Chapter 4: Dynamic Programming

Objectives of this chapter:

- Overview of a collection of classical solution methods for MDPs known as dynamic programming (DP)
- Show how DP can be used to compute value functions, and hence, optimal policies
- Discuss efficiency and utility of DP

Policy Iteration

Policy Evaluation

Policy Evaluation: for a given policy π , compute the state-value function v_{π}

Recall: State-value function for policy π

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s\right]$$

Recall: Bellman equation for v_{π}

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]$$

-a system of ISI simultaneous equations

Iterative Methods

$$v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k \rightarrow v_{k+1} \rightarrow \cdots \rightarrow v_{\pi}$$

a "sweep"

A sweep consists of applying a **backup operation** to each state.

A full policy-evaluation backup:

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s') \right] \qquad \forall s \in S$$

A Small Gridworld

R = -1on all transitions

 $\gamma = 1$

- □ An undiscounted episodic task
- □ Nonterminal states: 1, 2, . . ., 14;
- One terminal state (shown twice as shaded squares)
- Actions that would take agent off the grid leave state unchanged
- Reward is –1 until the terminal state is reached

Iterative Policy Eval for the Small Gridworld

 π = equiprobable random action choices

γ	=	1
---	---	---

k = 10

 $k = \infty$

k = 0

k = 1

-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0
	_		
0.0	-1.7	-2.0	-2.0
	-1.0 -1.0	-1.0 -1.0 -1.0 -1.0	-1.0 -1.0 -1.0 -1.0 -1.0 -1.0

Vk for the Random Policy

0.0 0.0 0.0 0.0 0.0

0.0

0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20:	-14.	0.0

An undiscounted episodic task

- \square Nonterminal states: 1, 2, . . ., 14;
- One terminal state (shown twice as shaded squares)
- □ Actions that would take agent off the grid leave state unchanged
- \Box Reward is -1 until the terminal state is reached

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Input π , the policy to be evaluated Initialize an array V(s) = 0, for all $s \in S^+$ Repeat

$$\begin{array}{l} \Delta \leftarrow 0\\ \text{For each } s \in \mathbb{S}:\\ v \leftarrow V(s)\\ V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma V(s')\right]\\ \Delta \leftarrow \max(\Delta, |v - V(s)|)\\ \text{until } \Delta < \theta \text{ (a small positive number)}\\ \text{Output } V \approx v_{\pi} \end{array}$$

Value Iteration

Recall the **full policy-evaluation backup**:

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s')\right] \qquad \forall s \in \mathcal{S}$$

Here is the **full value-iteration backup**:

$$v_{k+1}(s) = \max_{a} \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s')\right] \qquad \forall s \in \mathcal{S}$$

Initialize array V arbitrarily (e.g., V(s) = 0 for all $s \in S^+$)

Repeat $\Delta \leftarrow 0$ For each $s \in S$: $v \leftarrow V(s)$ $V(s) \leftarrow \max_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$ (a small positive number)

Output a deterministic policy, π , such that $\pi(s) = \arg \max_a \sum_{s',r} p(s', r|s, a) [r + \gamma V(s')]$

Gambler's Problem

- Gambler can repeatedly bet \$ on a coin flip
- Heads he wins his stake, tails he loses it
- □ Initial capital \in {\$1, \$2, ... \$99}
- Gambler wins if his capital becomes \$100 loses if it becomes \$0
- **Coin is unfair**
 - Heads (gambler wins) with probability p = .4

I States, Actions, Rewards? Discounting?

Gambler's Problem Solution

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Policy Improvement

Suppose we have computed v_{π} for a deterministic policy π .

For a given state s, would it be better to do an action $a \neq \pi(s)$?

It is better to switch to action *a* for state *s* if and only if $q_{\pi}(s,a) > v_{\pi}(s)$

And, we can compute $q_{\pi}(s,a)$ from v_{π} by:

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a] \\ = \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_{\pi}(s')\Big].$$

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Do this for all states to get a new policy $\pi' \ge \pi$ that is **greedy** with respect to v_{π} :

$$\pi'(s) = \arg \max_{a} q_{\pi}(s, a)$$

=
$$\arg \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a]$$

=
$$\arg \max_{a} \sum_{s', r} p(s', r \mid s, a) \Big[r + \gamma v_{\pi}(s') \Big],$$

What if the policy is unchanged by this? Then the policy must be optimal!

