Chapter 4: Dynamic Programming

Objectives of this chapter:

- \Box Overview of a collection of classical solution methods for MDPs known as dynamic programming (DP)
- \Box Show how DP can be used to compute value functions, and hence, optimal policies
- \Box Discuss efficiency and utility of DP

Policy Iteration Once a policy, ⇡, has been improved using *v*⇡ to yield a better policy, ⇡⁰

Policy Evaluation

Policy Evaluation: for a given policy π , compute the state-value function $ν_π$ *a* given poiley *n*, compute the \overline{X}

Recall: **State-value function for policy** *π* Summary of Notation

$$
v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t | S_t = s] = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s \right]
$$

Recall: Bellman equation for $ν_π$

$$
v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s') \right]
$$

tem of $|S|$ simultaneous equations nul \tan equal capacity eq $\overline{\mathbf{1}}$ —a system of 181 simultaneous equations

Iterative Methods

$$
v_0 \to v_1 \to \cdots \to v_k \to v_{k+1} \to \cdots \to v_{\pi}
$$

a "sweep"

A sweep consists of applying a **backup operation** to each state. α a backup operation $\frac{1}{\sqrt{2}}$ A sweep consists of applying a **backup operation** to each state.

A full policy-evaluation backup:
<i>x <u>k</u> evaluation back $\mathbf{u}\mathbf{p}$:

$$
v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_k(s') \Big] \qquad \forall s \in \mathcal{S}
$$

A Small Gridworld

 $R = -1$ on all transitions

 $\gamma=1$

- \Box An undiscounted episodic task
- \Box Nonterminal states: $1, 2, \ldots, 14;$
- \Box One terminal state (shown twice as shaded squares)
- \Box Actions that would take agent off the grid leave state unchanged
- \Box Reward is -1 until the terminal state is reached

Iterative Policy Eval for the Small Gridworld

 π = equiprobable random action choices

 $R = -1$ on all transitions

 $\gamma = 1$

- \Box An undiscounted episodic task
- \Box Nonterminal states: 1, 2, ..., 14;
- \Box One terminal state (shown twice as shaded squares)
- \Box Actions that would take agent off the grid leave state unchanged
- \Box Reward is -1 until the terminal state is reached

 V_k for the Random Policy

	0.0 0.0 0.0 0.0
$k=0$	0.0 0.0 0.0 0.0
	0.0 0.0 0.0 0.0
	0.0 0.0 0.0 0.0
	0.0 - 1.0 - 1.0 - 1.0
$k=1$	$-1.0[-1.0[-1.0]-1.0]$
	-1.0 -1.0 -1.0 -1.0
	$-1.0[-1.0] - 1.0]$ 0.0
	0.0 -1.7 -2.0 -2.0
$k = 2$	$-1.7[-2.0] - 2.0] - 2.0$
	-2.0 -2.0 -2.0 -1.7
	-2.0 -2.0 -1.7 0.0
	$0.0[-2.4]-2.9]-3.0$
	-2.4] -2.9] -3.0] -2.9
$k = 3$	-2.9] -3.0] -2.9] -2.4
	$-3.0[-2.9] -2.4$ 0.0
	0.0 -6.1 -8.4 -9.0
	-6.1] -7.7 -8.4] -8.4
k =	

 -8.4 -8.4

 $k = ∞$

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Input π , the policy to be evaluated Initialize an array $V(s) = 0$, for all $s \in \mathcal{S}^+$ Repeat

$$
\Delta \leftarrow 0
$$

For each $s \in \mathcal{S}$:

$$
v \leftarrow V(s)
$$

$$
V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
$$

$$
\Delta \leftarrow \max(\Delta, |v - V(s)|)
$$

until $\Delta < \theta$ (a small positive number)
Output $V \approx v_{\pi}$

Value Iteration *v*⁰ ! *v*¹ ! *···* ! *v^k* ! *vk*+1 ! *···* ! *v*⇡

Recall the full policy-evaluation backup: \mathbf{in} $\mathbf{backup}:$

$$
v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_k(s') \Big] \qquad \forall s \in \mathcal{S}
$$

