case, however, these policies are not just better, but optimal, proceed-
ing to the terminal states in the minimum number of steps. In this example,
policy iteration would find the optimal policy after just one iteration.
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Iterative Policy Eval  
for the Small Gridworld

∞

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14; 
❐ One terminal state (shown twice as shaded squares)
❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached

€ 

π =  equiprobable random action choices

R

γ = 1
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Policy Iteration – One array version (+ policy)

92 CHAPTER 4. DYNAMIC PROGRAMMING

1. Initialization
V (s) 2 R and ⇡(s) 2 A(s) arbitrarily for all s 2 S

2. Policy Evaluation
Repeat

� 0
For each s 2 S:

v  V (s)
V (s) 

P
s0,r p(s0, r|s, ⇡(s))

⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number)

3. Policy Improvement
policy-stable true
For each s 2 S:

a ⇡(s)
⇡(s) arg maxa

P
s0,r p(s0, r|s, a)

⇥
r + �V (s0)

⇤

If a 6= ⇡(s), then policy-stable false
If policy-stable, then stop and return V and ⇡; else go to 2

Figure 4.3: Policy iteration (using iterative policy evaluation) for v⇤. This
algorithm has a subtle bug, in that it may never terminate if the policy con-
tinually switches between two or more policies that are equally good. The bug
can be fixed by adding additional flags, but it makes the pseudocode so ugly
that it is not worth it. :-)
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Generalized Policy Iteration

Generalized Policy Iteration  (GPI):  
any interaction of policy evaluation and policy improvement, 
independent of their granularity.

A geometric metaphor for
convergence of GPI: 

evaluation

improvement

⇡  greedy(V )

V⇡

V  v⇡

v⇤⇡⇤

v⇤,⇡⇤

V0,⇡0

V = v⇡

⇡ = greed
y(V )
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Jack’s Car Rental

❐ $10 for each car rented (must be available when request rec’d)
❐ Two locations, maximum of 20 cars at each
❐ Cars returned and requested randomly

! Poisson distribution, n returns/requests with prob
! 1st location: average requests = 3, average returns = 3
! 2nd location: average requests = 4, average returns = 2

❐ Can move up to 5 cars between locations overnight
! at a cost of $2/car 

❐ States, Actions, Rewards?
❐ Transition probabilities? Discounting? 

€ 

λn

n!
e−λ
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Figure 3.4: Backup diagrams for (a) v⇡ and (b) q⇡.

the states of the environment. At each cell, four actions are possible: north,
south, east, and west, which deterministically cause the agent to move one

cell in the respective direction on the grid. Actions that would take the agent

o� the grid leave its location unchanged, but also result in a reward of �1.

Other actions result in a reward of 0, except those that move the agent out

of the special states A and B. From state A, all four actions yield a reward of

+10 and take the agent to A

0
. From state B, all actions yield a reward of +5

and take the agent to B

0
.

Suppose the agent selects all four actions with equal probability in all

states. Figure 3.5b shows the value function, v⇡, for this policy, for the dis-

counted reward case with � = 0.9. This value function was computed by solv-

ing the system of equations (3.10). Notice the negative values near the lower

edge; these are the result of the high probability of hitting the edge of the grid

there under the random policy. State A is the best state to be in under this pol-

icy, but its expected return is less than 10, its immediate reward, because from

A the agent is taken to A

0
, from which it is likely to run into the edge of the

grid. State B, on the other hand, is valued more than 5, its immediate reward,

because from B the agent is taken to B

0
, which has a positive value. From B

0
the

expected penalty (negative reward) for possibly running into an edge is more

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0

A B

A'

B'+10

+5

Actions

(a) (b)

Figure 3.5: Grid example: (a) exceptional reward dynamics; (b) state-value

function for the equiprobable random policy.

Figure 3.5: Grid example: exceptional reward dynamics (left) and state-value function for
the equiprobable random policy (right).

all four actions yield a reward of +10 and take the agent to A0. From state B, all
actions yield a reward of +5 and take the agent to B0.