Policy Iteration

Iterative Policy Eval for the Small Gridworld

 π = equiprobable random action choices

R = -1on all transitions

 $\gamma = 1$

- □ An undiscounted episodic task
- \Box Nonterminal states: 1, 2, ..., 14;
- One terminal state (shown twice as shaded squares)
- \square Actions that would take agent off the grid leave state unchanged
- \square Reward is -1 until the terminal state is reached

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

b	V_k for the Random Policy	Greedy Policy w.r.t. Vk	
k = 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		_ random policy
k = 1	0.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
k = 2	0.0 -1.7 -2.0 -2.0 -1.7 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.7 -2.0 -2.0 -1.7 0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
<i>k</i> = 3	0.0 -2.4 -2.9 -3.0 -2.4 -2.9 -3.0 -2.9 -2.9 -3.0 -2.9 -2.4 -3.0 -2.9 -2.4 0.0		
<i>k</i> = 10	0.0 -6.1 -8.4 -9.0 -6.1 -7.7 -8.4 -8.4 -8.4 -8.4 -7.7 -6.1 -9.0 -8.4 -6.1 0.0		optimal policy
	0.0 -142022.		

-18. -

6

Policy Iteration – One array version (+ policy)

1. Initialization $V(s) \in \mathbb{R} \text{ and } \pi(s) \in \mathcal{A}(s) \text{ arbitrarily for all } s \in S$

2. Policy Evaluation

Repeat

 $\Delta \leftarrow 0$

For each $s \in S$: $v \leftarrow V(s)$ $V(s) \leftarrow \sum n(s' | s, \pi(s)) [r + \gamma V(s')]$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$
$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number)

3. Policy Improvement policy-stable \leftarrow true For each $s \in S$: $a \leftarrow \pi(s)$ $\pi(s) \leftarrow \arg \max_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$ If $a \neq \pi(s)$, then policy-stable \leftarrow false If policy-stable, then stop and return V and π ; else go to 2

Generalized Policy Iteration

Generalized Policy Iteration (GPI): any interaction of policy evaluation and policy improvement, independent of their granularity.

A geometric metaphor for convergence of GPI:

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Jack's Car Rental

- □ \$10 for each car rented (must be available
- □ Two locations, maximum of 20 cars at eac
- Cars returned and requested randomly
 - Poisson distribution, *n* returns/requests with prob $\frac{(a)}{n!}$
 - 1st location: average requests = 3, average returns = 3
 Figure 3.5: Grid example: (a) example:
 - 2nd location: average requests = 4 for the equiprobable rand
- Can move up to 5 cars between locations overnight
 - at a cost of \$2/car
- **States**, Actions, Rewards?
- **Transition probabilities?** Discounting? $\gamma = 0.9$

Jack's Car Rental

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Jack's CR Exercise

I Suppose the first car moved is free

- From 1st to 2nd location
- Because an employee travels that way anyway (by bus)

□ Suppose only 10 cars can be parked for free at each location

• More than 10 cost \$4 for using an extra parking lot

I Such arbitrary nonlinearities are common in real problems

Asynchronous DP

- All the DP methods described so far require exhaustive sweeps of the entire state set.
- Asynchronous DP does not use sweeps. Instead it works like this:
 - Repeat until convergence criterion is met:
 - Pick a state at random and apply the appropriate backup
- Still need lots of computation, but does not get locked into hopelessly long sweeps
- Can you select states to backup intelligently? YES: an agent's experience can act as a guide.

Efficiency of DP

- ☐ To find an optimal policy is polynomial in the number of states...
- BUT, the number of states is often astronomical, e.g., often growing exponentially with the number of state variables (what Bellman called "the curse of dimensionality").
- In practice, classical DP can be applied to problems with a few millions of states.
- Asynchronous DP can be applied to larger problems, and is appropriate for parallel computation.
- □ It is surprisingly easy to come up with MDPs for which DP methods are not practical.

Summary

- Policy evaluation: backups without a max
- Policy improvement: form a greedy policy, if only locally
- Policy iteration: alternate the above two processes
- □ Value iteration: backups with a max
- □ Full backups (to be contrasted later with sample backups)
- Generalized Policy Iteration (GPI)
- □ Asynchronous DP: a way to avoid exhaustive sweeps
- **Bootstrapping**: updating estimates based on other estimates
- Biggest limitation of DP is that it requires a *probability model* (as opposed to a generative or simulation model)