Here is the **full value-iteration backup**: "
" *a s*0*,r*

$$
v_{k+1}(s) = \max_{a} \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_k(s') \Big] \qquad \forall s \in \mathcal{S}
$$

Initialize array *V* arbitrarily (e.g., $V(s) = 0$ for all $s \in S^+$)

Repeat $\Delta \leftarrow 0$ For each $s \in \mathcal{S}$: $v \leftarrow V(s)$ $V(s) \leftarrow \max_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$ (a small positive number)

Output a deterministic policy, π , such that $\pi(s) = \arg \max_a \sum_{s',r} p(s',r|s,a) \big[r + \gamma V(s') \big]$

Gambler's Problem

- \Box Gambler can repeatedly bet \$ on a coin flip
- \Box Heads he wins his stake, tails he loses it
- \Box Initial capital \in {\$1, \$2, ... \$99}
- \Box Gambler wins if his capital becomes \$100 loses if it becomes \$0
- **□ Coin is unfair**
	- **EXECUTE:** Heads (gambler wins) with probability $p = .4$

❐ States, Actions, Rewards? Discounting?

Gambler's Problem Solution

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 19

Policy Improvement

Suppose we have computed v_π for a deterministic policy π .

For a given state *s*, would it be better to do an action $a \neq \pi(s)$? Γ or a green state s, would it be better to go an action $u \neq v(y)$:

It is better to switch to action *a* for state *s* if and only if $q_\pi(s,a) > v_\pi(s)$ α (α α)—but α) $\mathbf{y}_{\pi}(\mathfrak{p},\mathfrak{a})\geq \mathfrak{v}_{\pi}(\mathfrak{p})$

deterministic policy ⇡. For some state *s* we would like to know whether or not

And, we can compute $q_{\pi}(s,a)$ from v_{π} by:

$$
q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s, A_t = a]
$$

=
$$
\sum_{s', r} p(s', r | s, a) \left[r + \gamma v_{\pi}(s') \right].
$$

Do this for all states to get a new policy $\pi' \geq \pi$ that is **greedy** with respect to v_π : σ ^{-cod}_{*y*} them evep police θ _{*x*}.

$$
\pi'(s) = \arg \max_{a} q_{\pi}(s, a)
$$

=
$$
\arg \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s, A_t = a]
$$

=
$$
\arg \max_{a} \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_{\pi}(s')\Big],
$$

What if the policy is unchanged by this? $\frac{1}{\pi}$ Then the policy must be entimely then the policy mast be optimal. Then the policy must be optimal!

Policy Iteration Once a policy, ⇡, has been improved using *v*⇡ to yield a better policy, ⇡⁰

Iterative Policy Eval for the Small Gridworld

 π = equiprobable random action choices

 $R = -1$ on all transitions

 $\gamma = 1$

 \Box An undiscounted episodic task

- \Box Nonterminal states: 1, 2, ..., 14;
- \Box One terminal state (shown twice as shaded squares)
- \Box Actions that would take agent off the grid leave state unchanged
- \Box Reward is -1 until the terminal state is reached

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 6

	V_k for the Random Policy	Greedy Policy w.r.t. V_k	
$k = 0$	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 $_{0.0}$ 0.01 0.0 0.0 0.0 0.0		random policy
$k = 1$	0.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0		
$k = 2$	0.0 -1.7 -2.0 -2.0 -1.7 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.7 -2.0 -2.0 -1.7 0.0		
$k = 3$	0.0 -2.4 -2.9 -3.0 -2.4 -2.9 -3.0 -2.9 -2.9 -3.0 -2.9 -2.4 -3.0 -2.9 -2.4 0.0	ٹے Ť 1 ı	
$k = 10$	0.0 -6.1 -8.4 -9.0 -6.1 -7.7 -8.4 -8.4 $-8.4 - 8.4 - 7.7 - 6.1$ -9.0 -8.4 -6.1 0.0	1 t ı	optimal policy
\overline{L} $-$	0.0 -14. -20. -22 $-14. -18. -20. -20.$		