Suppose the agent selects all four actions with equal probability in all states.
Figure 3.5b shows the value function, v⇡, for this policy, for the discounted reward
case with � = 0.9. This value function was computed by solving the system of linear
equations (3.12). Notice the negative values near the lower edge; these are the result
of the high probability of hitting the edge of the grid there under the random policy.
State A is the best state to be in under this policy, but its expected return is less
than 10, its immediate reward, because from A the agent is taken to A0, from which
it is likely to run into the edge of the grid. State B, on the other hand, is valued
more than 5, its immediate reward, because from B the agent is taken to B0, which
has a positive value. From B0 the expected penalty (negative reward) for possibly
running into an edge is more than compensated for by the expected gain for possibly
stumbling onto A or B.

Example 3.9: Golf To formulate playing a hole of golf as a reinforcement learning
task, we count a penalty (negative reward) of �1 for each stroke until we hit the
ball into the hole. The state is the location of the ball. The value of a state is the
negative of the number of strokes to the hole from that location. Our actions are
how we aim and swing at the ball, of course, and which club we select. Let us take
the former as given and consider just the choice of club, which we assume is either a
putter or a driver. The upper part of Figure 3.6 shows a possible state-value function,
vputt(s), for the policy that always uses the putter. The terminal state in-the-hole
has a value of 0. From anywhere on the green we assume we can make a putt; these
states have value �1. O↵ the green we cannot reach the hole by putting, and the
value is greater. If we can reach the green from a state by putting, then that state
must have value one less than the green’s value, that is, �2. For simplicity, let us
assume we can putt very precisely and deterministically, but with a limited range.
This gives us the sharp contour line labeled �2 in the figure; all locations between
that line and the green require exactly two strokes to complete the hole. Similarly,
any location within putting range of the �2 contour line must have a value of �3,
and so on to get all the contour lines shown in the figure. Putting doesn’t get us
out of sand traps, so they have a value of �1. Overall, it takes us six strokes to get
from the tee to the hole by putting.
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Jack’s Car Rental
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Figure 4.4: The sequence of policies found by policy iteration on Jack’s car
rental problem, and the final state-value function. The first five diagrams show,
for each number of cars at each location at the end of the day, the number
of cars to be moved from the first location to the second (negative numbers
indicate transfers from the second location to the first). Each successive policy
is a strict improvement over the previous policy, and the last policy is optimal.
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Jack’s CR Exercise

❐ Suppose the first car moved is free
! From 1st to 2nd location
! Because an employee travels that way anyway (by bus)

❐ Suppose only 10 cars can be parked for free at each location
! More than 10 cost $4 for using an extra parking lot

❐ Such arbitrary nonlinearities are common in real problems
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Asynchronous DP

❐ All the DP methods described so far require exhaustive 
sweeps of the entire state set.

❐ Asynchronous DP does not use sweeps. Instead it works like 
this:
! Repeat until convergence criterion is met:

– Pick a state at random and apply the appropriate 
backup

❐ Still need lots of computation, but does not get locked into 
hopelessly long sweeps

❐ Can you select states to backup intelligently? YES: an agent’s 
experience can act as a guide.
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Efficiency of DP

❐ To find an optimal policy is polynomial in the number of 
states…

❐ BUT, the number of states is often astronomical, e.g., often 
growing exponentially with the number of state variables 
(what Bellman called “the curse of dimensionality”).

❐ In practice, classical DP can be applied to problems with a 
few millions of states.

❐ Asynchronous DP can be applied to larger problems, and is 
appropriate for parallel computation.

❐ It is surprisingly easy to come up with MDPs for which DP 
methods are not practical.   
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Summary

❐ Policy evaluation: backups without a max
❐ Policy improvement: form a greedy policy, if only locally
❐ Policy iteration: alternate the above two processes
❐ Value iteration: backups with a max
❐ Full backups (to be contrasted later with sample backups)
❐ Generalized Policy Iteration (GPI)
❐ Asynchronous DP: a way to avoid exhaustive sweeps
❐ Bootstrapping: updating estimates based on other 

estimates
❐ Biggest limitation of DP is that it requires a probability 

model (as opposed to a generative or simulation model)