Policy Iteration – One array version (+ policy)

1. Initialization $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Repeat $\Lambda \leftarrow 0$ For each $s \in \mathcal{S}$: $v \leftarrow V(s)$ $V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$ (a small positive number)

3. Policy Improvement $policy-stable \leftarrow true$ For each $s \in \mathcal{S}$: $a \leftarrow \pi(s)$ $\pi(s) \leftarrow \arg \max_a \sum_{s',r} p(s',r|s,a) \big[r + \gamma V(s') \big]$ If $a \neq \pi(s)$, then *policy-stable* $\leftarrow false$ If *policy-stable*, then stop and return *V* and π ; else go to 2

Generalized Policy Iteration

Generalized Policy Iteration (GPI): any interaction of policy evaluation and policy improvement, independent of their granularity.

A geometric metaphor for convergence of GPI:

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 22

Jack's Car Rental

- \Box \$10 for each car rented (must be available \Box)
- \Box Two locations, maximum of 20 cars at each
- \Box Cars returned and requested randomly
	- **Poisson distribution,** *n* returns/requests with prob λ *n n*! *ca*) ^{− λ} $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty}$ and state-value function $\sum_{n=1}^{\infty}$
	- **1st location: average requests = 3, average returns = 3** $\begin{bmatrix} \text{resus} - \text{resus} \\ \text{Figure 3.5:} \end{bmatrix}$ Grid example: (a) exceptional rewards $\text{sts} = 3$, average returns = 3
	- **2nd location: average requests** $=$ **4** f **average returns** $=$ **2 Auests: 5.4 faverage returns 5.3 follow rand**
- \Box Can move up to 5 cars between locations overnight
	- ! at a cost of \$2/car
- ❐ States, Actions, Rewards?
- **T** Transition probabilities? Discounting? $\gamma = 0.9$

Jack's Car Rental

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 13

Jack's CR Exercise

 \Box Suppose the first car moved is free

- From 1st to 2nd location
- ! Because an employee travels that way anyway (by bus)

 \Box Suppose only 10 cars can be parked for free at each location

! More than 10 cost \$4 for using an extra parking lot

 \Box Such arbitrary nonlinearities are common in real problems

Asynchronous DP

- \Box All the DP methods described so far require exhaustive sweeps of the entire state set.
- \Box Asynchronous DP does not use sweeps. Instead it works like this:
	- ! Repeat until convergence criterion is met:
		- Pick a state at random and apply the appropriate backup
- \Box Still need lots of computation, but does not get locked into hopelessly long sweeps
- \Box Can you select states to backup intelligently? YES: an agent's experience can act as a guide.

Efficiency of DP

- \Box To find an optimal policy is polynomial in the number of states…
- \Box BUT, the number of states is often astronomical, e.g., often growing exponentially with the number of state variables (what Bellman called "the curse of dimensionality").
- \Box In practice, classical DP can be applied to problems with a few millions of states.
- \Box Asynchronous DP can be applied to larger problems, and is appropriate for parallel computation.
- \Box It is surprisingly easy to come up with MDPs for which DP methods are not practical.

Summary

- \Box Policy evaluation: backups without a max
- \Box Policy improvement: form a greedy policy, if only locally
- \Box Policy iteration: alternate the above two processes
- \Box Value iteration: backups with a max
- \Box Full backups (to be contrasted later with sample backups)
- ❐ Generalized Policy Iteration (GPI)
- \Box Asynchronous DP: a way to avoid exhaustive sweeps
- ❐ **Bootstrapping**: updating estimates based on other estimates
- ❐ Biggest limitation of DP is that it requires a *probability model* (as opposed to a generative or simulation model)